1
|
Liu Y, Wang X, Podio NS, Wang X, Xu S, Jiang S, Wei X, Han Y, Cai Y, Chen X, Jin F, Li X, Gong ES. Research progress on the regulation of oxidative stress by phenolics: the role of gut microbiota and Nrf2 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1861-1873. [PMID: 37851871 DOI: 10.1002/jsfa.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
In recent years, the increase in high-calorie diets and sedentary lifestyles has made obesity a global public health problem. An unbalanced diet promotes the production of proinflammatory cytokines and causes redox imbalance in the body. Phenolics have potent antioxidant activity and cytoprotective ability. They can scavenge free radicals and reactive oxygen species, and enhance the activity of antioxidant enzymes, thus combating the body's oxidative stress. They can also improve the body's inflammatory response, enhance the enzyme activity of lipid metabolism, and reduce the contents of cholesterol and triglyceride. Most phenolics are biotransformed and absorbed into the blood after the action by gut microbiota; these metabolites then undergo phase I and II metabolism and regulate oxidative stress by scavenging free radicals and increasing expression of antioxidant enzymes. Phenolics induce the expression of genes encoding antioxidant enzymes and phase II detoxification enzymes by stimulating Nrf2 to enter the nucleus and bind to the antioxidant response element after uncoupling from Keap1, thereby promoting the production of antioxidant enzymes and phase II detoxification enzymes. The absorption rate of phenolics in the small intestine is extremely low. Most phenolics reach the colon, where they interact with the microbiota and undergo a series of metabolism. Their metabolites will reach the liver via the portal vein and undergo conjugation reactions. Subsequently, the metabolites reach the whole body to exert biological activity by traveling with the systemic circulation. Phenolics can promote the growth of probiotics, reduce the ratio of Firmicutes/Bacteroidetes (F/B), and improve intestinal microecological imbalance. This paper reviews the nutritional value, bioactivity, and antioxidant mechanism of phenolics in the body, aiming to provide a scientific basis for the development and utilization of natural antioxidants and provide a reference for elucidating the mechanism of action of phenolics for regulating oxidative stress in the body. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xiaoling Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Natalia S Podio
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, Argentina
| | - Xiaoyin Wang
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Shuyan Xu
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Suhang Jiang
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xia Wei
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Yuna Han
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Yunyan Cai
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xingyu Chen
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Fan Jin
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xianbao Li
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Er Sheng Gong
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| |
Collapse
|
2
|
Farias-Pereira R, Zuk JB, Khavaran H. Plant bioactive compounds from Mediterranean diet improve risk factors for metabolic syndrome. Int J Food Sci Nutr 2023; 74:403-423. [PMID: 37415346 PMCID: PMC10399461 DOI: 10.1080/09637486.2023.2232949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Mediterranean (Med) dietary pattern consists of moderate or high consumption of foods that are linked to reduced risk factors for metabolic syndrome (MetS). This comprehensive review evaluates studies on Med diet-representative foods and beverages, such as red wine and olive oil, to understand the inverse associations of Med diet and MetS. The intake of dietary fibre, unsaturated fatty acids, vitamins, and polyphenols - including flavonoids and stilbenes - help to explain the benefits of Med diet on abdominal adiposity, glucose intolerance, hyperlipidaemia, and high blood pressure to some extent. Antioxidant and anti-inflammatory properties of polyphenols as well as the effects of unsaturated fatty acids on lipid metabolism are part of the underlying mechanisms. Overall, this review shows that dietary interventions using Med diet components improve MetS health markers in humans and/or rodents.
Collapse
Affiliation(s)
- Renalison Farias-Pereira
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua B. Zuk
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Hannah Khavaran
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Suo H, Shishir MRI, Wang Q, Wang M, Chen F, Cheng KW. Red Wine High-Molecular-Weight Polyphenolic Complex Ameliorates High-Fat Diet-Induced Metabolic Dysregulation and Perturbation in Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6882-6893. [PMID: 37126594 DOI: 10.1021/acs.jafc.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Red wine polyphenolic complexes have attracted increasing attention as potential modulators of human metabolic disease risk. Our previous study discovered that red wine high-molecular-weight polymeric polyphenolic complexes (HPPCs) could inhibit key metabolic syndrome-associated enzymes and favorably modulate human gut microbiota (GM) in simulated colonic fermentation assay in vitro. In this work, the efficacy of HPPC supplementation (150 and 300 mg/kg/day, respectively) against high-fat diet (HFD)-induced metabolic disturbance in mice was investigated. HPPCs effectively attenuated HFD-induced obesity, insulin resistance, and lipid and glucose metabolic dysregulation and ameliorated inflammatory response and hepatic and colonic damage. It also improved the relative abundance of Bacteroidetes and Firmicutes, consistent with an anti-obesity phenotype. The favorable modulation of GM was further supported by improvement in the profile of fecal short-chain fatty acids. The higher dosage generally had a better performance in these effects than the low dosage. Moreover, serum metabolite profiling and pathway enrichment analysis revealed that HPPCs significantly modulated vitamin B metabolism-associated pathways and identified N-acetylneuraminic acid and 2-methylbutyroylcarnitine as potential biomarkers of the favorable effect on HFD-induced metabolic dysregulation. These findings highlight that dietary supplementation with red wine HPPCs is a promising strategy for the management of weight gain and metabolic dysregulation associated with HFD.
Collapse
Affiliation(s)
- Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mohammad Rezaul Islam Shishir
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Buljeta I, Pichler A, Šimunović J, Kopjar M. Beneficial Effects of Red Wine Polyphenols on Human Health: Comprehensive Review. Curr Issues Mol Biol 2023; 45:782-798. [PMID: 36825997 PMCID: PMC9955827 DOI: 10.3390/cimb45020052] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Polyphenols are secondary plant metabolites synthesized during the development of the grape berry as a response to stress conditions. They are important constituents in red wines that contribute to the sensory properties and antioxidant activity of wines. Due to the development of highly sophisticated analytical devices, it is now possible to characterize the structure of highly polymerized polyphenols and obtain a full polyphenol profile of red wines. Red wine polyphenols include the ones present in grapes as well as new polyphenol products formed during the winemaking process. Among them, the most important groups and their representatives are flavanols (catechin), stilbenes (trans-resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid). It is known that polyphenols exhibit beneficial effects on human health, such as anti-inflammatory, anticarcinogenic and cardio-protective effects. Many studies have been conducted on the health effects of red wine polyphenols in cancer chemopreventive activities, neuroprotective effects and impact on cardiovascular diseases, gut microbiota in humans, etc. This review will provide major scientific findings on the impact of red wine polyphenols on human health as well as a review of polyphenols present in red wines and their main features.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
- Correspondence:
| |
Collapse
|
5
|
Cortés-Martín A, Iglesias-Aguirre CE, Meoro A, Selma MV, Espín JC. Pharmacological Therapy Determines the Gut Microbiota Modulation by a Pomegranate Extract Nutraceutical in Metabolic Syndrome: A Randomized Clinical Trial. Mol Nutr Food Res 2021; 65:e2001048. [PMID: 33458928 DOI: 10.1002/mnfr.202001048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Indexed: 12/13/2022]
Abstract
SCOPE Poly-pharmacological therapy shapes the gut microbiota (GM) in metabolic syndrome (MetS) patients. The effects of polyphenols in poly-medicated MetS patients are unknown. METHODS AND RESULTS A randomized, placebo-controlled, double-blinded, and crossover trial in poly-medicated MetS patients (n=50) explored whether the effects of a pomegranate extract nutraceutical (PE, 320 mg phenolics/day for 1 month) are affected by the drug therapy. Considering the lipid-lowering (LL-), anti-hypertensive (HP-) and(or) anti-diabetic (AD-) treatments: GM (16S rRNA sequencing), short-chain fatty acids, 40 inflammatory-metabolic and endotoxemia-related biomarkers, associations between biomarkers and GM with 53 cardiometabolic dysfunctions-related single-nucleotide polymorphisms (SNPs), and urolithin metabotypes (UMs) influence are evaluated. Representative SNPs-GM associations after PE include Lactococcus and ClostridiumXIVa with rs5443-GNB3 (G-protein-β-polypeptide-3) and ClostridiumXIVa with rs7903146-TCF7L2 (transcription-factor-7-like-2) and rs1137101-LEPR (leptin-receptor). PE decreases sICAM-1 in LL-patients and the lipopolysaccharide-binding protein in all the patients. PE does not affect the other patients' markers as a group or stratifying by UMs. After PE, Lactococcus increases in AD-, LL-, and HP-patients, Bifidobacterium increases in LL- and AD-, while Clostridium XIVa decreases in non-LL- and non-HP-patients. CONCLUSION The prebiotic effect of PE depends on the medication, mainly on HP-treatments. Targeting GM can complement MetS therapy, but the patients' drug therapy should be considered individually.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Carlos Eduardo Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Amparo Meoro
- Service of Endocrinology, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios s/n, Murcia, 30003, Spain
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
6
|
Virgen-Carrillo CA, de Los Ríos DLH, Torres KR, Moreno AGM. Diagnostic Criteria for Metabolic Syndrome in Diet-Induced Rodent Models: A Systematic Review. Curr Diabetes Rev 2021; 17:e140421192834. [PMID: 33855947 DOI: 10.2174/1573399817666210414103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thousands of publications in recent years have addressed the induction of metabolic syndrome (MetS) in rodents. However, the criteria and the reference values for diagnosing this disease have not been defined. OBJECTIVE Our main objective was to carry out a systematic review to gather evidence about the criteria for biochemical and anthropometric parameters in which scientific studies have relied on to report that rats developed MetS from a previous dietary manipulation. METHODS We compiled characteristics and findings of diet-induced MetS with high-fat, high-carbohydrate, high-fat/high-carbohydrates, and cafeteria diet from PubMed and Science Direct databases published in the last 5 years. RESULTS The results on the principal determinants for the syndrome, published in the reviewed articles, were chosen to propose reference values in the rat models of food induction. CONCLUSION The values obtained will serve as reference cut-of points in the development of the disease; in addition, the compilation of data will be useful in planning and executing research protocols in animal models.
Collapse
Affiliation(s)
- Carmen Alejandrina Virgen-Carrillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Diana Laura Hernández de Los Ríos
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Karina Ruíz Torres
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Alma Gabriela Martínez Moreno
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
7
|
The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6713194. [PMID: 31885810 PMCID: PMC6914975 DOI: 10.1155/2019/6713194] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/11/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
Polyphenols are the general designation of various kinds of phytochemicals, mainly classified as flavonoids and nonflavonoids. Polyphenolic compounds have been confirmed to exhibit numerous bioactivities and potential health benefits both in vivo and in vitro. Dietary polyphenols have been shown to significantly alleviate several manifestations of metabolic syndrome, namely, central obesity, hypertension, dyslipidemia, and high blood sugar. This review is aimed at discussing the bioprotective effects and related molecular mechanisms of polyphenols, mainly by increasing antioxidant capacity or oxygen scavenging capacity. Polyphenols can exert their antioxidative activity by balancing the organic oxidoreductase enzyme system, regulating antioxidant responsive signaling pathways, and restoring mitochondrial function. These data are helpful for providing new insights into the potential biological effects of polyphenolic compounds and the development of future antioxidant therapeutics.
Collapse
|
8
|
Ferramosca A, Treppiccione L, Di Giacomo M, Aufiero VR, Mazzarella G, Maurano F, Gerardi C, Rossi M, Zara V, Mita G, Bergamo P. Prunus Mahaleb Fruit Extract Prevents Chemically Induced Colitis and Enhances Mitochondrial Oxidative Metabolism via the Activation of the Nrf2 Pathway. Mol Nutr Food Res 2019; 63:e1900350. [PMID: 31410984 DOI: 10.1002/mnfr.201900350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 12/19/2022]
Abstract
SCOPE Polyphenols exhibit their antioxidant activity downstream the activation of the nuclear factor erythroid 2-related factor 2 pathway (Nrf2), but the connection between lipid metabolism and the Nrf2 pathway is still unknown. Flavonoid-rich concentrated extract from Prunus mahaleb (mahaleb concentrated fruit extract; MCFE) may act on oxido-reductive homeostasis and hepatic lipid metabolism via Nrf2. METHODS & RESULTS MCFE ability to enhance the activity of Nrf2-mediated antioxidant/detoxifying enzymes is investigated in liver and colon of BALB/c mice. After a 4-week supplementation, macroscopic, histological, and biochemical signs of colitis are examined in mouse colon pulsed with 5% (w/v) dextran sodium sulfate (DSS). Untreated or DSS-supplemented mice are used as negative or positive control. MCFE effect on liver lipid metabolism and its possible link with the Nrf2 pathway is investigated. MCFE intake increases antioxidant defenses in mice colon and its pretreatment blunts pathological signs of colitis, as compared to positive control. In the liver, the increase in antioxidant defenses is associated with enhanced oxidative metabolism and with higher levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and of hemeoxygenase-1 (HO-1), in comparison with negative controls. CONCLUSION Cytoprotective and hypolipidemic effect produced by MCFE intake results, at least in part, by the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | | | - Mariangela Di Giacomo
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | | | | | | | - Carmela Gerardi
- Institute of Sciences of Food Production, CNR, 73100, Lecce, Italy
| | - Mauro Rossi
- Institute of Food Sciences, CNR, 83100, Avellino, Italy
| | - Vincenzo Zara
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Giovanni Mita
- Institute of Sciences of Food Production, CNR, 73100, Lecce, Italy
| | - Paolo Bergamo
- Institute of Food Sciences, CNR, 83100, Avellino, Italy
| |
Collapse
|
9
|
Oliveira PS, Chaves VC, Soares MSP, Bona NP, Mendonça LT, Carvalho FB, Gutierres JM, Vasconcellos FA, Vizzotto M, Vieira A, Spanevello RM, Reginatto FH, Lencina CL, Stefanello FM. Southern Brazilian native fruit shows neurochemical, metabolic and behavioral benefits in an animal model of metabolic syndrome. Metab Brain Dis 2018; 33:1551-1562. [PMID: 29882020 DOI: 10.1007/s11011-018-0262-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/29/2018] [Indexed: 01/03/2023]
Abstract
In this work, we evaluated the effects of Psidium cattleianum (Red Type) (PcRT) fruit extract on metabolic, behavioral, and neurochemical parameters in rats fed with a highly palatable diet (HPD) consisted of sucrose (65% carbohydrates being 34% from condensed milk, 8% from sucrose and 23% from starch, 25% protein and 10% fat). Animals were divided into 4 groups: standard chow, standard chow + PcRT extract (200 mg/Kg/day by gavage), HPD, HPD + extract. The animals were treated for 150 days. Concerning chemical profiling, LC/PDA/MS/MS analysis revealed cyanidin-3-O-glucoside as the only anthocyanin in the PcRT extract. Our results showed that the animals exposed to HPD presented glucose intolerance, increased weight gain and visceral fat, as well as higher serum levels of glucose, triacylglycerol, total cholesterol, LDL-cholesterol and interleukin-6. These alterations were prevented by PcRT. In addition, HPD caused an increase in immobility time in a forced swimming test and the fruit extract prevented this alteration, indicating an antidepressant-like effect. PcRT treatment also prevented increased acetylcholinesterase activity in the prefrontal cortex caused by HPD consumption. Moreover, PcRT extract was able to restore Ca2+-ATPase activity in the prefrontal cortex, hippocampus, and striatum, as well as Na+,K+-ATPase activity in the prefrontal cortex and hippocampus. PcRT treatment decreased thiobarbituric acid-reactive substances, nitrite, and reactive oxygen species levels and prevented the reduction of superoxide dismutase activity in all cerebral structures of the HPD group. Additionally, HPD decreased catalase in the hippocampus and striatum. However, the extract prevented this change in the hippocampus. Our results showed that this berry extract has antihyperglycemic and antihyperlipidemic effects, and neuroprotective properties, proving to be a potential therapeutic agent for individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Pathise Souto Oliveira
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Vitor Clasen Chaves
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Lorenço Torres Mendonça
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Fabiano Barbosa Carvalho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jessié Martins Gutierres
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Flávia Aleixo Vasconcellos
- Laboratório de Química Aplicada a Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Marcia Vizzotto
- Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária de Clima Temperado, Pelotas, RS, Brazil
| | - Andriele Vieira
- Laboratório de Fisiopatologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Flávio Henrique Reginatto
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Claiton Leoneti Lencina
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil.
- Universidade Federal de Pelotas, Campus Universitário s/n, CEP, Capão do Leão, RS, 96160-000, Brazil.
| |
Collapse
|
10
|
Treatment of NASH with Antioxidant Therapy: Beneficial Effect of Red Cabbage on Type 2 Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7019573. [PMID: 30363947 PMCID: PMC6186311 DOI: 10.1155/2018/7019573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022]
Abstract
Aims Oxidative stress (OS) plays a major role in type 2 diabetes and its vascular and hepatic complications, and novel therapeutic approaches include natural antioxidants. Our previous chemical and biological studies demonstrated the antioxidant activities of red cabbage (RC), and here, we aimed to determine the in vivo effects of 2-month long RC consumption using a high-fat/high-fructose model of diabetic rats. Results This vegetable, associated with lifestyle measurement, was shown to decrease OS and increase vascular endothelial NO synthase expression, ensuring vascular homeostasis. In the liver, RC consumption decreased OS by inhibiting p22phox expression and Nrf2 degradation and increasing catalase activity. It inhibited the activation of SREBP (1c, 2), ChREBP, NF-κB, ERK1/2, PPARγ, and GS and SIRT1 decrease, as observed in diabetic rats. Conclusion/innovation RC consumption led to metabolic profile improvement, together with hepatic function improvements. Although lifestyle changes are not sufficient to prevent diabetic complications, enrichment with RC avoids progression hepatic complications. This antioxidant strategy using RC does not only able to increase antioxidant defense, such as classical antioxidant, but also able to assure a metabolic and energetic balance to reverse complications. Whereas traditional medical therapy failed to reverse NASH in diabetic patients, consumption of RC should be a natural therapy to treat it.
Collapse
|
11
|
French and Mediterranean-style diets: Contradictions, misconceptions and scientific facts-A review. Food Res Int 2018; 116:840-858. [PMID: 30717015 DOI: 10.1016/j.foodres.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Abstract
The determination of appropriate dietary strategies for the prevention of chronic degenerative diseases, cancer, diabetes, and cardiovascular diseases remains a challenging and highly relevant issue worldwide. Epidemiological dietary interventions have been studied for decades with contrasting impacts on human health. Moreover, research scientists and physicians have long debated diets encouraging alcohol intake, such as the Mediterranean and French-style diets, with regard to their impact on human health. Understanding the effects of these diets may help to improve in the treatment and prevention of diseases. However, further studies are warranted to determine which individual food components, or combinations thereof, have a beneficial impact on different diseases, since a large number of different compounds may occur in a single food, and their fate in vivo is difficult to measure. Most explanations for the positive effects of Mediterranean-style diet, and of the French paradox, have focused largely on the beneficial properties of antioxidants, among other compounds/metabolites, in foods and red wine. Wine is a traditional alcoholic beverage that has been associated with both healthy and harmful effects. Not withstanding some doubts, there is reasonable unanimity among researchers as to the beneficial effects of moderate wine consumption on cardiovascular disease, diabetes, osteoporosis, and longevity, which have been ascribed to polyphenolic compounds present in wine. Despite this, conflicting findings regarding the impact of alcohol consumption on human health, and contradictory findings concerning the effects of non-alcoholic wine components such as resveratrol, have led to confusion among consumers. In addition to these contradictions and misconceptions, there is a paucity of human research studies confirming known positive effects of polyphenols in vivo. Furthermore, studies balancing both known and unknown prognostic factors have mostly been conducted in vitro or using animal models. Moreover, current studies have shifted focus from red wine to dairy products, such as cheese, to explain the French paradox. The aim of this review is to highlight the contradictions, misconceptions, and scientific facts about wines and diets, giving special focus to the Mediterranean and French diets in disease prevention and human health improvement. To answer the multiplicity of questions regarding the effects of diet and specific diet components on health, and to relieve consumer uncertainty and promote health, comprehensive cross-demographic studies using the latest technologies, which include foodomics and integrated omics approaches, are warranted.
Collapse
|
12
|
Van der Werf R, Walter C, Bietiger W, Seyfritz E, Mura C, Peronet C, Legrandois J, Werner D, Ennahar S, Digel F, Maillard-Pedracini E, Pinget M, Jeandidier N, Marchioni E, Sigrist S, Dal S. Beneficial effects of cherry consumption as a dietary intervention for metabolic, hepatic and vascular complications in type 2 diabetic rats. Cardiovasc Diabetol 2018; 17:104. [PMID: 30029691 PMCID: PMC6054718 DOI: 10.1186/s12933-018-0744-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Background Oxidative stress (OS) plays an important role in type 2 diabetes (T2D) pathogenesis and its complications. New therapies target natural antioxidants as an alternative and/or supplemental strategy to prevent and control them. Our previous chemical and biological studies highlighted the important antioxidant activities of cherries, among other fruits and vegetables, thus we aimed to determine in vivo effects of 2-month long cherry consumption using a high-fat/high-fructose (HFHF) model of diabetic-rats (Lozano et al. in Nutr Metab 13:15, 2016). Methods After 2 months of HFHF, male Wistar rats were divided into: HFHF and HFHF enriched in cherry (nutritional approach) or standard diet ND (lifestyle measures) and ND plus cherry during 2 months. Metabolic, lipidic, oxidative parameters were quantified. Tissues (liver, pancreas and vessels) OS were assessed and hepatic (steatosis, fibrosis, inflammation) and vascular (endothelial dysfunction) complications were characterized. Results T2D was induced after 2 months of HFHF diet, characterized by systemic hyperglycaemia, hyperinsulinemia, glucose intolerance, dyslipidaemia, hyperleptinemia, and oxidative stress associated with endothelial dysfunction and hepatic complications. Cherry consumption for 2 months, in addition to lifestyle measures, in T2D-rats decreased and normalized the systemic disturbances, including oxidative stress complications. Moreover, in the vessel, cherry consumption decreased oxidative stress and increased endothelial nitric oxide (NO) synthase levels, thus increasing NO bioavailability, ensuring vascular homeostasis. In the liver, cherry consumption decreased oxidative stress by inhibiting NADPH oxidase subunit p22phox expression, nuclear factor erythroid-2 related factor 2 (Nrf2) degradation and the formation of reactive oxygen species. It inhibited the activation of sterol regulatory element-binding proteins (1c and 2) and carbohydrate-responsive element-binding protein, and thus decreased steatosis as observed in T2D rats. This led to the improvement of metabolic profiles, together with endothelial and hepatic function improvements. Conclusion Cherry consumption normalized vascular function and controlled hepatic complications, thus reduced the risk of diabetic metabolic disorders. These results demonstrate that a nutritional intervention with a focus on OS could prevent and/or delay the onset of vascular and hepatic complications related to T2D. Electronic supplementary material The online version of this article (10.1186/s12933-018-0744-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Remmelt Van der Werf
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Walter
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - William Bietiger
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Elodie Seyfritz
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Carole Mura
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Claude Peronet
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | | | | | - Said Ennahar
- IPHC-LC4, UMR 7178, Faculté de Pharmacie, Equipe de Chimie Analytique des Molécules BioActives, Illkirch, France
| | - Fabien Digel
- Interprofession des Fruits et Légumes d'Alsace (IFLA), Sainte Croix en Plaine, France
| | - Elisa Maillard-Pedracini
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Michel Pinget
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Nathalie Jeandidier
- Structure d'Endocrinologie, Diabète, Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, (HUS), 67000, Strasbourg, France
| | - Eric Marchioni
- IPHC-LC4, UMR 7178, Faculté de Pharmacie, Equipe de Chimie Analytique des Molécules BioActives, Illkirch, France
| | - Séverine Sigrist
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France.
| | - Stéphanie Dal
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
13
|
Gessner DK, Bonarius M, Most E, Fiesel A, Eder K. Effects of polyphenol-rich plant products from grape or hop as feed supplements on the expression of inflammatory, antioxidative, cytoprotective and endoplasmic reticulum stress-related genes and the antioxidative status in the liver of piglets. J Anim Physiol Anim Nutr (Berl) 2016; 101:e185-e194. [PMID: 27561387 DOI: 10.1111/jpn.12586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023]
Abstract
Recent studies have shown that supplementation of plant products rich in polyphenols exerts anti-inflammatory effects in the small intestine and improves feed conversion in piglets. This study aimed to investigate whether dietary polyphenols have also anti-inflammatory and cytoprotective effects in the liver of piglets. For this end, relative mRNA concentrations of eight genes involved in proinflammatory pathways, eight genes involved in the antioxidative and cytoprotective system, six genes of phase I and phase II metabolism and 15 genes of the unfolded protein response (triggered by stress of the endoplasmic reticulum) in the liver of pigs fed diets supplemented with either 1% of grape seed and grape marc meal extract (GME) or 1% spent hops (SH) as sources of polyphenols were determined. Relative mRNA concentrations of almost all these genes, with few exceptions, in the liver of pigs supplemented with GME or SH did not differ from those in the liver of control piglets. Gene expression data were validated by consideration of concentrations of some selected proteins of these pathways which also did not differ between piglets supplemented with GME or SH and control piglets. Moreover, concentrations of thiobarbituric acid-reactive substances and tocopherols as well as the total antioxidant capacity in liver and plasma did not differ between pigs supplemented with either GME or SH and control piglets. Overall, this study shows that supplementation of GME or SH as sources of polyphenols does not influence hepatic pathways linked to inflammation, the antioxidant and cytoprotective system, stress of the endoplasmic reticulum and the xenobiotic system in healthy piglets.
Collapse
Affiliation(s)
- D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - M Bonarius
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - E Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - A Fiesel
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Dal S, Sigrist S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 2016; 4:E24. [PMID: 28933404 PMCID: PMC5456287 DOI: 10.3390/diseases4030024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium), and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Stéphanie Dal
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| | - Séverine Sigrist
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| |
Collapse
|