1
|
Zavadovsky KV, Ryabov VV, Vyshlov EV, Mochula OV, Sirotina M, Kan A, Mukhomedzyanov AV, Derkachev IA, Voronkov NS, Mochula AV, Maksimova AS, Maslov LN. Intra-myocardial hemorrhage and cardiac microvascular injury in ischemia/reperfusion. A systematic review of current evidences. Curr Probl Cardiol 2025; 50:102918. [PMID: 39510400 DOI: 10.1016/j.cpcardiol.2024.102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The in-hospital mortality rate in acute myocardial infarction (AMI) remains high despite the undoubted achievements in treatment of this disease achieved in the last 40 years. The dangerous complications of AMI remain cardiac microvascular injury (CMI) and intramyocardial hemorrhage (IMH). IMH is a widespread pathology that occurs in 42 - 57% of patients with ST-segment elevation myocardial infarction and percutaneous coronary intervention. IMH is associated with larger infarct size and contractile dysfunction. IMH is accompanied by inflammation. The appearance of IMH is depending on the duration of ischemia and requires reperfusion of the heart. IMH is accompanied by contractile dysfunction and adverse remodeling of the heart. The most likely cause of IMH is CMI. Pretreatment with ATL-146e, melatonin, tanshinone IIA, relaxin, empagliflozin, dapagliflozin, and astragaloside IV can mitigate I/R-induced CMI. CMI is accompanied by an increase in the myocardial and plasma proinflammatory cytokine levels and also the downregulation of tight junction proteins in cardiac vascular endothelial cells. However, there is no convincing evidence that proinflammatory cytokines trigger CMI. An increase in the proinflammatory cytokine levels and CMI could be two independent processes.
Collapse
Affiliation(s)
- Konstantin V Zavadovsky
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Vyacheslav V Ryabov
- Laboratory of Experimental Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Evgeny V Vyshlov
- Laboratory of Experimental Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Olga V Mochula
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Maria Sirotina
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Artur Kan
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Alexander V Mukhomedzyanov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Ivan A Derkachev
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Nikita S Voronkov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Andrey V Mochula
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Alexandra S Maksimova
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Leonid N Maslov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia.
| |
Collapse
|
2
|
Xu H, Chen X, Luo S, Jiang J, Pan X, He Y, Deng B, Liu S, Wan R, Lin L, Tan Q, Chen X, Yao Y, He B, An Y, Li J. Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis. Redox Biol 2024; 79:103471. [PMID: 39740362 DOI: 10.1016/j.redox.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
Ca2+ overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca2+ homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury. We showed that the expression of myocardial Piezo1 was elevated in the infracted area of I/R and cardiomyocyte-specific Piezo1 deficiency (Piezo1△Myh6) mice attenuated I/R by decreasing infarct size and cardiac dysfunction. Piezo1△Myh6 regulated mitochondrial fusion and fission to improve mitochondrial function and decrease inflammation and oxidative stress in vivo and in vitro. Mechanistically, myocardial Piezo1 knockout alleviated intracellular calcium overload to normalize calpain-associated mitochondrial homeostasis. Our findings indicated that Piezo1 depletion in cardiomyocytes partially restored mitochondrial homeostasis during cardiac ischemia/reperfusion (I/R) injury. This study suggests an innovative therapeutic strategy to alleviate cardiac I/R injury.
Collapse
Affiliation(s)
- Honglin Xu
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shangfei Luo
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jintao Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianmei Pan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yu He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Silin Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rentao Wan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liwen Lin
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiaorui Tan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoting Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Youfen Yao
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bin He
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yajuan An
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Lu A, Xu Z, Zhao Z, Yan Y, Jiang L, Geng J, Jin H, Wang X, Liu X, Zhu Y, Shi Y, Liu L, Dai H, Wang JC. Double Braking Effects of Nanomedicine on Mitochondrial Permeability Transition Pore for Treating Idiopathic Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405406. [PMID: 39475000 DOI: 10.1002/advs.202405406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/08/2024] [Indexed: 12/19/2024]
Abstract
Mitochondrial permeability transition pore (mPTP) opening is a key hallmark of injured type II alveolar epithelial cells (AECIIs) in idiopathic pulmonary fibrosis (IPF). Inhibiting mPTP opening in AECIIs is considered a potential IPF treatment. Herein, a "double braking" strategy on mPTP by cyclosporin A (CsA) derived ionizable lipid with 3D structure (3D-lipid) binding cyclophilin D (CypD) and siRNA downregulating mitochondrial calcium uniporter (MCU) expression is proposed for treating IPF. 3D-lipid and MCU targeting siRNA (siMCU) are co-assembled to form stable 3D-LNP/siMCU nanoparticles (NPs), along with helper lipids. In vitro results demonstrated that these NPs effectively inhibit mPTP opening by 3D-lipid binding with CypD and siRNA downregulating MCU expression, thereby decreasing damage-associated molecular patterns (DAMPs) release and suppressing epithelial-to-mesenchymal transition (EMT) process in bleomycin-induced A549 cells. In vivo results revealed that 3D-LNP/siMCU NPs effectively ameliorated collagen deposition, pro-fibrotic factors secretion, and fibroblast activation in bleomycin-induced pulmonary fibrosis (PF) mouse models. Moreover, compared to the commercial MC3-based formulation, optimized Opt-MC3/siRNA NPs with incorporating 3D-lipid as the fifth component, showed superior therapeutic efficacy against PF due to their enhanced stability and higher gene silencing efficiency. Overall, the nanomedicine containing 3D-lipid and siMCU will be a promising and potential approach for IPF treatment.
Collapse
Affiliation(s)
- An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiyi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhixia Zhao
- Department of Pharmacy, Clinical Trial Research Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Linxia Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jing Geng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Hongwei Jin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiangyu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoyan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuanjun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lihong Liu
- Department of Pharmacy, Clinical Trial Research Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huaping Dai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Peking University Ningbo Institute of Marine Medicine, Ningbo, 315832, China
| |
Collapse
|
4
|
Wu Y, Lin Y, Liu B, Ma J, Xiang Y, Wang Y, Meng S. Shexiang Tongxin dropping pill ameliorates microvascular obstruction via downregulating ALOX12 after myocardial ischemia-reperfusion. Int J Cardiol 2024; 416:132481. [PMID: 39179033 DOI: 10.1016/j.ijcard.2024.132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Microvascular dysfunction (MVD) is common in patients with myocardial infarction receiving reperfusion therapy and is associated with adverse cardiac prognosis. Accumulating evidence suggests a protective role of Shexiang Tongxin dropping pill (STDP) in MVD. However, the specific effects and the underlying mechanisms of STDP in the context of MVD after myocardial ischemia-reperfusion (IR) remains unclear. AIMS We aimed to elucidate the role of STDP in MVD induced by IR and the potential mechanisms involved. METHODS Mice were orally administered with STDP or normal saline for 5 days before receiving myocardial IR. Cardiac function and microvascular obstruction was measured. Proteomics and single-cell RNA sequencing was performed on mouse hearts. In vitro hyoxia/reoxygenation model was established on mouse cardiac microvascular endothelial cells (MCMECs). RESULTS STDP improved cardiac function and decreased microvascular obstruction (MVO) in mice after myocardial IR. Proteomics identified ALOX12 as an important target of STDP. Single-cell RNA sequencing further revealed that downregulation of ALOX12 by STDP mainly occurred in endothelial cells. The involvement of ALOX12 in the effect of STDP on MVO was validated by manipulating ALOX12 via endothelial-specific adeno-associated virus transfection in vivo and in vitro. In vivo, overexpression of ALOX12 increased whereas knockdown of ALOX12 decreased MVO and thrombus formation. STDP treatment alleviated the detrimental effects of overexpression of ALOX12. In vitro, overexpression of ALOX12 increased endothelial cell inflammation and platelet adhesion to endothelial cells, which was abolished by STDP treatment. CONCLUSION Our findings suggest that STDP alleviates MVO after IR, with ALOX12 playing a crucial role.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yanjun Lin
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China; Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Bo Liu
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jingqing Ma
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yin Xiang
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yuepeng Wang
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China.
| | - Shu Meng
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Yin C, Huang CX, Pan L, Jin KJ, Wang Y, Cao MY, Lin H, Gao P, Li N, Gong H, Zou YZ. A Novel Method for Mitochondrial Membrane Potential Detection in Heart Tissue Following Ischemia-reperfusion in Mice. Curr Med Sci 2024; 44:1091-1096. [PMID: 39627477 DOI: 10.1007/s11596-024-2956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/18/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE Myocardial ischemia-reperfusion (I/R) injury is associated with a significant reduction in the mitochondrial membrane potential (MMP, ΔΨm). Fluorescence-based assays are effective for labelling active mitochondria in living cells; their application in heart tissue, however, represents a challenge because of a low yield of viable cardiomyocytes after cardiac perfusion. This study aimed to examine a novel method for detecting the changes in the MMP of mouse heart tissue following I/R injury. METHODS The I/R model was established, which was characterized by distinct ischemic area and apoptosis in heart tissue. The MMP was detected via a confocal microscope after the ascending aorta was clamped and the mitochondrial probe solution (containing Mito-Tracker Deep Red FM) was perfused from the apex via a peristaltic pump. RESULTS This method enabled the distribution of the probe solution throughout the cardiac tissue via the coronary circulation. Fluorescence detection revealed that the MMP was profoundly reduced in both ischemic area and border area following I/R when compared with that in the sham group. There was no obvious difference in the MMP of the remote area between the I/R group and the sham group. CONCLUSION This study presents a novel method for detecting the MMP in heart tissue, and this method will facilitate the evaluation of changes in the MMP in different regions following I/R.
Collapse
Affiliation(s)
- Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Xing Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Le Pan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ke-Jia Jin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Meng-Ying Cao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hong Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Na Li
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Immunotherapy Translational Research Center of Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yun-Zeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Li S, Chen F, Liu M, Zhang Y, Xu J, Li X, Shang Z, Huang S, Song S, Tu C. Knockdown of hepatic mitochondrial calcium uniporter mitigates MASH and fibrosis in mice. Cell Biosci 2024; 14:135. [PMID: 39523398 PMCID: PMC11550531 DOI: 10.1186/s13578-024-01315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Mitochondrial calcium uniporter (MCU) plays pleiotropic roles in cellular physiology and pathology that contributes to a variety of diseases, but the role and potential mechanism of MCU in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) remain poorly understood. METHODS AND RESULTS Here, hepatic knockdown of MCU in C57BL/6J mice was achieved by tail vein injection of AAV8-mediated the CRISPR/Cas9. Mice were fed a Choline-deficient, L-amino acid-defined high-fat diet (CDAHFD) for 8 weeks to induce MASH and fibrosis. We find that expression of MCU enhanced in MASH livers of humans and mice. MCU knockdown robustly limits lipid droplet accumulation, steatosis, inflammation, and hepatocyte apoptotic death during MASH development both in vivo in mice and in vitro in cellular models. MCU-deficient mice strikingly mitigate MASH-related fibrosis. Moreover, the protective effects of MCU knockdown against MASH progression are accompanied by a reduced level of mitochondrial calcium, limiting hepatic oxidative stress, and attenuating mitochondrial dysfunction. Mechanically, RNA sequencing analysis and protein immunoblotting indicate that knockdown MCU inhibited the Hippo/YAP pathway activation and restored the AMP-activated protein kinase (AMPK) activity during MASH development both in vitro and in vivo. CONCLUSIONS MCU is up-regulated in MASH livers in humans and mice; and hepatic MCU knockdown protects against diet-induced MASH and fibrosis in mice. Thus, targeting MCU may represent a novel therapeutic strategy for MASH and fibrosis.
Collapse
Affiliation(s)
- Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fangyuan Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Min Liu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yajun Zhang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiyin Shang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shaoping Huang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
7
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y, Chang X. Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: focus on mitochondrial dysfunction. Angiogenesis 2024; 27:623-639. [PMID: 39060773 PMCID: PMC11564294 DOI: 10.1007/s10456-024-09938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.
Collapse
Affiliation(s)
- Boxian Pang
- Beijing University of Chinese Medicine, Beijing, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | | | - Tieliang Pang
- Beijing Anding hospital, Capital Medical University, Beijing, China
| | - Xinyao Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xin Liu
- Bioscience Department, University of Nottingham, Nottingham, UK
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, China.
| |
Collapse
|
8
|
Bao H, Tian Y, Wang H, Ye T, Wang S, Zhao J, Qiu Y, Li J, Pan C, Ma G, Wei W, Tao Y. Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases. Nat Biomed Eng 2024; 8:1436-1452. [PMID: 37872369 DOI: 10.1038/s41551-023-01112-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
The therapeutic benefits of many cell types involve paracrine mechanisms. Inspired by the paracrine functions of exosomes and the sustained degradation properties of microcapsules, here we report the therapeutic benefits of exosome-loaded degradable poly(lactic-co-glycolic acid) microcapsules with micrometric pores for the treatment of vitreoretinal diseases. On intravitreal injection in a mouse model of retinal ischaemia-reperfusion injury, microcapsules encapsulating mouse mesenchymal-stem-cell-derived exosomes settled in the inferior vitreous cavity, released exosomes for over one month as they underwent degradation and led to the restoration of retinal thickness to nearly that of the healthy retina. In mice and non-human primates with primed mycobacterial uveitis, intravitreally injected microcapsules loaded with exosomes from monkey regulatory T cells resulted in a substantial reduction in the levels of inflammatory cells. The exosome-encapsulating microcapsules, which can be lyophilised, may offer alternative treatment options for vitreoretinal diseases.
Collapse
Affiliation(s)
- Han Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Ying Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Haixin Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiawei Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, P. R. China
| | - Jian Li
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China.
| |
Collapse
|
9
|
Hong Q, Zhu S, Yu Y, Ren Y, Jin L, Wang H, Zhang H, Guo K. The emerging role of mtDNA release in sepsis: Current evidence and potential therapeutic targets. J Cell Physiol 2024; 239:e31331. [PMID: 38888012 DOI: 10.1002/jcp.31331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Sepsis is a systemic inflammatory reaction caused by infection, and severe sepsis can develop into septic shock, eventually leading to multiorgan dysfunction and even death. In recent years, studies have shown that mitochondrial damage is closely related to the occurrence and development of sepsis. Recent years have seen a surge in concern over mitochondrial DNA (mtDNA), as anomalies in this material can lead to cellular dysfunction, disruption of aerobic respiration, and even death of the cell. In this review, we discuss the latest findings on the mechanisms of mitochondrial damage and the molecular mechanisms controlling mitochondrial mtDNA release. We also explored the connection between mtDNA misplacement and inflammatory activation. Additionally, we propose potential therapeutic targets of mtDNA for sepsis treatment.
Collapse
Affiliation(s)
- Qianya Hong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
10
|
Xiong YB, Huang WY, Ling X, Zhou S, Wang XX, Li XL, Zhou LL. Mitochondrial calcium uniporter promotes kidney aging in mice through inducing mitochondrial calcium-mediated renal tubular cell senescence. Acta Pharmacol Sin 2024; 45:2149-2162. [PMID: 38789496 PMCID: PMC11420221 DOI: 10.1038/s41401-024-01298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Renal tubular epithelial cell senescence plays a critical role in promoting and accelerating kidney aging and age-related renal fibrosis. Senescent cells not only lose their self-repair ability, but also can transform into senescence-associated secretory phenotype (SASP) to trigger inflammation and fibrogenesis. Recent studies show that mitochondrial dysfunction is critical for renal tubular cell senescence and kidney aging, and calcium overload and abnormal calcium-dependent kinase activities are involved in mitochondrial dysfunction-associated senescence. In this study we investigated the role of mitochondrial calcium overload and mitochondrial calcium uniporter (MCU) in kidney aging. By comparing the kidney of 2- and 24-month-old mice, we found calcium overload in renal tubular cells of aged kidney, accompanied by significantly elevated expression of MCU. In human proximal renal tubular cell line HK-2, pretreatment with MCU agonist spermine (10 μM) significantly increased mitochondrial calcium accumulation, and induced the production of reactive oxygen species (ROS), leading to renal tubular cell senescence and age-related kidney fibrosis. On the contrary, pretreatment with MCU antagonist RU360 (10 μM) or calcium chelator BAPTA-AM (10 μM) diminished D-gal-induced ROS generation, restored mitochondrial homeostasis, retarded cell senescence, and protected against kidney aging in HK-2 cells. In a D-gal-induced accelerated aging mice model, administration of BAPTA (100 μg/kg. i.p.) every other day for 8 weeks significantly alleviated renal tubuarl cell senescence and fibrosis. We conclude that MCU plays a key role in promoting renal tubular cell senescence and kidney aging. Targeting inhibition on MCU provides a new insight into the therapeutic strategy against kidney aging.
Collapse
Affiliation(s)
- Ya-Bing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Yan Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Long Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li-Li Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Bai M, Lu W, Tan J, Mei X. HINT2 may be One Clinical Significance Target for Patient with Diabetes Mellitus and Reduced ROS-Induced Oxidative Stress and Ferroptosis by MCU. Horm Metab Res 2024; 56:670-678. [PMID: 38286402 DOI: 10.1055/a-2238-2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The World Health Organization (WHO) predicted that patients with diabetes around the world will increase to 600 million by 2040, of which about 1/3 will develop diabetic nephropathy (DN). Therefore, the present study aimed to uncover therapeutic effect of HINT2 and determined its possible mechanisms. Patients with diabetes mellitus and normal volunteers were enrolled at our hospital. Male C57BL/6 mice were fed with a high fat diet and injected intraperitoneally with STZ for once (100 mg/kg body weight). Mouse podocytes (MPC5) cells were induced with 20 mmol/l D-glucose. Inhibition of HINT2 mRNA expression levels in patients with DN was observed, compared with normal group. The serum of HINT2 mRNA expression was negative in correlation with blood sugar, tubulo-interstitial damage, glomerular damage score or urine protein level in patients with DN. HINT2 expression in kidney tissue of mice with DN were downregulated. HINT2 presented reduced DN and inflammation and ROS-induced oxidative stress in model of DN. HINT2 promoted ferroptosis in model of DN by mitochondrial membrane potential. HINT2 suppressed MCU expression in model of DN. HINT2 protein combined with MCU protein increased MCU protein ubiquitination. HINT2 triggers mitochondrial Ca2+ influx to increase ROS production level by MCU. Taken together, these findings demonstrated that HINT2 reduced ROS-induced Oxidative stress and ferroptosis by MCU, suggesting that HINT2 may be a feasible strategy to treat DN.
Collapse
Affiliation(s)
- Mei Bai
- Department of Pharmacy, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wei Lu
- Department of Pharmacy, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Jun Tan
- Department of Pharmacy, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Xin Mei
- Department of Pharmacy, Jiangxi Armed Police Corps Hospital, Nanchang, China
| |
Collapse
|
12
|
Xie DG, Li JH, Zhong YL, Han H, Zhang JJ, Zhang ZQ, Li ST. Role of TRPC6 in apoptosis of skeletal muscle ischemia/reperfusion injury. Cell Signal 2024; 121:111289. [PMID: 38971570 DOI: 10.1016/j.cellsig.2024.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Skeletal muscle ischaemia-reperfusion injury (IRI) is a prevalent condition encountered in clinical practice, characterised by muscular dystrophy. Owing to limited treatment options and poor prognosis, it can lead to movement impairments, tissue damage, and disability. This study aimed to determine and verify the influence of transient receptor potential canonical 6 (TRPC6) on skeletal muscle IRI, and to explore the role of TRPC6 in the occurrence of skeletal muscle IRI and the signal transduction pathways activated by TRPC6 to provide novel insights for the treatment and intervention of skeletal muscle IRI. METHODS In vivo ischaemia/reperfusion (I/R) and in vitro hypoxia/reoxygenation (H/R) models were established, and data were comprehensively analysed at histopathological, cellular, and molecular levels, along with the evaluation of the exercise capacity in mice. RESULTS By comparing TRPC6 knockout mice with wild-type mice, we found that TRPC6 knockout of TRPC6 could reduced skeletal muscle injury after I/R or H/R, of skeletal muscle, so as therebyto restoringe some exercise capacity inof mice. TRPC6 knockdown can reduced Ca2+ overload in cells, therebyo reducinge apoptosis. In additionAdditionally, we also found that TRPC6 functionsis not only a key ion channel involved in skeletal muscle I/R injury, but also can affects Ca2+ levels and then phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signalling pathway. by knocking downTherefore, knockdown of TRPC6, so as to alleviated the injury inducedcaused by skeletal muscle I/R or and H/R. CONCLUSIONS These findingsdata indicate that the presence of TRPC6 exacerbatescan aggravate the injury of skeletal muscle injury after I/Rischemia/reperfusion, leading towhich not only causes Ca2+ overload and apoptosis., Additionally, it impairsbut also reduces the self- repair ability of cells by inhibiting the expression of the PI3K/Akt/mTOR signalling pathway. ETo exploringe the function and role of TRPC6 in skeletal muscle maycan presentprovide a novelew approachidea for the treatment of skeletal muscle ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dong-Ge Xie
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Jun-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Yun-Long Zhong
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Han Han
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Jia-Ji Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Zhong-Qing Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Shou-Tian Li
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China.
| |
Collapse
|
13
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q, Wang L, Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell Signal 2024; 121:111284. [PMID: 38964444 DOI: 10.1016/j.cellsig.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Kadier T, Zhang YG, Jing YX, Weng ZY, Liao SS, Luo J, Ding K, Cao C, Chen R, Meng QT. MCU inhibition protects against intestinal ischemia‒reperfusion by inhibiting Drp1-dependent mitochondrial fission. Free Radic Biol Med 2024; 221:111-124. [PMID: 38763207 DOI: 10.1016/j.freeradbiomed.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.
Collapse
Affiliation(s)
- Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Guo Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Xin Jing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Yi Weng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shi-Shi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Cao
- Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
15
|
Sun M, Zhang X, Tan B, Zhang Q, Zhao X, Dong D. Potential role of endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity-an update. Front Pharmacol 2024; 15:1415108. [PMID: 39188945 PMCID: PMC11345228 DOI: 10.3389/fphar.2024.1415108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
As a chemotherapy agent, doxorubicin is used to combat cancer. However, cardiotoxicity has limited its use. The existing strategies fail to eliminate doxorubicin-induced cardiotoxicity, and an in-depth exploration of its pathogenesis is in urgent need to address the issue. Endoplasmic reticulum stress (ERS) occurs when Endoplasmic Reticulum (ER) dysfunction results in the accumulation of unfolded or misfolded proteins. Adaptive ERS helps regulate protein synthesis to maintain cellular homeostasis, while prolonged ERS stimulation may induce cell apoptosis, leading to dysfunction and damage to tissue and organs. Numerous studies on doxorubicin-induced cardiotoxicity strongly link excessive activation of the ERS to mechanisms including oxidative stress, calcium imbalance, autophagy, ubiquitination, and apoptosis. The researchers also found several clinical drugs, chemical compounds, phytochemicals, and miRNAs inhibited doxorubicin-induced cardiotoxicity by targeting ERS. The present review aims to outline the interactions between ERS and other mechanisms in doxorubicin-induced cardiotoxicity and summarize ERS's role in this type of cardiotoxicity. Additionally, the review enumerates several clinical drugs, phytochemicals, chemical compounds, and miRNAs targeting ERS for considering therapeutic regimens that address doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xin Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Boxuan Tan
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Dou Y, Fei X, He X, Huan Y, Wei J, Wu X, Lyu W, Fei Z, Li X, Fei F. Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury. Neural Regen Res 2024; 19:1608-1617. [PMID: 38051906 PMCID: PMC10883521 DOI: 10.4103/1673-5374.386490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/25/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00042/figure1/v/2023-11-20T171125Z/r/image-tiff
Elevated intraocular pressure (IOP) is one of the causes of retinal ischemia/reperfusion injury, which results in NLRP3 inflammasome activation and leads to visual damage. Homer1a is reported to play a protective role in neuroinflammation in the cerebrum. However, the effects of Homer1a on NLRP3 inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown. In our study, animal models were constructed using C57BL/6J and Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice with elevated IOP-induced retinal ischemia/reperfusion injury. For in vitro experiments, the oxygen-glucose deprivation/reperfusion injury model was constructed with Müller cells. We found that Homer1a overexpression ameliorated the decreases in retinal thickness and Müller cell viability after ischemia/reperfusion injury. Furthermore, Homer1a knockdown promoted NF-κB P65Ser536 activation via caspase-8, NF-κB P65 nuclear translocation, NLRP3 inflammasome formation, and the production and processing of interleukin-1β and interleukin-18. The opposite results were observed with Homer1a overexpression. Finally, the combined administration of Homer1a protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice and apoptosis in Müller cells after ischemia/reperfusion injury. Taken together, these studies demonstrate that Homer1a exerts protective effects on retinal tissue and Müller cells via the caspase-8/NF-κB P65/NLRP3 pathway after I/R injury.
Collapse
Affiliation(s)
- Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Weihao Lyu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
17
|
Guo Z, Yang Z, Song Z, Li Z, Xiao Y, Zhang Y, Wen T, Pan G, Xu H, Sheng X, Jiang G, Guo L, Wang Y. Inflammation and coronary microvascular disease: relationship, mechanism and treatment. Front Cardiovasc Med 2024; 11:1280734. [PMID: 38836066 PMCID: PMC11148780 DOI: 10.3389/fcvm.2024.1280734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Coronary microvascular disease (CMVD) is common in patients with cardiovascular risk factors and is linked to an elevated risk of adverse cardiovascular events. Although modern medicine has made significant strides in researching CMVD, we still lack a comprehensive understanding of its pathophysiological mechanisms due to its complex and somewhat cryptic etiology. This greatly impedes the clinical diagnosis and treatment of CMVD. The primary pathological mechanisms of CMVD are structural abnormalities and/or dysfunction of coronary microvascular endothelial cells. The development of CMVD may also involve a variety of inflammatory factors through the endothelial cell injury pathway. This paper first reviews the correlation between the inflammatory response and CMVD, then summarizes the possible mechanisms of inflammatory response in CMVD, and finally categorizes the drugs used to treat CMVD based on their effect on the inflammatory response. We hope that this paper draws attention to CMVD and provides novel ideas for potential therapeutic strategies based on the inflammatory response.
Collapse
Affiliation(s)
- Zehui Guo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Xiao
- Department of Pharmacy, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haowei Xu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodi Sheng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Guowang Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Liping Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Chen Y, Li S, Guan B, Yan X, Huang C, Du Y, Yang F, Zhang N, Li Y, Lu J, Wang J, Zhang J, Chen Z, Chen C, Kong X. MAP4K4 exacerbates cardiac microvascular injury in diabetes by facilitating S-nitrosylation modification of Drp1. Cardiovasc Diabetol 2024; 23:164. [PMID: 38724987 PMCID: PMC11084109 DOI: 10.1186/s12933-024-02254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.
Collapse
Affiliation(s)
- Yuqiong Chen
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Bo Guan
- Department of Geriatrics, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xiaopei Yan
- Department of Respiratory Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- Ministry of Science and Technology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 215002, Suzhou, Jiangsu, China
| | - Yingqiang Du
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Fan Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, 210008, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, 210008, Nanjing, China
| | - Nannan Zhang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Yafei Li
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Jian Lu
- Department of Critical Care Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiankang Wang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Jun Zhang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
| | - Chao Chen
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
| | - Xiangqing Kong
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
- Department of Cardiology, Gulou District, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
19
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
20
|
Wang J, Jiang J, Hu H, Chen L. MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. J Adv Res 2024:S2090-1232(24)00075-4. [PMID: 38417574 DOI: 10.1016/j.jare.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Globally, the onset and progression of multiple human diseases are associated with mitochondrial dysfunction and dysregulation of Ca2+ uptake dynamics mediated by the mitochondrial calcium uniporter (MCU) complex, which plays a key role in mitochondrial dysfunction. Despite relevant studies, the underlying pathophysiological mechanisms have not yet been fully elucidated. AIM OF REVIEW This article provides an in-depth analysis of the current research status of the MCU complex, focusing on its molecular composition, regulatory mechanisms, and association with diseases. In addition, we conducted an in-depth analysis of the regulatory effects of agonists, inhibitors, and traditional Chinese medicine (TCM) monomers on the MCU complex and their application prospects in disease treatment. From the perspective of medicinal chemistry, we conducted an in-depth analysis of the structure-activity relationship between these small molecules and MCU and deduced potential pharmacophores and binding pockets. Simultaneously, key structural domains of the MCU complex in Homo sapiens were identified. We also studied the functional expression of the MCU complex in Drosophila, Zebrafish, and Caenorhabditis elegans. These analyses provide a basis for exploring potential treatment strategies targeting the MCU complex and provide strong support for the development of future precision medicine and treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW The MCU complex exhibits varying behavior across different tissues and plays various roles in metabolic functions. It consists of six MCU subunits, an essential MCU regulator (EMRE), and solute carrier 25A23 (SLC25A23). They regulate processes, such as mitochondrial Ca2+ (mCa2+) uptake, mitochondrial adenosine triphosphate (ATP) production, calcium dynamics, oxidative stress (OS), and cell death. Regulation makes it a potential target for treating diseases, especially cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, metabolic diseases, and tumors.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinyong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, China
| | - Haoliang Hu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China; College of Medicine, Hunan University of Arts and Science, Changde 415000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China.
| |
Collapse
|
21
|
Wang Y, Xu R, Yan Y, He B, Miao C, Fang Y, Wan H, Zhou G. Exosomes-Mediated Signaling Pathway: A New Direction for Treatment of Organ Ischemia-Reperfusion Injury. Biomedicines 2024; 12:353. [PMID: 38397955 PMCID: PMC10886966 DOI: 10.3390/biomedicines12020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemia reperfusion (I/R) is a common pathological process which occurs mostly in organs like the heart, brain, kidney, and lung. The injury caused by I/R gradually becomes one of the main causes of fatal diseases, which is an urgent clinical problem to be solved. Although great progress has been made in therapeutic methods, including surgical, drug, gene therapy, and transplant therapy for I/R injury, the development of effective methods to cure the injury remains a worldwide challenge. In recent years, exosomes have attracted much attention for their important roles in immune response, antigen presentation, cell migration, cell differentiation, and tumor invasion. Meanwhile, exosomes have been shown to have great potential in the treatment of I/R injury in organs. The study of the exosome-mediated signaling pathway can not only help to reveal the mechanism behind exosomes promoting reperfusion injury recovery, but also provide a theoretical basis for the clinical application of exosomes. Here, we review the research progress in utilizing various exosomes from different cell types to promote the healing of I/R injury, focusing on the classical signaling pathways such as PI3K/Akt, NF-κB, Nrf2, PTEN, Wnt, MAPK, toll-like receptor, and AMPK. The results suggest that exosomes regulate these signaling pathways to reduce oxidative stress, regulate immune responses, decrease the expression of inflammatory cytokines, and promote tissue repair, making exosomes a competitive emerging vector for treating I/R damage in organs.
Collapse
Affiliation(s)
- Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Y.W.); (B.H.); (C.M.)
| | - Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| | - Binyu He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Y.W.); (B.H.); (C.M.)
| | - Chaoyi Miao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Y.W.); (B.H.); (C.M.)
| | - Yifeng Fang
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| |
Collapse
|
22
|
Chen Z, Li S, Liu M, Yin M, Chen J, Li Y, Li Q, Zhou Y, Xia Y, Chen A, Lu D, Li C, Chen Y, Qian J, Ge J. Nicorandil alleviates cardiac microvascular ferroptosis in diabetic cardiomyopathy: Role of the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway. Pharmacol Res 2024; 200:107057. [PMID: 38218357 DOI: 10.1016/j.phrs.2024.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Mitochondria-associated ferroptosis exacerbates cardiac microvascular dysfunction in diabetic cardiomyopathy (DCM). Nicorandil, an ATP-sensitive K+ channel opener, protects against endothelial dysfunction, mitochondrial dysfunction, and DCM; however, its effects on ferroptosis and mitophagy remain unexplored. The present study aimed to assess the beneficial effects of nicorandil against endothelial ferroptosis in DCM and the underlying mechanisms. Cardiac microvascular perfusion was assessed using a lectin perfusion assay, while mitophagy was assessed via mt-Keima transfection and transmission electron microscopy. Ferroptosis was examined using mRNA sequencing, fluorescence staining, and western blotting. The mitochondrial localization of Parkin, ACSL4, and AMPK was determined via immunofluorescence staining. Following long-term diabetes, nicorandil treatment improved cardiac function and remodeling by alleviating cardiac microvascular injuries, as evidenced by the improved microvascular perfusion and structural integrity. mRNA-sequencing and biochemical analyses showed that ferroptosis occurred and Pink1/Parkin-dependent mitophagy was suppressed in cardiac microvascular endothelial cells after diabetes. Nicorandil treatment suppressed mitochondria-associated ferroptosis by promoting the Pink1/Parkin-dependent mitophagy. Moreover, nicorandil treatment increased the phosphorylation level of AMPKα1 and promoted its mitochondrial translocation, which further inhibited the mitochondrial translocation of ACSL4 via mitophagy and ultimately suppressed mitochondria-associated ferroptosis. Importantly, overexpression of mitochondria-localized AMPKα1 (mitoAα1) shared similar benefits with nicorandil on mitophagy, ferroptosis and cardiovascular protection against diabetic injury. In conclusion, the present study demonstrated the therapeutic effects of nicorandil against cardiac microvascular ferroptosis in DCM and revealed that the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway mediates mitochondria-associated ferroptosis and the development of cardiac microvascular dysfunction.
Collapse
Affiliation(s)
- Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Muyin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Ming Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jinxiang Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Youran Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yan Xia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Chenguang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Yuqiong Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
23
|
Liu M, Li S, Yin M, Li Y, Chen J, Chen Y, Zhou Y, Li Q, Xu F, Dai C, Xia Y, Chen A, Lu D, Chen Z, Qian J, Ge J. Pinacidil ameliorates cardiac microvascular ischemia-reperfusion injury by inhibiting chaperone-mediated autophagy of calreticulin. Basic Res Cardiol 2024; 119:113-131. [PMID: 38168863 PMCID: PMC10837255 DOI: 10.1007/s00395-023-01028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.
Collapse
Affiliation(s)
- Muyin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ming Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Youran Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jinxiang Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yuqiong Chen
- Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Fei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chunfeng Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Xia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
24
|
Zhang DZ, Jia MY, Wei HY, Yao M, Jiang LH. Systematic review and meta-analysis of the interventional effects of resveratrol in a rat model of myocardial ischemia-reperfusion injury. Front Pharmacol 2024; 15:1301502. [PMID: 38313308 PMCID: PMC10834654 DOI: 10.3389/fphar.2024.1301502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Objective: To evaluate the intervention effect of resveratrol on rat model of myocardial ischemia-reperfusion injury. Methods: The relevant studies on the intervention of resveratrol on rat models of myocardial ischemia reperfusion injury were searched in PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang and China Science and Technology Journal Database from the start of database establishment to January 2023. Data were extracted from studies that met the inclusion criteria. The results included electrocardiogram (ECG) and myocardial injury markers: ST changes, cardiac troponin I (cTn-I), cardiac troponin T (cTn-T), creatine kinase (CK), creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH); hemodynamic indicators: heart rate (HR), left ventricular diastolic pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), maximum rate of increase of left ventricular pressure (+dp/dtmax), maximum rate of decrease of left ventricular pressure (-dp/dtmax); oxidative damage indicators: nitric oxide (NO), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA); inflammatory factors: tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6); apoptosis index: B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), cardiomyocyte apoptosis index (AI); heart tissue structure: myocardial infarction size. Finally, a meta-analysis of these results was conducted. The methodological quality of the studies was assessed using the SYRCLE Bias Risk tool. Results: A total of 43 studies were included in the meta-analysis, and the quality of the included studies was assessed. It was found that the evidence quality of these 43 studies was low, and no study was judged to have low risk bias in all risk assessments. The results showed that resveratrol could reduce ST segment, cTn-I, cTn-T, CK, CK-MB, LDH, LVEDP, ROS, MDA, TNF-α, IL-6, AI levels and myocardial infarction size. HR, LVDP, LVSP, +dp/dtmax, NO, Bcl-2, and SOD levels were increased. However, resveratrol had no significant effect on -dp/dtmax and Bax outcome measures. Conclusion: Resveratrol can reduce ST segment in rat model of myocardial ischemia-reperfusion injury, alleviate myocardial injury, improve ventricular systolic and diastolic ability in hemodynamics, reduce inflammatory response and oxidative damage, and reduce myocardial necrosis and apoptosis. Due to the low quality of the methodologies included in the studies, additional research is required.
Collapse
Affiliation(s)
- Dong-Ze Zhang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ming-Yang Jia
- Department of encephalopathy, Changchun Traditional Chinese Medicine Hospital, Changchun, China
| | - Hong-Yu Wei
- Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ming Yao
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Li-Hong Jiang
- Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
Han H, Xie Q, Shao R, Li J, Du X. Alveolar macrophage-derived gVPLA2 promotes ventilator-induced lung injury via the cPLA2/PGE2 pathway. BMC Pulm Med 2023; 23:494. [PMID: 38057837 DOI: 10.1186/s12890-023-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is a clinical complication of mechanical ventilation observed in patients with acute respiratory distress syndrome. It is characterized by inflammation mediated by inflammatory cells and their secreted mediators. METHODS To investigate the mechanisms underlying VILI, a C57BL/6J mouse model was induced using high tidal volume (HTV) mechanical ventilation. Mice were pretreated with Clodronate liposomes to deplete alveolar macrophages or administered normal bone marrow-derived macrophages or Group V phospholipase A2 (gVPLA2) intratracheally to inhibit bone marrow-derived macrophages. Lung tissue and bronchoalveolar lavage fluid (BALF) were collected to assess lung injury and measure Ca2 + concentration, gVPLA2, downstream phosphorylated cytoplasmic phospholipase A2 (p-cPLA2), prostaglandin E2 (PGE2), protein expression related to mitochondrial dynamics and mitochondrial damage. Cellular experiments were performed to complement the animal studies. RESULTS Depletion of alveolar macrophages attenuated HTV-induced lung injury and reduced gVPLA2 levels in alveolar lavage fluid. Similarly, inhibition of alveolar macrophage-derived gVPLA2 had a similar effect. Activation of the cPLA2/PGE2/Ca2 + pathway in alveolar epithelial cells by gVPLA2 derived from alveolar macrophages led to disturbances in mitochondrial dynamics and mitochondrial dysfunction. The findings from cellular experiments were consistent with those of animal experiments. CONCLUSIONS HTV mechanical ventilation induces the secretion of gVPLA2 by alveolar macrophages, which activates the cPLA2/PGE2/Ca2 + pathway, resulting in mitochondrial dysfunction. These findings provide insights into the pathogenesis of VILI and may contribute to the development of therapeutic strategies for preventing or treating VILI.
Collapse
Affiliation(s)
- Hanghang Han
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Qiuwen Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Rongge Shao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jinju Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
26
|
Chen T, Zhang Y, Chen M, Yang P, Wang Y, Zhang W, Huang W, Zhang W. Tongmai Yangxin pill alleviates myocardial no-reflow by activating GPER to regulate HIF-1α signaling and downstream potassium channels. PHARMACEUTICAL BIOLOGY 2023; 61:499-513. [PMID: 36896463 PMCID: PMC10013430 DOI: 10.1080/13880209.2023.2184481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT The Tongmai Yangxin pill (TMYX) has potential clinical effects on no-reflow (NR); however, the effective substances and mechanisms remain unclear. OBJECTIVE This study evaluates the cardioprotective effects and molecular mechanisms of TMYX against NR. MATERIALS AND METHODS We used a myocardial NR rat model to confirm the effect and mechanism of action of TMYX in alleviating NR. Sprague-Dawley (SD) rats were divided into Control (Con), sham, NR, TMYX (4.0 g/kg), and sodium nitroprusside (SNP, 5.0 mg/kg), and received their treatments once a day for one week. In vitro studies in isolated coronary microvasculature of NR rats and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of TMYX and determine the main components, targets, and pathways of TMYX, respectively. RESULTS TMYX (4.0 g/kg) showed therapeutic effects on NR by improving the cardiac structure and function, reducing NR, ischemic areas, and cardiomyocyte injury, and decreasing the expression of cardiac troponin I (cTnI). Moreover, the mechanism of TMYX predicted by network pharmacology is related to the HIF-1, NF-κB, and TNF signaling pathways. In vivo, TMYX decreased the expression of MPO, NF-κB, and TNF-α and increased the expression of GPER, p-ERK, and HIF-1α. In vitro, TMYX enhanced the diastolic function of coronary microvascular cells; however, this effect was inhibited by G-15, H-89, L-NAME, ODQ and four K+ channel inhibitors. CONCLUSIONS TMYX exerts its pharmacological effects in the treatment of NR via multiple targets. However, the contribution of each pathway was not detected, and the mechanisms should be further investigated.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
- Institute of Traditional Chinese medicine, Tianjin University of Traditional Chinese medicine, Tianjin, People's Republic of China
| | - Yulong Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
| | - Manyun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
| | - Pu Yang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yi Wang
- Institute of Traditional Chinese medicine, Tianjin University of Traditional Chinese medicine, Tianjin, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
| |
Collapse
|
27
|
Liu M, Zhai L, Yang Z, Li S, Liu T, Chen A, Wang L, Li Y, Li R, Li C, Tan M, Chen Z, Qian J. Integrative Proteomic Analysis Reveals the Cytoskeleton Regulation and Mitophagy Difference Between Ischemic Cardiomyopathy and Dilated Cardiomyopathy. Mol Cell Proteomics 2023; 22:100667. [PMID: 37852321 PMCID: PMC10684391 DOI: 10.1016/j.mcpro.2023.100667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3β signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.
Collapse
Affiliation(s)
- Muyin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tianxian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lulu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youran Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ruidong Li
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Chenguang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
28
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
29
|
Lu N, Zhu JF, Lv HF, Zhang HP, Wang PL, Yang JJ, Wang XW. Modulation of oxidized low-density lipoprotein-affected macrophage efferocytosis by mitochondrial calcium uniporter in a murine model. Immunol Lett 2023; 263:14-24. [PMID: 37689315 DOI: 10.1016/j.imlet.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Efferocytosis dysfunction contributes to the progression and rupture of atherosclerotic plaques. Efferocytosis is crucially modulated by intracytoplasmic Ca2+, and mitochondrial calcium uniporter (MCU) complex proteins serve as key channels for regulating Ca2+ concentration. Therefore, it was speculated that MCU may affect the development of atherosclerosis (AS) by regulating efferocytosis. In the present study, we aimed to investigate whether MCU could affect foam cell formation by regulating efferocytosis. METHODS We stimulated primary macrophages (Møs) using oxidized low-density lipoprotein (ox-LDL) to mimic the atherosclerotic microenvironment and treated them with Ru360, an MCU-specific inhibitor, and UNC1062, an inhibitor of efferocytosis. Additionally, we conducted double staining to determine the Mø efferocytosis rate. We measured the expression of MCU complexes and efferocytosis-associated proteins using western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, we separately detected the Ca2+ level in the cytoplasm and mitochondria (MT) using Fluo-4 AM and Rhod-2 methods. We separately determined the reactive oxygen species (ROS) level in cytoplasm and MT using dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probing method and Mito-SOXTM superoxide indicator staining. Additionally, we conducted the enzyme-linked immunosorbent assay (ELISA) to detect the production of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α). Oil Red O staining was performed to measure cytoplasmic lipid levels. RESULTS Ru360 attenuated ox-LDL-induced efferocytosis dysfunction, and attenuated the upregulation of MCU and MCUR1 induced by ox-LDL, and meanwhile attenuated the downregulation of MCUb induced by ox-LDL. Ru360 attenuated the decrease of intracytoplasmic Ca2+ concentration induced by ox- LDL, Ru360 also attenuated the ROS production induced by ox- LDL, attenuated the release of IL-6, IL-18, IL-1β, and TNF-α induced by ox- LDL, and attenuated the increase of intracytoplasmic lipid content induced by ox-LDL. UNC1062 attenuated the effects of Ru360 in reducing inflammatory cytokines and intracytoplasmic lipid content. CONCLUSIONS In this study, we found that MCU inhibition modulated intracytoplasmic Ca2+ concentration, improved impaired Mø efferocytosis, and reduced ROS generation. Macrophage efferocytosis removed apoptotic cells and prevented the release of inflammatory factor and foam cell formation, and this can be a potential new therapeutic target for alleviating atherosclerosis.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Jun-Fan Zhu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - He-Fan Lv
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hai-Peng Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng-le Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jing-Jing Yang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xian-Wei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
30
|
Wang W, Kang L, Li H, Sha X, Li J, He S. Identification of potential biomarkers associated with CD4 + T cell infiltration in myocardial ischemia-reperfusion injury using bioinformation analysis. J Thorac Dis 2023; 15:5613-5624. [PMID: 37969273 PMCID: PMC10636474 DOI: 10.21037/jtd-23-1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Background Myocardial ischemia-reperfusion injury (MIRI) is often part of clinical events such as cardiac arrest, resuscitation, and reperfusion after coronary artery occlusion. Recently, more and more studies have shown that the immune microenvironment is an integral part of ischemia-reperfusion injury (IRI), and CD4+ T-cell infiltration plays an important role, but there are no relevant molecular targets for clinical diagnosis and treatment. Methods The transcriptome data and matched group information were retrieved from the Gene Expression Omnibus (GEO) database. The ImmuCellAI-mouse (Immune Cell Abundance Identifier for mouse) algorithm was used to calculate each symbol's CD4+ T cell infiltration score. The time period with the greatest change in the degree of CD4+ T cell infiltration [ischemia-reperfusion 6 hours (IR6h)-ischemia-reperfusion 24 hours (IR24h)] was selected for the next analysis. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to screen out CD4+ T cell-related genes and from which the gene CLEC5A was screened for the highest correlation with CD4+ T cell infiltration. The potential regulatory mechanism of CD4+ T cells in MIRI was discussed through various enrichment analysis. Finally, we analyzed the expression and molecular function (MF) of CLEC5A and its related genes in MIRI. Results A total of 406 CD4+ T cell-related genes were obtained by intersecting the results of WGCNA and differential expression analysis. Functional enrichment analysis indicated that the CD4+ T cell-related genes were mainly involved in chemokine signaling pathway and cell cycle. By constructing a protein-protein interaction (PPI) network, a total of 12 hub genes were identified as candidate genes for further analysis. Through the correlation analysis between the 12 candidate genes found in the PPI network and CD4+ T cell infiltration fraction, we determined the core gene CLEC5A. Finally, a gene interaction network was constructed to decipher the biological functions of CLEC5A using GeneMANIA. Conclusions In this study, RNA sequencing (RNA-Seq) data at different time points after reperfusion were subjected to a series of bioinformatics methods such as PPI network, WGCNA module, etc., and CLEC5A, a pivotal gene associated with CD4+ T-cells, was found, which may serve as a new target for diagnosis or treatment.
Collapse
Affiliation(s)
- Wenmiao Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Shandong University, Jinan, China
| | - Li Kang
- School of Public Health, Nantong University, Nantong, China
| | - Houqiang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyu Sha
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuai He
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
31
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
32
|
Sun M, Zeng Z, Xu G, An S, Deng Z, Cheng R, Yao Y, Wu J, Hu H, Huang Q, Wu J. PROMOTING MITOCHONDRIAL DYNAMIC EQUILIBRIUM ATTENUATES SEPSIS-INDUCED ACUTE LUNG INJURY BY INHIBITING PROINFLAMMATORY POLARIZATION OF ALVEOLAR MACROPHAGES. Shock 2023; 60:603-612. [PMID: 37647034 DOI: 10.1097/shk.0000000000002206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACT Sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by widespread pulmonary inflammation and immune response, in which proinflammatory polarization of alveolar macrophages (AMs) plays an important role. Mitochondria are the key intracellular signaling platforms regulating immune cell responses. Moreover, accumulating evidence suggests that the mitochondrial dynamics of macrophages are imbalanced in sepsis and severe ALI/ARDS. However, the functional significance of mitochondrial dynamics of AMs in septic ALI/ARDS remains largely unknown, and whether it regulates the polarized phenotype of AMs is also unclear. Here, we demonstrated that the mitochondrial dynamics of AMs are imbalanced, manifested by impaired mitochondrial fusion, increased fission and mitochondrial cristae remodeling, both in septic models and ARDS patients. However, suppressing excessive mitochondrial fission with Mdivi-1 or promoting mitochondrial fusion with PM1 to maintain mitochondrial dynamic equilibrium in AMs could inhibit the polarization of AMs into proinflammatory phenotype and attenuate sepsis-induced ALI. These data suggest that mitochondrial dynamic imbalance mediates altered polarization of AMs and exacerbates sepsis-induced ALI. This study provides new insights into the underlying mechanisms of sepsis-induced ALI, suggesting the possibility of identifying future drug targets from the perspective of mitochondrial dynamics in AMs.
Collapse
Affiliation(s)
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiya Deng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Yi Yao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Di W, Li X, Yang Q. Polysaccharide of Lactobacillus casei SB27 reduced colon cancer cell prognosis through mitochondrial damage by upregulation of HINT2. Asia Pac J Clin Oncol 2023; 19:e248-e257. [PMID: 36271660 DOI: 10.1111/ajco.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Abstract
AIMS Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. This study aimed to explore the effects of Polysaccharide of Lactobacillus casei SB27 in colon cancer and its possible mechanisms. METHODS Colon cancer was induced by giving dextran sulfate sodium and Azoxymethane. Uman Colon Cancer Cell Line (HCT)-116 cells were used to vitro model in this experiment. RESULTS Polysaccharide of L. casei SB27 reduced colon cancer in azoxymethane-dextran sulfate sodium (AOM+DSS)-induced mice. Polysaccharide of L. casei SB27 reduced colon cancer prognosis in vitro model. Polysaccharide of L. casei SB27 reduced short chain fatty acids by Bacillus coli. Polysaccharide of L. casei promoted mitochondrial damage by Calcium ion entry. Polysaccharide of L. casei induced histidine nucleotide binding protein 2/mitochondrial calcium uniporter (HINT2/MCU) signaling pathway. Immunocoprecipitation (IP) showed that HINT2 protein interlinked MCU protein. Polysaccharide of L. casei suppressed HINT2 ubiquitination. The regulation of HINT2 affected the effects of L. casei polysaccharide on colon cancer prognosis and mitochondrial damage by Calcium ion entry in vitro model. CONCLUSION In conclusion, the present report demonstrated that polysaccharide of L. casei SB27 reduced colon cancer cell prognosis through mitochondrial damage by upregulation of HINT2. Polysaccharide of L. casei SB27 might be used for colon cancer treatment and could be helpful for personalized treatment.
Collapse
Affiliation(s)
- Wei Di
- School of Food Biology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Xin Li
- School of Food Biology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Qiaoyi Yang
- School of Food Biology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| |
Collapse
|
34
|
Li X, Sung P, Zhang D, Yan L. Curcumin in vitro Neuroprotective Effects Are Mediated by p62/keap-1/Nrf2 and PI3K/AKT Signaling Pathway and Autophagy Inhibition. Physiol Res 2023; 72:497-510. [PMID: 37795892 PMCID: PMC10634561 DOI: 10.33549/physiolres.935054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 01/05/2024] Open
Abstract
Oxidative stress and autophagy are potential mechanisms associated with cerebral ischemia/reperfusion injury (IRI) and is usually linked to inflammatory responses and apoptosis. Curcumin has recently been demonstrated to exhibit anti-inflammatory, anti-oxidant, anti-apoptotic and autophagy regulation properties. However, mechanism of curcumin on IRI-induced oxidative stress and autophagy remains not well understood. We evaluated the protective effects and potential mechanisms of curcumin on cerebral microvascular endothelial cells (bEnd.3) and neuronal cells (HT22) against oxygen glucose deprivation/reoxygenation (OGD/R) in vitro models that mimic in vivo cerebral IRI. The cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) activity assays revealed that curcumin attenuated the OGD/R-induced injury in a dose-specific manner. OGD/R induced elevated levels of inflammatory cytokines TNF-alpha, IL-6 as well as IL-1beta, and these effects were notably reduced by curcumin. OGD/R-mediated apoptosis was suppressed by curcumin via upregulating B-cell lymphoma-2 (Bcl-2) and downregulating Bcl-associated X (Bax), cleaved-caspase3 and TUNEL apoptosis marker. Additionally, curcumin increased superoxide dismutase (SOD) and glutathione (GSH), but suppressed malondialdehyde (MDA) and reactive oxygen species (ROS) content. Curcumin inhibited the levels of autophagic biomarkers such as LC3 II/LC3 I and Beclin1. Particularly, curcumin induced p62 accumulation and its interactions with keap1 and promoted NF-E2-related factor 2 (Nrf2) translocation to nucleus, accompanied by increased NADPH quinone dehydrogenase (Nqo1) and heme oxygenase 1 (HO-1). Treatment of curcumin increased phosphorylation-phosphatidylinositol 3 kinase (p-PI3K) and p-protein kinase B (p-AKT). The autophagy inhibitor 3-methyladenine (3-MA) activated the keap-1/Nrf2 and PI3K/AKT pathways. This study highlights the neuroprotective effects of curcumin on cerebral IRI.
Collapse
Affiliation(s)
- X Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | | | | | | |
Collapse
|
35
|
Shi X, Liu C, Chen J, Zhou S, Li Y, Zhao X, Xing J, Xue J, Liu F, Li F. Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury. Cardiovasc Diabetol 2023; 22:216. [PMID: 37592255 PMCID: PMC10436431 DOI: 10.1186/s12933-023-01941-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Myocardial microvascular injury is the key event in early diabetic heart disease. The injury of myocardial microvascular endothelial cells (CMECs) is the main cause and trigger of myocardial microvascular disease. Mitochondrial calcium homeostasis plays an important role in maintaining the normal function, survival and death of endothelial cells. Considering that mitochondrial calcium uptake 1 (MICU1) is a key molecule in mitochondrial calcium regulation, this study aimed to investigate the role of MICU1 in CMECs and explore its underlying mechanisms. METHODS To examine the role of endothelial MICU1 in diabetic cardiomyopathy (DCM), we used endothelial-specific MICU1ecKO mice to establish a diabetic mouse model and evaluate the cardiac function. In addition, MICU1 overexpression was conducted by injecting adeno-associated virus 9 carrying MICU1 (AAV9-MICU1). Transcriptome sequencing technology was used to explore underlying molecular mechanisms. RESULTS Here, we found that MICU1 expression is decreased in CMECs of diabetic mice. Moreover, we demonstrated that endothelial cell MICU1 knockout exacerbated the levels of cardiac hypertrophy and interstitial myocardial fibrosis and led to a further reduction in left ventricular function in diabetic mice. Notably, we found that AAV9-MICU1 specifically upregulated the expression of MICU1 in CMECs of diabetic mice, which inhibited nitrification stress, inflammatory reaction, and apoptosis of the CMECs, ameliorated myocardial hypertrophy and fibrosis, and promoted cardiac function. Further mechanistic analysis suggested that MICU1 deficiency result in excessive mitochondrial calcium uptake and homeostasis imbalance which caused nitrification stress-induced endothelial damage and inflammation that disrupted myocardial microvascular endothelial barrier function and ultimately promoted DCM progression. CONCLUSIONS Our findings demonstrate that MICU1 expression was downregulated in the CMECs of diabetic mice. Overexpression of endothelial MICU1 reduced nitrification stress induced apoptosis and inflammation by inhibiting mitochondrial calcium uptake, which improved myocardial microvascular function and inhibited DCM progression. Our findings suggest that endothelial MICU1 is a molecular intervention target for the potential treatment of DCM.
Collapse
Affiliation(s)
- Xide Shi
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Liu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiangwei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Medical Rehabilitation, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiqiang Zhou
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yajuan Li
- Aerospace Clinical Medical Center, School of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xingcheng Zhao
- Aerospace Clinical Medical Center, School of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jinliang Xing
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Junhui Xue
- Aerospace Clinical Medical Center, School of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Fengzhou Liu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Fei Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
- Department of Aviation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
36
|
Li C, Sun J, Zhang X, Zhou M, Gan X. Implications of MCU complex in metabolic diseases. FASEB J 2023; 37:e23046. [PMID: 37389546 DOI: 10.1096/fj.202300218r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Metabolic diseases are considered the primary culprit for physical and mental health of individuals. Although the diagnosis of these diseases is relatively easy, more effective and convenient potent drugs are still being explored. Ca2+ across the inner mitochondrial membrane is a vital intracellular messenger that regulates energy metabolism and cellular Ca2+ homeostasis and is involved in cell death. Mitochondria rely on a selective mitochondrial Ca2+ unidirectional transport complex (MCU complex) in their inner membrane for Ca2+ uptake. We found that the channel contains several subunits and undergoes dramatic transformations in various pathological processes, especially in metabolic diseases. In this way, we believe that the MCU complex becomes a target with significant potential for these diseases. However, there is no review linking the two factors, thus hindering the possibility of new drug production. Here, we highlight the connection between MCU complex-related Ca2+ transport and the pathophysiology of metabolic diseases, adding understanding and insight at the molecular level to provide new insights for targeting MCU to reverse metabolism-related diseases.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xidan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Min Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Maslov LN, Naryzhnaya NV, Popov SV, Mukhomedzyanov AV, Derkachev IA, Kurbatov BK, Krylatov AV, Fu F, Pei J, Ryabov VV, Vyshlov EV, Gusakova SV, Boshchenko AA, Sarybaev A. A historical literature review of coronary microvascular obstruction and intra-myocardial hemorrhage as functional/structural phenomena. J Biomed Res 2023; 37:281-302. [PMID: 37503711 PMCID: PMC10387746 DOI: 10.7555/jbr.37.20230021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The analysis of experimental data demonstrates that platelets and neutrophils are involved in the no-reflow phenomenon, also known as microvascular obstruction (MVO). However, studies performed in the isolated perfused hearts subjected to ischemia/reperfusion (I/R) do not suggest the involvement of microembolization and microthrombi in this phenomenon. The intracoronary administration of alteplase has been found to have no effect on the occurrence of MVO in patients with acute myocardial infarction. Consequently, the major events preceding the appearance of MVO in coronary arteries are independent of microthrombi, platelets, and neutrophils. Endothelial cells appear to be the target where ischemia can disrupt the endothelium-dependent vasodilation of coronary arteries. However, reperfusion triggers more pronounced damage, possibly mediated by pyroptosis. MVO and intra-myocardial hemorrhage contribute to the adverse post-infarction myocardial remodeling. Therefore, pharmacological agents used to treat MVO should prevent endothelial injury and induce relaxation of smooth muscles. Ischemic conditioning protocols have been shown to prevent MVO, with L-type Ca 2+ channel blockers appearing the most effective in treating MVO.
Collapse
Affiliation(s)
- Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Sergey V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Alexandr V Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Ivan A Derkachev
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Boris K Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Andrey V Krylatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Vyacheslav V Ryabov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Evgenii V Vyshlov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | | | - Alla A Boshchenko
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Akpay Sarybaev
- National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| |
Collapse
|
38
|
Cheng X, Wang K, Zhao Y, Wang K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov 2023; 9:275. [PMID: 37507372 PMCID: PMC10382489 DOI: 10.1038/s41420-023-01560-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) such as atherosclerosis, myocardial remodeling, myocardial ischemia-reperfusion (I/R) injury, heart failure, and oxidative stress are among the greatest threats to human health worldwide. Cardiovascular pathogenesis has been studied for decades, and the influence of epigenetic changes on CVDs has been extensively studied. Post-translational modifications (PTMs), including phosphorylation, glycosylation, methylation, acetylation, ubiquitination, ubiquitin-like and nitrification, play important roles in the normal functioning of the cardiovascular system. Over the past decade, with the application of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an increasing number novel acylation modifications have been discovered, including propionylation, crotonylation, butyrylation, succinylation, lactylation, and isonicotinylation. Each change in protein conformation has the potential to alter protein function and lead to CVDs, and this process is usually reversible. This article summarizes the mechanisms underlying several common PTMs involved in the occurrence and development of CVDs.
Collapse
Affiliation(s)
- XueLi Cheng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China.
| |
Collapse
|
39
|
Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed Pharmacother 2023; 160:114413. [PMID: 36805187 DOI: 10.1016/j.biopha.2023.114413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.
Collapse
|
40
|
Zhang Q, Huang Y, Wu A, Duan Q, He P, Huang H, Gao Y, Nie K, Liu Q, Wang L. Calcium/calmodulin-dependent serine protein kinase exacerbates mitochondrial calcium uniporter-related mitochondrial calcium overload by phosphorylating α-synuclein in Parkinson's disease. Int J Biochem Cell Biol 2023; 157:106385. [PMID: 36754160 DOI: 10.1016/j.biocel.2023.106385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
α-Synuclein phosphorylation and mitochondrial calcium homeostasis are important mechanisms underlying mitochondrial dysfunction in Parkinson's disease, but the network regulating these mechanisms remains unclear. We identified the role of key phosphokinases and the pathological effects of α-synuclein phosphorylation on mitochondrial calcium influx and mitochondrial function in Parkinson's disease. The function of the key phosphokinase, calcium/calmodulin-dependent serine protein kinase, was investigated through loss- and gain-of-function experiments using a cell model of Parkinson's disease. The regulation of mitochondrial calcium uniporter-mediated mitochondrial calcium influx by calcium/calmodulin-dependent serine protein kinase was explored using a cellular model of Parkinson's disease. Coimmunoprecipitation experiments and α-synuclein mutation were used to explore the mechanism through which calcium/calmodulin-dependent serine protein kinase regulates mitochondrial calcium uniporter-mediated mitochondrial calcium influx and exacerbates mitochondrial damage in Parkinson's disease. Here, we show the pathogenic role of calcium/calmodulin-dependent serine protein kinase in Parkinson's disease progression. Calcium/calmodulin-dependent serine protein kinase phosphorylated α-synuclein to activate mitochondrial calcium uniporter and thus increase mitochondrial calcium influx, and these effects were blocked by α-synuclein S129A mutant expression. Furthermore, the calcium/calmodulin-dependent serine protein kinase inhibitor CASK-IN-1 exerted neuroprotective effects in Parkinson's disease. Collectively, our results suggest that calcium/calmodulin-dependent serine protein kinase phosphorylates α-synuclein to activate the mitochondrial calcium uniporter and thereby causes mitochondrial calcium overload and mitochondrial damage in Parkinson's disease. We elucidated a new role of calcium/calmodulin-dependent serine protein kinase in Parkinson's disease and revealed the potential therapeutic value of targeting calcium/calmodulin-dependent serine protein kinase in Parkinson's disease treatment.
Collapse
Affiliation(s)
- Qingxi Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yin Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anbiao Wu
- Department of Cardiology, Laboratory of Heart Center; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qingrui Duan
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Peikun He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Haifeng Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qicai Liu
- Department of Cardiology, Laboratory of Heart Center; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
41
|
Chen Y, Li S, Yin M, Li Y, Chen C, Zhang J, Sun K, Kong X, Chen Z, Qian J. Isorhapontigenin Attenuates Cardiac Microvascular Injury in Diabetes via the Inhibition of Mitochondria-Associated Ferroptosis Through PRDX2-MFN2-ACSL4 Pathways. Diabetes 2023; 72:389-404. [PMID: 36367849 DOI: 10.2337/db22-0553] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Ferroptosis is a newly identified form of regulated cell death that is driven by iron overload and uncontrolled lipid peroxidation, but the role of ferroptosis in cardiac microvascular dysfunction remains unclear. Isorhapontigenin (ISO) is an analog of resveratrol and possesses strong antioxidant capacity and cardiovascular-protective effects. Moreover, ISO has been shown to alleviate iron-induced oxidative damage and lipid peroxidation in mitochondria. Therefore, the current study aimed to explore the benefits of ISO treatment on cardiac microvascular dysfunction in diabetes and the possible mechanisms involved, with a focus on ferroptosis and mitochondria. Our data revealed that ISO treatment improved microvascular density and perfusion in db/db mice by mitigating vascular structural damage, normalizing nitric oxide (NO) production via endothelial NO synthase activation, and enhancing angiogenetic ability via vascular endothelial growth factor receptor 2 phosphorylation. PRDX2 was identified as a downstream target of ISO, and endothelial-specific overexpression of PRDX2 exerted effects on the cardiac microvascular function that were similar to those of ISO treatment. In addition, PRDX2 mediated the inhibitive effects of ISO treatment on ferroptosis by suppressing oxidative stress, iron overload, and lipid peroxidation. Further study suggested that mitochondrial dynamics and dysfunction contributed to ferroptosis, and ISO treatment or PRDX2 overexpression attenuated mitochondrial dysfunction via MFN2-dependent mitochondrial dynamics. Moreover, MFN2 overexpression suppressed the mitochondrial translocation of ACSL4, ultimately inhibiting mitochondria-associated ferroptosis. In contrast, enhancing mitochondria-associated ferroptosis via ACSL4 abolished the protective effects of ISO treatment on cardiac microcirculation. Taken together, the results of the present work demonstrated the beneficial effects of ISO treatment on cardiac microvascular protection in diabetes by suppressing mitochondria-associated ferroptosis through PRDX2-MFN2-ACSL4 pathways.
Collapse
Affiliation(s)
- Yuqiong Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ming Yin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yafei Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Kangyun Sun
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiangqing Kong
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
42
|
Yao J, Miao Y, Zhu L, Wan M, Lu Y, Tang W. Histidine trinucleotide binding protein 2: from basic science to clinical implications. Biochem Pharmacol 2023; 212:115527. [PMID: 37004779 DOI: 10.1016/j.bcp.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Histidine triad nucleotide-binding protein 2 (HINT2) is a dimeric protein that belongs to the histidine triad protein superfamily, predominantly expressed in the liver, pancreas, and adrenal gland, and localised to the mitochondrion. HINT2 binds nucleotides and catalyses the hydrolysis of nucleotidyl substrates. Moreover, HINT2 has been identified as a key regulator of multiple biological processes, including mitochondria-dependent apoptosis, mitochondrial protein acetylation, and steroidogenesis. Genetic manipulation has provided new insights into the physiological roles of HINT2 in several processes, such as inhibition of cancer progression, regulation of hepatic lipid metabolism, and protective effects on the cardiovascular system. The current review outlines the background and functions of HINT2. In addition, it summarises research progress on the correlation between HINT2 and human malignancies, hepatic metabolic diseases, and cardiovascular diseases, with an attempt to provide new research directions emerging in this field and to unveil the therapeutic value of HINT2 as a target in the combat of human diseases.
Collapse
|
43
|
Zhou H, Dai Z, Li J, Wang J, Zhu H, Chang X, Wang Y. TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury. Metabolism 2023; 140:155383. [PMID: 36603706 DOI: 10.1016/j.metabol.2022.155383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The regulatory mechanisms involved in mitochondrial quality control (MQC) dysfunction during septic cardiomyopathy (SCM) remain incompletely characterized. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) is an endoplasmic reticulum protein with Ca2+ leak activity that modulates cellular responses to various cellular stressors. METHODS In this study, we evaluated the role of TMBIM6 in SCM using cardiomyocyte-specific TMBIM6 knockout (TMBIM6CKO) and TMBIM6 transgenic (TMBIM6TG) mice. RESULTS Myocardial TMBIM6 transcription and expression were significantly downregulated in wild-type mice upon LPS exposure, along with characteristic alterations in myocardial systolic/diastolic function, cardiac inflammation, and cardiomyocyte death. Notably, these alterations were further exacerbated in LPS-treated TMBIM6CKO mice, and largely absent in TMBIM6TG mice. In LPS-treated primary cardiomyocytes, TMBIM6 deficiency further impaired mitochondrial respiration and ATP production, while defective MQC was suggested by enhanced mitochondrial fission, impaired mitophagy, and disrupted mitochondrial biogenesis. Structural protein analysis, Co-IP, mutant TMBIM6 plasmid transfection, and molecular docking assays subsequently indicated that TMBIM6 exerts cardioprotection against LPS-induced sepsis by interacting with and preventing the oligomerization of voltage-dependent anion channel-1 (VDAC1), the major route of mitochondrial Ca2+ uptake. CONCLUSION We conclude that the TMBIM6-VDAC1 interaction prevents VDAC1 oligomerization and thus sustains mitochondrial Ca2+ homeostasis as well as MQC, contributing to improved myocardial function in SCM.
Collapse
Affiliation(s)
- Hao Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Zhe Dai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jialei Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China
| | - Hang Zhu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
44
|
Qin S, Liu C, Chen Y, Yao M, Liao S, Xin W, Gong S, Guan X, Li Y, Xiong J, Chen J, Shen Y, Liu Y, Zhao J, Huang Y. Cobaltosic oxide-polyethylene glycol-triphenylphosphine nanoparticles ameliorate the acute-to-chronic kidney disease transition by inducing BNIP3-mediated mitophagy. Kidney Int 2023; 103:903-916. [PMID: 36805450 DOI: 10.1016/j.kint.2023.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/19/2023]
Abstract
Accumulating evidence highlights mitochondrial dysfunction as a crucial factor in the pathogenesis of acute kidney injury (AKI); thus, novel therapeutic strategies maintaining mitochondrial homeostasis are highly anticipated. Recent studies have shown that cobaltosic oxide has peroxidase-like catalytic activities, although its role and mechanism remain elusive in AKI. In the present study, we synthesized and identified cobaltosic oxide-polyethylene glycol-triphenylphosphine (COPT) nanoparticles by conjugating cobaltosic oxide with polyethylene glycol and triphenylphosphine, to improve its biocompatibility and mitochondria-targeting property. We found that COPT preferentially accumulated in the kidney proximal tubule cells, and significantly alleviated ischemic AKI in mouse models and gentamicin induced-AKI in the zebrafish model. COPT also inhibited the transition from AKI to chronic kidney disease (CKD), with few side effects. Further studies demonstrated that COPT localized in the mitochondria, and ameliorated hypoxia-reoxygenation-mediated mitochondrial damage through enhancing mitophagy in vitro and in vivo. Mechanistically, COPT dose-dependently induced the expression of Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3), while knockdown of BNIP3 attenuated COPT-induced mitophagic flux and mitochondrial protection. Thus, our findings suggest that COPT nanoparticles ameliorate AKI and its progression to CKD through inducing BNIP3-mediated mitophagy, indicating that COPT may serve as a promising mitochondria-targeting therapeutic agent against AKI.
Collapse
Affiliation(s)
- Shaozong Qin
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chi Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengying Yao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuyi Liao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wang Xin
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuiqin Gong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xu Guan
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Chen
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yunzhu Shen
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Yinghui Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
45
|
Pan D, Xu L, Shi D, Guo M. Knowledge mapping of mitochondrial calcium uniporter from 2011 to 2022: A bibliometric analysis. Front Physiol 2023; 14:1107328. [PMID: 36744031 PMCID: PMC9895098 DOI: 10.3389/fphys.2023.1107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Background: Calcium uptake research has a long history. However, the mitochondrial calcium uniporter (MCU) protein was first discovered in 2011. As investigations of mitochondrial calcium uniporter represent a new research hotspot, a comprehensive and objective perspective of the field is lacking. Hence, this bibliometric analysis aimed to provide the current study status and trends related to mitochondrial calcium uniporter research in the past decade. Methods: Articles were acquired from the Web of Science Core Collection database. We quantified and visualized information regarding annual publications, journals, cocited journals, countries/regions, institutions, authors, and cocited authors by using CiteSpace 5.8. R3 and VOSviewer. In addition, we analysed the citation and keyword bursts related to mitochondrial calcium uniporter studies. Results: From 2011 to 2022, 1,030 articles were published by 5,050 authors from 1,145 affiliations and 62 countries or regions. The country with the most published articles was the United States. The institution with the most published articles was the University of Padua. Rosario Rizzuto published the most articles and was also the most cocited author. Cell Calcium published the largest number of articles, whereas Journal of Biological Chemistry had the most cocitations. The top 5 keywords related to pathological processes were oxidative stress, cell death, permeability transition, apoptosis, and metabolism. MICU1, calcium, ryanodine receptor, ATP synthase and cyclophilin D were the top 5 keywords related to molecules. Conclusion: mitochondrial calcium uniporter research has grown stably over the last decade. Current studies focus on the structure of the mitochondrial calcium uniporter complex and its regulatory effect on mitochondrial calcium homeostasis. In addition, the potential role of mitochondrial calcium uniporter in different diseases has been explored. Current studies mostly involve investigations of cancer and neurodegenerative diseases. Our analysis provides guidance and new insights into further mitochondrial calcium uniporter research.
Collapse
Affiliation(s)
- Deng Pan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Dazhuo Shi, ; Ming Guo,
| | - Ming Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Dazhuo Shi, ; Ming Guo,
| |
Collapse
|
46
|
Sun X, Chen H, Gao R, Qu Y, Huang Y, Zhang N, Hu S, Fan F, Zou Y, Hu K, Chen Z, Ge J, Sun A. Intravenous Transplantation of an Ischemic-specific Peptide-TPP-mitochondrial Compound Alleviates Myocardial Ischemic Reperfusion Injury. ACS NANO 2023; 17:896-909. [PMID: 36625783 PMCID: PMC9878726 DOI: 10.1021/acsnano.2c05286] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
It is known that mitochondrial dysfunction is a critical factor involved in myocardial ischemia-reperfusion injury. Mitochondrial transplantation has been suggested as an effective therapeutic strategy to protect against myocardial ischemia-reperfusion injury. However, its clinical translation remains limited because it requires the local injection of mitochondria into the myocardium. Here, a polypeptide, CSTSMLKAC (PEP), bound to triphenylphosphonium cations (TPP+) effectively binds mitochondria to form a PEP-TPP-mitochondrial compound. Further investigation of this compound has revealed that the ischemia-sensing properties of PEP promote its translocation into the ischemic myocardium. Additionally, the targeting peptide, PEP, readily dissociates from the PEP-TPP-mitochondrial compound, allowing for the transplanted mitochondria to be efficiently internalized by cardiomyocytes or transferred to cardiomyocytes by endothelial cells. Mitochondrial transplantation promotes cardiomyocyte energetics and mechanical contraction, subsequently reducing cellular apoptosis, macrophage infiltration, and the pro-inflammatory response, all of which lead to attenuation of ischemia-reperfusion injury. Thus, this study provides promising evidence that the PEP-TPP-mitochondrial compound effectively promotes intravenous mitochondrial transplantation into the ischemic myocardium and subsequently ameliorates myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Hang Chen
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
- Cardiac
Regeneration and Ageing Lab, Institute of Cardiovascular Sciences,
Shanghai Engineering Research Center of Organ Repair, School of Life
Science, Shanghai University, Shanghai 200444, P.R. China
| | - Rifeng Gao
- Shanghai
Fifth People’s Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Yanan Qu
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Ya Huang
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Ning Zhang
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Shiyu Hu
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Fan Fan
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Yunzeng Zou
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
- Institute
of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Kai Hu
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Zhaoyang Chen
- Department
of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Junbo Ge
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
- Institute
of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Aijun Sun
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
- Institute
of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
47
|
Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. J Control Release 2023; 353:563-590. [PMID: 36496052 DOI: 10.1016/j.jconrel.2022.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is becoming a typical cardiovascular disease with increasing worldwide incidence. It is usually induced by the restoration of normal blood flow to the ischemic myocardium after a period of recanalization and directly leads to myocardial damage. Notably, the pathological mechanism of myocardial IRI is closely related to inflammation, oxidative stress, Ca2+ overload, and the opening of mitochondrial permeability transition pore channels. Therefore, monitoring of these changes and imaging lesions is a key to timely clinical diagnosis. Nanomedicines have shown great value in the diagnosis and treatment of myocardial IRI, with advantages including passive/active targeting, prolonged circulation, improved bioavailability, versatile carrier selection, and synergistic integration of different imaging and therapeutic agents in single particles with the same pharmaceutics. Because theranostic nanomedicines for myocardial IRI have advanced rapidly, we conduct an updated review on this topic. The special focus is on how to rationally design the nanomedicines to achieve optimal imaging and therapy. We hope this review would stimulate the interest of researchers with different backgrounds and expedite the development of nanomedicines for myocardial IRI.
Collapse
|
48
|
Huang X, Zeng Z, Li S, Xie Y, Tong X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14122760. [PMID: 36559254 PMCID: PMC9788260 DOI: 10.3390/pharmaceutics14122760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of systemic disorders threatening human health with complex pathogenesis, among which mitochondrial energy metabolism reprogramming has a critical role. Mitochondria are cell organelles that fuel the energy essential for biochemical reactions and maintain normal physiological functions of the body. Mitochondrial metabolic disorders are extensively involved in the progression of CVD, especially for energy-demanding organs such as the heart. Therefore, elucidating the role of mitochondrial metabolism in the progression of CVD is of great significance to further understand the pathogenesis of CVD and explore preventive and therapeutic methods. In this review, we discuss the major factors of mitochondrial metabolism and their potential roles in the prevention and treatment of CVD. The current application of mitochondria-targeted therapeutic agents in the treatment of CVD and advances in mitochondria-targeted gene therapy technologies are also overviewed.
Collapse
Affiliation(s)
- Xiaoyang Huang
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenhua Zeng
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Siqi Li
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Yufei Xie
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
49
|
Di W, Li X, Yang Q. Polysaccharide of L. casei SB27 reduced colon cancer cell prognosis through mitochondrial damage by up-regulation of HINT2. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Mitophagy: A Potential Target for Pressure Overload-Induced Cardiac Remodelling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2849985. [PMID: 36204518 PMCID: PMC9532135 DOI: 10.1155/2022/2849985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
The pathological mechanisms underlying cardiac remodelling and cardiac dysfunction caused by pressure overload are poorly understood. Mitochondrial damage and functional dysfunction, including mitochondrial bioenergetic disorder, oxidative stress, and mtDNA damage, contribute to heart injury caused by pressure overload. Mitophagy, an important regulator of mitochondrial homeostasis and function, is triggered by mitochondrial damage and participates in the pathological process of cardiovascular diseases. Recent studies indicate that mitophagy plays a critical role in the pressure overload model, but evidence on the causal relationship between mitophagy abnormality and pressure overload-induced heart injury is inconclusive. This review summarises the mechanism, role, and regulation of mitophagy in the pressure overload model. It also pays special attention to active compounds that may regulate mitophagy in pressure overload, which provide clues for possible clinical applications.
Collapse
|