1
|
Yue F, Han H, Xu J, Yao X, Qin Y, Zhang L, Sun X, Huang J, Zhang F, Lü X. Effects of exopolysaccharides form Lactobacillus plantarum KX041 on high fat diet-induced gut microbiota and inflammatory obesity. Int J Biol Macromol 2025; 289:138803. [PMID: 39701229 DOI: 10.1016/j.ijbiomac.2024.138803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Lactobacillus plantarum KX041 is a probiotics obtained from early screening, which can relieve inflammation and enrich the anti-obesity intestinal flora, and produce high yield of exopolysaccharides (EPS). The extraction, structure and physicochemical properties of EPS have been completed earlier. However, whether the functional activity of L. plantarum KX041 is related to the EPS is still unclear. In this study, combined in vivo and in vitro tests explored the effects of EPS on inflammatory obesity. In vitro tests, EPS relieased inflammation by inhibiting TLR4/p-NFκB, and inhibited adipocyte differentiation and reduced the transcriptional level of inflammation and lipid-synthesis genes (especially CD36 and peroxisome proliferators-activated receptors-γ PPARγ). In vivo tests demonstrated that EPS could alleviate weight gain, white adipocyte expansion, organ damage, insulin resistance, hyperlipidemia, and inflammatory response caused by high fat diet. Combined with in vitro tests, the transcription level of inflammation and lipid-synthesis genes in adipose tissue identified that IL-1β and PPARγ were the key genes for the effect of EPS on inflammatory obesity. Moreover, EPS increased the abundance of Akkermansia and Lachnospiraceae_NK4A136_group, and intestinal levels of isobutyrate, which is one of the key factors in alleviating inflammatory obesity. These insights may inform the development of functionalized dietary interventions in obesity.
Collapse
Affiliation(s)
- Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoyue Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxin Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyue Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanting Qin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Libing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Sun
- Xijing Hospital, the Fourth Military Medical University. No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Fan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zhao C, Xie L, Shen J, He H, Zhang T, Hao L, Sun C, Zhang X, Chen M, Liu F, Li Z, Wang N. Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway. Int J Biol Macromol 2025; 300:140287. [PMID: 39863204 DOI: 10.1016/j.ijbiomac.2025.140287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L. acidophilus YL01 was firstly isolated from Chinese traditional yogurt, demonstrating inhibitory activities on amylase and glucosidase that are comparable to those of L. rhamnosus LGG. Besides, the oral administration of L. acidophilus YL01 and its EPS significantly reduced body weight in high-fat mice (p < 0.05), as well as fat accumulation in liver and adipocytes. Moreover, they not only reduced fasting blood glucose and glucose/insulin resistance, but also improved dyslipidemia, liver function and inflammation. Further high-performance liquid chromatography analysis and Fourier transform infrared spectroscopy indicated that EPS is an acidic polysaccharide, characterized by a molecular weight of 952 kDa and predominantly composed of glucose. Additionally, the mechanism investigation revealed that the L. acidophilus YL01 and EPS demonstrated limited efficacy in restoring the composition of gut microbiota, but rather exerted an influence on the abundance of specific bacterial groups. The enrichment of the bacterial groups resulted in the increase of acetic acid and butyric acid, which further mediates the gut-liver crosstalk in regulating lipid metabolism by the activation of AMPK/ACC pathway.
Collapse
Affiliation(s)
- Chongjie Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Linlin Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Jing Shen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, The Academy of Animal and Veterinary Science, Qinghai University, Xining 810000, China
| | - Cai Sun
- Qinghai Pure Yak Biotechnology Co., LTD., Xining 810000, China
| | - Xiaoyuan Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China
| | - Mian Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China.
| | - Zhongyuan Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| |
Collapse
|
3
|
Wang H, Zhao H, Tai B, Wang S, Ihsan A, Hao H, Cheng G, Tao Y, Wang X. Development and Evaluation of Non-Antibiotic Growth Promoters for Food Animals. Vet Sci 2024; 11:672. [PMID: 39729012 DOI: 10.3390/vetsci11120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The widespread utilization of antibiotic growth promoters (AGPs) boosts the growth rate of food animals and enhances human living standards. Nevertheless, it is accompanied by escalating antibiotic resistance. Consequently, there is an urgent demand to develop novel alternatives to growth promoters. The objective of this study was to develop a non-antibiotic growth promoter (NAGP) for augmenting the growth rate of food animals. The growth-promoting effect of plant-derived NAGPs was assessed in mice and broiler chickens, and its growth-promoting mechanism was initially investigated. The results reveal that a combination of hawthorn (also known as shanzha) and astragalus (also known as huangqi) extracts (SQ) enhanced the growth rate of mice both in vivo and in vitro, attributed to their significant capacity to promote muscle growth and improve immunity (p < 0.05). The composite super energy extract M (CSEE-M), further optimized on the basis of SQ, significantly improved growth performance and feed conversion ratio, and elevated the activity of intestinal digestive enzymes (p < 0.05) in both mice and broilers and reshaped the gut microbiota of broilers. The addition of 0.5% CSEE-M to broiler drinking water significantly increased muscle content and improved carcass quality (p < 0.05). In conclusion, both SQ and CSEE-M hold great promise as NAGPs and serve as effective substitutes to AGPs. This research not only furnishes new solutions for the misuse of antibiotics but presents a fresh perspective for the development of growth promoters.
Collapse
Affiliation(s)
- Hanfei Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Hengji Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Bocheng Tai
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Simeng Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal 44000, Pakistan
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Cai H, Wang Q, Han X, Zhang H, Wang N, Huang Y, Yang P, Zhang R, Meng K. In Vitro Evaluation of Probiotic Activities and Anti-Obesity Effects of Enterococcus faecalis EF-1 in Mice Fed a High-Fat Diet. Foods 2024; 13:4095. [PMID: 39767037 PMCID: PMC11675756 DOI: 10.3390/foods13244095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
This research sought to assess the anti-obesity potential of Enterococcus faecalis EF-1. An extensive and robust in vitro methodology confirmed EF-1's significant potential in combating obesity, probably due to its excellent gastrointestinal tract adaptability, cholesterol-lowering property, bile salt hydrolase activity, α-glucosidase inhibition, and fatty acid absorption ability. Moreover, EF-1 exhibited antimicrobial activity against several pathogenic strains, lacked hemolytic activity, and was sensitive to all antibiotics tested. To further investigate EF-1's anti-obesity properties in vivo, a high-fat diet (HFD) was used to induce obesity in C57BL/6J mice. Treatment with EF-1 (2 × 109 CFU/day) mitigated HFD-induced body weight gain, reduced adipose tissue weight, and preserved liver function. EF-1 also ameliorated obesity-associated microbiota imbalances, such as decreasing the Firmicutes/Bacteroidetes ratio and boosting the levels of bacteria (Faecalibacterium, Mucispirillum, Desulfovibrio, Bacteroides, and Lachnospiraceae_NK4A136_group), which are responsible for the generation of short-chain fatty acids (SCFAs). Concurrently, the levels of total SCFAs were elevated. Thus, following comprehensive safety and efficacy assessments in vitro and in vivo, our results demonstrate that E. faecalis EF-1 inhibits HFD-induced obesity through the regulation of gut microbiota and enhancing SCFA production. This strain appears to be a highly promising candidate for anti-obesity therapeutics or functional foods.
Collapse
Affiliation(s)
- Hongying Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Qingya Wang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Xiling Han
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Haiou Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Na Wang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Yuyin Huang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Rui Zhang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| |
Collapse
|
5
|
Kim S, Rahim MA, Tajdozian H, Barman I, Park HA, Yoon Y, Jo S, Lee S, Shuvo MSH, Bae SH, Lee H, Ju S, Park CE, Kim HK, Han JH, Kim JW, Yoon SG, Kim JH, Choi YG, Lee S, Seo H, Song HY. Clinical Potential of Novel Microbial Therapeutic LP51 Based on Xerosis-Microbiome Index. Cells 2024; 13:2029. [PMID: 39682776 PMCID: PMC11639849 DOI: 10.3390/cells13232029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Xerosis, characterized by dry, rough skin, causes discomfort and aesthetic concerns, necessitating effective treatment. Traditional treatments often show limited efficacy, prompting the need for innovative therapies. This study highlights the efficacy of microbiome therapeutic LP51, derived from a healthy vaginal microbiome, in improving xerosis. A double-blind clinical trial involving 43 subjects with dry inner arm skin compared the effects of a 2.9% LP51 extract formulation to a placebo over 4 weeks. The LP51 group exhibited a significant increase in stratum corneum hydration (10.0 A.U.) compared to the placebo group (4.8 A.U.) and a 21.4% decrease in transepidermal water loss (TEWL), whereas the placebo group showed no significant change. LP51 also demonstrated benefits in enhancing skin hydration, improving the skin barrier, and exhibited anti-atopic, anti-inflammatory, and antioxidant properties. Safety was confirmed through in vitro cytotoxicity tests. These effects are attributed to the microbiome-safe component in LP51 and its role in improving xerosis, reflected by an increase in the xerosis-microbiome index, defined by the Firmicutes/Actinobacteria ratio. These findings position microbiome therapeutic LP51 as a promising novel treatment for xerosis.
Collapse
Affiliation(s)
- Sukyung Kim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Md Abdur Rahim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Hanieh Tajdozian
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea;
| | - Indrajeet Barman
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea;
| | - Hyun-A Park
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Youjin Yoon
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea;
| | - Sujin Jo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea;
| | - Soyeon Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea;
| | - Md Sarower Hossen Shuvo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea;
| | - Sung Hae Bae
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Hyunji Lee
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Sehee Ju
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Chae-eun Park
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea;
| | - Ho-Kyoung Kim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Jeung Hi Han
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea; (J.H.H.); (J.-W.K.); (S.g.Y.); (J.H.K.); (Y.G.C.)
| | - Ji-Woong Kim
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea; (J.H.H.); (J.-W.K.); (S.g.Y.); (J.H.K.); (Y.G.C.)
| | - Sung geon Yoon
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea; (J.H.H.); (J.-W.K.); (S.g.Y.); (J.H.K.); (Y.G.C.)
| | - Jae Hong Kim
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea; (J.H.H.); (J.-W.K.); (S.g.Y.); (J.H.K.); (Y.G.C.)
| | - Yang Gyu Choi
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea; (J.H.H.); (J.-W.K.); (S.g.Y.); (J.H.K.); (Y.G.C.)
| | - Saebim Lee
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Hoonhee Seo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
| | - Ho-Yeon Song
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea; (S.K.); (M.A.R.); (H.T.); (I.B.); (H.-A.P.); (Y.Y.); (S.J.); (M.S.H.S.); (S.H.B.); (H.L.); (S.J.); (C.-e.P.); (H.-K.K.); (S.L.)
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea;
| |
Collapse
|
6
|
Qayyum N, Ismael M, Haoyue H, Guo H, Lü X. Dietary supplementation of probiotic Lactobacillus modulates metabolic dysfunction-associated steatotic liver disease and intestinal barrier integrity in obesity-induced mice. J Food Sci 2024; 89:10113-10133. [PMID: 39455245 DOI: 10.1111/1750-3841.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
The impact of Lacticaseibacillus paracasei NWAFU334 and Limosilactobacillus fermentum NWAFU0035 on the amelioration of liver function, oxidative stress reduction, and lipid metabolism modulation in mice subjected to an obesity-inducing high-fat diet (HFD) model was investigated. L. paracasei NWAFU334 and L. fermentum NWAFU0035 supplementations over 12 weeks have been shown to have numerous beneficial effects in mice with induced obesity. These effects comprise the restoration of liver function and the reduction of oxidative stress within the liver. Furthermore, the supplementation led to a decreased content of fat accumulation in the liver, mitigation of the expression of inflammatory cytokines in the liver and colon, and a decrease in the expression levels of tight-junction proteins, for example, claudin-1, PPARγ, occludin, and ZO-1. Additionally, a notable improvement in the colonic expression proteins, including IL-6, TNF-α, IL-1β, Muc-2, Muc-3, Zo-1, claudin-1, and occludin. These proposed strains considerably decreased proinflammatory cytokines and influenced the regulation of lipid metabolism in the liver. These findings indicate that the potential mechanisms, primarily the impact of L. paracasei NWAFU334 and L. fermentum NWAFU0035 on obesity-induced liver function in mice, involve two regulated pathways: downregulation of lipogenesis and upregulation of gene expression related to fatty acid oxidation and lipolysis. In other words, these probiotic bacterial strains might be beneficial in reducing fat production and increasing fat breakdown in the liver. They may serve as effective therapeutic supplements for alleviating abnormalities induced by an HFD.
Collapse
Affiliation(s)
- Nageena Qayyum
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | | | - Han Haoyue
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
| | - Honghui Guo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
| |
Collapse
|
7
|
Zhang Y, Xun L, Qiao R, Jin S, Zhang B, Luo M, Wan P, Zuo Z, Song Z, Qi J. Advances in research on the role of high carbohydrate diet in the process of inflammatory bowel disease (IBD). Front Immunol 2024; 15:1478374. [PMID: 39588368 PMCID: PMC11586370 DOI: 10.3389/fimmu.2024.1478374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, systemic gastrointestinal disorder characterized by episodic inflammation that requires life-long management. Although the etiology of IBD is not fully understood, it is hypothesized to involve a multifaceted interplay among genetic susceptibility, the host immune response, and environmental factors. Previous studies have largely concluded that IBD is associated with this complex interplay; however, more recent evidence underscores the significant role of dietary habits as risk factors for the development of IBD. In this review, we review the molecular mechanisms of high-sugar and high-fat diets in the progression of IBD and specifically address the impacts of these diets on the gut microbiome, immune system regulation, and integrity of the intestinal barrier, thereby highlighting their roles in the pathogenesis and exacerbation of IBD.
Collapse
Affiliation(s)
- Ying Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Linting Xun
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ran Qiao
- Colleges of Letters and Science, University of Wisconsin–Madison, Madison, WI, United States
| | - Shumei Jin
- Yunnan Institute of Food and Drug Supervision and Control, Medical Products Administration of Yunnan Province, Kunming, China
| | - Bing Zhang
- Yunnan Provincial Key Laboratory of Modern Information Optics, Kunming University of Science and Technology, Kunming, China
| | - Mei Luo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ping Wan
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Research Center for Geriatric Disorders, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zan Zuo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhengji Song
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jialong Qi
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Research Center for Geriatric Disorders, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
8
|
López-Almada G, Mejía-León ME, Salazar-López NJ. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024; 13:3529. [PMID: 39593945 PMCID: PMC11592899 DOI: 10.3390/foods13223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a pandemic currently affecting the world's population that decreases the quality of life and promotes the development of chronic non-communicable diseases. Lactobacillus rhamnosus is recognized for multiple positive effects on obesity and overall health. In fact, such effects may occur even when the microorganisms do not remain alive (paraprobiotic effects). This raises the need to elucidate the mechanisms by which obesity-associated factors can be modulated. This narrative review explores recent findings on the effects of L. rhamnosus, particularly, its postbiotic and paraprobiotic effects, on the modulation of adiposity, weight gain, oxidative stress, inflammation, adipokines, satiety, and maintenance of intestinal integrity, with the aim of providing a better understanding of its mechanisms of action in order to contribute to streamlining its clinical and therapeutic applications. The literature shows that L. rhamnosus can modulate obesity-associated factors when analyzed in vitro and in vivo. Moreover, its postbiotic and paraprobiotic effects may be comparable to the more studied probiotic actions. Some mechanisms involve regulation of gene expression, intracellular signaling, and enteroendocrine communication, among others. We conclude that the evidence is promising, although there are still multiple knowledge gaps that require further study in order to fully utilize L. rhamnosus to improve human health.
Collapse
Affiliation(s)
| | | | - Norma Julieta Salazar-López
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico
| |
Collapse
|
9
|
Liu YE, Zhao Z, He H, Li L, Xiao C, Zhou T, You Z, Zhang J. Stress-induced obesity in mice causes cognitive decline associated with inhibition of hippocampal neurogenesis and dysfunctional gut microbiota. Front Microbiol 2024; 15:1381423. [PMID: 39539712 PMCID: PMC11557545 DOI: 10.3389/fmicb.2024.1381423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Effects of stress on obesity have been thoroughly studied in high-fat diet fed mice, but not in normal diet fed mice, which is important to clarify because even on a normal diet, some individuals will become obese under stress conditions. Here we compared mice that showed substantial weight gain or loss under chronic mild stress while on a normal diet; we compared the two groups in terms of cognitive function, hypothalamic-pituitary-adrenal signaling, neurogenesis and activation of microglia in hippocampus, gene expression and composition of the gut microbiome. Chronic mild stress induced diet-independent obesity in approximately 20% of animals, and it involved inflammatory responses in peripheral and central nervous system as well as hyperactivation of the hypothalamic-pituitary-adrenal signaling and of microglia in the hippocampus, which were associated with cognitive deficits and impaired hippocampal neurogenesis. It significantly increased in relative abundance at the phylum level (Firmicutes), at the family level (Prevotellaceae ucg - 001 and Lachnospiraceae NK4a136), at the genus level (Dubosiella and Turicibacter) for some enteric flora, while reducing the relative abundance at the family level (Lactobacillaceae and Erysipelotrichaceae), at the genus level (Bacteroidota, Alistipes, Alloprevotella, Bifidobacterium and Desulfovibrio) for some enteric flora. These results suggest that stress, independently of diet, can induce obesity and cognitive decline that involve dysfunctional gut microbiota. These insights imply that mitigation of hypothalamic-pituitary-adrenal signaling and microglial activation as well as remodeling of gut microbiota may reverse stress-induced obesity and associated cognitive decline.
Collapse
Affiliation(s)
- Yu-e Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhihuang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liangyuan Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
10
|
Zhang X, Qiao Y, Li G, Rong L, Liang X, Wang Q, Liu Y, Pi L, Wei L, Bi H. Exploratory studies of the antidepressant effect of Cordyceps sinensis polysaccharide and its potential mechanism. Int J Biol Macromol 2024; 277:134281. [PMID: 39084447 DOI: 10.1016/j.ijbiomac.2024.134281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Cordyceps sinensis, a traditionally prized medicinal fungus, contains polysaccharides as one of its main bioactive constituents, known for their significant immunomodulatory properties. In this study, we systematically investigated the composition and structure of Cordyceps sinensis polysaccharide, followed by an evaluation of its therapeutic effect on depression using a chronic restraint stress-induced depression model. The polysaccharide CSWP-2, extracted via hot water, precipitated with ethanol, and purified using DEAE-cellulose column chromatography from Cordyceps sinensis, is primarily composed of glucose, mannose, and galactose, with α-1,4-D-glucan as its major structural component. Behavioral tests, immunological profiling, metabolomics, and gut microbiota analyses indicated a notable ameliorative effect of CSWP-2 on depressive-like symptoms in mice. Furthermore, the action of CSWP-2 may be attributed to the modulation of the gut microbiome's abundance and its metabolic impacts, thereby transmitting signals to the host immune system and exerting immunomodulatory activity, ultimately contributing to its antidepressant effects.
Collapse
Affiliation(s)
- Xingfang Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; Medical College, Qinghai University, Xining 810001, China
| | - Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Lin Rong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Xinxin Liang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China
| | - Qiannan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Yi Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; Medical College, Qinghai University, Xining 810001, China
| | - Li Pi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China.
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; University of Chinese Academy of Sciences, 19(A) yuquan road, Beijing 10049, China.
| |
Collapse
|
11
|
Talib N, Mohamad NE, Ho CL, Masarudin MJ, Alitheen NB. Modulatory Effects of Isolated Lactobacillus paracasei from Malaysian Water Kefir Grains on the Intestinal Barrier and Gut Microbiota in Diabetic Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10367-4. [PMID: 39313703 DOI: 10.1007/s12602-024-10367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Type 2 diabetes (T2DM) is one of the four major types of non-communicable diseases that have become a global health concern. Water kefir is a product of a brown sugar solution fermented with kefir grains which comprises around 30 microbial species in its grains. Water kefir possesses a wide range of health benefits, including anti-hyperlipidemic effects, and reduces hypertension and blood glucose levels in animal models. Reportedly, consuming water kefir containing probiotics may enhance the intestinal barrier and positively influence the composition of the intestinal microflora. The present study aimed to evaluate the regulatory effects of Lactobacillus paracasei isolated from Malaysian water kefir grains (MWKG) on the alterations of intestinal barrier and gut microbiota in diabetic mice via histopathological analysis of the distal colon and 16S rRNA gene sequencing on fecal microbiome. Results indicated that the administration of isolated Lactobacillus paracasei from MWKG to diabetic mice ameliorated the dominant probiotic phyla in the gut microbiota. Results showed that lower dose (LD) and high dose (HD) treatments of the isolated Lactobacillus paracasei could significantly reduce inflammatory cell infiltration in the distal colon of diabetic mice. The treatments revealed a significant decrease in the relative abundance of Firmicutes in the gut, 0.27 ± 0.06% for LD and 0.34 ± 0.04% for HD, compared to untreated (UN) diabetic mice, 0.40 ± 0.02%. These results suggest that L. paracasei isolated from MWKG could serve as a potential dietary supplement against intestinal inflammation and modify gut microbiota composition in patients with T2DM.
Collapse
Affiliation(s)
- Noorshafadzilah Talib
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurul Elyani Mohamad
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Ismael M, Qayyum N, Gu Y, Na L, Haoyue H, Farooq M, Wang P, Zhong Q, Lü X. Functional Effects of Probiotic Lactiplantibacillus plantarum in Alleviation Multidrug-Resistant Escherichia coli-Associated Colitis in BALB/c Mice Model. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10356-7. [PMID: 39271561 DOI: 10.1007/s12602-024-10356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Multidrug-resistant Escherichia coli (MDR-E. coli) is a global health concern. Lactic acid bacteria (LAB) are important probiotics that have beneficial effects on health, and in recent years, their influences in preventing foodborne pathogens-induced colitis have attracted much attention. Therefore, this study aimed to investigate the oral administration of Lactiplantibacillus plantarum NWAFU-BIO-BS29 as an emerging approach to alleviate MDR-E. coli-induced colitis in BALB/c mice model. To illustrate the mode of action of NWAFU-BIO-BS29 interventions with the gut microbiota and immune responses, the changes on the colonic mucosal barrier, regulatory of the gene expressions of inflammatory cytokines, re-modulating the intestinal microflora, and changes in physiological parameters were studied. The results indicated that daily supplementation of 200 µL fresh bacteria for 7 days had ameliorated the associated colitis and partially prevented the infection. The modes of action by ameliorating the inflammatory response, which destructed villous and then affected the intestinal barrier integrity, reducing the secretion of interleukins (6 and β) and tumor necrosis factor (TNF-α) in serum by 87.88-89.93%, 30.73-35.98%, and 19.14-22.32%, respectively, enhancing the expressions of some epithelial integrity-related proteins in the mouse mucous layer of mucins 2 and 3, Claudin-1, and Occludin by 130.00-661.85%, 27.64-57.35%, 75.52-162.51%, and 139.36-177.73%, respectively, and 56.09-73.58% for toll-like receptor (TLR4) in colon tissues. Notably, the mouse gut microbiota analysis showed an increase in the relative abundance of beneficial bacteria, including Lactobacillus, Bacteriodales bacterium, Candidatus Saccharimonas, Enterorhabdus, and Bacilli. Furthermore, the probiotic promoted the proliferation of epithelia and goblet cells by increasing short-chain fatty acids (SCFAs) levels by 19.23-31.39%. In conclusion, L. plantarum NWAFU-BIO-BS29 has potential applications and can be considered a safe dietary supplement to ameliorate the colitis inflammation symptoms of MDR-E. coli infection.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Sudanese Standards and Metrology Organization, Khartoum, 13573, Sudan
| | - Nageena Qayyum
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yaxin Gu
- College of Food Science, China Agricultural University, Beijing, China
| | - Li Na
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Han Haoyue
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Farooq
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Panpan Wang
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin Lü
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
13
|
Fan YN, Chi X, Yan L, Pu ZY, Yang JJ, Zhang YN. Lycium barbarum polysaccharides regulate the gut microbiota to modulate metabolites in high-fat diet-induced obese rats. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1115-1129. [PMID: 38952165 DOI: 10.1080/10286020.2024.2355130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/03/2024]
Abstract
Lycium Barbarum Polysaccharides (LBP) can benefit lipid parameters such as total cholesterol, triglyceride, and high-density lipoprotein levels and upregulate the level of Firmicutes, increase the diversity of gut microbiota and reduce metabolic disorders, finally relieving weight gain of obese rats. But it cannot reverse the outcome of obesity. Over 30 differential metabolites and four pathways are altered by LBP.
Collapse
Affiliation(s)
- Yan-Na Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Xi Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Zhi-Yu Pu
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Jun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Yan-Nan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
14
|
Gao T, Li R, Hu L, Hu Q, Wen H, Zhou R, Yuan P, Zhang X, Huang L, Zhuo Y, Xu S, Lin Y, Feng B, Che L, Wu D, Fang Z. Probiotic Lactobacillus rhamnosus GG improves insulin sensitivity and offspring survival via modulation of gut microbiota and serum metabolite in a sow model. J Anim Sci Biotechnol 2024; 15:89. [PMID: 38951898 PMCID: PMC11218078 DOI: 10.1186/s40104-024-01046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/07/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Sows commonly experience insulin resistance in late gestation and lactation, causing lower feed intake and milk production, which can lead to higher mortality rates in newborn piglets. The probiotic Lactobacillus rhamnosus GG (LGG) is known to improve insulin resistance. However, whether supplementing LGG can improve insulin sensitivity in sows and enhance lactation performance, particularly the early survival of offspring remains unclear. Hence, we explored the effects and mechanisms of supplementing LGG during late gestation and lactation on sow insulin sensitivity, lactation performance, and offspring survival. In total, 20 sows were randomly allocated to an LGG (n = 10) and control group (n = 10). RESULTS In sows, LGG supplementation significantly improved insulin sensitivity during late gestation and lactation, increased feed intake, milk production and colostrum lactose levels in early lactation, and enhanced newborn piglet survival. Moreover, LGG treatment significantly reshaped the gut microbiota in sows, notably increasing microbiota diversity and enriching the relative abundance of insulin sensitivity-associated probiotics such as Lactobacillus, Bifidobacterium, and Bacteroides. Serum metabolite and amino acid profiling in late-gestation sows also revealed decreased branched-chain amino acid and kynurenine serum levels following LGG supplementation. Further analyses highlighted a correlation between mitigated insulin resistance in late pregnancy and lactation by LGG and gut microbiota reshaping and changes in serum amino acid metabolism. Furthermore, maternal LGG enhanced immunity in newborn piglets, reduced inflammation, and facilitated the establishment of a gut microbiota. CONCLUSIONS We provide the first evidence that LGG mitigates insulin resistance in sows and enhances offspring survival by modulating the gut microbiota and amino acid metabolism.
Collapse
Affiliation(s)
- Tianle Gao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ran Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
- Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya' an, 625014, China
| | - Liang Hu
- Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya' an, 625014, China
| | - Quanfang Hu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Hongmei Wen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Rui Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Peiqiang Yuan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lingjie Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
15
|
Ho PY, Chou YC, Koh YC, Lin WS, Chen WJ, Tseng AL, Gung CL, Wei YS, Pan MH. Lactobacillus rhamnosus 069 and Lactobacillus brevis 031: Unraveling Strain-Specific Pathways for Modulating Lipid Metabolism and Attenuating High-Fat-Diet-Induced Obesity in Mice. ACS OMEGA 2024; 9:28520-28533. [PMID: 38973907 PMCID: PMC11223209 DOI: 10.1021/acsomega.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024]
Abstract
Obesity is a global health crisis, marked by excessive fat in tissues that function as immune organs, linked to microbiota dysregulation and adipose inflammation. Investigating the effects of Lactobacillus rhamnosus SG069 (LR069) and Lactobacillus brevis SG031 (LB031) on obesity and lipid metabolism, this research highlights adipose tissue's critical immune-metabolic role and the probiotics' potential against diet-induced obesity. Mice fed a high-fat diet were treated with either LR069 or LB031 for 12 weeks. Administration of LB031 boosted lipid metabolism, indicated by higher AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and increased the M2/M1 macrophage ratio, indicating LB031's anti-inflammatory effect. Meanwhile, LR069 administration not only led to significant weight loss by enhancing lipolysis which evidenced by increased phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) but also elevated Akkermansia and fecal acetic acid levels, showing the gut microbiota's pivotal role in its antiobesity effects. LR069 and LB031 exhibit distinct effects on lipid metabolism and obesity, underscoring their potential for precise interventions. This research elucidates the unique impacts of these strains on metabolic health and highlights the intricate relationship between gut microbiota and obesity, advancing our knowledge of probiotics' therapeutic potential.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ya-Chun Chou
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Food Science, National Quemoy University, Quemoy County 89250, Taiwan, ROC
| | - Wei-Jen Chen
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Ai-Lun Tseng
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Chiau-Ling Gung
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Yu-Shan Wei
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Public Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC
- Department
of Food Nutrition and Health Biotechnology, Asia University, 500,
Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| |
Collapse
|
16
|
Kang M, Kang M, Yoo J, Lee J, Lee S, Yun B, Song M, Kim JM, Kim HW, Yang J, Kim Y, Oh S. Dietary supplementation with Lacticaseibacillus rhamnosus IDCC3201 alleviates sarcopenia by modulating the gut microbiota and metabolites in dexamethasone-induced models. Food Funct 2024; 15:4936-4953. [PMID: 38602003 DOI: 10.1039/d3fo05420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Probiotics can exert direct or indirect influences on various aspects of health claims by altering the composition of the gut microbiome and producing bioactive metabolites. The aim of this study was to examine the effect of Lacticaseibacillus rhamnosus IDCC3201 on skeletal muscle atrophy in dexamethasone-induced C2C12 cells and a mouse animal model. Dexamethasone treatment significantly reduced C2C12 muscle cell viability, myotube diameter, and levels of muscle atrophic markers (Atrogin-1 and MuRF-1). These effects were alleviated by conditioned media (CM) and cell extract (EX) derived from L. rhamnosus IDCC3201. In addition, we assessed the in vivo therapeutic effect of L. rhamnosus IDCC3201 in a mouse model of dexamethasone (DEX)-induced muscle atrophy. Supplementation with IDCC3201 resulted in significant enhancements in body composition, particularly in lean mass, muscle strength, and myofibril size, in DEX-induced muscle atrophy mice. In comparison to the DEX-treatment group, the normal and DEX + L. rhamnosus IDCC3201 groups showed a higher transcriptional level of myosin heavy chain family genes (MHC1, MHC1b, MHC2A, 2bB, and 2X) and a reduction in atrophic muscle makers. These analyses revealed that L. rhamnosus IDCC3201 supplementation led to increased production of branched-chain amino acids (BCAAs) and improved the Allobaculum genus within the gut microbiota of muscle atrophy-induced groups. Taken together, our findings suggest that L. rhamnosus IDCC3201 represents a promising dietary supplement with the potential to alleviate sarcopenia by modulating the gut microbiome and metabolites.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Minji Kang
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Jiseon Yoo
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Juyeon Lee
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Sujeong Lee
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Bohyun Yun
- Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangnam Oh
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
17
|
Chae YR, Lee YR, Kim YS, Park HY. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol 2024; 34:747-756. [PMID: 38321650 DOI: 10.4014/jmb.2312.12031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.
Collapse
Affiliation(s)
- Yu-Rim Chae
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
18
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
19
|
Hassan NE, El-Masry SA, El Shebini SM, Ahmed NH, Mohamed T F, Mostafa MI, Afify MAS, Kamal AN, Badie MM, Hashish A, Alian K. Gut dysbiosis is linked to metabolic syndrome in obese Egyptian women: potential treatment by probiotics and high fiber diets regimen. Sci Rep 2024; 14:5464. [PMID: 38443406 PMCID: PMC10914807 DOI: 10.1038/s41598-024-54285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic syndrome (MetS) is defined as a cluster of glucose intolerance, hypertension, dyslipidemia, and central obesity with insulin resistance. The role of gut microbiota in metabolic disorders is increasingly considered. To investigate the effects of probiotic supplements and hypocaloric high fiber regimen on MetS in obese Egyptian women. A longitudinal follow-up intervention study included 58 obese Egyptian women, with a mean age of 41.62 ± 10.70 years. They were grouped according to the criteria of MetS into 2 groups; 23 obese women with MetS and 35 ones without MetS. They followed a hypocaloric high fiber regimen weight loss program, light physical exercise, and received a probiotic supplement daily for 3 months. For each participating woman, blood pressure, anthropometric measurements, basal metabolic rate (BMR), dietary recalls, laboratory investigations, and microbiota analysis were acquired before and after 3 months of follow-up. After intervention by the probiotic and hypocaloric high fiber regimen and light exercise, reduction ranged from numerical to significant difference in the anthropometric parameters, blood pressure, and BMR was reported. All the biochemical parameters characterized by MetS decreased significantly at p ≤ 0.05-0.01. Before the intervention, results revealed abundant of Bacteroidetes bacteria over Firmicutes with a low Firmicutes/Bacteroidetes ratio. After the intervention, Log Lactobacillus, Log Bifidobacteria, and Log Bacteroidetes increased significantly in both groups, while Log Firmicutes and the Firmicutes/Bacteroidetes Ratio revealed a significant decrease. In conclusion, this study's results highlight a positive trend of probiotics supplementation with hypocaloric high-fiber diets in amelioration of the criteria of the Mets in obese Egyptian women.
Collapse
Affiliation(s)
- Nayera E Hassan
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Sahar A El-Masry
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Salwa M El Shebini
- Nutrition and Food Science Department, Food and Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Nihad H Ahmed
- Nutrition and Food Science Department, Food and Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Fouad Mohamed T
- Food and Dairy Microbiology Department, Food and Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Mohammed I Mostafa
- Clinical Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mahmoud A S Afify
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Ayat N Kamal
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mai M Badie
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Adel Hashish
- Children With Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Khadija Alian
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
20
|
Liu H, Nie C, Hu X, Li J. Highland barley β-glucan supplementation attenuated hepatic lipid accumulation in Western diet-induced non-alcoholic fatty liver disease mice by modulating gut microbiota. Food Funct 2024; 15:1250-1264. [PMID: 38194248 DOI: 10.1039/d3fo03386d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide. NAFLD is caused by numerous factors, including the genetic susceptibility, oxidative stress, unhealthy diet, and gut microbiota dysbiosis. Among these, gut microbiota is a key factor and plays an important role in the development of NAFLD. Therefore, modulating the composition and structure of gut microbiota might provide a new intervention strategy for NAFLD. Highland barley β-glucan (HBG) is a polysaccharide that can interact with gut microbiota after entering the lower gastrointestinal tract and subsequently improves NAFLD. Therefore, a Western diet was used to induce NAFLD in mouse models and the intervention effects and underlying molecular mechanisms of HBG on NAFLD mice based on gut microbiota were explored. The results indicated that HBG could regulate the composition of gut microbiota in NAFLD mice. In particular, HBG increased the abundance of short-chain fatty acids (SCFA)-producing bacteria (Prevotella-9, Bacteroides, and Roseburia) as well as SCFA contents. The increase in SCFA contents might activate the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby improving the liver lipid metabolism disorder and reducing liver lipid deposition.
Collapse
Affiliation(s)
- Huicui Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, People's Republic of China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| |
Collapse
|
21
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
22
|
Wang T, Wang P, Yin L, Wang X, Shan Y, Yi Y, Zhou Y, Liu B, Wang X, Lü X. Dietary Lactiplantibacillus plantarum KX041 attenuates colitis-associated tumorigenesis and modulates gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Ismael M, Qayyum N, Gu Y, Zhezhe Y, Cui Y, Zhang Y, Lü X. Protective effect of plantaricin bio-LP1 bacteriocin on multidrug-resistance Escherichia Coli infection by alleviate the inflammation and modulate of gut-microbiota in BALB/c mice model. Int J Biol Macromol 2023; 246:125700. [PMID: 37414312 DOI: 10.1016/j.ijbiomac.2023.125700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The rapid spread of multidrug-resistant pathogens with the low efficacy of common antibiotics for humans and animals in its clinical therapeutics are a global health concern. Therefore, there is a need to develop new treatment strategies to control them clinically. The study aimed to evaluate the effects of Plantaricin Bio-LP1 bacteriocin produced from Lactiplantibacillus plantarum NWAFU-BIO-BS29 to alleviate the inflammation caused by multidrug-resistance Escherichia Coli (MDR-E. coli) infection in BALB/c mice-model. The focus was given on aspects linked to the mechanism of the immune response. Results indicated that Bio-LP1 had highly promising effects on partially ameliorating MDR-E. coli infection by reducing the inflammatory response through inhibiting the overexpression of proinflammatory-cytokines such as secretion of tumor necrosis factor (TNF-α) and interleukin (IL-6 and IL-β) and strongly regulated theTLR4 signaling-pathway. Additionally, avoided the villous destruct, colon length shortening, loss of intestinal barrier integrity, and increased disease activity index. Furthermore, significantly increased the relative abundance of beneficial-intestinal-bacteria including Ligilactobacillus, Enterorhabdus, Pervotellaceae, etc. Finally, improved the intestinal mucosal barrier to alleviate the pathological damages and promote the production of short-chain fatty acids (SCFAs) a source of energy for the proliferation. In conclusion, plantaricin Bio-LP1 bacteriocin can be considered a safe alternative to antibiotics against MDR-E. coli-induced intestinal inflammation.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Sudanese Standard and Metrology Organization, Khartoum, 13573, Sudan
| | - Nageena Qayyum
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yaxin Gu
- College of Food Science, China Agricultural University, Beijing, China
| | - Yu Zhezhe
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yanlong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
24
|
Hamamah S, Amin A, Al-Kassir AL, Chuang J, Covasa M. Dietary Fat Modulation of Gut Microbiota and Impact on Regulatory Pathways Controlling Food Intake. Nutrients 2023; 15:3365. [PMID: 37571301 PMCID: PMC10421457 DOI: 10.3390/nu15153365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a multifactorial disease that continues to increase in prevalence worldwide. Emerging evidence has shown that the development of obesity may be influenced by taxonomic shifts in gut microbiota in response to the consumption of dietary fats. Further, these alterations in gut microbiota have been shown to promote important changes in satiation signals including gut hormones (leptin, ghrelin, GLP-1, peptide YY and CCK) and orexigenic and anorexigenic neuropeptides (AgRP, NPY, POMC, CART) that influence hyperphagia and therefore obesity. In this review, we highlight mechanisms by which gut microbiota can influence these satiation signals both locally in the gastrointestinal tract and via microbiota-gut-brain communication. Then, we describe the effects of dietary interventions and associated changes in gut microbiota on satiety signals through microbiota-dependent mechanisms. Lastly, we present microbiota optimizing therapies including prebiotics, probiotics, synbiotics and weight loss surgery that can help restore beneficial gut microbiota by enhancing satiety signals to reduce hyperphagia and subsequent obesity. Overall, a better understanding of the mechanisms by which dietary fats induce taxonomical shifts in gut microbiota and their impact on satiation signaling pathways will help develop more targeted therapeutic interventions in delaying the onset of obesity and in furthering its treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Arman Amin
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Abdul Latif Al-Kassir
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Judith Chuang
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Mihai Covasa
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
25
|
Chen Q, Ren R, Sun Y, Xu J, Yang H, Li X, Xiao Y, Li J, Lyu W. The combination of metagenome and metabolome to compare the differential effects and mechanisms of fructose and sucrose on the metabolic disorders and gut microbiota in vitro and in vivo. Food Funct 2023. [PMID: 37470119 DOI: 10.1039/d3fo02246c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Sucrose and fructose are the most commonly used sweeteners in the modern food industry, but there are few comparative studies on the mechanisms by which fructose and sucrose affect host health. The aim of the present study was to explain the different effects of fructose and sucrose on host metabolism from the perspective of gut microbiota. Mice were fed for 16 weeks with normal drinking water (CON), 30% fructose drinking water (CF) and 30% sucrose drinking water (SUC). Compared with fructose treatment, sucrose caused significantly higher weight gain, epididymal fat deposition, hepatic steatosis, and jejunum histological injury. Sucrose increased the abundance of LPS-producing bacteria which was positively correlated with obesity traits, while fructose increased the abundance of Lactobacillus. An in vitro fermentation experiment also showed that fructose increased the abundance of Lactobacillus, while sucrose increased the abundance of Klebsiella and Escherichia. In addition, combined with microbial functional analysis and metabolomics data, fructose led to the enhancement of carbohydrate metabolism and TCA cycle capacity, and increased the production of glutamate. The cross-cooperation network greatly influenced the microbiota (Klebsiella, Lactobacillus), metabolites (glutamate, fructose 1,6-biosphosphate, citric acid), and genes encoding enzymes (pyruvate kinase, 6-phosphofructokinase 1, fructokinase, lactate dehydrogenase, aconitate hydratase, isocitrate dehydrogenase 3), suggesting that they may be the key differential factors in the process of fructose and sucrose catabolism. Therefore, the changes in gut microbiome mediated by fructose and sucrose are important reasons for their differential effects on host health and metabolism.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Ruochen Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiaoqiong Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
26
|
Singh SB, Carroll-Portillo A, Lin HC. Desulfovibrio in the Gut: The Enemy within? Microorganisms 2023; 11:1772. [PMID: 37512944 PMCID: PMC10383351 DOI: 10.3390/microorganisms11071772] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Desulfovibrio (DSV) are sulfate-reducing bacteria (SRB) that are ubiquitously present in the environment and as resident commensal bacteria within the human gastrointestinal tract. Though they are minor residents of the healthy gut, DSV are opportunistic pathobionts that may overgrow in the setting of various intestinal and extra-intestinal diseases. An increasing number of studies have demonstrated a positive correlation between DSV overgrowth (bloom) and various human diseases. While the relationship between DSV bloom and disease pathology has not been clearly established, mounting evidence suggests a causal role for these bacteria in disease development. As DSV are the most predominant genera of SRB in the gut, this review summarizes current knowledge regarding the relationship between DSV and a variety of diseases. In this study, we also discuss the mechanisms by which these bacteria may contribute to disease pathology.
Collapse
Affiliation(s)
- Sudha B Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
27
|
Sharma AN, Chaudhary P, Kumar S, Grover CR, Mondal G. Effect of synbiotics on growth performance, gut health, and immunity status in pre-ruminant buffalo calves. Sci Rep 2023; 13:10184. [PMID: 37349514 PMCID: PMC10287688 DOI: 10.1038/s41598-023-37002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Synbiotics are employed as feed additives in animal production as an alternate to antibiotics for sustaining the gut microbiota and providing protection against infections. Dairy calves require a healthy diet and management to ensure a better future for the herd of dairy animals. Therefore, the present study was carried out to investigate the effect of synbiotics formulation on growth performance, nutrient digestibility, fecal bacterial count, metabolites, immunoglobulins, blood parameters, antioxidant enzymes and immune response of pre-ruminant Murrah buffalo calves. Twenty-four apparently healthy calves (5 days old) were allotted into four groups of six calves each. Group I (control) calves were fed a basal diet of milk, calf starter and berseem with no supplements. Group II (SYN1) calves were fed with 3 g fructooligosaccharide (FOS) + Lactobacillus plantarum CRD-7 (150 ml). Group III (SYN2) calves were fed with 6 g FOS + L. plantarum CRD-7 (100 ml), whereas calves in group IV (SYN3) received 9 g FOS + L. plantarum CRD-7 (50 ml). The results showed that SYN2 had the highest (P < 0.05) crude protein digestibility and average daily gain compared to the control. Fecal counts of Lactobacilli and Bifidobacterium were also increased (P < 0.05) in supplemented groups as compared to control. Fecal ammonia, diarrhea incidence and fecal scores were reduced in treated groups while lactate, volatile fatty acids and antioxidant enzymes were improved compared to the control. Synbiotic supplementation also improved both cell-mediated and humoral immune responses in buffalo calves. These findings indicated that synbiotics formulation of 6 g FOS + L. plantarum CRD-7 in dairy calves improved digestibility, antioxidant enzymes, and immune status, as well as modulated the fecal microbiota and decreased diarrhea incidence. Therefore, synbiotics formulation can be recommended for commercial use in order to achieve sustainable animal production.
Collapse
Affiliation(s)
- Amit N Sharma
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
| | - Sachin Kumar
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Chand Ram Grover
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Goutam Mondal
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
28
|
Zhong Y, Wang T, Wang X, Lü X. The Protective Effect of Heat-Inactivated Companilactobacillus crustorum on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Nutrients 2023; 15:2746. [PMID: 37375650 PMCID: PMC10305042 DOI: 10.3390/nu15122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Heat-inactivated microorganisms are a typical class of postbiotics with promising potential health effects, as they contain various physiologically active components. Dietary supplementation with Companilactobacillus crustorum MN047 (CC) has been shown to have the potential to alleviate ulcerative colitis (UC). However, it is unclear whether the UC-relieving effect of this strain is partly attributed to its bacterial composition. Therefore, the interventional effects of heat-inactivated CC (HICC) on UC mice were explored. The results showed that the administration of HICC significantly ameliorated the UC-related pathological parameters by (1) alleviating the pathologic lesions of UC (e.g., preventing the increase in disease activity index and the shortening of colon length); (2) ameliorating the colonic inflammation (e.g., inhibiting the expressions of chemokines and pro-inflammatory cytokines, such as Cxcl1, Cxcl5, Ccl7, TNF-α, IL-1β, IL-6, and MCP-1; (3) attenuating the oxidative damage (e.g., suppressing the increase in myeloperoxidase and malondialdehyde); (4) mitigating the damage of gut barrier (e.g., promoting colonic occludin, ZO-1, and claudin levels); and (5) modulating gut microbiota structure (e.g., increasing the relative abundance of potential probiotics, such as Akkermansia and Lactobacillus). In conclusion, our study suggested that HICC can be effective in preventing UC and has the potential as a dietary supplement to intervene in UC.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Y.Z.); (T.W.); (X.W.)
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Y.Z.); (T.W.); (X.W.)
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Y.Z.); (T.W.); (X.W.)
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Y.Z.); (T.W.); (X.W.)
| |
Collapse
|
29
|
Pelczyńska M, Moszak M, Wesołek A, Bogdański P. The Preventive Mechanisms of Bioactive Food Compounds against Obesity-Induced Inflammation. Antioxidants (Basel) 2023; 12:1232. [PMID: 37371961 DOI: 10.3390/antiox12061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary patterns are promising strategies for preventing and treating obesity and its coexisting inflammatory processes. Bioactive food compounds have received considerable attention due to their actions against obesity-induced inflammation, with limited harmful side effects. They are perceived as food ingredients or dietary supplements other than those necessary to meet basic human nutritional needs and are responsible for positive changes in the state of health. These include polyphenols, unsaturated fatty acids, and probiotics. Although the exact mechanisms of bioactive food compounds' action are still poorly understood, studies have indicated that they involve the modulation of the secretion of proinflammatory cytokines, adipokines, and hormones; regulate gene expression in adipose tissue; and modify the signaling pathways responsible for the inflammatory response. Targeting the consumption and/or supplementation of foods with anti-inflammatory potential may represent a new approach to obesity-induced inflammation treatment. Nevertheless, more studies are needed to evaluate strategies for bioactive food compound intake, especially times and doses. Moreover, worldwide education about the advantages of bioactive food compound consumption is warranted to limit the consequences of unhealthy dietary patterns. This work presents a review and synthesis of recent data on the preventive mechanisms of bioactive food compounds in the context of obesity-induced inflammation.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Małgorzata Moszak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Agnieszka Wesołek
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 10 Fredry Street, 61-701 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| |
Collapse
|
30
|
Zhang L, Zhang R, Li L. Effects of Probiotic Supplementation on Exercise and the Underlying Mechanisms. Foods 2023; 12:foods12091787. [PMID: 37174325 PMCID: PMC10178086 DOI: 10.3390/foods12091787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term, high-intensity exercise can trigger stress response pathways in multiple organs, including the heart and lungs, gastrointestinal tract, skeletal muscle, and neuroendocrine system, thus affecting their material and energy metabolism, immunity, oxidative stress, and endocrine function, and reducing exercise function. As a natural, safe, and convenient nutritional supplement, probiotics have been a hot research topic in the field of biomedical health in recent years. Numerous studies have shown that probiotic supplementation improves the health of the body through the gut-brain axis and the gut-muscle axis, and probiotic supplementation may also improve the stress response and motor function of the body. This paper reviews the progress of research on the role of probiotic supplementation in material and energy metabolism, intestinal barrier function, immunity, oxidative stress, neuroendocrine function, and the health status of the body, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Ruhao Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Lu Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
31
|
Nair D, Zarei M, Halami P, Talahalli R. Lactobacillus fermentum MCC2760 abrogate high-fat induced perturbations in the enterohepatic circulation of bile acids in rats. Life Sci 2023; 320:121563. [PMID: 36907323 DOI: 10.1016/j.lfs.2023.121563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
AIM This study in hyperlipidemic rats elucidated the effect of Lactobacillus fermentum MCC2760 on intestinal bile acid (BA) uptake, hepatic BA synthesis, and enterohepatic BA transporters. MAIN METHODS Diets rich in saturated fatty acids [coconut oil (CO)] and omega-6 fatty acids [sunflower oil (SFO)] at 25 g fat/100 g diet were fed to rats with or without MCC2760 (109 cells/kg body weight). After 60 days of feeding, intestinal BA uptake and expression of Asbt, Osta/b mRNA and protein, and hepatic expression of Ntcp, Bsep, Cyp7a1, Fxr, Shp, Lrh-1, and Hnf4a mRNA were measured. Hepatic expression of HMG-CoA reductase protein and its activity and total BAs in serum, liver, and feces were assessed. KEY FINDINGS Hyperlipidaemic groups (HF-CO and HF-SFO) had: 1) increased intestinal BA uptake, Asbt and Osta/b mRNA expression, and ASBT staining 2) increased BA in serum, 3) decreased hepatic expression of Ntcp, Bsep, and Cyp7a1 mRNA, and NTCP staining 4) increased activity of HMG-CoA reductase, 5) increased hepatic expression of Fxr and Shp mRNA, 6) decreased hepatic expression of Lrh-1 and Hnf4a mRNA, and 7) decreased BA in Feces when compared to their respective controls (N-CO and N-SFO) and experimental groups (HF-CO + LF and HF-SFO + LF). Immunostaining revealed increased intestinal Asbt and hepatic Ntcp protein expression in the HF-CO and HF-SFO groups compared to control and experimental groups. SIGNIFICANCE Incorporating probiotics like MCC2760 abrogated hyperlipidemia-induced changes in the intestinal uptake, hepatic synthesis, and enterohepatic transporters of BA in rats. Probiotic MCC2760 can be used to modulate lipid metabolism in high-fat-induced hyperlipidemic conditions.
Collapse
Affiliation(s)
- Devika Nair
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mehrdad Zarei
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - Prakash Halami
- Dept. of Microbiology & Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - Ramaprasad Talahalli
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India..
| |
Collapse
|
32
|
Li X, Shi C, Wang S, Wang S, Wang X, Lü X. Uncovering the effect of Moringa oleifera Lam. leaf addition to Fuzhuan Brick Tea on sensory properties, volatile profiles and anti-obesity activity. Food Funct 2023; 14:2404-2415. [PMID: 36786051 DOI: 10.1039/d2fo03531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a nutritious plant with valuable potential, the Moringa oleifera Lam. leaf addition to Fuzhuan Brick Tea (FBT) for co-fermentation is an industrial innovation and a new route to make full use of Moringa oleifera Lam. leaves. However, the sensory properties, volatile profiles and anti-obesity activity of Fuzhuan Brick (Moringa oleifera Lam.) tea (MFBT) are still unknown. The results demonstrated that MFBT has richer and more complex smell and taste, better color and higher overall acceptance scores. In total, 57 volatile flavor compounds, consisting of 3 acids, 16 hydrocarbons, 5 esters, 8 ketones, 13 aldehydes, 6 alcohols and others, were identified using HS-SPME-GC-MS. The characteristic odor components in MFBT were 3-buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- and 1-cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-, which gave it a floral, woody, sweet, herbal and fruity aroma. 2-Octenal, (E) contributed significantly to the aroma of FBT, which could impart fresh, fatty and green aromas. In addition, MFBT could better regulate lipid accumulation, glucose tolerance, insulin tolerance and inflammation response more effectively than FBT. The mechanism is that MFBT could better regulate the dysbiosis of gut microbiota induced by HFFD, mainly increasing the abundance of beneficial bacteria such as SCFA-producing bacteria (Bacteroidetes, Lactobacillaceae, Bacteroidales_S24-7_group and Clostridiaceae_1) and decreasing the abundance of harmful bacteria such as pro-inflammatory/obesity and metabolic syndrome-related bacteria (Proteobacteria, Deferribacteres, Desulfovibrio, Catenibacterium and Helicobacter), which in turn increased feces short-chain fatty acids and lowered circulating lipopolysaccharides. These results suggested that co-fermentation with Moringa oleifera Lam. leaf could significantly improve the quality and enhance the anti-obesity effect of FBT.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Caihong Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuxuan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
33
|
Saravanan P, R P, Balachander N, K KRS, S S, S R. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol (Praha) 2023; 68:337-353. [PMID: 36780113 PMCID: PMC9924211 DOI: 10.1007/s12223-022-01030-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/29/2022] [Indexed: 02/14/2023]
Abstract
Recent studies manifest an increase of inflammatory diseases at an alarming rate due to gut microbiota dysbiosis, genetic and other environmental factors. Lactic acid bacteria (LAB) are known for their antimicrobial properties and their extensive applications in food and pharmaceutical industries. Cyclic peptides are receiving increased attention due to their remarkable stability to withstand variations in temperature and pH. LAB produces anti-inflammatory that can inhibit lipopolysaccharide-induced production of proinflammatory cytokines in macrophages. The structural backbones of cyclic peptides offer a promising approach for the treatment of chronic inflammatory conditions. The current review aims to present the overview of anti-inflammatory and wound healing properties of LAB-derived cyclic peptides.
Collapse
Affiliation(s)
- Parikhshith Saravanan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Pooja R
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Nanditaa Balachander
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Kesav Ram Singh K
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Silpa S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India.
| |
Collapse
|
34
|
Kim YI, Lee ES, Song EJ, Shin DU, Eom JE, Shin HS, Kim JE, Oh JY, Nam YD, Lee SY. Lacticaseibacillus paracasei AO356 ameliorates obesity by regulating adipogenesis and thermogenesis in C57BL/6J male mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
35
|
Xi M, Na X, Ma X, Lan H, Sun T, Liu WH, Hung W, Zhao A. Maternal diet associated with infants' intestinal microbiota mediated by predominant long-chain fatty acid in breast milk. Front Microbiol 2023; 13:1004175. [PMID: 36687649 PMCID: PMC9852834 DOI: 10.3389/fmicb.2022.1004175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/09/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Long-chain fatty acids in breast milk are affected by the mother's diet and play an important role in the growth, development, and immune construction of infants. This study aims to explore the correlation between maternal diet, breast milk fatty acids (FAs), and the infant intestinal flora. Methods We enrolled 56 paired mothers and their infants; both breast milk samples and infants' fecal samples were collected to determine the long-chain FA content of breast milk by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS), and metagenomic technology was applied to determine the microbial composition of infant feces. The maternal diet was also investigated using a 24-h dietary recall. Results The results indicated that the fat contribution rates of edible oils in the maternal diet are significantly positively correlated with the contents of certain long-chain fatty acids (C16:0, C18:1, C16:1, and C22:4) in breast milk, which mainly regulate the abundance of Lacticaseibacillus rhamnosus, Lacticaseibacillus fermentum, and Lacticaseibacillus paracasei in the infant gut. Through KEGG pathway analysis, our data revealed that the long-chain FAs in different groups of breast milk were significantly correlated with the pathways of biotin metabolism, glycerolipid metabolism, and starch and sucrose metabolism. Discussion The results of this study suggest a pathway in which the diets of lactating mothers may affect the composition of the infant intestinal microbiota by influencing breast milk FAs and then further regulating infant health.
Collapse
Affiliation(s)
- Menglu Xi
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Xiaona Na
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Xia Ma
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hanglian Lan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ting Sun
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Weilian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China,*Correspondence: Weilian Hung,
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing, China,Ai Zhao,
| |
Collapse
|
36
|
Qayyum N, Shuxuan W, Yantin Q, Ruiling W, Wang S, Ismael M, Lü X. Characterization of Short-chain fatty acid-producing and cholesterol assimilation potential probiotic Lactic acid bacteria from Chinese fermented rice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Weng G, Huang J, Ma X, Song M, Yin Y, Deng D, Deng J. Brevibacillus laterosporus BL1, a promising probiotic, prevents obesity and modulates gut microbiota in mice fed a high-fat diet. Front Nutr 2022; 9:1050025. [PMID: 36505236 PMCID: PMC9729748 DOI: 10.3389/fnut.2022.1050025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Scope Probiotics are a potential preventive strategy for obesity. However, with discrete efficacy and limited species of probiotics, there is a demand for novel strains with excellent anti-obesity properties. This study aimed to investigate the effects of Brevibacillus laterosporus BL1 on preventing obesity in high-fat diet (HFD)-fed mice. Methods and results C57BL/6 male mice were randomly assigned to four groups (n = 10) and fed a control diet, HFD, HFD plus B. laterosporus BL1, and HFD plus supernatant of B. laterosporus BL1, respectively for 8 weeks. The results showed that prophylactic B. laterosporus BL1 treatment reduced body weight gain by 41.26% in comparison to the HFD group, and this difference was accompanied by a reduction in body fat mass and the weight of inguinal white adipose tissues and epididymal white adipose tissue (-33.39%, -39.07%, and -43.75%, respectively). Moreover, the B. laterosporus BL1-mediated improvements in lipid profile, insulin resistance, and chronic inflammation were associated with the regulation of gene expression related to lipid metabolism and enhancement of brown adipose tissue thermogenesis. Particularly, B. laterosporus BL1 intervention significantly improved HFD-induced gut flora dysbiosis, as evidenced by a reverse in the relative abundance of Bacillota and Bacteroidota, as well as an increase in the relative abundance of bacteria that produce short-chain fatty acids (SCFAs), which in turn increased SCFAs levels. Conclusion Our findings found for the first time that B. laterosporus BL1 may be a promising probiotic for prevention of obesity associated with the regulation of gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China,State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Jian Huang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Min Song
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dun Deng
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China,*Correspondence: Dun Deng,
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China,Jinping Deng,
| |
Collapse
|
38
|
Lactobacillus gasseri RW2014 Ameliorates Hyperlipidemia by Modulating Bile Acid Metabolism and Gut Microbiota Composition in Rats. Nutrients 2022; 14:nu14234945. [PMID: 36500975 PMCID: PMC9737415 DOI: 10.3390/nu14234945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Hyperlipidemia is a leading risk of cardiovascular and cerebrovascular disease. Dietary supplementation with probiotics has been suggested as an alternative intervention to lower cholesterol. In the current study, we isolated a strain of Lactobacillus gasseri RW2014 (LGA) from the feces of a healthy infant fed with breast milk, and it displayed bile salt hydrolase (BSH) activity. Using this strain we determined its cholesterol-lowering and fatty liver-improving functions. SD rats were randomly divided into four groups. The control rats were fed a commercial chow diet and the other three groups were fed a high-fat diet (HFD) for a 7-week experiment period. After two weeks of feeding, the rats in PBS, simvastin, and LGA group were daily administered through oral gavage with 2 mL PBS, simvastin (1 mg/mL), and 2 × 109 CFU/mouse live LGA in PBS, respectively. After five weeks of such treatment, the rats were euthanized and tissue samples were collected. Blood lipid and inflammatory factors were measured by ELISA, gut microbiota was determined by 16S rRNA sequencing, and bile acids profiles were detected by metabolomics. We found that LGA group had lower levels of blood cholesterol and liver steatosis compared to the simvastin group. LGA also significantly reducedthe levels of inflammatory factors in the serum, including TNFα, IL-1β, MCP-1, IL-6, and exotoxin (ET), and increased the levels of short-chain fatty acids in feces, including isobutyric acid, butyric acid, isovaleric acid, valeric acid, and hexanoic acid. In addition, LGA altered the compositions of gut microbiota as manifested by the increased ratio of Firmicutes/Bacteroides and the relative abundance of Blautia genus. Targeted metabolomics results showed that bile acids, especially free bile acids and secondary bile acids in feces, were increased in LGA rats compared with the control rats. Accordingly, the rats administrated with LGA also had a higher abundance of serum bile acids, including 23-norcholic acid, 7-ketolithocholic acid, β-muricholic acid, cholic acid, and deoxycholic acid. Together, this study suggests that LGA may exert a cholesterol-lowering effect by modulating the metabolism of bile acids and the composition of gut microbiota.
Collapse
|
39
|
Marcelo TLP, Pellicciari CR, Artioli TO, Leiderman DBD, Gradinar ALT, Mimica M, Kochi C. Probiotic therapy outcomes in body composition of children and adolescent with obesity, a nonrandomized controlled trial. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:815-822. [PMID: 36219201 PMCID: PMC10118763 DOI: 10.20945/2359-3997000000526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Objective The objective of this study was to evaluate the impact of probiotic supplementation therapy on anthropometric values and body composition of children and adolescent with obesity. Subjects and Methods This is a nonrandomized controlled, prospective, double-blind interventional clinical trial with primary data analysis. The sample comprised 44 pubertal children and adolescent (8-17 years old) with obesity. The patients were allocated to probiotic (Lactobacillus rhamnosus) or placebo group, with matching of gender and chronological age. Both groups received nutritional guidance, and were followed for six months. In all patients the anthropometric assessment was carried out by a nutritionist and data on weight, height and waist circumference (WC) were collected. Body composition was assessed using dual emission X-ray absorptiometry (DXA). Results After six months, both groups had increased weight, height but reduced body index mass (BMI) standard deviation score, with no differences between groups. After the intervention, both groups showed a reduction in the percentage of total body fat and an increase in lean mass, but only the placebo group showed a reduction in the percentage of trunk fat. However, the variation in these parameters did not differ between groups. Conclusion The probiotic group does not seem to have benefited from supplementation. However, we suggest that this reduction in BMI SDS in both groups may have occurred due to improvements in diet because of the nutritional advice given throughout the therapy. We concluded that supplementation with this strain of probiotic was not effective in promoting weight loss or improving the body composition of this population.
Collapse
Affiliation(s)
- Thaís Léo Pacheco Marcelo
- Departamento de Nutrição e Dietética, Irmandade Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brasil
| | - Caroline Rosa Pellicciari
- Departamento de Pediatria, Unidade de Endocrinologia Pediátrica, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brasil
| | - Thiago Olivetti Artioli
- Departamento de Pediatria, Unidade de Endocrinologia Pediátrica, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brasil
| | | | - Ana Lúcia Torloni Gradinar
- Departamento de Nutrição e Dietética, Irmandade Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brasil
| | - Marcelo Mimica
- Departamento de Microbiologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - Cristiane Kochi
- Departamento de Pediatria, Unidade de Endocrinologia Pediátrica, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brasil,
- Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
40
|
Liu H, Sun Y, Nie C, Xie X, Yuan X, Ma Q, Zhang M, Chen Z, Hu X, Li J. Highland barley β-glucan alleviated western diet-induced non-alcoholic fatty liver disease via increasing energy expenditure and regulating bile acid metabolism in mice. Food Funct 2022; 13:11664-11675. [PMID: 36278802 DOI: 10.1039/d2fo01167k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a public health burden. Controlling bile acids (BAs) metabolism and energy expenditure are potential therapies for NAFLD. Because one of the main health effects of cereal β-glucan (BG) is its ability to lower cholesterol by interacting with BAs, BG may regulate imbalances of the metabolism of BAs during NAFLD. Therefore, by using metabolic tests coupled with the profiling of hepatic BAs, we have assessed the effect of BG from highland barley on western diet (WD) induced NAFLD mice. BG treatment prevented fat accumulation and increased adipose lipolysis. These moderating effects were associated with an increased energy expenditure. Moreover, BG-treated mice enhanced the production of hepatic BAs, which may be connected with the activation of farnesoid X receptor (FXR) signaling in the liver and inhibition of FXR signaling in the ileum. Our results suggest that BG prevents fat accumulation by increasing energy expenditure, a mechanism associated with major changes in the composition of hepatic BAs.
Collapse
Affiliation(s)
- Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Yanli Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Xiaoqing Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, People's Republic of China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, 712100, People's Republic of China
| |
Collapse
|
41
|
Wang Y, Ai Z, Xing X, Fan Y, Zhang Y, Nan B, Li X, Wang Y, Liu J. The ameliorative effect of probiotics on diet-induced lipid metabolism disorders: A review. Crit Rev Food Sci Nutr 2022; 64:3556-3572. [PMID: 36218373 DOI: 10.1080/10408398.2022.2132377] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High-fat diet induces lipid metabolism disorders that has become one of the grievous public health problems and imposes a serious economic and social burden worldwide. Safety probiotics isolated from nature are regarded as a novel supplementary strategy for preventing and improving diet-induced lipid metabolism disorders and related chronic diseases. The present review summarized the latest researches of probiotics in high fat diet induced lipid metabolism disorders to provide a critical perspective on the regulatory function of probiotics for future research. Furthermore, the screening criteria and general sources of probiotics with lipid-lowering ability also outlined to enlarge microbial species resource bank instantly, which promoted the development of functional foods with lipid-lowering strains from nature. After critically reviewing the lipid-lowering potential of probiotics both in vitro and in vivo and even in clinical data of humans, we provided a perspective that probiotics activated AMPK signaling pathway to regulate fat synthesis and decomposition, as well as affected positively the gut microbiota structure, intestinal barrier function and systemic inflammatory response, then these beneficial effects are amplified along Gut-liver axis, which regulated intestinal flora metabolites such as SCFAs and BAs by HMGCR/FXR/SHP signaling pathway to improve high fat diet induced lipid metabolism disorders effectively.
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xinyue Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuling Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yue Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- National Engineering Research Center for Wheat and Cord Deep Processing, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Research Center for Wheat and Cord Deep Processing, Changchun, China
| |
Collapse
|
42
|
Chae SA, Ramakrishnan SR, Kim T, Kim SR, Bang WY, Jeong CR, Yang J, Kim SJ. Anti-inflammatory and anti-pathogenic potential of Lacticaseibacillus rhamnosus IDCC 3201 isolated from feces of breast-fed infants. Microb Pathog 2022; 173:105857. [PMID: 36397614 DOI: 10.1016/j.micpath.2022.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
|
43
|
Jin C, Liu J, Jin R, Yao Y, He S, Lei M, Peng X. Linarin ameliorates dextran sulfate sodium-induced colitis in C57BL/6J mice via the improvement of intestinal barrier, suppression of inflammatory responses and modulation of gut microbiota. Food Funct 2022; 13:10574-10586. [PMID: 36155608 DOI: 10.1039/d2fo02128e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linarin is a natural flavonoid compound found in Chrysanthemum indicum, Mentha species and other plants with various biological activities. The study aimed to investigate the protective effect of linarin supplementation on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice and its potential mechanisms. The results showed that doses of linarin at 25 and 50 mg kg-1 day-1 alleviated the DSS-induced histopathological damage, and improved the mucosal layer and intestinal barrier function. Importantly, Linarin significantly suppressed the levels of myeloperoxidase activity and pro-inflammatory cytokines (IL-6, TNF-α, IFN-γ and IL-1β) in the colon, and enhanced the mRNA level of anti-inflammatory cytokine (IL-10). Moreover, 50 mg kg-1 day-1 linarin reversed the gut microbiota damaged by DSS, including Alistipes, Rikenella and Clostridia UCG-014_norank. Linarin also partly increased the relative abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Lactobacillus, Roseburia, Parabacteroides and Blautia, and elevated the contents of SCFAs. Collectively, linarin attenuates DSS-induced colitis in mice, suggesting that linarin may be a promising nutritional strategy for reducing inflammatory bowel disease.
Collapse
Affiliation(s)
- Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yanpeng Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Silan He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
44
|
Izadi MS, Eskandari F, Binayi F, Salimi M, Rashidi FS, Hedayati M, Dargahi L, Ghanbarian H, Zardooz H. Oxidative and endoplasmic reticulum stress develop adverse metabolic effects due to the high-fat high-fructose diet consumption from birth to young adulthood. Life Sci 2022; 309:120924. [PMID: 36063978 DOI: 10.1016/j.lfs.2022.120924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS The early postnatal dietary intake has been considered a crucial factor affecting the offspring later life metabolic status. Consistently, this study investigated the oxidative and endoplasmic reticulum (ER) stress intervention in the induction of adverse metabolic effects due to the high-fat high-fructose diet (HFHFD) consumption from birth to young adulthood in rat offspring. MATERIALS AND METHODS After delivery, the dams with their pups were randomly allocated into the normal diet (ND) and HFHFD groups. At weaning, the male offspring were divided into ND-None, ND-DMSO, ND-4-phenyl butyric acid (4-PBA), HFHFD-None, HFHFD-DMSO, and HFHFD-4-PBA groups and fed on their respected diets for five weeks. Then, the drug was injected for ten days. Subsequently, glucose and lipid metabolism parameters, oxidative and ER stress markers, and Wolfram syndrome1 (Wfs1) expression were assessed. KEY FINDINGS In the HFHFD group, anthropometrical parameters, plasma high-density lipoprotein (HDL), and glucose-stimulated insulin secretion and content were decreased. Whereas, the levels of plasma leptin, low-density lipoprotein (LDL) and glucose, hypothalamic leptin, pancreatic catalase activity and glutathione (GSH), pancreatic and hypothalamic malondialdehyde (MDA), binding immunoglobulin protein (BIP) and C/EBP homologous protein (CHOP), and pancreatic WFS1 protein were increased. 4-PBA administration in the HFHFD group, decreased the hypothalamic and pancreatic MDA, BIP and CHOP levels. While, increased the Insulin mRNA and glucose-stimulated insulin secretion and content. SIGNIFICANCE HFHFD intake from birth to young adulthood through the development of pancreatic and hypothalamic oxidative and ER stress, increased the pancreatic WFS1 protein and impaired glucose and lipid homeostasis in male rat offspring.
Collapse
Affiliation(s)
- Mina Sadat Izadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Marquez A, Andrada E, Russo M, Bolondi ML, Fabersani E, Medina R, Gauffin-Cano P. Characterization of autochthonous lactobacilli from goat dairy products with probiotic potential for metabolic diseases. Heliyon 2022; 8:e10462. [PMID: 36091951 PMCID: PMC9459688 DOI: 10.1016/j.heliyon.2022.e10462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/27/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to design functional fermented goat milk with probiotic potential for metabolic diseases. Thereby, autochthonous lactobacilli from goat dairy products that target improving the inflammatory, lipid, and glycemic profile were characterized. We designed fermented goat milk using Lactobacillus delbrueckii subsp. indicus CRL1447 as starter strain, supplemented with different probiotic consortia formed by Limosilactobacillus fermentum CRL1446, Lactiplantibacillus paraplantarum CRL1449, and CRL1472 strains. These lactobacilli were selected for their positive effects on inhibition of α-glucosidase, bile salts hydrolase activity, cholesterol assimilation, and decreased triglyceride percentage in Caenorhabditis elegans. Furthermore, the lactobacilli oral administration to obese mice caused a significant decrease in body weight gain and ameliorated hyperglycemia and hyperlipemia. These results reveal the potential of this goat dairy product as a functional food to prevent obesity and related pathologies. Goat milk-derived products stand out for their marketing potential. Hence, fermented goat milk incorporating novel probiotics represents a group of food products with broad prospects by their promising nutritive and therapeutic properties for metabolic diseases. The goat dairy product designed in this study could be used in the prevention of dyslipidemia and hyperglycemia in obese people. New probiotic consortium (CRL1449, CRL1472, and CRL1446) was selected. The probiotic consortium showed in vitro immuno and adipomodulatory properties. Lactobacillus delbrueckii subsp. indicus CRL1447 was selected as a starter culture for fermented milk elaboration. Manufacturing of a functional fermented goat milk with a new probiotic consortium.
Collapse
Affiliation(s)
- Antonela Marquez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Estefanía Andrada
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Avda. Pte. N. Kirchner 1900, T4000INH, San Miguel de Tucumán, Tucumán, Argentina
| | - Matias Russo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - María Lujan Bolondi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Emanuel Fabersani
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Avda. Pte. N. Kirchner 1900, T4000INH, San Miguel de Tucumán, Tucumán, Argentina
| | - Roxana Medina
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Avda. Pte. N. Kirchner 1900, T4000INH, San Miguel de Tucumán, Tucumán, Argentina
- Corresponding author.
| | - Paola Gauffin-Cano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
- Corresponding author.
| |
Collapse
|
46
|
Li Y, Huang X, Yang G, Xu K, Yin Y, Brecchia G, Yin J. CD36 favours fat sensing and transport to govern lipid metabolism. Prog Lipid Res 2022; 88:101193. [PMID: 36055468 DOI: 10.1016/j.plipres.2022.101193] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
CD36, located on the cell membrane, transports fatty acids in response to dietary fat. It is a critical fatty acid sensor and regulator of lipid metabolism. The interaction between CD36 and lipid dysmetabolism and obesity has been identified in various models and human studies. Nevertheless, the mechanisms by which CD36 regulates lipid metabolism and the role of CD36 in metabolic diseases remain obscure. Here, we summarize the latest research on the role of membrane CD36 in fat metabolism, with emphasis on CD36-mediated fat sensing and transport. This review also critically discusses the factors affecting the regulation of CD36-mediated fat dysfunction. Finally, we review previous clinical evidence of CD36 in metabolic diseases and consider the path forward.
Collapse
Affiliation(s)
- Yunxia Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 26900 Lodi, Italy
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China.
| |
Collapse
|
47
|
The Role of Gut Microbiota Modulation Strategies in Obesity: The Applications and Mechanisms. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, obesity is a leading public health problem worldwide. The growing prevalence of obesity significantly accounts for other cardio-metabolic diseases, including hypertension and diabetes. Several studies have shown that obesity is strongly associated with genetic, environmental, lifestyle, and dietary factors, especially the disordered profiles of gut microbiota (GM). The present review concluded mechanistic studies and potential correspondent treatments for obesity. Specifically, the anti-obesity effects of food-derived compounds manipulating GM were highlighted. The potential limitations of bioactive compounds on absorption in the intestinal tract were also discussed. Thus, the future direction of fecal microbiota transplantation (FMT) as an approach to support modulating host GM (considered to be a potential therapeutic target for obesity) was discussed. This review shed light on the role of GM modulation strategies for the prevention/treatment of obesity.
Collapse
|
48
|
Pintarič M, Langerholc T. Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life (Basel) 2022; 12:1187. [PMID: 36013366 PMCID: PMC9409775 DOI: 10.3390/life12081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | | |
Collapse
|
49
|
Wang T, Wang S, Dong S, Zhang Y, Ismael M, Wang S, Shi C, Yang J, Wang X, Lü X. Interaction of Companilactobacillus crustorum MN047-derived bacteriocins with gut microbiota. Food Chem 2022; 396:133730. [PMID: 35878442 DOI: 10.1016/j.foodchem.2022.133730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
Abstract
Companilactobacillus crustorum MN047-derived bacteriocins (CCDB) have inhibitory effects on the growth of pathogens. In this study, a pectin/zein beads delivery system was used to investigate the effects of CCDB on the dextran sulfate sodium-induced colitis in mice. The focus was given on aspects linked with the gut microbiota, intestinal epithelial barrier, oxidative stress, and inflammation. Results suggested that CCDB alleviated the pathological symptoms of colitis, including increased disease activity index and shortened colon length. CCDB strengthened the gut barrier by increasing goblet cells and promoting the expressions of MUC2 and tight junctions-related proteins. CCDB decreased oxidative mediators and increased antioxidant mediators in serum or colon tissue. Furthermore, CCDB reduced harmful bacteria and enriched beneficial bacteria, which further decreased serum LPS and increased fecal butyric acid. In addition, CCDB inhibited the overexpressions of proinflammatory cytokines, chemokines, and pathogens/LPS-activated TLR4/NF-κB pathway. Therefore, CCDB is a potential dietary supplement to relieve colitis.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Shuxuan Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Shuchen Dong
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Yu Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Shuang Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Caihong Shi
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Jie Yang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
50
|
Wang T, Zheng J, Dong S, Ismael M, Shan Y, Wang X, Lü X. Lacticaseibacillus rhamnosus LS8 Ameliorates Azoxymethane/Dextran Sulfate Sodium-Induced Colitis-Associated Tumorigenesis in Mice via Regulating Gut Microbiota and Inhibiting Inflammation. Probiotics Antimicrob Proteins 2022; 14:947-959. [PMID: 35788907 DOI: 10.1007/s12602-022-09967-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Gut microbiota dysbiosis may promote the process of colorectal cancer (CRC). Lacticaseibacillus rhamnosus LS8 (LRL) is a potential gut microbiota regulating strain because it can produce a novel antimicrobial substance (like cycloalanopine). In addition, this probiotic had an inflammation-ameliorating effect on the dextran sulfate sodium (DSS)-induced colitis mice. However, it is not known whether treatment with this probiotic could ameliorate colitis-associated CRC via regulating gut microbiota. In this study, a CRC mouse model was induced by a single intraperitoneal injection of azoxymethane (AOM, 10 mg/kg) and followed by three 7-day cycles of 2% DSS administration. Results showed that LRL could inhibit tumor formation. Moreover, LRL enhanced the gut barrier by preventing goblet cell loss and promoting the expression of ZO-1, occludin, and claudin-1. Furthermore, LRL ameliorated gut microbiota dysbiosis, which was conducive to the growth of beneficial bacteria (e.g., Faecalibaculum and Akkermansia), and further led to an increase in SCFAs and a decrease in LPS. In addition, LRL alleviated colonic inflammation by inhibiting the overexpression of TLR4/NF-κB, pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-γ, and IL-17a), and chemokines (Cxcl1, Cxcl2, Cxcl3, Cxcl5, and Cxcl7). In conclusion, LRL could alleviate CRC by regulating gut microbiota and preventing gut barrier damage and inflammation.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiaqi Zheng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Shuchen Dong
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Mohamedelfaieh Ismael
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|