1
|
Narayanan B, Sinha P, Henry R, Reeves RA, Paolocci N, Kohr MJ, Zachara NE. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity. J Biol Chem 2023; 299:105447. [PMID: 37949223 PMCID: PMC10711226 DOI: 10.1016/j.jbc.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The post-translational modification of intracellular proteins by O-linked β-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.
Collapse
Affiliation(s)
- Bhargavi Narayanan
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prithvi Sinha
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roger Henry
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell A Reeves
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Mark J Kohr
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natasha E Zachara
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Department of Oncology at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Hidayat MM, Agustiningsih D, Sabirin RM, Wibowo RA. The mediation role of physical fitness in association between muscle-strengthening physical activities and its component with blood pressure among young adults: considering gender and abnormal blood pressure as moderators, moderate-vigorous physical activity, sleep behavior, sedentary behavior, mental wellbeing and BMI as covariates. Front Cardiovasc Med 2023; 10:1158893. [PMID: 37799780 PMCID: PMC10548210 DOI: 10.3389/fcvm.2023.1158893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/09/2023] [Indexed: 10/07/2023] Open
Abstract
Background Global burden of hypertension among young people continues to increase. There have been many studies examining the effect of aerobic and muscle-strengthening physical activity on blood pressure, many of them didn't consider interdependence between them. Conflicting results of health-related fitness, particularly handgrip strength, as intermediate outcomes of muscle-strengthening physical activity on blood pressure also emerged. This research will carry out a mediation-moderation analysis to find out the relationship between muscle strengthening physical activity and blood pressure among young adults by considering health-related fitness and 24-hour movement behavior. Methods A cross-sectional study among 221 Indonesian young adults attending a physical activity intervention collected participant's muscle-strengthening physical activity, and 24 h movement behavior, including aerobic physical activity, sedentary and sleep behavior, and mental well-being using validated questionnaires. Mediation and moderation analyses were conducted using Process Macro model 10 on SPSS 25 to investigate the association of muscle-strengthening physical activity on blood pressure, with gender and blood pressure as moderator, mediators consist of handgrip strength, muscle mass percentage and cardiorespiratory fitness. A subgroup analysis was conducted based on participant's cardiorespiratory fitness level. Results Volume of muscle-strengthening physical activities in a week have a direct association with systolic blood pressure among prehypertensive male with an effect of 0,00989359 (95% CI 0,0046488 to 0,00336478). Considering its volume as mediator, the frequency of muscle-strengthening physical activity contributed to a significant direct effect on diastolic blood pressure in both genders, but the duration of MSPA has a significant direct effect on systolic blood pressure in male subjects. There is no component of physical fitness that provides a significant mediating effect. After a subgroup analysis, the relationship between MSPA Volume and blood pressure is not significant for individuals with a high level of cardiorespiratory fitness. Conclusions This study shows that increased participation in muscle strengthening physical activity, especially in subject with low cardiorespiratory fitness, could increase blood pressure in prehypertensive young adult male population without mediation by physical fitness. Further research is needed to investigate other mechanisms that influence this relationship.
Collapse
Affiliation(s)
| | - Denny Agustiningsih
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | | | | |
Collapse
|
3
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
4
|
Alloatti G, Penna C, Comità S, Tullio F, Aragno M, Biasi F, Pagliaro P. Aging, sex and NLRP3 inflammasome in cardiac ischaemic disease. Vascul Pharmacol 2022; 145:107001. [PMID: 35623548 DOI: 10.1016/j.vph.2022.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Experimentally, many strong cardioprotective treatments have been identified in different animal models of acute ischaemia/reperfusion injury (IRI) and coronary artery disease (CAD). However, the translation of these cardioprotective therapies for the benefit of the patients into the clinical scenario has been very disappointing. The reasons for this lack are certainly multiple. Indeed, many confounding factors we must deal in clinical reality, such as aging, sex and inflammatory processes are neglected in many experiments. Due to the pivotal role of aging, sex and inflammation in determining cardiac ischaemic disease, in this review, we take into account age as a modifier of tolerance to IRI in the two sexes, dissecting aging and myocardial reperfusion injury mechanisms and the sex differences in tolerance to IRI. Then we focus on the role of the gut microbiota and the NLRP3 inflammasome in myocardial IRI and on the possibility to consider NLRP3 inflammasome as a potential target in the treatment of CAD in relationship with age and sex. Finally, we consider the cardioprotective mechanisms and cardioprotective treatments during aging in the two sexes.
Collapse
Affiliation(s)
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
5
|
Ischemic preconditioning protects the heart against ischemia-reperfusion injury in chronic kidney disease in both males and females. Biol Sex Differ 2021; 12:49. [PMID: 34488888 PMCID: PMC8420010 DOI: 10.1186/s13293-021-00392-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Uremic cardiomyopathy is a common cardiovascular complication of chronic kidney disease (CKD) characterized by left ventricular hypertrophy (LVH) and fibrosis enhancing the susceptibility of the heart to acute myocardial infarction. In the early stages of CKD, approximately 60% of patients are women. We aimed to investigate the influence of sex on the severity of uremic cardiomyopathy and the infarct size-limiting effect of ischemic preconditioning (IPRE) in experimental CKD. METHODS CKD was induced by 5/6 nephrectomy in 9-week-old male and female Wistar rats. Two months later, serum and urine laboratory parameters were measured to verify the development of CKD. Transthoracic echocardiography was performed to assess cardiac function and morphology. Cardiomyocyte hypertrophy and fibrosis were measured by histology. Left ventricular expression of A- and B-type natriuretic peptides (ANP and BNP) were measured by qRT-PCR and circulating BNP level was measured by ELISA. In a subgroup of animals, hearts were perfused according to Langendorff and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPRE (3 × 5 min I/R cycles applied before index ischemia). Then infarct size or phosphorylated and total forms of proteins related to the cardioprotective RISK (AKT, ERK1,2) and SAFE (STAT3) pathways were measured by Western blot. RESULTS The severity of CKD was similar in males and females. However, CKD males developed more severe LVH compared to females as assessed by echocardiography. Histology revealed cardiac fibrosis only in males in CKD. LV ANP expression was significantly increased due to CKD in both sexes, however, LV BNP and circulating BNP levels failed to significantly increase in CKD. In both sexes, IPRE significantly decreased the infarct size in both the sham-operated and CKD groups. IPRE significantly increased the phospho-STAT3/STAT3 ratio in sham-operated but not in CKD animals in both sexes. There were no significant differences in phospho-AKT/AKT and phospho-ERK1,2/ERK1,2 ratios between the groups. CONCLUSION The infarct size-limiting effect of IPRE was preserved in both sexes in CKD despite the more severe uremic cardiomyopathy in male CKD rats. Further research is needed to identify crucial molecular mechanisms in the cardioprotective effect of IPRE in CKD.
Collapse
|
6
|
Querio G, Geddo F, Antoniotti S, Gallo MP, Penna C. Sex and Response to Cardioprotective Conditioning Maneuvers. Front Physiol 2021; 12:667961. [PMID: 34054579 PMCID: PMC8160310 DOI: 10.3389/fphys.2021.667961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Ischemic heart disease (IHD) is a multifactorial pathological condition strictly related to genetic, dietary, and lifestyle factors. Its morbidity and mortality rate represent one of the most important pathological issues that today involve younger people in a stronger way than in the past. IHD clinical outcomes are difficult to treat and have a high economic impact on health care. So prevention of this pathological condition through cardioprotective maneuvers represents the first line of intervention, as already underlined by several animal and human studies. Even if the time of intervention is important to prevent severe outcomes, many studies highlight that sex-dependent responses are crucial for the result of cardioprotective procedures. In this scenario sexual hormones have revealed an important role in cardioprotective approach, as women seem to be more protected toward cardiac insults when compared to male counterparts. The aim of this mini review is to show the molecular pathways involved in cardioprotective protocols and to elucidate how sexual hormones can contribute in ameliorating or worsening the physiological responses to IHD.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Brachial and central blood pressure and arterial stiffness in adult elite athletes. Eur J Appl Physiol 2021; 121:1889-1898. [PMID: 33713201 PMCID: PMC8192367 DOI: 10.1007/s00421-021-04662-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
Purpose Measures of arterial stiffness (AS) and central blood pressure (BP) are indicators for cardiovascular health and possess a high prognostic value in the prediction of cardiovascular events. The effects of physical training are widely unexplored in the context of competitive, high-performance sports. Therefore, we aimed to present possible reference values of brachial and central BP and of AS of adult elite athletes compared to a control group. Methods A total of 189 subjects participated in this cross-sectional study. Of these were 139 adult elite athletes (70 male, 69 female) performing on top-national and international level, and 50 control subjects (26 male, 24 female). Resting brachial and central BP and aortic pulse wave velocity (PWV) were measured and were compared in terms of sex, sport category, and age of the athletes. Results Results show no difference between athletes and controls in any parameter. Women exhibit lower brachial and central BP and AS values compared to men. PWV is positively correlated with age. Evaluation of the parameters according to the different sport categories showed that endurance athletes exhibit lower BP and PWV compared to other athletes. Conclusions This study presents brachial and central BP and PWV values of athletes, suggesting that high-performance sport does not negatively impact AS. The proposed reference values might support a more detailed evaluation of elite athlete’s cardiovascular and hemodynamic system and a better assignment to possible risk groups.
Collapse
|
8
|
Penna C, Femminò S, Alloatti G, Brizzi MF, Angelone T, Pagliaro P. Extracellular Vesicles in Comorbidities Associated with Ischaemic Heart Disease: Focus on Sex, an Overlooked Factor. J Clin Med 2021; 10:327. [PMID: 33477341 PMCID: PMC7830384 DOI: 10.3390/jcm10020327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are emerging early markers of myocardial damage and key mediators of cardioprotection. Therefore, EV are becoming fascinating tools to prevent cardiovascular disease and feasible weapons to limit ischaemia/reperfusion injury. It is well known that metabolic syndrome negatively affects vascular and endothelial function, thus creating predisposition to ischemic diseases. Additionally, sex is known to significantly impact myocardial injury and cardioprotection. Therefore, actions able to reduce risk factors related to comorbidities in ischaemic diseases are required to prevent maladaptive ventricular remodelling, preserve cardiac function, and prevent the onset of heart failure. This implies that early diagnosis and personalised medicine, also related to sex differences, are mandatory for primary or secondary prevention. Here, we report the contribution of EV as biomarkers and/or therapeutic tools in comorbidities predisposing to cardiac ischaemic disease. Whenever possible, attention is dedicated to data linking EV to sex differences.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Giuseppe Alloatti
- Uni-Astiss, Polo Universitario Rita Levi Montalcini, 14100 Asti, Italy;
| | - Maria F. Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| |
Collapse
|
9
|
Ticagrelor Conditioning Effects Are Not Additive to Cardioprotection Induced by Direct NLRP3 Inflammasome Inhibition: Role of RISK, NLRP3, and Redox Cascades. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9219825. [PMID: 32832010 PMCID: PMC7424511 DOI: 10.1155/2020/9219825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Inhibition of either P2Y12 receptor or the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome provides cardioprotective effects. Here, we investigate whether direct NLRP3 inflammasome inhibition exerts additive effects on myocardial protection induced by the P2Y12 receptor antagonist Ticagrelor. Ticagrelor (150 mg/kg) was orally administered to rats for three consecutive days. Then, isolated hearts underwent an ischemia/reperfusion (30 min ischemia/60 min reperfusion; IR) protocol. The selective NLRP3 inflammasome inhibitor INF (50 μM) was infused before the IR protocol to the hearts from untreated animals or pretreated with Ticagrelor. In parallel experiments, the hearts isolated from untreated animals were perfused with Ticagrelor (3.70 μM) before ischemia and subjected to IR. The hearts of animals pretreated with Ticagrelor showed a significantly reduced infarct size (IS, 49 ± 3% of area at risk, AAR) when compared to control IR group (69 ± 2% of AAR). Similarly, ex vivo administration of INF before the IR injury resulted in significant IS reduction (38 ± 3% of AAR). Myocardial IR induced the NLRP3 inflammasome complex formation, which was attenuated by either INF pretreatment ex vivo, or by repeated oral treatment with Ticagrelor. The beneficial effects induced by either treatment were associated with the protective Reperfusion Injury Salvage Kinase (RISK) pathway activation and redox defence upregulation. In contrast, no protective effects nor NLRP3/RISK modulation were recorded when Ticagrelor was administered before ischemia in isolated heart, indicating that Ticagrelor direct target is not in the myocardium. Our results confirm that Ticagrelor conditioning effects are likely mediated through platelets, but are not additives to the ones achieved by directly inhibiting NLRP3.
Collapse
|
10
|
Bassareo PP, Crisafulli A. Gender Differences in Hemodynamic Regulation and Cardiovascular Adaptations to Dynamic Exercise. Curr Cardiol Rev 2020; 16:65-72. [PMID: 30907327 PMCID: PMC7393595 DOI: 10.2174/1573403x15666190321141856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 01/28/2023] Open
Abstract
Exercise is a major challenge for cardiovascular apparatus since it recruits chronotropic, inotropic, pre-load, and afterload reserves. Regular physical training induces several physiological adaptations leading to an increase in both cardiac volume and mass. It appears that several gender-related physiological and morphological differences exist in the cardiovascular adjustments and adaptations to dynamic exercise in humans. In this respect, gender may be important in determining these adjustments and adaptations to dynamic exercise due to genetic, endocrine, and body composition differences between sexes. Females seem to have a reduced vasoconstriction and a lower vascular resistance in comparison to males, especially after exercise. Significant differences exist also in the cardiovascular adaptations to physical training, with trained women showing smaller cardiac volume and wall thickness compared with male athletes. In this review, we summarize these differences.
Collapse
Affiliation(s)
- Pier P Bassareo
- University College of Dublin, Mater Misericordiae University Teaching Hospital, Dublin, Ireland
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Cadeddu Dessalvi C, Pepe A, Penna C, Gimelli A, Madonna R, Mele D, Monte I, Novo G, Nugara C, Zito C, Moslehi JJ, de Boer RA, Lyon AR, Tocchetti CG, Mercuro G. Sex differences in anthracycline-induced cardiotoxicity: the benefits of estrogens. Heart Fail Rev 2020; 24:915-925. [PMID: 31256318 DOI: 10.1007/s10741-019-09820-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anthracyclines are the cornerstone for many oncologic treatments, but their cardiotoxicity has been recognized for several decades. Female subjects, especially before puberty and adolescence, or after menopause, seem to be more at increased risk, with the prognostic impact of this sex issue being less consistent compared to other cardiovascular risk factors. Several studies imply that sex differences could depend on the lack of the protective effect of sex hormones against the anthracycline-initiated damage in cardiac cells, or on differential mitochondria-related oxidative gene expression. This is also reflected by the results obtained with different diagnostic methods, such as cardiovascular biomarkers and imaging techniques (echocardiography, magnetic resonance, and nuclear medicine) in the diagnosis and monitoring of cardiotoxicity, confirming that sex differences exist. The same is true about protective strategies from anthracycline cardiotoxicity. Indeed, first studied to withstand oxidative damage in response to ischemia/reperfusion (I/R) injury, cardioprotection has different outcomes in men and women. A number of studies assessed the differences in I/R response between male and female hearts, with oxidative stress and apoptosis being shared mechanisms between the I/R and anthracyclines heart damage. Sex hormones can modulate these mechanisms, thus confirming their importance in the pathophysiology in cardioprotection not only from the ischemia/reperfusion damage, but also from anthracyclines, fueling further cardio-oncologic research on the topic.
Collapse
Affiliation(s)
| | - Alessia Pepe
- Magnetic Resonance Imaging Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Gimelli
- Nuclear Medicine Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Donato Mele
- Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities- Cardiology, University of Catania, Catania, Italy
| | - Giuseppina Novo
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Cinzia Nugara
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Concetta Zito
- Department of Clinical and Experimental Medicine - Cardiology, University of Messina, Messina, Italy
| | - Javid J Moslehi
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | | | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy. .,Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy.
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Lieder HR, Irmert A, Kamler M, Heusch G, Kleinbongard P. Sex is no determinant of cardioprotection by ischemic preconditioning in rats, but ischemic/reperfused tissue mass is for remote ischemic preconditioning. Physiol Rep 2020; 7:e14146. [PMID: 31210033 PMCID: PMC6579942 DOI: 10.14814/phy2.14146] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022] Open
Abstract
We determined the impact of sex on the magnitude of cardioprotection by local and remote ischemic preconditioning (IPC and RIPC) and of ischemic/reperfused peripheral tissue mass on protection by RIPC. Hearts of female and male Lewis rats were excised, perfused with buffer, and underwent either IPC by 3 × 5/5 min global zero‐flow ischemia/reperfusion (GI/R) or time‐matched perfusion (TP) before 30/120 min GI/R. In a second approach, anesthetized female and male Lewis rats underwent RIPC, 3 × 5/5 min ischemia/reperfusion of one or both hindlimbs (1‐RIPC or 2‐RIPC), or placebo. Thirty minutes after the RIPC/placebo protocol, hearts were excised and subjected to GI/R. In female and male hearts, infarct size was less with IPC than with TP before GI/R (IPC+GI/Rfemale: 12 ± 5%; IPC+GI/Rmale: 12 ± 7% vs. TP+GI/Rfemale: 33 ± 5%; TP+GI/Rmale: 37 ± 7%, P < 0.001). With 2‐RIPC, infarct size was less than with 1‐RIPC in female and male rat hearts, respectively (2‐RIPC+GI/Rfemale: 15 ± 5% vs. 1‐RIPC+GI/Rfemale: 22 ± 7%, P = 0.026 and 2‐RIPC+GI/Rmale: 16 ± 5% vs. 1‐RIPC+GI/Rmale: 22 ± 8%, P = 0.016). Infarct size after the placebo protocol and GI/R was not different between female and male hearts (36 ± 8% vs. 34 ± 5%). Sex is no determinant of IPC‐ and RIPC‐induced cardioprotection in isolated Lewis rat hearts. RIPC‐induced cardioprotection is greater with greater mass of ischemic/reperfused peripheral tissue.
Collapse
Affiliation(s)
- Helmut R Lieder
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, University of Essen Medical School, Essen, Germany
| | - Amelie Irmert
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, University of Essen Medical School, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University of Essen Medical School, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, University of Essen Medical School, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, University of Essen Medical School, Essen, Germany
| |
Collapse
|
13
|
Ruiz-Meana M, Boengler K, Garcia-Dorado D, Hausenloy DJ, Kaambre T, Kararigas G, Perrino C, Schulz R, Ytrehus K. Ageing, sex, and cardioprotection. Br J Pharmacol 2020; 177:5270-5286. [PMID: 31863453 DOI: 10.1111/bph.14951] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Translation of cardioprotective interventions aimed at reducing myocardial injury during ischaemia-reperfusion from experimental studies to clinical practice is an important yet unmet need in cardiovascular medicine. One particular challenge facing translation is the existence of demographic and clinical factors that influence the pathophysiology of ischaemia-reperfusion injury of the heart and the effects of treatments aimed at preventing it. Among these factors, age and sex are prominent and have a recognised role in the susceptibility and outcome of ischaemic heart disease. Remarkably, some of the most powerful cardioprotective strategies proven to be effective in young animals become ineffective during ageing. This article reviews the mechanisms and implications of the modulatory effects of ageing and sex on myocardial ischaemia-reperfusion injury and their potential effects on cardioprotective interventions. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Madrid, Spain
| | - Kerstin Boengler
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - David Garcia-Dorado
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Madrid, Spain
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlinand Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Díaz-Ruíz JL, Macías-López A, Alcalá-Vargas F, Guevara-Chávez JG, Mejía-Uribe A, Silva-Palacios A, Zúñiga-Muñoz A, Zazueta C, Buelna-Chontal M. Redox signaling in ischemic postconditioning protection involves PKCε and Erk1/2 pathways and converges indirectly in Nrf2 activation. Cell Signal 2019; 64:109417. [DOI: 10.1016/j.cellsig.2019.109417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023]
|
15
|
Shin ES, Chung JH, Hahn JY, Song YB, Kim EK, Yu CW, Bae JW, Chung WY, Choi SH, Choi JH, Bae JH, An KJ, Park JS, Oh JH, Kim SW, Hwang JY, Ryu JK, Garg S, Lim DS, Gwon HC, Park HS. The clinical impact of sex differences on ischemic postconditioning during primary percutaneous coronary intervention: a POST (the effects of postconditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction) substudy. Heart Vessels 2018; 34:898-905. [DOI: 10.1007/s00380-018-1316-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
|
16
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
17
|
Rocca C, Femminò S, Aquila G, Granieri MC, De Francesco EM, Pasqua T, Rigiracciolo DC, Fortini F, Cerra MC, Maggiolini M, Pagliaro P, Rizzo P, Angelone T, Penna C. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts. Front Physiol 2018; 9:521. [PMID: 29867564 PMCID: PMC5962667 DOI: 10.3389/fphys.2018.00521] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER) is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR) hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS) and mitochondrial K+-ATP (MitoKATP) channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM) alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N-[N-(3,5 difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, 5 μM), of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions, including hypertension, reduce the efficacy of ischemic conditioning strategies. However, G1-induced protection can result in significant reduction of I/R injury also female in hypertensive animals. Further studies may ascertain the clinical translation of the present results.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | - Saveria Femminò
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Granieri
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | | | - Teresa Pasqua
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | - Damiano C Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Maria C Cerra
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pasquale Pagliaro
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Tommaso Angelone
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Claudia Penna
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
18
|
Ciocci Pardo A, Scuri S, González Arbeláez LF, Caldiz C, Fantinelli J, Mosca SM. Survival kinase-dependent pathways contribute to gender difference in the response to myocardial ischemia-reperfusion and ischemic post-conditioning. Cardiovasc Pathol 2017; 33:19-26. [PMID: 29414428 DOI: 10.1016/j.carpath.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023] Open
Abstract
The response to ischemia/reperfusion and the effects of ischemic post-conditioning (IPC) are sex-dependent, but the mechanisms have not been clarified. Male (M) and female (F) rat hearts isolated and perfused using the Langendorff technique were subject to 30 min of global ischemia (GI) and 60 min reperfusion (R). In IPC hearts, three cycles of 30-sec GI/30-sec R were applied at the beginning of R. Infarct size and myocardial function were assessed. Superoxide production, antioxidant systems, and expressions of phosphorylated forms of serine/threonine kinase (Akt), glycogen synthase kinase 3β (GSK-3β), protein kinase C ε (PKCε), endothelial nitric oxide synthase (eNOS), and apoptosis were measured. In the basal state, superoxide production and apoptosis were lower, and antioxidant systems and phospho-kinase expressions were higher in F rather than in M hearts. After ischemia-reperfusion, infarct size was less in F hearts, and post-ischemic recovery of myocardial function was higher in F rather than in M hearts. Superoxide production, phospho-kinase activity, phospho-eNOS, and apoptosis increased in both sexes while antioxidants decreased in both sexes. After IPC, infarct size, superoxide production, and apoptosis decreased and phospho-eNOS increased in F and M hearts but phospho-kinase expressions and post-ischemic recovery of myocardial function improved only in M hearts. These results show that Akt/GSK-3β/PKCε/eNOS-dependent pathways-mediated superoxide production and apoptosis appear as important factors involved in the observed gender differences.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sergio Scuri
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claudia Caldiz
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliana Fantinelli
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
19
|
Bienvenu LA, Morgan J, Reichelt ME, Delbridge LM, Young MJ. Chronic in vivo nitric oxide deficiency impairs cardiac functional recovery after ischemia in female (but not male) mice. J Mol Cell Cardiol 2017; 112:8-15. [DOI: 10.1016/j.yjmcc.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022]
|
20
|
Pottecher J, Kindo M, Chamaraux-Tran TN, Charles AL, Lejay A, Kemmel V, Vogel T, Chakfe N, Zoll J, Diemunsch P, Geny B. Skeletal muscle ischemia-reperfusion injury and cyclosporine A in the aging rat. Fundam Clin Pharmacol 2016; 30:216-25. [PMID: 26787364 DOI: 10.1111/fcp.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/20/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
Old patients exhibit muscle impairments and increased perioperative risk during vascular surgery procedures. Although aging generally impairs protective mechanisms, data are lacking concerning skeletal muscle in elderly. We tested whether cyclosporine A (CsA), which protects skeletal muscle from ischemia-reperfusion (IR) in young rats, might reduce skeletal muscle mitochondrial dysfunction and oxidative stress in aging rats submitted to hindlimb IR. Wistar rats aged 71-73 weeks were randomized to IR (3 h unilateral tourniquet application and 2 h reperfusion) or IR + CsA (10 mg/kg cyclosporine IV before reperfusion). Maximal oxidative capacity (VM ax ), acceptor control ratio (ACR), and relative contribution of the mitochondrial respiratory chain complexes II, III, IV (VS ucc ), and IV (VTMPD /Asc ), together with calcium retention capacity (CRC) a marker of apoptosis, and tissue reactive oxygen species (ROS) production were determined in gastrocnemius muscles from both hindlimbs. Compared to the nonischemic hindlimb, IR significantly reduced mitochondrial coupling, VMax (from 7.34 ± 1.50 to 2.87 ± 1.22 μMO2 /min/g; P < 0.05; -70%), and VS ucc (from 6.14 ± 1.07 to 3.82 ± 0.83 μMO2 /min/g; P < 0.05; -42%) but not VTMPD /Asc . IR also decreased the CRC from 15.58 ± 3.85 to 6.19 ± 0.86 μMCa(2+) /min/g; P < 0.05; -42%). These alterations were not corrected by CsA (-77%, -49%, and -32% after IR for VM ax, VS ucc , and CRC, respectively). Further, CsA significantly increased ROS production in both hindlimbs (P < 0.05; +73%). In old rats, hindlimb IR impairs skeletal muscle mitochondrial function and increases oxidative stress. Cyclosporine A did not show protective effects.
Collapse
Affiliation(s)
- Julien Pottecher
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Pôle Anesthésie Réanimation Chirurgicale SAMU, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Michel Kindo
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Service de Chirurgie Cardio-Vasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thiên-Nga Chamaraux-Tran
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Pôle Anesthésie Réanimation Chirurgicale SAMU, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Anne-Laure Charles
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Lejay
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Service de Chirurgie Vasculaire et de Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Véronique Kemmel
- Hôpital de Hautepierre, Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Faculté de Médecine, Unité de Physiopathologie et Médecine Translationnelle, Université de Strasbourg, Equipe d'Accueil EA4438, Strasbourg, France
| | - Thomas Vogel
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Pôle de Gériatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nabil Chakfe
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Service de Chirurgie Vasculaire et de Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joffrey Zoll
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Diemunsch
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Pôle Anesthésie Réanimation Chirurgicale SAMU, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Bernard Geny
- Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 'Mitochondrie, stress oxydant et protection musculaire', Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Pasqua T, Tota B, Penna C, Corti A, Cerra MC, Loh Y P, Angelone T. pGlu-serpinin protects the normotensive and hypertensive heart from ischemic injury. J Endocrinol 2015; 227:167-178. [PMID: 26400960 PMCID: PMC4651656 DOI: 10.1530/joe-15-0199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/15/2022]
Abstract
Serpinin peptides derive from proteolytic cleavage of Chromogranin-A at C-terminus. Serpinin and the more potent pyroglutaminated-serpinin (pGlu-Serp) are positive cardiac β-adrenergic-like modulators, acting through β1-AR/AC/cAMP/PKA pathway. Because in some conditions this pathway and/or other pro-survival pathways, activated by other Chromogranin-A fragments, may cross-talk and may be protective, here we explored whether pGlu-Serp cardioprotects against ischemia/reperfusion injury under normotensive and hypertensive conditions. In the latter condition, cardioprotection is often blunted because of the limitations on pro-survival Reperfusion Injury Salvage Kinases (RISK) pathway activation. The effects of pGlu-Serp were evaluated on infarct size (IS) and cardiac function by using the isolated and Langendorff perfused heart of normotensive (Wistar Kyoto, WKY) and spontaneously hypertensive (SHR) rats exposed to ischemic pre-conditioning (PreC) and post-conditioning (PostC). In both WKY and SHR rat, pGlu-Serp induced mild cardioprotection in both PreC and PostC. pGlu-Serp administered at the reperfusion (Serp-PostC) significantly reduced IS, being more protective in SHR than in WKY. Conversely, left ventricular developed pressure (LVDevP) post-ischemic recovery was greater in WKY than in SHR. pGlu-Serp-PostC reduced contracture in both strains. Co-infusion with specific RISK inhibitors (PI3K/Akt, MitoKATP channels and PKC) blocked the pGlu-Serp-PostC protective effects. To show direct effect on cardiomyocytes, we pre-treated H9c2 cells with pGlu-Serp, which were thus protected against hypoxia/reoxygenation. These results suggest pGlu-Serp as a potential modulatory agent implicated in the protective processes that can limit infarct size and overcome the hypertension-induced failure of PostC.
Collapse
Affiliation(s)
- T Pasqua
- Dept of Biology, Ecology, and E.S., University of Calabria, Rende (CS), Italy
| | - B Tota
- Dept of Biology, Ecology, and E.S., University of Calabria, Rende (CS), Italy
| | - C Penna
- Dept of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - A Corti
- Tumor Biology and Vascular Targeting Unit, Division of Molecular Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - M C Cerra
- Dept of Biology, Ecology, and E.S., University of Calabria, Rende (CS), Italy
| | - P Loh Y
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md 20892, USA
| | - T Angelone
- Dept of Biology, Ecology, and E.S., University of Calabria, Rende (CS), Italy
| |
Collapse
|
22
|
Marongiu E, Crisafulli A. Gender differences in cardiovascular functions during exercise: a brief review. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0237-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
McCafferty K, Forbes S, Thiemermann C, Yaqoob MM. The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Dis Model Mech 2015; 7:1321-33. [PMID: 25481012 PMCID: PMC4257001 DOI: 10.1242/dmm.016741] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Following a period of ischemia (local restriction of blood supply to a tissue), the restoration of blood supply to the affected area causes significant tissue damage. This is known as ischemia-reperfusion injury (IRI) and is a central pathological mechanism contributing to many common disease states. The medical complications caused by IRI in individuals with cerebrovascular or heart disease are a leading cause of death in developed countries. IRI is also of crucial importance in fields as diverse as solid organ transplantation, acute kidney injury and following major surgery, where post-operative organ dysfunction is a major cause of morbidity and mortality. Given its clinical impact, novel interventions are urgently needed to minimize the effects of IRI, not least to save lives but also to reduce healthcare costs. In this Review, we examine the experimental technique of ischemic conditioning, which entails exposing organs or tissues to brief sub-lethal episodes of ischemia and reperfusion, before, during or after a lethal ischemic insult. This approach has been found to confer profound tissue protection against IRI. We discuss the translation of ischemic conditioning strategies from bench to bedside, and highlight where transition into human clinical studies has been less successful than in animal models, reviewing potential reasons for this. We explore the challenges that preclude more extensive clinical translation of these strategies and emphasize the role that underlying comorbidities have in altering the efficacy of these strategies in improving patient outcomes.
Collapse
Affiliation(s)
- Kieran McCafferty
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, EC1M 6BQ, UK.
| | - Suzanne Forbes
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, EC1M 6BQ, UK
| | - Christoph Thiemermann
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, EC1M 6BQ, UK
| | - Muhammad M Yaqoob
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, EC1M 6BQ, UK
| |
Collapse
|
24
|
Pichot S, Mewton N, Bejan-Angoulvant T, Roubille F, Rioufol G, Giraud C, Boussaha I, Lairez O, Elbaz M, Piot C, Angoulvant D, Ovize M. Influence of cardiovascular risk factors on infarct size and interaction with mechanical ischaemic postconditioning in ST-elevation myocardial infarction. Open Heart 2015; 2:e000175. [PMID: 26288738 PMCID: PMC4533201 DOI: 10.1136/openhrt-2014-000175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/24/2014] [Accepted: 01/13/2015] [Indexed: 01/04/2023] Open
Abstract
Objective Previous studies have shown that mechanical postconditioning (PostC) significantly reduces infarct size (IS) in patients with acute myocardial infarction. Our objective was to assess the influence of traditional cardiovascular (CV) risk factors on IS and their interaction with ischaemic PostC in patients with acute ST-elevation myocardial infarction (STEMI). Methods The study population was constituted from the clinical database pooling of four previously published PostC prospective, multicentre, randomised, open-label controlled trials with identical inclusion criteria. Patients with STEMI, presenting within 12 h of symptoms onset referred for percutaneous coronary intervention, were included. Mechanical ischaemic PostC was performed by four repeated cycles of inflation–deflation of the angioplasty balloon within 1 min of reflow, while the control group underwent no intervention. IS was assessed by measuring total creatine kinase release over 72 h. Results 173 patients, aged 58±12 years, 76% males, 48% anterior infarct were included (82 in the PostC group, 91 in the control group). IS was significantly reduced in the PostC compared to the control group (71.7±41.6 vs 88.2±54.5×103 arbitrary units; p=0.027). After adjustment for abnormally contracting segments, older patients had smaller IS and smokers had larger IS. Gender, diabetes, hypertension, dyslipidemia and obesity did not have any significant effect on IS. Multivariate regression analysis showed that none of the traditional risk factors had a significant impact on the cardioprotective effect of mechanical ischaemic PostC. Conclusions The present analysis suggests that the cardioprotective effect of mechanical PostC is not influenced by traditional CV risk factors that are prevalent in patients with STEMI.
Collapse
Affiliation(s)
- Sophie Pichot
- Cardiology Division , Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, Hospices Civils de Lyon , Lyon , France
| | - Nathan Mewton
- Cardiology Division , Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, Hospices Civils de Lyon , Lyon , France ; Inserm UMR-1060, CarMeN Unit , Université Claude Bernard Lyon1 , Lyon , France
| | - Theodora Bejan-Angoulvant
- CHRU Tours, Service de Pharmacologie, Hôpital Bretonneau; CNRS UMR 7292, Université François Rabelais, GICC , Tours , France
| | - Francois Roubille
- Cardiology Division , Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, Hospices Civils de Lyon , Lyon , France
| | - Gilles Rioufol
- Cardiology Division , Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, Hospices Civils de Lyon , Lyon , France ; Inserm UMR-1060, CarMeN Unit , Université Claude Bernard Lyon1 , Lyon , France
| | - Céline Giraud
- Cardiology Division , Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, Hospices Civils de Lyon , Lyon , France
| | - Inesse Boussaha
- Cardiology Division , Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, Hospices Civils de Lyon , Lyon , France
| | - Olivier Lairez
- Hôpital Rangueuil, Université Paul Sabatier , Toulouse , France
| | - Meyer Elbaz
- Hôpital Rangueuil, Université Paul Sabatier , Toulouse , France
| | - Christophe Piot
- Hopital Arnaud de Villeneuve, Université de Montpellier I and II , Montpellier , France ; Inserm U661 , Montpellier , France
| | - Denis Angoulvant
- CHRU Tours, Hôpital Trousseau, Université François Rabelais EA 4245 , Tours , France
| | - Michel Ovize
- Cardiology Division , Hôpital Cardiologique Louis Pradel, Centre d'Investigation Clinique, Hospices Civils de Lyon , Lyon , France ; Inserm UMR-1060, CarMeN Unit , Université Claude Bernard Lyon1 , Lyon , France
| |
Collapse
|
25
|
Mahmoudi A, Kadkhodaee M, Golab F, Najafi A, Sedaghat Z. Postconditioning is protective in renal reperfusion injury only in male rats. A gender difference study. ACTA ACUST UNITED AC 2015; 102:67-76. [PMID: 25481365 DOI: 10.1556/aphysiol.101.2014.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE We investigated the impact of sex on the protective effect of postconditioning (POC), a series of brief ischemia-reperfusion (IR) cycles at the reperfusion onset, as a recently described novel approach to attenuate renal IR injury. In this study, the left renal pedicles of uni-nephrectomized male and female rats were clamped for 45 minutes followed by 24 hours of reperfusion as IR groups. Uni-nephrectomized, sham-operated male and female rats served as control groups. Ischemic postconditioning was performed using 4 cycles of 10 seconds of IR of renal pedicle at the end of the ischemia. Twenty-four hours later, BUN (blood urea nitrogen), plasma creatinine (Cr), and renal histological changes, as well as kidney levels of MDA (malondialdehyde) and SOD (superoxide dismutase) as oxidative stress markers were evaluated to detect the protective effect of POC against IR injury in rats. RESULTS Induction of IR resulted in significant reduction in renal function, demonstrated by increase in plasma Cr and BUN, histological changes and oxidative stress in both genders. Application of POC afforded significant protection against these injuries in male rats, namely decreased levels of BUN and Cr, histological improvements and less oxidative damages. However, there were no significant differences in the above-mentioned parameters in female rats. CONCLUSION While POC is shown to be beneficial against renal IR injury in male rats, it did not show any protective effect in female rats.
Collapse
Affiliation(s)
- A Mahmoudi
- Tehran University of Medical Sciences Department of Physiology, School of Medicine Enghelab St. Poursina Ave. 14155-6447 Tehran Iran
| | - Mehri Kadkhodaee
- Tehran University of Medical Sciences Department of Physiology, School of Medicine Enghelab St. Poursina Ave. 14155-6447 Tehran Iran
| | - F Golab
- Iran University of Medical Science Cellular and Molecular Research Center Tehran Iran
| | - A Najafi
- Tehran University of Medical Science Department of Anatomy, School of Medicine Tehran Iran
| | - Z Sedaghat
- Bushehr University of Medical Sciences Department of Physiology and Pharmacology, School of Medicine Bushehr Iran
| |
Collapse
|
26
|
Casós K, Pérez ML, Blasco-Lucas A, Ferrer-Curriu G, Gracia-Baena JM, Sureda C, Permanyer E, Igual A, Galiñanes M. Ischemic postconditioning of the isolated human myocardium: Role of the applied protocol. IJC HEART & VASCULATURE 2015; 8:55-61. [PMID: 28785680 PMCID: PMC5497256 DOI: 10.1016/j.ijcha.2015.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/03/2015] [Indexed: 01/06/2023]
Abstract
Background Ischemic postconditioning (IPostC), has been proposed as a useful approach to reduce infarct size in all species, but its clinical utility remains unclear. Objective To investigate the role played by the protocol used on the efficacy of IPostC in protecting the diseased human myocardium. Methods Myocardial atrial samples from patients were subjected to a 90 min ischemia/120 min reoxygenation followed by different IPostC protocols to investigate the role of the time of ischemia (30, 60, 90 and 120 s) and the number of cycles (1, 2, 3 and 4) with 60 and 120 s of total ischemic time. Muscles were also subjected to ischemic preconditioning (IPreC). The release of lactate dehydrogenase (LDH) and the measurement of tetrazolium bromide (MTT) were determined. Results IPostC increased the LDH and decreased the MTT values from those of control, independently of the duration of the conditioning ischemia. LDH and MTT values also worsened by augmenting the number of IPostC cycles whereas they were significantly improved by IPreC. However, analysis of individual results indicated that in approximately 1/3 of the cases IPostC exhibited some degree of protection especially in the presence of increased ischemic injury. Conclusions The present findings show that IPostC of the human myocardium may be influenced by the protocol used and also by the degree of the preceding ischemic injury. IPostC was beneficial in approximately 1/3 of the cases; however in the remaining cases it increased ischemic damage and, therefore, these results raise a word of caution on its broad clinical use.
Collapse
Affiliation(s)
- Kelly Casós
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María-Llanos Pérez
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnau Blasco-Lucas
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Ferrer-Curriu
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Manuel Gracia-Baena
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Sureda
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Permanyer
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Igual
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Galiñanes
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Remote ischemic preconditioning reduces perioperative cardiac and renal events in patients undergoing elective coronary intervention: a meta-analysis of 11 randomized trials. PLoS One 2014; 9:e115500. [PMID: 25551671 PMCID: PMC4281209 DOI: 10.1371/journal.pone.0115500] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022] Open
Abstract
Background Results from randomized controlled trials (RCT) concerning cardiac and renal effect of remote ischemic preconditioning(RIPC) in patients with stable coronary artery disease(CAD) are inconsistent. The aim of this study was to explore whether RIPC reduce cardiac and renal events after elective percutaneous coronary intervention (PCI). Methods and Results RCTs with data on cardiac or renal effect of RIPC in PCI were searched from Pubmed, EMBase, and Cochrane library (up to July 2014). Meta-regression and subgroup analysis were performed to identify the potential sources of significant heterogeneity(I2≥40%). Eleven RCTs enrolling a total of 1713 study subjects with stable CAD were selected. Compared with controls, RIPC significantly reduced perioperative incidence of myocardial infarction (MI) [odds ratio(OR) = 0.68; 95% CI, 0.51 to 0.91; P = 0.01; I2 = 41.0%] and contrast-induced acute kidney injury(AKI) (OR = 0.61; 95% CI, 0.38 to 0.98; P = 0.04; I2 = 39.0%). Meta-regression and subgroup analyses confirmed that the major source of heterogeneity for the incidence of MI was male proportion (coefficient = −0.049; P = 0.047; adjusted R2 = 0.988; P = 0.02 for subgroup difference). Conclusions The present meta-analysis of RCTs suggests that RIPC may offer cardiorenal protection by reducing the incidence of MI and AKI in patients undergoing elective PCI. Moreover, this effect on MI is more pronounced in male subjects. Future high-quality, large-scale clinical trials should focus on the long-term clinical effect of RIPC.
Collapse
|
28
|
Ostadal B, Ostadal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 2014; 171:541-54. [PMID: 23750471 DOI: 10.1111/bph.12270] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022] Open
Abstract
Ischaemic heart disease (IHD) is the most frequent cause of mortality among men and women. Many epidemiological studies have demonstrated that premenopausal women have a reduced risk for IHD compared with their male counterparts. The incidence of IHD in women increases after menopause, suggesting that IHD is related to declining oestrogen levels. Experimental observations have confirmed the results of epidemiological studies investigating sex-specific differences in cardiac tolerance to ischaemia. Female sex appears also to favourably influence cardiac remodelling after ischaemia/reperfusion injury. Furthermore, sex-related differences in ischaemic tolerance of the adult myocardium can be influenced by interventions during the early phases of ontogenetic development. Detailed mechanisms of these sex-related differences remain unknown; however, they involve the genomic and non-genomic effects of sex steroid hormones, particularly the oestrogens, which have been the most extensively studied. Although the protective effects of oestrogen have many potential therapeutic implications, clinical trials have shown that oestrogen replacement in postmenopausal women may actually increase the incidence of IHD. The results of these trials have illustrated the complexity underlying the mechanisms involved in sex-related differences in cardiac tolerance to ischaemia. Sex-related differences in cardiac sensitivity to ischaemia/reperfusion injury may also influence therapeutic strategies in women with acute coronary syndrome. Women undergo coronary intervention less frequently and a lower proportion of women receive evidence-based therapy compared with men. Although our understanding of this important topic has increased in recent years, there is an urgent need for intensive experimental and clinical research to develop female-specific therapeutic strategies. Only then we will be able to offer patients better evidence-based treatment, a better quality of life and lower mortality.
Collapse
Affiliation(s)
- B Ostadal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
29
|
Zhou C. Gender disparity may contribute to the quasi preservation of cardioprotection by remote preconditioning with isoflurane but not propofol in CABG. J Thorac Cardiovasc Surg 2014; 146:732-3. [PMID: 23953310 DOI: 10.1016/j.jtcvs.2013.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
|
30
|
Abstract
Abstract
Background:
Part of the myocardial damage occurring during cardiac surgery is a consequence of reperfusion injury. Cyclosporine, a potent inhibitor of the opening of the mitochondrial permeability transition pore, attenuates reperfusion injury in patients with acute ST-segment elevation myocardial infarction. This study investigated whether the administration of cyclosporine just before the aortic cross-unclamping would reduce myocardial injury in patients undergoing aortic valve surgery.
Methods:
This study was a monocentric, prospective, randomized, single-blinded, controlled trial. Sixty-one patients, scheduled for elective aortic valve surgery, were randomly assigned (computer-generated randomization sequence) to receive either an intravenous bolus of cyclosporine (2.5 mg/kg, cyclosporine group, n = 30) or normal saline (control group, n = 31) 10 min before aortic cross-unclamping. The primary endpoint was the 72-h area under the curve for cardiac troponin I.
Results:
Both groups were similar with respect to baseline characteristics and aortic cross-clamping duration. A significant 35% reduction of area under the curve for cardiac troponin I was observed in the cyclosporine group compared with the control group (242 ± 225 vs. 155 ± 71 arbitrary units, mean ± SD; mean difference, −86.2 ± 42.5; 95% CI, −172.3 to −0.1; P = 0.03). Cyclosporine beneficial effect remained significant after adjustment for aortic cross-clamping duration in each group (mean difference, −88 ± 34, 95% CI, −157 to −19; P = 0.01). None of the treated patients had significant side effects (odds ratio, 0.64; 95% CI, 0.16 to 2.55; P = 0.52).
Conclusions:
Cyclosporine administration at the time of reperfusion protects against reperfusion injury in patients undergoing aortic valve surgery. The clinical benefit of this protection requires confirmation in a larger clinical trial.
Collapse
|
31
|
Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury. Basic Res Cardiol 2014; 109:418. [PMID: 24859929 DOI: 10.1007/s00395-014-0418-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 02/02/2023]
Abstract
Melusin is a muscle-specific protein which interacts with β1 integrin cytoplasmic domain and acts as chaperone protein. Its overexpression induces improved resistance to cardiac overload delaying left ventricle dilation and reducing the occurrence of heart failure. Here, we investigated possible protective effect of melusin overexpression against acute ischemia/reperfusion (I/R) injury with or without Postconditioning cardioprotective maneuvers. Melusin transgenic (Mel-TG) mice hearts were subjected to 30-min global ischemia followed by 60-min reperfusion. Interestingly, infarct size was reduced in Mel-TG mice hearts compared to wild-type (WT) hearts (40.3 ± 3.5 % Mel-TG vs. 59.5 ± 3.8 % WT hearts; n = 11 animals/group; P < 0.05). The melusin protective effect was also demonstrated by measuring LDH release, which was 50 % lower in Mel-TG compared to WT. Mel-TG hearts had a higher baseline level of AKT, ERK1/2 and GSK3β phosphorylation, and displayed increased phospho-kinases level after I/R compared to WT mice. Post-ischemic Mel-TG hearts displayed also increased levels of the anti-apoptotic factor phospho-BAD. Importantly, pharmacological inhibition of PI3K/AKT (Wortmannin) and ERK1/2 (U0126) pathways abrogated the melusin protective effect. Notably, HSP90, a chaperone known to protect heart from I/R injury, showed high levels of expression in the heart of Mel-TG mice suggesting a possible collaboration of this molecule with AKT/ERK/GSK3β pathways in the melusin-induced protection. Postconditioning, known to activate AKT/ERK/GSK3β pathways, significantly reduced IS and LDH release in WT hearts, but had no additive protective effects in Mel-TG hearts. These findings implicate melusin as an enhancer of AKT and ERK pathways and as a novel player in cardioprotection from I/R injury.
Collapse
|
32
|
Buchholz B, Donato M, D’Annunzio V, Gelpi RJ. Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem 2014; 392:1-12. [DOI: 10.1007/s11010-014-2014-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/28/2014] [Indexed: 02/08/2023]
|
33
|
McCafferty K, Byrne C, Yaqoob MM. Ischaemic conditioning strategies for the nephrologist: a promise lost in translation? Nephrol Dial Transplant 2014; 29:1827-40. [PMID: 24589718 DOI: 10.1093/ndt/gfu034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the last quarter of a century, a huge effort has been made to develop interventions that can minimise ischaemia reperfusion injury. The most potent of these are the ischaemic conditioning strategies, which comprise ischaemic preconditioning, remote ischaemic preconditioning and ischaemic postconditioning. While much of the focus for these interventions has been on protecting the myocardium, other organs including the kidney can be similarly protected. However, translation of these beneficial effects from animal models into routine clinical practice has been less straightforward than expected. In this review, we examine the role of ischaemic conditioning strategies in reducing tissue injury from the 'bench to the bedside' and discuss the barriers to their greater translation.
Collapse
Affiliation(s)
- Kieran McCafferty
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Conor Byrne
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Muhammad M Yaqoob
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| |
Collapse
|
34
|
Sgarra L, Leo V, Addabbo F, Iacobazzi D, Carratù MR, Montagnani M, Potenza MA. Intermittent losartan administration triggers cardiac post-conditioning in isolated rat hearts: role of BK2 receptors. PLoS One 2014; 9:e88542. [PMID: 24520397 PMCID: PMC3919762 DOI: 10.1371/journal.pone.0088542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/07/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration. METHODS Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each) or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF), and left ventricular infarct mass (IM) were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3β. RESULTS When compared to hearts subjected to ischemia/reperfusion (iI/R) alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2). Similarly, intermittent IRB (iIRB) was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS) significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01). Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05). Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6), whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7). At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3β branch of the RISK pathways (p<0.05 vs. iI/R, for both). CONCLUSIONS Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan is not. The infarct mass reduction by intermittent losartan seem mainly related on its specific ability to modulate BK2R, and only modestly associated on AT1R blocking properties.
Collapse
Affiliation(s)
- Luca Sgarra
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Valentina Leo
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Francesco Addabbo
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Dominga Iacobazzi
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
- * E-mail:
| | - Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| |
Collapse
|
35
|
The protective effects of 17beta-estradiol against ischemia-reperfusion injury and its effect on pacing postconditioning protection to the heart. J Physiol Biochem 2013; 70:151-62. [PMID: 24037795 DOI: 10.1007/s13105-013-0289-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/05/2013] [Indexed: 01/15/2023]
Abstract
The role of pacing postconditioning (PPC) in the heart protection against ischemia-reperfusion injury is not completely understood. The aim of this study was to investigated if 17-β-estradiol (estrogen, E2), endogenous atrial natriuretic peptide (ANP), endogenous brain natriuretic peptide (BNP), and tumor necrosis factor-alpha (TNF-α) are involved in PPC-mediated protection. Langendorff perfused female Wistar rat hearts were used for this study. Hearts challenged with regional ischemia for 30 min subjected to no further treatment served as a control. The PPC protocol was 3 cycles of 30 s pacing alternated between the right atrium and left ventricle (LV). Protection was assessed by recovery of LV contractility and coronary vascular-hemodynamics. Ischemia induced a significant (P < 0.05) deterioration in the heart function compared with baseline data. PPC alone or in combination with short-term E2 treatment (E2 infusion at the beginning of reperfusion) significantly (P < 0.05) improved the heart functions. Short-term E2 treatment post-ischemically afforded protection similar to that of PPC. However, long-term E2 substitution for 6 weeks completely attenuated the protective effects of PPC. Although no changes were noted in endogenous ANP levels, PPC significantly increased BNP expression level and decreased TNF-α in the cardiomyocyte lysate and coronary effluent compared to ischemia and controls. Our data suggested a protective role for short-term E2 treatment similar to that of PPC mediated by a pathway recruiting BNP and downregulating TNF-α. Our study further suggested a bad influence for long-term E2 substitution on the heart as it completely abrogated the protective effects of PPC.
Collapse
|
36
|
Ovariectomy reinstates the infarct size-limiting effect of postconditioning in female rabbits. Cell Biochem Biophys 2013; 65:373-80. [PMID: 23070726 DOI: 10.1007/s12013-012-9441-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gender seems to interfere with the cardioprotective effect of ischemic preconditioning (PreC) and postconditioning (PostC); PreC-conferred protection is weaker or lost in female animals after ovariectomy (Ov), while the role of PostC is still in dispute. We sought to investigate the effect of PostC in female rabbits, its interaction with Ov, and the potential implicated intracellular pathways. Intact or Ov adult female rabbits (n = 46) were subjected to 30 min ischemia and reperfusion with PostC (PostC or OvPostC), which consisted of six cycles of 30-s ischemia/30-s reperfusion at the end of ischemia, or without PostC (Fem or OvFem). Infarct size (I) and area at risk (R) were determined by TTC staining and fluorescent particles, respectively, after 3-h reperfusion in 30 out of 46 animals. Plasma levels of estradiol and nitrite/nitrate (NO x ) were evaluated. ERKs, p38-MAPK, and Akt assessment was performed in excised hearts 1-min after starting the final reperfusion period in the remaining 16 animals. Infarct size was significantly reduced only in OvPostC group (I/R ratio, 25.3 ± 2.7, vs 48.1 ± 2.0, 43.6 ± 4.2 and 55.1 ± 5.6 % in Fem, OvFem, and PostC groups, p < 0.05). In ovariectomized rabbits, plasma estradiol and NO x levels were lower than in the normal ones. Akt phosphorylation in ischemic regions was significantly higher in OvPostC group, whereas ERK1/2 and p38-MAPK activation was observed in all ovariectomized animals irrespective of PostC. PostC is not effective in female rabbits, but the protection is reinstated after Ov potentially via the RISK pathway.
Collapse
|
37
|
Post-Conditioning at the Ischemic Region of the Heart to Prevent Acute Kidney Injury in Patients With Non–ST-Segment Elevation Myocardial Infarction. J Am Coll Cardiol 2013; 62:1215-6. [DOI: 10.1016/j.jacc.2013.04.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/08/2013] [Indexed: 11/17/2022]
|
38
|
Li J, Loukili N, Rosenblatt-Velin N, Pacher P, Feihl F, Waeber B, Liaudet L. Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo. PLoS One 2013; 8:e70331. [PMID: 23875026 PMCID: PMC3707883 DOI: 10.1371/journal.pone.0070331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/23/2013] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemic postconditioning (PosC) describes an acquired resistance to lethal ischemia-reperfusion (I/R) injury afforded by brief episodes of I/R applied immediately after the ischemic insult. Cardioprotection is conveyed by parallel signaling pathways converging to prevent mitochondria permeability transition. Recent observations indicated that PostC is associated with free radicals generation, including nitric oxide (NO.) and superoxide (O2.-), and that cardioprotection is abrogated by antioxidants. Since NO. And O2. - react to form peroxynitrite, we hypothesized that postC might trigger the formation of peroxyntrite to promote cardioprotection in vivo. Rats were exposed to 45 min of myocardial ischemia followed by 3h reperfusion. PostC (3 cycles of 30 seconds ischemia/30 seconds reperfusion) was applied at the end of index ischemia. In a subgroup of rats, the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (FeTPPS) was given intravenously (10 mg/kg-1) 5 minutes before PostC. Myocardial nitrotyrosine was determined as an index of peroxynitrite formation. Infarct size (colorimetric technique and plasma creatine kinase-CK-levels) and left ventricle (LV) function (micro-tip pressure transducer), were determined. A significant generation of 3-nitrotyrosine was detected just after the PostC manoeuvre. PostC resulted in a marked reduction of infarct size, CK release and LV systolic dysfunction. Treatment with FeTPPS before PostC abrogated the beneficial effects of PostC on myocardial infarct size and LV function. Thus, peroxynitrite formed in the myocardium during PostC induces cardioprotective mechanisms improving both structural and functional integrity of the left ventricle exposed to ischemia and reperfusion in vivo.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
- Department of Intensive Care Medicine and Burn Center, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Noureddine Loukili
- Department of Intensive Care Medicine and Burn Center, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Division of Clinical Pathophysiology, Department of Internal Medicine, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Pal Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - François Feihl
- Division of Clinical Pathophysiology, Department of Internal Medicine, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Bernard Waeber
- Division of Clinical Pathophysiology, Department of Internal Medicine, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, Lausanne University Hospital Medical Center, Lausanne, Switzerland
- Division of Clinical Pathophysiology, Department of Internal Medicine, Lausanne University Hospital Medical Center, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Penna C, Perrelli MG, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 2013; 18:556-99. [PMID: 22668069 DOI: 10.1089/ars.2011.4459] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reperfusion therapy is the indispensable treatment of acute myocardial infarction (AMI) and must be applied as soon as possible to attenuate the ischemic insult. However, reperfusion is responsible for additional myocardial damage likely involving opening of the mitochondrial permeability transition pore (mPTP). A great part of reperfusion injury occurs during the first minute of reperfusion. The prolonged opening of mPTP is considered one of the endpoints of the cascade to myocardial damage, causing loss of cardiomyocyte function and viability. Opening of mPTP and the consequent oxidative stress due to reactive oxygen and nitrogen species (ROS/RNS) are considered among the major mechanisms of mitochondrial and myocardial dysfunction. Kinases and mitochondrial components constitute an intricate network of signaling molecules and mitochondrial proteins, which interact in response to stressors. Cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning (PostC), obtained with brief intermittent ischemia or with pharmacological agents, which drastically reduce the lethal ischemia/reperfusion injury. The protective pathways converging on mitochondria may preserve their function. Protection involves kinases, adenosine triphosphate-dependent potassium channels, ROS signaling, and the mPTP modulation. Some clinical studies using ischemic PostC during angioplasty support its protective effects, and an interesting alternative is pharmacological PostC. In fact, the mPTP desensitizer, cyclosporine A, has been shown to induce appreciable protections in AMI patients. Several factors and comorbidities that might interfere with cardioprotective signaling are considered. Hence, treatments adapted to the characteristics of the patient (i.e., phenotype oriented) might be feasible in the future.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | | |
Collapse
|
40
|
Kong Y, Rogers MR, Qin X. Effective neuroprotection by ischemic postconditioning is associated with a decreased expression of RGMa and inflammation mediators in ischemic rats. Neurochem Res 2013; 38:815-25. [PMID: 23389659 DOI: 10.1007/s11064-013-0984-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 12/25/2022]
Abstract
Whether ischemic postconditioning (IPC) can significantly alleviate ischemic injury hinges on the appropriate measure. In this study, the expression RGMa and IL-1β, IL-6 are investigated to estimate the therapeutic benefits of various postconditioning strategies after cerebral ischemia/reperfusion. The study consists of the sham-operated group and five treatment groups: ischemia/reperfusion (I/R), two proximate ischemic postconditioning (IPC-S and IPC-M), remote postconditioning (RIPC) and delayed postconditioning (DIPC) groups. We find that rats in IPC and RIPC groups exhibit significantly less neural deficit and lower infarct volume than that in I/R and DIPC groups after ischemia/reperfusion. Moreover, in ischemic cortex and hippocampus, the mRNA level of RGMa is much lower in IPC and RIPC groups. Immunohistochemical analysis indicates that the expression of RGMa, IL-1β and IL-6 are reduced in IPC and RIPC groups (especially in IPC-S group). Furthermore, neurofilament staining reveals that the rats in IPC and RIPC groups have less axonal injury than that in I/R and DIPC groups. Our studies suggest that the optimal strategy to attenuate cerebral ischemia/reperfusion is achieved by early, short-term, and multiple cycles of proximal IPC. The cerebral protective effect of IPC may be associated with the decreased expression of RGMa and inflammation mediators.
Collapse
Affiliation(s)
- Yuhan Kong
- Department of Neurology and Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | | | | |
Collapse
|
41
|
Age may contribute to the negative cardiac effect of postconditioning on STEMI patients. Int J Cardiol 2012; 162:59-60. [DOI: 10.1016/j.ijcard.2012.09.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/25/2012] [Indexed: 11/21/2022]
|
42
|
Zhou C, Yao Y, Zheng Z, Gong J, Wang W, Hu S, Li L. Stenting technique, gender, and age are associated with cardioprotection by ischaemic postconditioning in primary coronary intervention: a systematic review of 10 randomized trials. Eur Heart J 2012; 33:3070-7. [DOI: 10.1093/eurheartj/ehs265] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
43
|
Pacing postconditioning: impact of pacing algorithm, gender, and diabetes on its myocardial protective effects. J Cardiovasc Transl Res 2012; 5:727-34. [PMID: 22826102 DOI: 10.1007/s12265-012-9390-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/21/2012] [Indexed: 01/01/2023]
Abstract
Pacing postconditioning (PPC) induces cardioprotection. The aim of this study was to determine the optimal pacing algorithm and possible influence of gender and diabetes on PPC. Unprotected regional ischemia for 30 min served as negative control and classical PPC (ten cycles of 30 s left ventricular pacing alternated with 30 s right atrial pacing) as positive control. Area at risk and infarct size were determined by blue dye and triphenyltetrazolium chloride staining. For achieving protection, the minimal number of PPC cycles was seven and the minimal duration of a PPC protocol was 200 s. The protective effect of PPC was comparable in male and female hearts, but no protection could be induced by PPC in diabetic hearts. PPC can provide myocardial protection when using at least seven cycles of ventricular pacing. PPC protection is independent of gender, but sensitive to experimental diabetes.
Collapse
|
44
|
Duan X, Ji B, Wang X, Liu J, Zheng Z, Long C, Tang Y, Hu S. Expression of microRNA-1 and microRNA-21 in different protocols of ischemic conditioning in an isolated rat heart model. Cardiology 2012; 122:36-43. [PMID: 22699357 DOI: 10.1159/000338149] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/16/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND 'Conditioning' [ischemic preconditioning (IPC), ischemic postconditioning (IPO) and remote ischemic preconditioning (RIPC)] the heart to render it more resistant to an episode of acute myocardial ischemia-reperfusion (I/R) injury is an endogenous cardioprotective strategy. There are several mechanisms proposed for 'conditioning', such as endogenous mediators or cytoprotective proteins. In recent reports, microRNAs (miRNAs) were involved in controlling the expression of myocardial ischemia-related genes. Some studies have demonstrated that cardiac miRNA-1 and miRNA-21 were significantly increased by late IPC with an increase in their target proteins [endothelial nitric oxide synthase and heat shock protein 70 (HSP70)], but their expression levels in 'conditioning' strategies are currently unknown. METHODS In the current study, Langendorff-perfused Sprague-Dawley rat hearts were randomly assigned to one of four groups [control group (CON group, n = 12), IPC group (n = 12), IPO group (n = 12) and RIPC group (n = 12)]. Cardiac function was digitalized and analyzed. The expression of miRNA-1 and miRNA-21 was detected by real-time reverse transcription polymerase chain reaction. The expression of HSP70, programmed cell death protein 4 (PDCD4), B-cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2-associated X protein (Bax) was detected by Western blot. Cardiac infarct size and myocardial apoptosis were determined using the 2,3,5-triphenyltetrazolium chloride assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay, respectively. RESULTS The results revealed that miRNA-1 (233 ± 45%) and miRNA-21 (356 ± 33%) expression was up-regulated in the IPC group, but the expression of miRNA-1 was down-regulated in the RIPC (61 ± 16%) group and IPO group (61 ± 13%). The expression of PDCD4 [IPC (74 ± 11%), RIPC (81 ± 16%), IPO (83 ± 12%)], HSP70 [IPC (74 ± 5%), RIPC (81 ± 6%), IPO (67 ± 11%)] and Bax [IPC (27 ± 6%), RIPC (21 ± 3%), IPO (27 ± 4%)] was down-regulated in the conditioning groups compared with the CON group [PDCD4 (130 ± 11%), HSP70 (121 ± 11%) and Bax (63 ± 8%)]. In the conditioning hearts, infarct size [IPC (31.7 ± 4.1%), RIPC (29.6 ± 6.19%) and IPO (32.8 ± 4.71%)] and myocardial apoptosis [IPC (15.2 ± 4.21%), RIPC (17.2 ± 1.92%) and IPO (15.6 ± 4.04%)] were significantly decreased compared with the CON group (infarct size: 51.77 ± 4.3%, myocardial apoptosis: 32.8 ± 3.96%). CONCLUSION We concluded that miRNA-1 and miRNA-21 expression differed in IPC, RIPC and IPO groups, and their target proteins were not inversely correlated with the miRNAs in all the conditioning groups, which revealed that the miRNAs were regulated but complicated by the different conditioning protocols.
Collapse
Affiliation(s)
- Xin Duan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ischemic postconditioning promotes left ventricular functional recovery after cardioplegic arrest in an in vivo piglet model of global ischemia reperfusion injury on cardiopulmonary bypass. J Thorac Cardiovasc Surg 2011; 142:926-32. [DOI: 10.1016/j.jtcvs.2011.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/29/2010] [Accepted: 01/19/2011] [Indexed: 11/16/2022]
|
46
|
Abstract
Cardioprotective strategies such as pre- and postconditioning result in a robust reduction in infarct size in young, healthy male animals. However, there are data suggesting that the protection is diminished in animals with comorbidities such as hypertension, hypercholesterolemia, and diabetes. It is important to understand at a mechanistic level the reasons for these differences. The effects of sex and diseases need to be considered in design of cardioprotective interventions in animal studies and clinical trials.
Collapse
Affiliation(s)
- Michael N Sack
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | | |
Collapse
|
47
|
Zheng Z, Yang M, Zhang F, Yu J, Wang J, Ma L, Zhong Y, Qian L, Chen G, Yu L, Yan M. Gender-related difference of sevoflurane postconditioning in isolated rat hearts: focus on phosphatidylinositol-3-kinase/Akt signaling. J Surg Res 2011; 170:e3-e9. [PMID: 21704330 DOI: 10.1016/j.jss.2011.04.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/13/2011] [Accepted: 04/18/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies have reported that female gender confers cardioprotection against ischemia/reperfusion (I/R) injury, partly because estrogen activates phosphatidylinositol-3-kinase/Akt (PI3K/Akt) pathway. We have previously proven that cardioprotection of sevoflurane postconditioning is mediated by PI3K/Akt pathway in male rats. The purpose of the present study was to determine whether the cardioprotection of sevoflurane postconditioning is influenced by gender, and the role of PI3K/Akt pathway in such gender difference. MATERIALS AND METHODS Isolated hearts from 2-mo-old male and female SD rats were subjected to ischemia for 40 min and reperfusion for 2 h in the Langendorff apparatus, and were randomly assigned to the following groups: no ischemia/reperfusion (CON), ischemia/reperfusion (I/R), I/R+sevoflurane postconditioning (I/R+SPC), I/R+100 nM wortmannin (I/R+WOR), and I/R+SPC+WOR. Postconditioning was performed with administration of 3.0% sevoflurane at the first 10 min of reperfusion. Left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and myocardial lactate dehydrogenase (LDH) release were measured. Infarct size was detected by riphenyltetrazolium chloride staining. The protein expression of total Akt (t-Akt) and phosphorylated Akt (Ser(473)) (p-Akt) were determined by Western blot. RESULTS The I/R group showed lower LVDP and higher LVEDP than CON group in the same gender during reperfusion period. The LDH release and infarct size were smaller in the female I/R group (P < 0.05 versus male I/R group). Sevoflurane postconditioning markedly improved left ventricular function and decreased LDH, infarct size in the male I/R+SPC group (P < 0.05 versus male I/R group) but not in the female I/R+SPC group. Wortmannin abolished the cardioprotection of sevoflurane postconditioning in the male I/R+SPC+Wort group (P < 0.05 versus male I/R+SPC group), and markedly increased the infarct size and LVEDP and decreased LVDP in female rats. The t-Akt protein expression was no significant difference in all groups. The ratio of p-Akt/t-Akt expression in the male CON group was a little lower than that in the female CON group, but there was no statistical significance. In male rats, the ratio of p-Akt/t-Akt was no difference between CON and I/R group, but it was higher in I/R+SPC group than that in I/R group (P < 0.05). In female rats, the level of p-Akt was markedly increased by I/R, which was markedly higher than that in male I/R group (P < 0.05). However, p-Akt was not different between I/R and I/R+SPC groups. Wortmannin decreased the p-Akt expression in both male and female rats. CONCLUSIONS It is concluded that female rat hearts showed greater resistance to I/R injury, and sevoflurane postconditioning developed cardioprotection in male rats but not in female rats. The PI3K/Akt pathway may be involved in the cardioprotection by both sevoflurane postconditioning and gender.
Collapse
Affiliation(s)
- Zhoupeng Zheng
- Department of Anesthesiology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 2011; 301:H1723-41. [PMID: 21856909 DOI: 10.1152/ajpheart.00553.2011] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart diseases due to myocardial ischemia, such as myocardial infarction or ischemic heart failure, are major causes of death in developed countries, and their number is unfortunately still growing. Preliminary exploration into the pathophysiology of ischemia-reperfusion injury, together with the accumulation of clinical evidence, led to the discovery of ischemic preconditioning, which has been the main hypothesis for over three decades for how ischemia-reperfusion injury can be attenuated. The subcellular pathophysiological mechanism of ischemia-reperfusion injury and preconditioning-induced cardioprotection is not well understood, but extensive research into components, including autacoids, ion channels, receptors, subcellular signaling cascades, and mitochondrial modulators, as well as strategies for modulating these components, has made evolutional progress. Owing to the accumulation of both basic and clinical evidence, the idea of ischemic postconditioning with a cardioprotective potential has been discovered and established, making it possible to apply this knowledge in the clinical setting after ischemia-reperfusion insult. Another a great outcome has been the launch of translational studies that apply basic findings for manipulating ischemia-reperfusion injury into practical clinical treatments against ischemic heart diseases. In this review, we discuss the current findings regarding the fundamental pathophysiological mechanisms of ischemia-reperfusion injury, the associated protective mechanisms of ischemic pre- and postconditioning, and the potential seeds for molecular, pharmacological, or mechanical treatments against ischemia-reperfusion injury, as well as subsequent adverse outcomes by modulation of subcellular signaling mechanisms (especially mitochondrial function). We also review emerging translational clinical trials and the subsistent clinical comorbidities that need to be overcome to make these trials applicable in clinical medicine.
Collapse
Affiliation(s)
- Shoji Sanada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | |
Collapse
|
49
|
Duan X, Ji B, Yu K, Liu J, Hei F, Long C. Pharmacological postconditioning protects isolated rat hearts against ischemia-reperfusion injury: the role of mitochondrial permeability transition pore. ASAIO J 2011; 57:197-202. [PMID: 21317634 DOI: 10.1097/mat.0b013e31820bffc1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Postconditioning has been verified to provide cardioprotection and is associated with the state of mitochondrial permeability transition pore. However, there are a few limitations with clinical use of classic postconditioning; therefore, the purpose of this investigation was to study whether inhibition of mitochondrial permeability transition pore opening with cyclosporine A also provided cardioprotection. Langendorff-perfused Sprague-Dawley rat hearts were perfused for 20 minutes with Krebs-Henseleit buffer followed by 30 minutes of crystalloid cardioplegia and 60 minutes of reperfusion. Control hearts (Con group) were reperfused with Krebs-Henseleit buffer. Postconditioning hearts (Ipo group) were with six cycles of 10 seconds reocclusion separated by 10 seconds perfusion before reperfusion. Cyclosporine A postconditioning hearts (CsA group) were reperfused with Krebs-Henseleit buffer containing 0.8 μmol/L cyclosporine A at first 5 minutes of reperfusion. Compared with Con group, myocardial performance was better preserved in CsA group. Mitochondrial outer membrane integrity was preserved, with less cytosolic diffusion of cytochrome C (p < 0.05) and less frequency of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling-positive myocytes in Ipo and CsA group (p < 0.05). Postconditioning prevented apoptosis-related mitochondrial permeabilization and dysfunction after cardioplegic arrest. Cyclosporine A postconditioning had a better effect than classic postconditioning in myocardial performance.
Collapse
Affiliation(s)
- Xin Duan
- Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, Losano G, Samaja M, Pagliaro P. Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 2011; 300:H2308-15. [PMID: 21378145 DOI: 10.1152/ajpheart.01177.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We studied whether apelin-13 is cardioprotective against ischemia/reperfusion injury if given as either a pre- or postconditioning mimetic and whether the improved postischemic mechanical recovery induced by apelin-13 depends only on the reduced infarct size or also on a recovery of function of the viable myocardium. We also studied whether nitric oxide (NO) is involved in apelin-induced protection and whether the reported ischemia-induced overexpression of the apelin receptor (APJ) plays a role in cardioprotection. Langendorff-perfused rat hearts underwent 30 min of global ischemia and 120 min of reperfusion. Left ventricular pressure was recorded. Infarct size and lactate dehydrogenase release were determined to evaluate the severity of myocardial injury. Apelin-13 was infused at 0.5 μM concentration for 20 min either before ischemia or in early reperfusion, without and with NO synthase inhibition by N(G)-nitro-l-arginine (l-NNA). In additional experiments, before ischemia also 1 μM apelin-13 was tested. APJ protein level was measured before and after ischemia. Whereas before ischemia apelin-13 (0.5 and 1.0 μM) was ineffective, after ischemia it reduced infarct size from 54 ± 2% to 26 ± 4% of risk area (P < 0.001) and limited the postischemic myocardial contracture (P < 0.001). l-NNA alone increased postischemic myocardial contracture. This increase was attenuated by apelin-13, which, however, was unable to reduce infarct size. Ischemia increased APJ protein level after 15-min perfusion, i.e., after most of reperfusion injury has occurred. Apelin-13 protects the heart only if given after ischemia. In this protection NO plays an important role. Apelin-13 efficiency as postconditioning mimetic cannot be explained by the increased APJ level.
Collapse
Affiliation(s)
- Raffaella Rastaldo
- Dipartimento di Scienze Cliniche e Biologiche, Facoltà di Medicina e Chirurgia "S. Luigi Gonzaga", Regione Gonzole 10, 10043 Orbassano (TO) Italy
| | | | | | | | | | | | | | | |
Collapse
|