1
|
Mouad EO, Mohammed B, Amine B, Rabia B, Soufiane B, Sara A, Marouane J, Soukaina W, Mohamed A. Cerebral amyloid angiopathy revealed by severe renal failure: A case report. Radiol Case Rep 2025; 20:1988-1992. [PMID: 39926268 PMCID: PMC11803145 DOI: 10.1016/j.radcr.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Sporadic cerebral amyloid angiopathy is a common condition in the elderly, characterised by the accumulation of amyloid Aβ peptide in the walls of small cerebral arteries, leading to intracranial haemorrhage and cognitive impairment. We present the case of a 65-year-old woman admitted for sudden intracranial hypertension and severe renal failure requiring dialysis. This case illustrates an uncommon presentation of cerebral amyloid angiopathy in a patient with concurrent end-stage renal disease, highlighting the complex interplay between systemic and cerebrovascular pathology. The diagnostic challenge posed by overlapping neurological and uraemic symptoms underscores the importance of multidisciplinary evaluation in such cases.
Collapse
Affiliation(s)
- El Ouazzani Mouad
- Department of Nephrology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| | - Bouchoual Mohammed
- Department of Nephrology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| | - Boughmi Amine
- Department of Nephrology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| | - Bounabe Rabia
- Department of Nephrology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| | - Bigi Soufiane
- Department of Radiology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| | - Anibar Sara
- Department of Nephrology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| | - Jabrane Marouane
- Department of Nephrology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| | - Wakrim Soukaina
- Department of Radiology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| | - Arrayhani Mohamed
- Department of Nephrology, Agadir University Hospital Centre, Faculty of Medicine and Pharmacy, Ibn-Zohr University, Agadir, Morocco
| |
Collapse
|
2
|
Tanaka F, Maeda M, Kishi S, Kogue R, Umino M, Ishikawa H, Ii Y, Shindo A, Sakuma H. Updated imaging markers in cerebral amyloid angiopathy: What radiologists need to know. Jpn J Radiol 2024:10.1007/s11604-024-01720-2. [PMID: 39730931 DOI: 10.1007/s11604-024-01720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease pathologically characterized by the progressive accumulation of amyloid-beta (Aβ) peptide in cerebrovascular walls, affecting both cortical and leptomeningeal vessels. Amyloid deposition results in fragile vessels, which may lead to lobar intracerebral hemorrhage (ICH) and cognitive impairment. To evaluate the probability and severity of CAA, the imaging markers depicted on CT and MRI techniques are crucial, as brain pathological examination is highly invasive. Although the Boston criteria have established diagnostic value and have been updated to version 2.0, due to an aging population, the patients with CAA should also be assessed for their risk of future ICH or cognitive impairment. Furthermore, an increased awareness of CAA is essential when introducing anticoagulants for infarct in elderly patients or anti-amyloid antibodies for Alzheimer's disease, as these may worsen CAA-related hemorrhagic lesions. However, the radiological literature on CAA has not been comprehensively updated. Here, we review the imaging markers of CAA and clinical significance. We also discuss the clinical and imaging characteristics of CAA-related inflammation, amyloid-related imaging abnormalities, and iatrogenic-CAA.
Collapse
Affiliation(s)
- Fumine Tanaka
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuichiro Ii
- Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
3
|
Godrich D, Pasteris J, Martin ER, Rundek T, Schellenberg G, Foroud T, Vance JM, Pericak-Vance MA, Cuccaro ML, Scott WK, Kukull W, Montine TJ, Beecham GW. Cerebral amyloid angiopathy impacts neurofibrillary tangle burden and cognition. Brain Commun 2024; 6:fcae369. [PMID: 39584156 PMCID: PMC11581998 DOI: 10.1093/braincomms/fcae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/01/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Cerebral amyloid angiopathy commonly co-occurs with amyloid β plaques and neurofibrillary degeneration and is proposed to contribute to cognitive impairment. However, the interplay among these pathologic changes of Alzheimer disease is not well understood. Here we replicate and extend findings of a recent study that suggested the association of cerebral amyloid angiopathy and cognitive impairment is mediated by neurofibrillary degeneration. We employed similar approaches but in a larger, clinical-based (as opposed to community-based) set of 4915 autopsied National Alzheimer's Coordinating Center participants (60% with dementia). Neuropathologic lesions were measured ordinally; longitudinal change in cognition was used to measure cognitive impairment. Statistical analyses included ordinal logistic regression, mediation analyses and extension of models to include presence of APOE e4. We show a statistical interaction between cerebral amyloid angiopathy and neuritic plaques that impacts the burden of neurofibrillary tangles. Mediation analyses show that cerebral amyloid angiopathy is associated with cognitive impairment, but only by modifying the impact of neurofibrillary tangles on cognition. We expanded the mediation analysis to include APOE e4 and show similar results. Findings indicate that cerebral amyloid angiopathy plays an important role in the burden and impact of neurofibrillary degeneration contributing to cognitive impairment.
Collapse
Affiliation(s)
- Dana Godrich
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jeremy Pasteris
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eden R Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tatjana Rundek
- Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gerard Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 190104, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Jeffery M Vance
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Margaret A Pericak-Vance
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Michael L Cuccaro
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - William K Scott
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Walter Kukull
- Department of Epidemiology, University of Washington, Seattle, WA 351619, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Gary W Beecham
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Zhang J, Price CJ, Zhao K, Tang Y, Zhong S, Lou J, Ye X, Liang F. Associations between amyloid-β load and cognition in cerebrovascular disease beyond cerebral amyloid angiopathy: a systematic review and meta-analysis of positron emission tomography studies. Age Ageing 2024; 53:afae240. [PMID: 39468728 DOI: 10.1093/ageing/afae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND There is growing interest in the comorbidity of vascular and neurodegenerative pathologies in patients with cerebrovascular disease (CVD) beyond cerebral amyloid angiopathy (CAA). However, the relationship between amyloid-β and vascular cognitive impairment (VCI) remains debated. OBJECTIVE To investigate the association between VCI and amyloid-β deposition in non-CAA CVD patients. METHODS PubMed, Embase, Web of Science, PsycINFO and CENTRAL databases were systematically searched. Observational studies, including case-control and cohort studies, associating cognitive scores with amyloid load measured by positron emission tomography were selected. Meta-analyses were performed to assess the strength of amyloid-cognition associations across CVD subtypes and cognitive domains. A random-effects model using the inverse variance method was used, with heterogeneity evaluated by Q-statistics and I2 statistics. Meta-regression analyses were conducted to examine the influence of moderators, and publication bias was assessed using funnel plots and Egger's test. All statistical analyses were performed using StataMP 18. RESULTS Twenty-seven eligible studies encompassing 2894 participants were included. Among non-CAA CVD patients, global cognitive performance was significantly lower in those with higher amyloid-β deposition (standardized mean difference = -0.43, P < 0.001). The correlation strength varied across cognitive domains (executive function: r = -0.41; language: r = -0.36; memory: r = -0.29; all P < 0.001). The correlation was significant in patients with subcortical vascular disease (r = -0.43, P < 0.001) but not post-stroke patients (r = -0.19, P > 0.05). CONCLUSIONS Amyloid-β load is associated with cognitive decline in non-CAA CVD patients. This is more pronounced in patients with subcortical vascular disease than in post-stroke patients. Executive function is the most susceptible domain in VCI when the level of amyloid-β increases.
Collapse
Affiliation(s)
- Jie Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
- Wellcome Center for Human Neuroimaging, Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Cathy J Price
- Wellcome Center for Human Neuroimaging, Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AZ, United Kingdom
| | - Yuanyuan Tang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| | - Shuchang Zhong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| | - Jingjing Lou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| | - Feng Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| |
Collapse
|
5
|
Xiang Y, Rodrigues MA, Lerpiniere C, Moullaali TJ, Loan JJM, Wilkinson T, Humphreys CA, Smith C, Al-Shahi Salman R, Samarasekera N. Factors associated with cognitive impairment before intracerebral haemorrhage: community-based neuropathological study. Brain Commun 2024; 6:fcae275. [PMID: 39229490 PMCID: PMC11369820 DOI: 10.1093/braincomms/fcae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/21/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Little is known about whether clinical, radiological or neuropathological features are associated with cognitive impairment before intracerebral haemorrhage. We conducted a community-based cohort study of 125 adults with intracerebral haemorrhage (lobar n = 71, non-lobar n = 54) with consent to brain autopsy. We compared small vessel disease biomarkers on diagnostic CT head and neuropathological findings including neurofibrillary tangles and amyloid plaques in adults without cognitive impairment versus cognitive impairment without dementia versus dementia before intracerebral haemorrhage, stratified by lobar and non-lobar intracerebral haemorrhage. In non-lobar intracerebral haemorrhage, severe cortical atrophy was less common in those without cognitive impairment (8/36, 22%) and cognitive impairment without dementia (0/9, 0%) versus dementia (5/9, 56%); P = 0.008. Irrespective of intracerebral haemorrhage location, adults without cognitive impairment had milder neurofibrillary tangle pathology measured by median Braak stage (lobar intracerebral haemorrhage: no cognitive impairment 2 [interquartile range, 2-3] versus cognitive impairment without dementia 4 [2-6] versus dementia 5.5 [4-6]; P = 0.004; non-lobar intracerebral haemorrhage: no cognitive impairment 2 [1-2] versus cognitive impairment without dementia 2 [1-2] versus dementia 5 [3-6]; P < 0.001). Irrespective of intracerebral haemorrhage location, adults without cognitive impairment had milder amyloid plaque pathology measured by median Thal stage (lobar intracerebral haemorrhage: no cognitive impairment 2 [1-2] versus cognitive impairment without dementia 2 [2-3] versus dementia 2.5 [2-3.5]; P = 0.033; non-lobar intracerebral haemorrhage: no cognitive impairment 1 [0-1] versus cognitive impairment without dementia 0 [0-2] versus dementia 3 [2-3]; P = 0.002). Our findings suggest that irrespective of intracerebral haemorrhage location, adults with cognitive impairment before an intracerebral haemorrhage have more Alzheimer's disease neuropathologic change.
Collapse
Affiliation(s)
- Yawen Xiang
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark A Rodrigues
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Department of Neuroradiology, NHS Lothian, Edinburgh EH16 4SA, UK
| | - Christine Lerpiniere
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Tom J Moullaali
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Faculty of Medicine, The George Institute for Global Health, University of New South Wales, Sydney, NSW 2042, Australia
| | - James J M Loan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Tim Wilkinson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | | | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | - Neshika Samarasekera
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
6
|
Paterno G, Moore BD, Bell BM, Gorion KMM, Ran Y, Prokop S, Golde TE, Giasson BI. Novel Monoclonal Antibody Specific toward Amyloid-β Binds to a Unique Epitope within the N-Terminal Region. Antibodies (Basel) 2024; 13:68. [PMID: 39189239 PMCID: PMC11348109 DOI: 10.3390/antib13030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Amyloid-β (Aβ) deposition throughout the neuroaxis is a classical hallmark of several neurodegenerative diseases, most notably Alzheimer's disease (AD). Aβ peptides of varied length and diverse structural conformations are deposited within the parenchyma and vasculature in the brains of individuals with AD. Neuropathologically, Aβ pathology can be assessed using antibodies to label and characterize their features, which in turn leads to a more extensive understanding of the pathological process. In the present study, we generated a novel monoclonal antibody, which we found to be specific for the N-terminal region of Aβ. This antibody reacted to amyloid precursor protein expressed in cultured cells and labels Aβ plaques and cerebral amyloid angiopathy in brain tissue from a mouse model of amyloidosis as well as post-mortem brain tissue from patients diagnosed with AD. This highly specific novel antibody will serve as a unique tool for future studies investigating Aβ deposition in novel mouse models and cross-sectional studies using post-mortem human tissue.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Brenda D. Moore
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Kimberly-Marie M. Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Yong Ran
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd E. Golde
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Kasri A, Camporesi E, Gkanatsiou E, Boluda S, Brinkmalm G, Stimmer L, Ge J, Hanrieder J, Villain N, Duyckaerts C, Vermeiren Y, Pape SE, Nicolas G, Laquerrière A, De Deyn PP, Wallon D, Blennow K, Strydom A, Zetterberg H, Potier MC. Amyloid-β peptide signature associated with cerebral amyloid angiopathy in familial Alzheimer's disease with APPdup and Down syndrome. Acta Neuropathol 2024; 148:8. [PMID: 39026031 PMCID: PMC11258176 DOI: 10.1007/s00401-024-02756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid plaques containing amyloid-β (Aβ) peptides, intraneuronal neurofibrillary tangles, extracellular neuropil threads, and dystrophic neurites surrounding plaques composed of hyperphosphorylated tau protein (pTau). Aβ can also deposit in blood vessel walls leading to cerebral amyloid angiopathy (CAA). While amyloid plaques in AD brains are constant, CAA varies among cases. The study focuses on differences observed between rare and poorly studied patient groups with APP duplications (APPdup) and Down syndrome (DS) reported to have higher frequencies of elevated CAA levels in comparison to sporadic AD (sAD), most of APP mutations, and controls. We compared Aβ and tau pathologies in postmortem brain tissues across cases and Aβ peptides using mass spectrometry (MS). We further characterized the spatial distribution of Aβ peptides with MS-brain imaging. While intraparenchymal Aβ deposits were numerous in sAD, DS with AD (DS-AD) and AD with APP mutations, these were less abundant in APPdup. On the contrary, Aβ deposits in the blood vessels were abundant in APPdup and DS-AD while only APPdup cases displayed high Aβ deposits in capillaries. Investigation of Aβ peptide profiles showed a specific increase in Aβx-37, Aβx-38 and Aβx-40 but not Aβx-42 in APPdup cases and to a lower extent in DS-AD cases. Interestingly, N-truncated Aβ2-x peptides were particularly increased in APPdup compared to all other groups. This result was confirmed by MS-imaging of leptomeningeal and parenchymal vessels from an APPdup case, suggesting that CAA is associated with accumulation of shorter Aβ peptides truncated both at N- and C-termini in blood vessels. Altogether, this study identified striking differences in the localization and composition of Aβ deposits between AD cases, particularly APPdup and DS-AD, both carrying three genomic copies of the APP gene. Detection of specific Aβ peptides in CSF or plasma of these patients could improve the diagnosis of CAA and their inclusion in anti-amyloid immunotherapy treatments.
Collapse
Affiliation(s)
- Amal Kasri
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Elena Camporesi
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Susana Boluda
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Department of Neuropathology Raymond Escourolle, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lev Stimmer
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Junyue Ge
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jörg Hanrieder
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Nicolas Villain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Charles Duyckaerts
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Department of Neuropathology Raymond Escourolle, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Yannick Vermeiren
- Department of Biomedical Sciences, Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Sarah E Pape
- Institute of Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
| | - Gaël Nicolas
- Department of Genetics, CNRMAJ, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, F-76000, Rouen, France
| | - Annie Laquerrière
- Department of Pathology, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, F-76000, Rouen, France
| | - Peter Paul De Deyn
- Department of Biomedical Sciences, Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - David Wallon
- Department of Neurology, CNRMAJ, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, 76000, Rouen, France
| | - Kaj Blennow
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Andre Strydom
- Institute of Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
- UK Dementia Research Institute at UCL, London, UK.
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
| | - Marie-Claude Potier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France.
| |
Collapse
|
8
|
Gray M, Nash KR, Yao Y. Adenylyl cyclase 2 expression and function in neurological diseases. CNS Neurosci Ther 2024; 30:e14880. [PMID: 39073001 PMCID: PMC11284242 DOI: 10.1111/cns.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Adenylyl cyclases (Adcys) catalyze the formation of cAMP, a secondary messenger essential for cell survival and neurotransmission pathways in the CNS. Adcy2, one of ten Adcy isoforms, is highly expressed in the CNS. Abnormal Adcy2 expression and mutations have been reported in various neurological disorders in both rodents and humans. However, due to the lack of genetic tools, loss-of-function studies of Adcy2 are scarce. In this review, we summarize recent findings on Adcy2 expression and function in neurological diseases. Specifically, we first introduce the biochemistry, structure, and function of Adcy2 briefly. Next, the expression and association of Adcy2 in human patients and rodent models of neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), psychiatric disorders (Tourette syndrome, schizophrenia, and bipolar disorder), and other neurological conditions (stress-associated disorders, stroke, epilepsy, and Lesch-Nyhan Syndrome) are elaborated. Furthermore, we discuss the pros and cons of current studies as well as key questions that need to be answered in the future. We hope to provide a focused review on Adcy2 that promotes future research in the field.
Collapse
Affiliation(s)
- Marsilla Gray
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
9
|
Jäkel L, De Kort AM, Stellingwerf A, Hernández Utrilla C, Kersten I, Vervuurt M, Vermeiren Y, Küsters B, Schreuder FHBM, Klijn CJM, Kuiperij HB, Verbeek MM. Altered brain expression and cerebrospinal fluid levels of TIMP4 in cerebral amyloid angiopathy. Acta Neuropathol Commun 2024; 12:103. [PMID: 38915119 PMCID: PMC11194996 DOI: 10.1186/s40478-024-01823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a highly prevalent and progressive pathology, involving amyloid-β (Aβ) deposition in the cerebral blood vessel walls. CAA is associated with an increased risk for intracerebral hemorrhages (ICH). Insight into the molecular mechanisms associated with CAA pathology is urgently needed, to develop additional diagnostic tools to allow for reliable and early diagnosis of CAA and to obtain novel leads for the development of targeted therapies. Tissue inhibitor of matrix metalloproteinases 4 (TIMP4) is associated with cardiovascular functioning and disease and has been linked to vascular dementia. Using immunohistochemistry, we studied occipital brain tissue samples of 57 patients with CAA (39 without ICH and 18 with ICH) and 42 controls, and semi-quantitatively assessed expression levels of TIMP4. Patients with CAA had increased vascular expression of TIMP4 compared to controls (p < 0.001), and in these patients, TIMP4 expression correlated with CAA severity (τb = 0.38; p = 0.001). Moreover, TIMP4 expression was higher in CAA-ICH compared to CAA-non-ICH cases (p = 0.024). In a prospective cross-sectional study of 38 patients with CAA and 37 age- and sex-matched controls, we measured TIMP4 levels in cerebrospinal fluid (CSF) and serum using ELISA. Mean CSF levels of TIMP4 were decreased in patients with CAA compared to controls (3.36 ± 0.20 vs. 3.96 ± 0.22 ng/ml, p = 0.033), whereas median serum levels were increased in patients with CAA (4.51 ng/ml [IQR 3.75-5.29] vs 3.60 ng/ml [IQR 3.11-4.85], p-9.013). Moreover, mean CSF TIMP4 levels were lower in CAA patients who had experienced a symptomatic hemorrhage compared to CAA patients who did not (2.13 ± 0.24 vs. 3.57 ± 0.24 ng/ml, p = 0.007). CSF TIMP4 levels were associated with CSF levels of Aβ40 (spearman r (rs) = 0.321, p = 0.009). In summary, we show that TIMP4 is highly associated with CAA and CAA-related ICH, which is reflected by higher levels in the cerebral vasculature and lower levels in CSF. With these findings we provide novel insights into the pathophysiology of CAA, and more specifically in CAA-associated ICH.
Collapse
Affiliation(s)
- Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M De Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arno Stellingwerf
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carla Hernández Utrilla
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marc Vervuurt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
- Faculty of Medicine and Health Sciences, Translational Neurosciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Walker L, Simpson H, Thomas AJ, Attems J. Prevalence, distribution, and severity of cerebral amyloid angiopathy differ between Lewy body diseases and Alzheimer's disease. Acta Neuropathol Commun 2024; 12:28. [PMID: 38360761 PMCID: PMC10870546 DOI: 10.1186/s40478-023-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/17/2024] Open
Abstract
Dementia with Lewy bodies (DLB), Parkinson's disease dementia (PDD), and Parkinson's disease (PD) collectively known as Lewy body diseases (LBDs) are neuropathologically characterised by α-synuclein deposits (Lewy bodies and Lewy neurites). However, LBDs also exhibit pathology associated with Alzheimer's disease (AD) (i.e. hyperphosphorylated tau and amyloid β (Aβ). Aβ can be deposited in the walls of blood vessels in the brains of individuals with AD, termed cerebral amyloid angiopathy (CAA). The aim of this study was to investigate the type and distribution of CAA in DLB, PDD, and PD and determine if this differs from AD. CAA type, severity, and topographical distribution was assessed in 94 AD, 30 DLB, 17 PDD, and 11 PD cases, and APOE genotype evaluated in a subset of cases where available. 96.3% AD cases, 70% DLB cases and 82.4% PDD cases exhibited CAA (type 1 or type 2). However only 45.5% PD cases had CAA. Type 1 CAA accounted for 37.2% of AD cases, 10% of DLB cases, and 5.9% of PDD cases, and was not observed in PD cases. There was a hierarchical topographical distribution in regions affected by CAA where AD and DLB displayed the same distribution pattern that differed from PDD and PD. APOE ε4 was associated with severity of CAA in AD cases. Topographical patterns and severity of CAA in DLB more closely resembled AD rather than PDD, and as type 1 CAA is associated with clinical dementia in AD, further investigations are warranted into whether the increased presence of type 1 CAA in DLB compared to PDD are related to the onset of cognitive symptoms and is a distinguishing factor between LBDs. Possible alignment of the the topographical distribution of CAA and microbleeds in DLB warrants further investigation. CAA in DLB more closely resembles AD rather than PDD or PD, and should be taken into consideration when stratifying patients for clinical trials or designing disease modifying therapies.
Collapse
Affiliation(s)
- Lauren Walker
- Translational and Clinical Research Institute, Newcastle University, Edwardson building, Campus for Ageing and Vitality, Newcastle-upon-Tyne, NE4 5PL, UK.
| | - Harry Simpson
- Translational and Clinical Research Institute, Newcastle University, Edwardson building, Campus for Ageing and Vitality, Newcastle-upon-Tyne, NE4 5PL, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Edwardson building, Campus for Ageing and Vitality, Newcastle-upon-Tyne, NE4 5PL, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Edwardson building, Campus for Ageing and Vitality, Newcastle-upon-Tyne, NE4 5PL, UK
| |
Collapse
|
11
|
Walker L, Attems J. Prevalence of Concomitant Pathologies in Parkinson's Disease: Implications for Prognosis, Diagnosis, and Insights into Common Pathogenic Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2024; 14:35-52. [PMID: 38143370 PMCID: PMC10836576 DOI: 10.3233/jpd-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/26/2023]
Abstract
Pathologies characteristic of Alzheimer's disease (i.e., hyperphosphorylated tau and amyloid-β (Aβ) plaques), cardiovascular disease, and limbic predominant TDP-43 encephalopathy (LATE) often co-exist in patients with Parkinson's disease (PD), in addition to Lewy body pathology (α-synuclein). Numerous studies point to a putative synergistic relationship between hyperphosphorylation tau, Aβ, cardiovascular lesions, and TDP-43 with α-synuclein, which may alter the stereotypical pattern of pathological progression and accelerate cognitive decline. Here we discuss the prevalence and relationships between common concomitant pathologies observed in PD. In addition, we highlight shared genetic risk factors and developing biomarkers that may provide better diagnostic accuracy for patients with PD that have co-existing pathologies. The tremendous heterogeneity observed across the PD spectrum is most likely caused by the complex interplay between pathogenic, genetic, and environmental factors, and increasing our understanding of how these relate to idiopathic PD will drive research into finding accurate diagnostic tools and disease modifying therapies.
Collapse
Affiliation(s)
- Lauren Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
12
|
Xu Q, Yang J, Cheng F, Ning Z, Xi C, Sun Z. Changes in Multiparametric Magnetic Resonance Imaging and Plasma Amyloid-Beta Protein in Subjective Cognitive Decline. Brain Sci 2023; 13:1624. [PMID: 38137072 PMCID: PMC10742209 DOI: 10.3390/brainsci13121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The association between plasma amyloid-beta protein (Aβ) and subjective cognitive decline (SCD) remains controversial. We aimed to explore the correlation between neuroimaging findings, plasma Aβ, and neuropsychological scales using data from 53 SCD patients and 46 age- and sex-matched healthy controls (HCs). Magnetic resonance imaging (MRI) was used to obtain neuroimaging data for a whole-brain voxel-based morphometry analysis and cortical functional network topological features. The SCD group had slightly lower Montreal Cognitive Assessment (MoCA) scores than the HC group. The Aβ42 levels were significantly higher in the SCD group than in the HC group (p < 0.05). The SCD patients demonstrated reduced volumes in the left hippocampus, right rectal gyrus (REC.R), and right precentral gyrus (PreCG.R); an increased percentage fluctuation in the left thalamus (PerAF); and lower average small-world coefficient (aSigma) and average global efficiency (aEg) values. Correlation analyses with Aβ and neuropsychological scales revealed significant positive correlations between the volumes of the HIP.L, REC.R, PreCG.R, and MoCA scores. The HIP.L volume and Aβ42 were negatively correlated, as were the REC.R volume and Aβ42/40. PerAF and aSigma were negatively and positively correlated with the MoCA scores, respectively. The aEg was positively correlated with Aβ42/40. SCD patients may exhibit alterations in plasma biomarkers and multi-parameter MRI that resemble those observed in Alzheimer's disease, offering a theoretical foundation for early clinical intervention in SCD.
Collapse
Affiliation(s)
- Qiaoqiao Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Q.X.); (J.Y.)
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University (Hefei City First People’s Hospital), Hefei 230061, China; (F.C.); (Z.N.)
| | - Jiajia Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Q.X.); (J.Y.)
| | - Fang Cheng
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University (Hefei City First People’s Hospital), Hefei 230061, China; (F.C.); (Z.N.)
| | - Zhiwen Ning
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University (Hefei City First People’s Hospital), Hefei 230061, China; (F.C.); (Z.N.)
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University (Hefei City First People’s Hospital), Hefei 230061, China; (F.C.); (Z.N.)
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Q.X.); (J.Y.)
| |
Collapse
|
13
|
Aurelian S, Ciobanu A, Cărare R, Stoica SI, Anghelescu A, Ciobanu V, Onose G, Munteanu C, Popescu C, Andone I, Spînu A, Firan C, Cazacu IS, Trandafir AI, Băilă M, Postoiu RL, Zamfirescu A. Topical Cellular/Tissue and Molecular Aspects Regarding Nonpharmacological Interventions in Alzheimer's Disease-A Systematic Review. Int J Mol Sci 2023; 24:16533. [PMID: 38003723 PMCID: PMC10671501 DOI: 10.3390/ijms242216533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most complex and challenging developments at the beginning of the third millennium is the alarming increase in demographic aging, mainly-but not exclusively-affecting developed countries. This reality results in one of the harsh medical, social, and economic consequences: the continuously increasing number of people with dementia, including Alzheimer's disease (AD), which accounts for up to 80% of all such types of pathology. Its large and progressive disabling potential, which eventually leads to death, therefore represents an important public health matter, especially because there is no known cure for this disease. Consequently, periodic reappraisals of different therapeutic possibilities are necessary. For this purpose, we conducted this systematic literature review investigating nonpharmacological interventions for AD, including their currently known cellular and molecular action bases. This endeavor was based on the PRISMA method, by which we selected 116 eligible articles published during the last year. Because of the unfortunate lack of effective treatments for AD, it is necessary to enhance efforts toward identifying and improving various therapeutic and rehabilitative approaches, as well as related prophylactic measures.
Collapse
Affiliation(s)
- Sorina Aurelian
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Gerontology and Geriatrics Clinic Division, St. Luca Hospital for Chronic Illnesses, 041915 Bucharest, Romania
| | - Adela Ciobanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Roxana Cărare
- Faculty of Medicine, University of Southampton, Southampton SO16 7NS, UK;
| | - Simona-Isabelle Stoica
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Aurelian Anghelescu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Constantin Munteanu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Carmen Firan
- NeuroRehabilitation Compartment, The Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022104 Bucharest, Romania;
| | - Ioana Simona Cazacu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Andreea-Iulia Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Andreea Zamfirescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Gerontology and Geriatrics Clinic Division, St. Luca Hospital for Chronic Illnesses, 041915 Bucharest, Romania
| |
Collapse
|
14
|
Freeze WM, van Veluw SJ, Jansen WJ, Bennett DA, Jacobs HIL. Locus coeruleus pathology is associated with cerebral microangiopathy at autopsy. Alzheimers Dement 2023; 19:5023-5035. [PMID: 37095709 PMCID: PMC10593911 DOI: 10.1002/alz.13096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION We investigated the link between locus coeruleus (LC) pathology and cerebral microangiopathy in two large neuropathology datasets. METHODS We included data from the National Alzheimer's Coordinating Center (NACC) database (n = 2197) and Religious Orders Study and Rush Memory and Aging Project (ROSMAP; n = 1637). Generalized estimating equations and logistic regression were used to examine associations between LC hypopigmentation and presence of cerebral amyloid angiopathy (CAA) or arteriolosclerosis, correcting for age at death, sex, cortical Alzheimer's disease (AD) pathology, ante mortem cognitive status, and presence of vascular and genetic risk factors. RESULTS LC hypopigmentation was associated with higher odds of overall CAA in the NACC dataset, leptomeningeal CAA in the ROSMAP dataset, and arteriolosclerosis in both datasets. DISCUSSION LC pathology is associated with cerebral microangiopathy, independent of cortical AD pathology. LC degeneration could potentially contribute to the pathways relating vascular pathology to AD. Future studies of the LC-norepinephrine system on cerebrovascular health are warranted. HIGHLIGHTS We associated locus coeruleus (LC) pathology and cerebral microangiopathy in two large autopsy datasets. LC hypopigmentation was consistently related to arteriolosclerosis in both datasets. LC hypopigmentation was related to cerebral amyloid angiopathy (CAA) presence in the National Alzheimer's Coordinating Center dataset. LC hypopigmentation was related to leptomeningeal CAA in the Religious Orders Study and Rush Memory and Aging Project dataset. LC degeneration may play a role in the pathways relating vascular pathology to Alzheimer's disease.
Collapse
Affiliation(s)
- WM Freeze
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
| | - SJ van Veluw
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
- Department of Neurology, J. Philip Kistler Stroke Research Center, MGH, Boston, MA 02114, USA
| | - WJ Jansen
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
- Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | - DA Bennett
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL 60612, USA
| | - HIL Jacobs
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Uekawa K, Hattori Y, Ahn SJ, Seo J, Casey N, Anfray A, Zhou P, Luo W, Anrather J, Park L, Iadecola C. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol Neurodegener 2023; 18:73. [PMID: 37789345 PMCID: PMC10548599 DOI: 10.1186/s13024-023-00660-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a devastating condition common in patients with Alzheimer's disease but also observed in the general population. Vascular oxidative stress and neurovascular dysfunction have been implicated in CAA but the cellular source of reactive oxygen species (ROS) and related signaling mechanisms remain unclear. We tested the hypothesis that brain border-associated macrophages (BAM), yolk sac-derived myeloid cells closely apposed to parenchymal and leptomeningeal blood vessels, are the source of radicals through the Aβ-binding innate immunity receptor CD36, leading to neurovascular dysfunction, CAA, and cognitive impairment. METHODS Tg2576 mice and WT littermates were transplanted with CD36-/- or CD36+/+ bone marrow at 12-month of age and tested at 15 months. This approach enables the repopulation of perivascular and leptomeningeal compartments with CD36-/- BAM. Neurovascular function was tested in anesthetized mice equipped with a cranial window in which cerebral blood flow was monitored by laser-Doppler flowmetry. Amyloid pathology and cognitive function were also examined. RESULTS The increase in blood flow evoked by whisker stimulation (functional hyperemia) or by endothelial and smooth muscle vasoactivity was markedly attenuated in WT → Tg2576 chimeras but was fully restored in CD36-/- → Tg2576 chimeras, in which BAM ROS production was suppressed. CAA-associated Aβ1-40, but not Aβ1-42, was reduced in CD36-/- → Tg2576 chimeras. Similarly, CAA, but not parenchymal plaques, was reduced in CD36-/- → Tg2576 chimeras. These beneficial vascular effects were associated with cognitive improvement. Finally, CD36-/- mice were able to more efficiently clear exogenous Aβ1-40 injected into the neocortex or the striatum. CONCLUSIONS CD36 deletion in BAM suppresses ROS production and rescues the neurovascular dysfunction and damage induced by Aβ. CD36 deletion in BAM also reduced brain Aβ1-40 and ameliorated CAA without affecting parenchyma plaques. Lack of CD36 enhanced the vascular clearance of exogenous Aβ. Restoration of neurovascular function and attenuation of CAA resulted in a near complete rescue of cognitive function. Collectively, these data implicate brain BAM in the pathogenesis of CAA and raise the possibility that targeting BAM CD36 is beneficial in CAA and other conditions associated with vascular Aβ deposition and damage.
Collapse
Affiliation(s)
- Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - James Seo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wenjie Luo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
16
|
Zhang Y, Sun Y, Hu Y, Zheng S, Shao H, Lin L, Pan Y, Li C. Porphyromonas gingivalis msRNA P.G_45033 induces amyloid-β production by enhancing glycolysis and histone lactylation in macrophages. Int Immunopharmacol 2023; 121:110468. [PMID: 37320870 DOI: 10.1016/j.intimp.2023.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND High expression of amyloid-β (Aβ) in periodontal tissue could contribute to exacerbating the development of both periodontitis and Alzheimer's disease (AD). Porphyromonas gingivalis (P. gingivalis) as a periodontal pathogen expresses msRNAs, which can regulate gene transcription in host cells. OBJECTIVE The aim of this study is to reveal the mechanism of msRNA P.G_45033, a high copy msRNA in P. gingivalis, inducing Aβ expression in macrophages, and provide a new insight to explain the development of periodontitis, and also to explain the role of periodontal infection on AD. METHODS The levels of glucose consumption, pyruvate and lactate productions in macrophages after transfection with msRNA P.G_45033 were detected. Miranda, TargetScan, and RNAhybrid databases were used to predict the target gene of msRNA P.G_45033, and GO analysis was conducted to describe the functions of the overlapping ones. RT2 glucose-metabolism PCR Array was used to verify the relationship between msRNA P.G_45033 and the expression of genes related to glucose metabolism. The levels of histone Kla were detected using western blotting. The levels of Aβ in the macrophages and the culture medium were detected by immunofluorescence and ELISA, respectively. RESULTS The levels of glucose consumption, pyruvate and lactate productions were increased after transfection of msRNA P.G_45033 in macrophages. GO analysis revealed that target genes were enriched in the metabolic process. RT2 glucose-metabolism PCR Array showed the expression of genes associated with glycolysis. The results of western blotting showed that the level of histone Kla was increased in macrophages. The results of immunofluorescence and ELISA showed that Aβ levels in macrophages and culture medium were increased after transfection. CONCLUSION The present study revealed that msRNA P.G_45033 can induce Aβ production by enhancing glycolysis and histone Kla in macrophages.
Collapse
Affiliation(s)
- Yonghuan Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Yangyang Sun
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Ying Hu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Shaowen Zheng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Haigang Shao
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. How Many Alzheimer-Perusini's Atypical Forms Do We Still Have to Discover? Biomedicines 2023; 11:2035. [PMID: 37509674 PMCID: PMC10377159 DOI: 10.3390/biomedicines11072035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer-Perusini's (AD) disease represents the most spread dementia around the world and constitutes a serious problem for public health. It was first described by the two physicians from whom it took its name. Nowadays, we have extensively expanded our knowledge about this disease. Starting from a merely clinical and histopathologic description, we have now reached better molecular comprehension. For instance, we passed from an old conceptualization of the disease based on plaques and tangles to a more modern vision of mixed proteinopathy in a one-to-one relationship with an alteration of specific glial and neuronal phenotypes. However, no disease-modifying therapies are yet available. It is likely that the only way to find a few "magic bullets" is to deepen this aspect more and more until we are able to draw up specific molecular profiles for single AD cases. This review reports the most recent classifications of AD atypical variants in order to summarize all the clinical evidence using several discrimina (for example, post mortem neurofibrillary tangle density, cerebral atrophy, or FDG-PET studies). The better defined four atypical forms are posterior cortical atrophy (PCA), logopenic variant of primary progressive aphasia (LvPPA), behavioral/dysexecutive variant and AD with corticobasal degeneration (CBS). Moreover, we discuss the usefulness of such classifications before outlining the molecular-genetic aspects focusing on microglial activity or, more generally, immune system control of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
18
|
Uekawa K, Hattori Y, Ahn SJ, Seo J, Casey N, Anfray A, Zhou P, Luo W, Anrather J, Park L, Iadecola C. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. RESEARCH SQUARE 2023:rs.3.rs-2719812. [PMID: 37162996 PMCID: PMC10168479 DOI: 10.21203/rs.3.rs-2719812/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background: Cerebral amyloid angiopathy (CAA) is a devastating condition common in patients with Alzheimer's disease but also observed in the general population. Vascular oxidative stress and neurovascular dysfunction have been implicated in CAA but the cellular source of reactive oxygen species (ROS) and related signaling mechanisms remain unclear. We tested the hypothesis that brain border-associated macrophages (BAM), yolk sac-derived myeloid cells closely apposed to parenchymal and leptomeningeal blood vessels, are the source of radicals through the Aβ-binding innate immunity receptor CD36, leading to neurovascular dysfunction, CAA, and cognitive impairment. Methods: Tg2576 mice and WT littermates were transplanted with CD36 -/- or CD36 +/+ bone marrow at 12-month of age and tested at 15 months. This approach enables the repopulation of perivascular and leptomeningeal compartments with CD36 -/- BAM. Neurovascular function was tested in anesthetized mice equipped with a cranial window in which cerebral blood flow was monitored by laser-Doppler flowmetry. Amyloid pathology and cognitive function were also examined. Results: The increase in blood flow evoked by whisker stimulation (functional hyperemia) or by endothelial and smooth muscle vasoactivity was markedly attenuated in WT®Tg2576 chimeras but was fully restored in CD36 -/- ®Tg2576 chimeras, in which BAM ROS production was suppressed. CAA-associated Aβ 1-40 , but not Aβ 1-42 , was reduced in CD36 -/- ®Tg2576 chimeras. Similarly, CAA, but not parenchymal plaques, was reduced in CD36 -/- ®Tg2576 chimeras. These beneficial vascular effects were associated with cognitive improvement. Finally, CD36 -/- mice were able to more efficiently clear exogenous Aβ 1-40 injected into the neocortex or the striatum. Conclusions: CD36 deletion in BAM suppresses ROS production and rescues the neurovascular dysfunction and damage induced by Aβ. CD36 deletion in BAM also reduced brain Aβ 1-40 and ameliorated CAA without affecting parenchyma plaques. Lack of CD36 enhanced the vascular clearance of exogenous Aβ. Restoration of neurovascular function and attenuation of CAA resulted in a near complete rescue of cognitive function. Collectively, these data implicate CNS BAM in the pathogenesis of CAA and raise the possibility that targeting BAM CD36 is beneficial in CAA and other conditions associated with vascular Aβ deposition and damage.
Collapse
|
19
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
20
|
Liu X, Zhang G, Wei P, Hao L, Zhong L, Zhong K, Liu C, Liu P, Feng Q, Wang S, Zhang J, Tian R, Zhou L. 3D-printed collagen/silk fibroin/secretome derived from bFGF-pretreated HUCMSCs scaffolds enhanced therapeutic ability in canines traumatic brain injury model. Front Bioeng Biotechnol 2022; 10:995099. [PMID: 36091465 PMCID: PMC9449499 DOI: 10.3389/fbioe.2022.995099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The regeneration of brain tissue poses a great challenge because of the limited self-regenerative capabilities of neurons after traumatic brain injury (TBI). For this purpose, 3D-printed collagen/silk fibroin/secretome derived from human umbilical cord blood mesenchymal stem cells (HUCMSCs) pretreated with bFGF scaffolds (3D-CS-bFGF-ST) at a low temperature were prepared in this study. From an in vitro perspective, 3D-CS-bFGF-ST showed good biodegradation, appropriate mechanical properties, and good biocompatibility. In regard to vivo, during the tissue remodelling processes of TBI, the regeneration of brain tissues was obviously faster in the 3D-CS-bFGF-ST group than in the other two groups (3D-printed collagen/silk fibroin/secretome derived from human umbilical cord blood mesenchymal stem cells (3D-CS-ST) group and TBI group) by motor assay, histological analysis, and immunofluorescence assay. Satisfactory regeneration was achieved in the two 3D-printed scaffold-based groups at 6 months postsurgery, while the 3D-CS-bFGF-ST group showed a better outcome than the 3D-CS-ST group.
Collapse
Affiliation(s)
- Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Guijun Zhang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Pan Wei
- Department of Neurosurgery, The First People’s Hospital of Long Quan yi District, Chengdu, China
| | - Lifang Hao
- Department of Radiology, Liao Cheng The Third People’s Hospital, Liaocheng, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kunhon Zhong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qingbo Feng
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jianyong Zhang
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| | - Rui Tian
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| |
Collapse
|
21
|
Handa T, Sasaki H, Takao M, Tano M, Uchida Y. Proteomics-based investigation of cerebrovascular molecular mechanisms in cerebral amyloid angiopathy by the FFPE-LMD-PCT-SWATH method. Fluids Barriers CNS 2022; 19:56. [PMID: 35778717 PMCID: PMC9250250 DOI: 10.1186/s12987-022-00351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Cerebral amyloid angiopathy (CAA) occurs in 80% of patients with Alzheimer’s disease (AD) and is mainly caused by the abnormal deposition of Aβ in the walls of cerebral blood vessels. Cerebrovascular molecular mechanisms in CAA were investigated by using comprehensive and accurate quantitative proteomics. Methods Concerning the molecular mechanisms specific to CAA, formalin-fixed paraffin-embedded (FFPE) sections were prepared from patients having AD neuropathologic change (ADNC) with severe cortical Aβ vascular deposition (ADNC +/CAA +), and from patients having ADNC without vascular deposition of Aβ (ADNC +/CAA −; so called, AD). Cerebral cortical vessels were isolated from FFPE sections using laser microdissection (LMD), processed by pressure cycling technology (PCT), and applied to SWATH (sequential window acquisition of all theoretical fragment ion spectra) proteomics. Results The protein expression levels of 17 proteins in ADNC +/CAA +/H donors (ADNC +/CAA + donors with highly abundant Aβ in capillaries) were significantly different from those in ADNC +/CAA − and ADNC −/CAA − donors. Furthermore, we identified 56 proteins showing more than a 1.5-fold difference in average expression levels between ADNC +/CAA + and ADNC −/CAA − donors, and were significantly correlated with the levels of Aβ or Collagen alpha-2(VI) chain (COL6A2) (CAA markers) in 11 donors (6 ADNC +/CAA + and 5 ADNC −/CAA −). Over 70% of the 56 proteins showed ADNC +/CAA + specific changes in protein expression. The comparative analysis with brain parenchyma showed that more than 90% of the 56 proteins were vascular-specific pathological changes. A literature-based pathway analysis showed that 42 proteins are associated with fibrosis, oxidative stress and apoptosis. This included the increased expression of Heat shock protein HSP 90-alpha, CD44 antigen and Carbonic anhydrase 1 which are inhibited by potential drugs against CAA. Conclusions The combination of LMD-based isolation of vessels from FFPE sections, PCT-assisted sample processing and SWATH analysis (FFPE-LMD-PCT-SWATH method) revealed for the first time the changes in the expression of many proteins that are involved in fibrosis, ROS production and cell death in ADNC +/CAA + (CAA patients) vessels. The findings reported herein would be useful for developing a better understanding of the pathology of CAA and for promoting the discovery and development of drugs and biomarkers for CAA. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00351-x.
Collapse
Affiliation(s)
- Takumi Handa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hayate Sasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masaki Takao
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan.,Department of Clinical Laboratory, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Japan
| | - Mitsutoshi Tano
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan. .,Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
22
|
Agrawal S, Schneider JA. Vascular pathology and pathogenesis of cognitive impairment and dementia in older adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100148. [PMID: 36324408 PMCID: PMC9616381 DOI: 10.1016/j.cccb.2022.100148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
It is well recognized that brains of older people often harbor cerebrovascular disease pathology including vessel disease and vascular-related tissue injuries and that this is associated with vascular cognitive impairment and contributes to dementia. Here we review vascular pathologies, cognitive impairment, and dementia. We highlight the importance of mixed co-morbid AD/non-AD neurodegenerative and vascular pathology that has been collected in multiple clinical pathologic studies, especially in community-based studies. We also provide an update of vascular pathologies from the Rush Memory and Aging Project and Religious Orders Study cohorts with special emphasis on the differences across age in persons with and without dementia. Finally, we discuss neuropathological perspectives on the interpretation of clinical-pathological studies and emerging data in community-based studies.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
23
|
Reagan AM, Onos KD, Heuer SE, Sasner M, Howell GR. Improving mouse models for the study of Alzheimer's disease. Curr Top Dev Biol 2022; 148:79-113. [PMID: 35461569 DOI: 10.1016/bs.ctdb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease whose risk is influenced by genetic and environmental factors. Although a number of pathological hallmarks have been extensively studied over the last several decades, a complete picture of disease initiation and progression remains unclear. We now understand that numerous cell types and systems are involved in AD pathogenesis, and that this cellular profile may present differently for each individual, making the creation of relevant mouse models challenging. However, with increasingly diverse data made available by genome-wide association studies, we can identify and examine new genes and pathways involved in genetic risk for AD, many of which involve vascular health and inflammation. When developing mouse models, it is critical to assess (1) an aging timeline that represents onset and progression in humans, (2) genetic variants and context, (3) environmental factors present in human populations that result in both neuropathological and functional changes-themes that we address in this chapter.
Collapse
Affiliation(s)
| | | | - Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
24
|
Tachida Y, Miura S, Muto Y, Takuwa H, Sahara N, Shindo A, Matsuba Y, Saito T, Taniguchi N, Kawaguchi Y, Tomimoto H, Saido T, Kitazume S. Endothelial expression of human amyloid precursor protein leads to amyloid β in the blood and induces cerebral amyloid angiopathy in knock-in mice. J Biol Chem 2022; 298:101880. [PMID: 35367207 PMCID: PMC9144051 DOI: 10.1016/j.jbc.2022.101880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/03/2022] Open
Abstract
The deposition of amyloid β (Aβ) in blood vessels of the brain, known as cerebral amyloid angiopathy (CAA), is observed in most Alzheimer's disease (AD) patients. Compared with the pathology of CAA in humans, the pathology in most mouse models of AD is not as evident, making it difficult to examine the contribution of CAA to the pathogenesis of AD. On the basis of biochemical analyses that showed blood levels of soluble amyloid precursor protein (sAPP) in rats and mice were markedly lower than those measured in human samples, we hypothesized that endothelial APP expression would be markedly lower in rodents, and subsequently generated mice that specifically express human wild type APP (APP770) in endothelial cells. The resulting EC-APP770+ mice exhibited increased levels of serum Aβ and sAPP, indicating that endothelial APP makes a critical contribution to blood Aβ levels. Even though aged EC-APP770+ mice did not exhibit Aβ deposition in the cortical blood vessels, crossing these animals with APP knock-in mice (AppNL-F/NL-F) led to an expanded CAA pathology, as evidenced by increased amounts of amyloid accumulated in the cortical blood vessels. These results highlight an overlooked interplay between neuronal and endothelial APP in brain vascular Aβ deposition. We propose that these EC-APP770+:AppNL-F/NL-F mice may be useful to study the basic molecular mechanisms behind the possible breakdown of the blood-brain barrier upon administration of anti-Aβ antibodies.
Collapse
Affiliation(s)
- Yuriko Tachida
- Disease Glycomics Team, Glycobiology Research Group, Global Research Cluster, RIKEN, Saitama, Japan
| | - Saori Miura
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yui Muto
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Akihiro Shindo
- Departmen of Neurology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Glycobiology Research Group, Global Research Cluster, RIKEN, Saitama, Japan
| | - Yasushi Kawaguchi
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hidekazu Tomimoto
- Departmen of Neurology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Glycobiology Research Group, Global Research Cluster, RIKEN, Saitama, Japan; Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
25
|
Chen ZC, Gan J, Yang Y, Meng Q, Han J, Ji Y. The vascular risk factors and vascular neuropathology in subjects with autopsy-confirmed dementia with Lewy bodies. Int J Geriatr Psychiatry 2022; 37:10.1002/gps.5683. [PMID: 35128731 PMCID: PMC9124602 DOI: 10.1002/gps.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The frequency of vascular risk factors (VRFs) and the relationship between vascular pathology and cognitive function in neurodegenerative disease remains incompletely understood. OBJECTIVE The purpose of this study was to describe the frequency of VRFs and vascular pathology and explore the relationship between vascular pathology and cognitive function in dementia with Lewy bodies (DLB). METHODS This study included 363 autopsy-confirmed DLB and 753 Alzheimer's disease (AD) patients from the National Alzheimer's Coordinating Center (NACC) database. We used chi-squared test and analysis of variance to compare the VRFs and related factors in DLB and AD. Multinomial logistic regression and Spearman's correlation test were used to examine the relationship between vascular pathology and cognitive function. RESULTS No significant differences of VRFs were identified between DLB and AD. Alzheimer's disease patients had higher rates of microinfarcts (23.5% vs. 16.3%, p = 0.005) and moderate to severe amyloid angiopathy (45.9% vs. 36.1%, p = 0.002). In DLB patients, only cerebral amyloid angiopathy (CAA) pathology was negatively correlated with memory domain (r = -0.263, p < 0.001) and language (r = -0.112,p = 0.034). The rates of APOE ε4 allele carriers (60.0% vs. 44.9%, p = 0.004) and CAA pathology (45.9% vs.23.4%, p < 0.001) were much higher in the group with an intermediate likelihood of DLB than in the group with a high likelihood. There was a negative correlation between CAA pathology and memory (logical memory) in the group with an intermediate likelihood of DLB. CONCLUSION No difference of VRFs was identified between autopsy-confirmed DLB and AD. Cerebral amyloid angiopathy was shown to be an important pathology in DLB, which specifically correlated with memory and language. The groups with high and intermediate likelihood of DLB differed in terms of CAA pathology, and CAA pathology may play an important role in the development of DLB.
Collapse
Affiliation(s)
- Zhi-Chao Chen
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghuan Gan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqi Yang
- Tianjin Medical University, Tianjin, China
| | | | - Jiuyan Han
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Ji
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
26
|
Mizutani D, Tokuda H, Onuma T, Uematsu K, Nakashima D, Ueda K, Doi T, Enomoto Y, Matsushima-Nishiwaki R, Ogura S, Iida H, Kozawa O, Iwama T. Amyloid β protein negatively regulates human platelet activation induced by thrombin receptor-activating protein. Biosci Biotechnol Biochem 2022; 86:185-198. [PMID: 34849571 DOI: 10.1093/bbb/zbab201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022]
Abstract
Amyloid β protein deposition in cerebral vessels, a characteristic of Alzheimer's disease, is a risk factor for intracerebral hemorrhage. Amyloid β protein directly modulates human platelet function; however, the exact mechanism of action is unclear. Therefore, we investigated the effects of amyloid β protein on human platelet activation using an aggregometer with laser scattering. Amyloid β protein decreased platelet aggregation induced by thrombin receptor-activating protein, but not by collagen and ADP. Amyloid β protein also suppressed platelet aggregation induced by SCP0237 and A3227. Platelet-derived growth factor-AB secretion and phosphorylated-heat shock protein 27 release by thrombin receptor-activating protein were inhibited by amyloid β protein. Additionally, thrombin receptor-activating protein-induced phosphorylation of JNK and p38 MAP kinase was reduced by amyloid β protein. Collectively, our results strongly suggest that amyloid β protein negatively regulates protease-activated receptor-elicited human platelet activation. These findings may indicate a cause of intracerebral hemorrhage due to amyloid β protein.
Collapse
Affiliation(s)
- Daisuke Mizutani
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Haruhiko Tokuda
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Onuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Uematsu
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Daiki Nakashima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kyohei Ueda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
27
|
Apátiga-Pérez R, Soto-Rojas LO, Campa-Córdoba BB, Luna-Viramontes NI, Cuevas E, Villanueva-Fierro I, Ontiveros-Torres MA, Bravo-Muñoz M, Flores-Rodríguez P, Garcés-Ramirez L, de la Cruz F, Montiel-Sosa JF, Pacheco-Herrero M, Luna-Muñoz J. Neurovascular dysfunction and vascular amyloid accumulation as early events in Alzheimer's disease. Metab Brain Dis 2022; 37:39-50. [PMID: 34406560 DOI: 10.1007/s11011-021-00814-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is clinically characterized by a progressive loss of cognitive functions and short-term memory. AD patients present two distinctive neuropathological lesions: neuritic plaques and neurofibrillary tangles (NFTs), constituted of beta-amyloid peptide (Aβ) and phosphorylated and truncated tau proteins. Aβ deposits around cerebral blood vessels (cerebral amyloid angiopathy, CAA) is a major contributor to vascular dysfunction in AD. Vascular amyloid deposits could be early events in AD due to dysfunction in the neurovascular unit (NVU) and the blood-brain barrier (BBB), deterioration of the gliovascular unit, and/or decrease of cerebral blood flow (CBF). These pathological events can lead to decreased Aβ clearance, facilitate a neuroinflammatory environment as well as synaptic dysfunction and, finally, lead to neurodegeneration. Here, we review the histopathological AD hallmarks and discuss the two-hit vascular hypothesis of AD, emphasizing the role of neurovascular dysfunction as an early factor that favors vascular Aβ aggregation and neurodegeneration. Addtionally, we emphasize that pericyte degeneration is a key and early element in AD that can trigger amyloid vascular accumulation and NVU/BBB dysfunction. Further research is required to better understand the early pathophysiological mechanisms associated with NVU alteration and CAA to generate early biomarkers and timely treatments for AD.
Collapse
Affiliation(s)
- Ricardo Apátiga-Pérez
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Luis O Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - B Berenice Campa-Córdoba
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Nabil Itzi Luna-Viramontes
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | | | | | - Linda Garcés-Ramirez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - José Francisco Montiel-Sosa
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic.
| | - José Luna-Muñoz
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México.
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, República Dominicana.
| |
Collapse
|
28
|
Kurz C, Walker L, Rauchmann BS, Perneczky R. Dysfunction of the blood-brain barrier in Alzheimer's disease: evidence from human studies. Neuropathol Appl Neurobiol 2021; 48:e12782. [PMID: 34823269 DOI: 10.1111/nan.12782] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The pathological processes leading to synapse loss, neuronal loss, brain atrophy and gliosis in Alzheimer´s disease (AD) and their relation to vascular disease and immunological changes are yet to be fully explored. Amyloid-β (Aβ) aggregation, vascular damage and altered immune response interact at the blood-brain-barrier (BBB), affecting the brain endothelium and fuelling neurodegeneration. The aim of the present systematic literature review was to critically appraise and to summarise the published evidence on the clinical correlations and pathophysiological concepts of BBB damage in AD, focusing on human data. The PubMed, Cochrane, Medline and Embase databases were searched for original research articles, systematic reviews and meta-analyses, published in English language from 01/2000 to 07/2021, using the keywords Alzheimer*, amyloid-β or β-amyloid or abeta and brain-blood barrier or BBB. This review shows that specific changes of intercellular structures, reduced expression of transendothelial carriers, induction of vasoactive mediators and activation of both astroglia and monocytes/macrophages characterise blood-brain barrier damage in human AD and AD models. BBB dysfunction on magnetic resonance imaging takes place early in the disease course in AD-specific brain regions. The toxic effects of Aβ and apolipoprotein E (ApoE) are likely to induce a non-cerebral-amyloid-angiopathy-related degeneration of endothelial cells, independently of cerebrovascular disease; however, some of the observed structural changes may just arise with age. Small vessel disease, ApoE, loss of pericytes, pro-inflammatory signalling and cerebral amyloid angiopathy enhance blood-brain-barrier damage. Novel therapeutic approaches for AD, including magnetic resonance-guided focused ultrasound, aim to open the BBB, potentially leading to an improved drainage of Aβ along perivascular channels and increased elimination from the brain. In vitro treatments with ApoE-modifying agents yielded promising effects on modulating BBB function. Reducing cardiovascular risk factors represents one of the most promising interventions for dementia prevention at present. However, further research is needed to elucidate the connection of BBB damage and tau pathology, the role of pro-inflammatory mediators in draining macromolecules and cells from the cerebral parenchyma, including their contribution to cerebral amyloid angiopathy. Improved insight into these pathomechanisms may allow to shed light on the role of Aβ deposition as a primary vs. a secondary event in the complex pathogenesis of AD.
Collapse
Affiliation(s)
- Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lauren Walker
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Department of Radiology, Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Disorders (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
29
|
Kim HJ, Park D, Yun G, Kim H, Kim HG, Lee KM, Hong IK, Park KC, Lee JS, Hwang KS. Screening for cerebral amyloid angiopathy based on serological biomarkers analysis using a dielectrophoretic force-driven biosensor platform. LAB ON A CHIP 2021; 21:4557-4565. [PMID: 34724019 DOI: 10.1039/d1lc00742d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We aimed to analyze plasma amyloid-β (Aβ)1-40 and Aβ1-42 using a highly sensitive dielectrophoretic-driven biosensor platform to demonstrate the possibility of precise cerebral amyloid angiopathy (CAA) diagnosis in participants classified according to Aβ-positron emission tomography (PET) positivity and the neuroimaging criteria for CAA. We prospectively recruited 25 people with non-Alzheimer's disease (non-AD) and 19 patients with Alzheimer's disease (AD), which were further classified into the CAA- and CAA+ (possible and probable CAA) groups according to the modified Boston criteria. Patients underwent plasma Aβ analysis using a highly sensitive nano-biosensor platform, Aβ-PET scanning, and detailed neuropsychological testing. As a result, the average signal levels of Aβ1-42/1-40 differed significantly between the non-AD and AD groups, and the CAA+ group exhibited significantly higher Aβ1-40 signal levels than the CAA- group in both non-AD and AD groups. The concordance between the Aβ1-40 signal level and the neuroimaging criteria for CAA was nearly perfect, with areas under the curve of 0.954 (95% confidence interval (CI) 0.856-1.000), 0.969 (0.894-1.000), 0.867 (0.648-1.000), and 1.000 (1.000-1.000) in the non-AD/CAA- vs. non-AD/possible CAA, non-AD/CAA- vs. non-AD/probable CAA, AD/CAA- vs. AD/possible CAA, and AD/CAA- vs. AD/probable CAA groups, respectively. Higher Aβ1-40 signal levels were significantly associated with the presence of CAA according to regression analyses, and the neuroimaging pattern analysis partly supported this result. Our findings suggest that measuring plasma Aβ1-40 signal levels using a highly sensitive biosensor platform could be a useful non-invasive CAA diagnostic method.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Dongsung Park
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Gyihyaon Yun
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hongrae Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Il Ki Hong
- Department of Nuclear Medicine, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Key-Chung Park
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
30
|
Sordo L, Gunn-Moore DA. Cognitive Dysfunction in Cats: Update on Neuropathological and Behavioural Changes Plus Clinical Management. Vet Rec 2021; 188:e3. [PMID: 34651755 DOI: 10.1002/vetr.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cognitive dysfunction syndrome (CDS) is an established condition in cats that shares many similarities with human Alzheimer's disease (AD), where cognitive decline ultimately results in dementia. Cats with CDS display behavioural abnormalities, including excessive Vocalisation, altered Interaction with owners (increased affection/attention), altered Sleep-wake cycles, House-soiling, Disorientation (spatial and/or temporal), alterations in Activity, Anxiety, and/or Learning/memory deficits (i.e., VISHDAAL). These cats develop neuropathologies, such as accumulation of β-amyloid and hyperphosphorylated tau deposits. Because of its similarities to those in the brains of people with cognitive impairment and AD, the domestic cat could be a natural model for human dementia studies. It is important to diagnose CDS promptly in cats, ruling out other causes for these behavioural changes, to provide effective management. Interventions include environmental enrichment (e.g., easy access to key resources, calming pheromones), dietary supplementations (e.g., Senilife, Aktivait for cats, SAMe), specific diets (e.g., containing antioxidants, medium-chain triglycerides) and, potentially, medication (e.g., selegiline or propentofylline). This article reviews the literature about CDS in cats, its causes, neuropathology, clinical signs, diagnosis and potential management options. By doing so, it furthers our understanding of this condition and allows improved health, welfare and quality of life of affected cats.
Collapse
Affiliation(s)
- Lorena Sordo
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Roslin, UK
| | - Danièlle A Gunn-Moore
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Roslin, UK
| |
Collapse
|
31
|
He JT, Zhao X, Xu L, Mao CY. Vascular Risk Factors and Alzheimer's Disease: Blood-Brain Barrier Disruption, Metabolic Syndromes, and Molecular Links. J Alzheimers Dis 2021; 73:39-58. [PMID: 31815697 DOI: 10.3233/jad-190764] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, marked by cortical and hippocampal deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles and cognitive impairment. Studies indicate a prominent link between cerebrovascular abnormalities and the onset and progression of AD, where blood-brain barrier (BBB) dysfunction and metabolic disorders play key risk factors. Pericyte degeneration, endothelial cell damage, astrocyte depolarization, diminished tight junction integrity, and basement membrane disarray trigger BBB damage. Subsequently, the altered expression of low-density lipoprotein receptor-related protein 1 and receptor for advanced glycation end products at the microvascular endothelial cells dysregulate Aβ transport across the BBB. White matter lesions and microhemorrhages, dyslipidemia, altered brain insulin signaling, and insulin resistance contribute to tau and Aβ pathogenesis, and oxidative stress, mitochondrial damage, inflammation, and hypoperfusion serve as mechanistic links between pathophysiological features of AD and ischemia. Deregulated calcium homeostasis, voltage gated calcium channel functioning, and protein kinase C signaling are also common mechanisms for both AD pathogenesis and cerebrovascular abnormalities. Additionally, APOE polymorphic alleles that characterize impaired cerebrovascular integrity function as primary genetic determinants of AD. Overall, the current review enlightens key vascular risk factors for AD and underscores pathophysiologic relationship between AD and vascular dysfunction.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
32
|
Heterogenous deposition of β-amyloid in the brain of aged dogs. Neurobiol Aging 2020; 99:44-52. [PMID: 33422893 DOI: 10.1016/j.neurobiolaging.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 11/22/2022]
Abstract
Dogs have been used as animal models for human diseases in which there is beta-amyloid (Aβ) deposition in the central nervous system (CNS), such as Alzheimer's and cerebral amyloid angiopathy (CAA). However, many aspects of Aβ deposition in the CNS of dogs still remain unknown. This study aimed to evaluate the deposition of Aβ in different areas of the CNS of aged dogs from different breeds. Aβ was detected in the brains of aged dogs, forming either senile plaques in the neuropil of cortical gray matter or within the walls of parenchymal or leptomeningeal blood vessels. There was a positive correlation between aging and senile plaques or CAA. In dogs older than 8 years, there was no correlation between the area of Aβ plaques and age, with frontal, temporal, and occipital cortices being affected with approximately equal frequency. There was a positive correlation between Aβ deposition in vessel walls and age. Importantly, CAA was associated with the occurrence of microperivascular hemorrhages in the brains of aged dogs. In conclusion, this study demonstrated that Aβ deposition as plaques or within vessel walls are extremely heterogenous in dogs from different breeds and sizes. Although many features of this disease in dogs are similar to those observed in humans, the choice of dog breed and size as a model for human disease will substantially affect the pattern of Aβ deposition.
Collapse
|
33
|
Tachiyama K, Nakamori M, Hayashi Y, Matsushima H, Imamura E, Wakabayashi S, Urakami K. Infant critical head injury could be a remote cause of middle-aged cerebral amyloid angiopathy. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
34
|
Jung YH, Jang H, Park SB, Choe YS, Park Y, Kang SH, Lee JM, Kim JS, Kim J, Kim JP, Kim HJ, Na DL, Seo SW. Strictly Lobar Microbleeds Reflect Amyloid Angiopathy Regardless of Cerebral and Cerebellar Compartments. Stroke 2020; 51:3600-3607. [PMID: 33198580 DOI: 10.1161/strokeaha.119.028487] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE We aimed to determine whether lobar cerebellar microbleeds or concomitant lobar cerebellar and deep microbleeds, in the presence of lobar cerebral microbleeds, attribute to underlying advanced cerebral amyloid angiopathy pathology or hypertensive arteriopathy. METHODS We categorized 71 patients with suspected cerebral amyloid angiopathy markers (regardless of the presence of deep and cerebellar microbleeds) into 4 groups according to microbleed distribution: L (strictly lobar cerebral, n=33), L/LCbll (strictly lobar cerebral and strictly lobar cerebellar microbleeds, n=13), L/Cbll/D (lobar, cerebellar, and deep microbleeds, n=17), and L/D (lobar and deep, n=8). We additionally categorized patients with cerebellar microbleeds into 2 groups according to dentate nucleus involvement: strictly lobar cerebellar (n=16) and dentate (n=14). We then compared clinical characteristics, Aβ (amyloid-β) positivity on PET (positron emission tomography), magnetic resonance imaging cerebral amyloid angiopathy markers, and cerebral small vessel disease burden among groups. RESULTS The frequency of Aβ positivity was higher in the L and L/LCbll groups (81.8% and 84.6%) than in the L/Cbll/D and L/D groups (37.5% and 29.4%; P<0.001), while lacune numbers were lower in the L and L/LCbll groups (1.7±3.3 and 1.7±2.6) than in the L/Cbll/D and L/D groups (8.0±10.3 and 13.4±17.7, P=0.001). The L/LCbll group had more lobar cerebral microbleeds than the L group (93.2±121.8 versus 38.0±40.8, P=0.047). The lobar cerebellar group had a higher Aβ positivity (75% versus 28.6%, P=0.011) and lower lacune number (2.3±3.7 versus 8.6±1.2, P=0.041) than the dentate group. CONCLUSIONS Strictly lobar cerebral and cerebellar microbleeds are related to cerebral amyloid angiopathy, whereas any combination of concurrent lobar and deep microbleeds suggest hypertensive angiopathy regardless of cerebral or cerebellar compartments.
Collapse
Affiliation(s)
- Young Hee Jung
- Department of Neurology, Myongji Hospital, Hanyang University, Goyang, Korea (Y.H.J)
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.)
| | - Seong Beom Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.)
| | | | | | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.)
| | - Jong Min Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.)
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.)
| | - Jaeho Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.)
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.)
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.)
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea (D.L.N.)
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Neuroscience Center, Samsung Medical Center, Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea (H.J., S.B.P., S.H.K., J.M.L., J.S.K., J.K., J.P.K., H.J.K., D.L.N., S.W.S.).,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea (S.W.S.).,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea (S.W.S.)
| |
Collapse
|
35
|
Cisternas P, Taylor X, Perkins A, Maldonado O, Allman E, Cordova R, Marambio Y, Munoz B, Pennington T, Xiang S, Zhang J, Vidal R, Atwood B, Lasagna‐Reeves CA. Vascular amyloid accumulation alters the gabaergic synapse and induces hyperactivity in a model of cerebral amyloid angiopathy. Aging Cell 2020; 19:e13233. [PMID: 32914559 PMCID: PMC7576303 DOI: 10.1111/acel.13233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of β‐amyloid (Aβ), other amyloids are known to associate with the vasculature. Alzheimer's disease (AD) is characterized by parenchymal Aβ deposition and intracellular accumulation of tau as neurofibrillary tangles (NFTs), affecting synapses directly, leading to behavioral and physical impairment. CAA increases with age and is present in 70%–97% of individuals with AD. Studies have overwhelmingly focused on the connection between parenchymal amyloid accumulation and synaptotoxicity; thus, the contribution of vascular amyloid is mostly understudied. Here, synaptic alterations induced by vascular amyloid accumulation and their behavioral consequences were characterized using a mouse model of Familial Danish dementia (FDD), a neurodegenerative disease characterized by the accumulation of Danish amyloid (ADan) in the vasculature. The mouse model (Tg‐FDD) displays a hyperactive phenotype that potentially arises from impairment in the GABAergic synapses, as determined by electrophysiological analysis. We demonstrated that the disruption of GABAergic synapse organization causes this impairment and provided evidence that GABAergic synapses are impaired in patients with CAA pathology. Understanding the mechanism that CAA contributes to synaptic dysfunction in AD‐related dementias is of critical importance for developing future therapeutic interventions.
Collapse
Affiliation(s)
- Pablo Cisternas
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Xavier Taylor
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Abigail Perkins
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Orlando Maldonado
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Elysabeth Allman
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Ricardo Cordova
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Yamil Marambio
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Braulio Munoz
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Taylor Pennington
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Shunian Xiang
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pathology and Laboratory Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Brady Atwood
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Cristian A. Lasagna‐Reeves
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
36
|
Liu CC, Yamazaki Y, Heckman MG, Martens YA, Jia L, Yamazaki A, Diehl NN, Zhao J, Zhao N, DeTure M, Davis MD, Felton LM, Qiao W, Li Y, Li H, Fu Y, Wang N, Wren M, Aikawa T, Holm ML, Oue H, Linares C, Allen M, Carrasquillo MM, Murray ME, Petersen RC, Ertekin-Taner N, Dickson DW, Kanekiyo T, Bu G. Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer's disease. Alzheimers Dement 2020; 16:1372-1383. [PMID: 32827351 PMCID: PMC8103951 DOI: 10.1002/alz.12104] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cerebrovascular pathologies including cerebral amyloid angiopathy (CAA) and blood-brain barrier (BBB) dysregulation are prominent features in the majority of Alzheimer's disease (AD) cases. METHODS We performed neuropathologic and biochemical studies on a large, neuropathologically confirmed human AD cohort (N = 469). Amounts of endothelial tight junction proteins claudin-5 (CLDN5) and occludin (OCLN), and major AD-related molecules (amyloid beta [Aβ40], Aβ42, tau, p-tau, and apolipoprotein E) in the temporal cortex were assessed by ELISA. RESULTS Higher levels of soluble tau, insoluble p-tau, and apolipoprotein E (apoE) were independently correlated with lower levels of endothelial tight junction proteins CLDN5 and OCLN in AD brains. Although high Aβ40 levels, APOE ε4, and male sex were predominantly associated with exacerbated CAA severity, those factors did not influence tight junction protein levels. DISCUSSION Refining the molecular mechanisms connecting tau, Aβ, and apoE with cerebrovascular pathologies is critical for greater understanding of AD pathogenesis and establishing effective therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G. Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Nancy N. Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Mary D. Davis
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
37
|
Hansen D, Ling H, Lashley T, Foley JA, Strand C, Eid TM, Holton JL, Warner TT. Novel clinicopathological characteristics differentiate dementia with Lewy bodies from Parkinson's disease dementia. Neuropathol Appl Neurobiol 2020; 47:143-156. [PMID: 32720329 DOI: 10.1111/nan.12648] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) known as Lewy body dementias have overlapping clinical and neuropathological features. Neuropathology in both includes combination of Lewy body and Alzheimer's disease (AD) pathology. Cerebral amyloid angiopathy (CAA), often seen in AD, is increasingly recognized for its association with dementia. AIMS This study investigated clinical and neuropathological differences between DLB and PDD. METHODS 52 PDD and 16 DLB cases from the Queen Square Brain Bank (QSBB) for Neurological disorders were included. Comprehensive clinical data of motor and cognitive features were obtained from medical records. Neuropathological assessment included examination of CAA, Lewy body and AD pathology. RESULTS CAA was more common in DLB than in PDD (P = 0.003). The severity of CAA was greater in DLB than in PDD (P = 0.009), with significantly higher CAA scores in the parietal lobe (P = 0.043), and the occipital lobe (P = 0.008), in DLB than in PDD. The highest CAA scores were observed in cases with APOE ε4/4 and ε2/4. Survival analysis showed worse prognosis in DLB, as DLB reached each clinical milestone sooner than PDD. Absence of dyskinesia in DLB is linked to the significantly lower lifetime cumulative dose of levodopa in comparison with PDD. CONCLUSIONS This is the first study which identified prominent concurrent CAA pathology as a pathological substrate of DLB. More prominent CAA and rapid disease progression as measured by clinical milestones distinguish DLB from PDD.
Collapse
Affiliation(s)
- D Hansen
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - H Ling
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - J A Foley
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - C Strand
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T M Eid
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
38
|
Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. J Neural Transm (Vienna) 2020; 127:1229-1256. [PMID: 32740684 DOI: 10.1007/s00702-020-02232-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD), the most common form of dementia globally, classically defined a clinicopathological entity, is a heterogenous disorder with various pathobiological subtypes, currently referred to as Alzheimer continuum. Its morphological hallmarks are extracellular parenchymal β-amyloid (amyloid plaques) and intraneuronal (tau aggregates forming neurofibrillary tangles) lesions accompanied by synaptic loss and vascular amyloid deposits, that are essential for the pathological diagnosis of AD. In addition to "classical" AD, several subtypes with characteristic regional patterns of tau pathology have been described that show distinct clinical features, differences in age, sex distribution, biomarker levels, and patterns of key network destructions responsible for cognitive decline. AD is a mixed proteinopathy (amyloid and tau), frequently associated with other age-related co-pathologies, such as cerebrovascular lesions, Lewy and TDP-43 pathologies, hippocampal sclerosis, or argyrophilic grain disease. These and other co-pathologies essentially influence the clinical picture of AD and may accelerate disease progression. The purpose of this review is to provide a critical overview of AD pathology, its defining pathological substrates, and the heterogeneity among the Alzheimer spectrum entities that may provide a broader diagnostic coverage of this devastating disorder as a basis for implementing precision medicine approaches and for ultimate development of successful disease-modifying drugs for AD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
39
|
Taylor X, Cisternas P, You Y, You Y, Xiang S, Marambio Y, Zhang J, Vidal R, Lasagna-Reeves CA. A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy. J Neuroinflammation 2020; 17:223. [PMID: 32711525 PMCID: PMC7382050 DOI: 10.1186/s12974-020-01900-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of amyloid beta (Aβ), other amyloids are known to associate with the vasculature. Alzheimer’s disease (AD) is characterized by parenchymal Aβ deposition, intracellular accumulation of tau, and significant neuroinflammation. CAA increases with age and is present in 85–95% of individuals with AD. A substantial amount of research has focused on understanding the connection between parenchymal amyloid and glial activation and neuroinflammation, while associations between vascular amyloid pathology and glial reactivity remain understudied. Methods Here, we dissect the glial and immune responses associated with early-stage CAA with histological, biochemical, and gene expression analyses in a mouse model of familial Danish dementia (FDD), a neurodegenerative disease characterized by the vascular accumulation of Danish amyloid (ADan). Findings observed in this CAA mouse model were complemented with primary culture assays. Results We demonstrate that early-stage CAA is associated with dysregulation in immune response networks and lipid processing, severe astrogliosis with an A1 astrocytic phenotype, and decreased levels of TREM2 with no reactive microgliosis. Our results also indicate how cholesterol accumulation and ApoE are associated with vascular amyloid deposits at the early stages of pathology. We also demonstrate A1 astrocytic mediation of TREM2 and microglia homeostasis. Conclusion The initial glial response associated with early-stage CAA is characterized by the upregulation of A1 astrocytes without significant microglial reactivity. Gene expression analysis revealed that several AD risk factors involved in immune response and lipid processing may also play a preponderant role in CAA. This study contributes to the increasing evidence that brain cholesterol metabolism, ApoE, and TREM2 signaling are major players in the pathogenesis of AD-related dementias, including CAA. Understanding the basis for possible differential effects of glial response, ApoE, and TREM2 signaling on parenchymal plaques versus vascular amyloid deposits provides important insight for developing future therapeutic interventions.
Collapse
Affiliation(s)
- Xavier Taylor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pablo Cisternas
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yingjian You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shunian Xiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yamil Marambio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA. .,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
40
|
Jäkel L, Kuiperij HB, Gerding LP, Custers EEM, van den Berg E, Jolink WMT, Schreuder FHBM, Küsters B, Klijn CJM, Verbeek MM. Disturbed balance in the expression of MMP9 and TIMP3 in cerebral amyloid angiopathy-related intracerebral haemorrhage. Acta Neuropathol Commun 2020; 8:99. [PMID: 32631441 PMCID: PMC7336459 DOI: 10.1186/s40478-020-00972-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of the amyloid β (Aβ) protein in the cerebral vasculature and poses a major risk factor for the development of intracerebral haemorrhages (ICH). However, only a minority of patients with CAA develops ICH (CAA-ICH), and to date it is unclear which mechanisms determine why some patients with CAA are more susceptible to haemorrhage than others. We hypothesized that an imbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) contributes to vessel wall weakening. MMP9 plays a role in the degradation of various components of the extracellular matrix as well as of Aβ and increased MMP9 expression has been previously associated with CAA. TIMP3 is an inhibitor of MMP9 and increased TIMP3 expression in cerebral vessels has also been associated with CAA. In this study, we investigated the expression of MMP9 and TIMP3 in occipital brain tissue of CAA-ICH cases (n = 11) by immunohistochemistry and compared this to the expression in brain tissue of CAA cases without ICH (CAA-non-haemorrhagic, CAA-NH, n = 18). We showed that MMP9 expression is increased in CAA-ICH cases compared to CAA-NH cases. Furthermore, we showed that TIMP3 expression is increased in CAA cases compared to controls without CAA, and that TIMP3 expression is reduced in a subset of CAA-ICH cases compared to CAA-NH cases. In conclusion, in patients with CAA, a disbalance in cerebrovascular MMP9 and TIMP3 expression is associated with CAA-related ICH.
Collapse
|
41
|
Jäkel L, Biemans EA, Klijn CJ, Kuiperij HB, Verbeek MM. Reduced Influence of apoE on Aβ43 Aggregation and Reduced Vascular Aβ43 Toxicity as Compared with Aβ40 and Aβ42. Mol Neurobiol 2020; 57:2131-2141. [PMID: 31953617 PMCID: PMC7118029 DOI: 10.1007/s12035-020-01873-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
Abstract
The amyloid-β 43 (Aβ43) peptide has been shown to be abundantly expressed in Alzheimer's disease plaques, whereas only relatively low levels have been demonstrated in cerebral amyloid angiopathy (CAA). To better understand this discrepant distribution, we studied various biochemical properties of Aβ43, in comparison with Aβ40 and Aβ42. We assessed the interaction of Aβ43 with the three apoE isoforms (apoE2, apoE3, and apoE4) using SDS-PAGE/Western blotting and ELISA, aggregation propensity using thioflavin T assays, and cytotoxicity towards cerebrovascular cells using MTT assays. We found that Aβ43 did not differ from Aβ42 in its interaction with apoE, whereas Aβ40 had a significantly lower degree of interaction with apoE. At a molar ratio of 1:100 (apoE:Aβ), all apoE isoforms were comparably capable of inhibiting aggregation of Aβ40 and Aβ42, but not Aβ43. All Aβ variants had a concentration-dependent negative effect on metabolic activity of cerebrovascular cells. However, the degree of this effect differed for the three Aβ isoforms (Aβ40 > Aβ42 > Aβ43), with Aβ43 being the least cytotoxic peptide towards cerebrovascular cells. We conclude that Aβ43 has different biochemical characteristics compared with Aβ40 and Aβ42. Aggregation of Aβ43 is not inhibited by apoE, in contrast to the aggregation of Aβ40 and Aβ42. Furthermore, cerebrovascular cells are less sensitive towards Aβ43, compared with Aβ40 and Aβ42. In contrast, Aβ43 neither differed from Aβ42 in its aggregation propensity (in the absence of apoE) nor in its apoE-binding capacity. Altogether, our findings may provide an explanation for the lower levels of Aβ43 accumulation in cerebral vessel walls.
Collapse
Affiliation(s)
- Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elisanne A.L.M. Biemans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H. Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, 830 TML, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
42
|
Raposo N, Charidimou A, Roongpiboonsopit D, Onyekaba M, Gurol ME, Rosand J, Greenberg SM, Goldstein JN, Viswanathan A. Convexity subarachnoid hemorrhage in lobar intracerebral hemorrhage: A prognostic marker. Neurology 2020; 94:e968-e977. [PMID: 32019785 PMCID: PMC7238947 DOI: 10.1212/wnl.0000000000009036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate whether acute convexity subarachnoid hemorrhage (cSAH) associated with acute lobar intracerebral hemorrhage (ICH) increases the risk of ICH recurrence in patients with cerebral amyloid angiopathy (CAA). METHODS We analyzed data from a prospective cohort of consecutive survivors of acute spontaneous lobar ICH fulfilling the Boston criteria for possible or probable CAA (CAA-ICH). We analyzed baseline clinical and MRI data, including cSAH (categorized as adjacent or remote from ICH on a standardized scale), cortical superficial siderosis (cSS), and other CAA MRI markers. Multivariable Cox regression models were used to assess the association between cSAH and recurrent symptomatic ICH during follow-up. RESULTS We included 261 CAA-ICH survivors (mean age 76.2 ± 8.7 years). Of them, 166 (63.6%, 95% confidence interval [CI] 57.7%-69.5%) had cSAH on baseline MRI. During a median follow-up of 28.3 (interquartile range 7.2-57.0) months, 54 (20.7%) patients experienced a recurrent lobar ICH. In Cox regression, any cSAH, adjacent cSAH, and remote cSAH were independent predictors of recurrent ICH after adjustment for other confounders, including cSS. Incidence rate of recurrent ICH in patients with cSAH was 9.9 per 100 person-years (95% CI 7.3-13.0) compared with 1.2 per 100 person-years (95% CI 0.3-3.2) in those without cSAH (adjusted hazard ratio 7.5, 95% CI 2.6-21.1). CONCLUSION In patients with CAA-related acute ICH, cSAH (adjacent or remote from lobar ICH) is commonly observed and heralds an increased risk of recurrent ICH. cSAH may help stratify bleeding risk and should be assessed along with cSS for prognosis and clinical management.
Collapse
Affiliation(s)
- Nicolas Raposo
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand.
| | - Andreas Charidimou
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Duangnapa Roongpiboonsopit
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Michelle Onyekaba
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand
| | - M Edip Gurol
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Jonathan Rosand
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Steven M Greenberg
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Joshua N Goldstein
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Anand Viswanathan
- From the Stroke Research Center (N.R., A.C., D.R., M.O., M.E.G., J.R., S.M.G., J.N.G., A.V.), Department of Neurology, Division of Neurocritical Care and Emergency Neurology (J.R., J.N.G.), Center for Genomic Medicine (J.R.), and Henry and Allison McCance Center for Brain Health (J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse; Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Inserm, UPS, France; and Division of Neurology (D.R.), Faculty of Medicine, Department of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
43
|
Dewing JM, Carare RO, Lotery AJ, Ratnayaka JA. The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells 2019; 9:cells9010039. [PMID: 31877820 PMCID: PMC7017234 DOI: 10.3390/cells9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (A) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of A. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Roxana O. Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
44
|
The Amyloid-Tau-Neuroinflammation Axis in the Context of Cerebral Amyloid Angiopathy. Int J Mol Sci 2019; 20:ijms20246319. [PMID: 31847365 PMCID: PMC6941131 DOI: 10.3390/ijms20246319] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with the accumulation of Aβ, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis has been associated with an active immune response and perivascular deposition of hyperphosphorylated tau. Despite the fact that in Alzheimer’s disease (AD) a major focus of research has been the understanding of the connection between parenchymal amyloid plaques, tau aggregates in the form of neurofibrillary tangles (NFTs), and immune activation, the contribution of tau and neuroinflammation to neurodegeneration associated with CAA remains understudied. In this review, we discussed the existing evidence regarding the amyloid diversity in CAA and its relation to tau pathology and immune response, as well as the possible contribution of molecular and cellular mechanisms, previously associated with parenchymal amyloid in AD and AD-related dementias, to the pathogenesis of CAA. The detailed understanding of the “amyloid-tau-neuroinflammation” axis in the context of CAA could open the opportunity to develop therapeutic interventions for dementias associated with CAA that are currently being proposed for AD and AD-related dementias.
Collapse
|
45
|
Jäkel L, Boche D, Nicoll JAR, Verbeek MM. Aβ43 in human Alzheimer's disease: effects of active Aβ42 immunization. Acta Neuropathol Commun 2019; 7:141. [PMID: 31477180 PMCID: PMC6717966 DOI: 10.1186/s40478-019-0791-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropathological follow-up of patients with Alzheimer’s disease (AD) who participated in the first clinical trial of Amyloid-β 42 (Aβ42) immunization (AN1792, Elan Pharmaceuticals) has shown that immunization can induce removal of Aβ42 and Aβ40 from plaques, whereas analysis of the cerebral vessels has shown increased levels of these Aβ peptides in cerebral amyloid angiopathy (CAA). Aβ43 has been less frequently studied in AD, but its aggregation propensity and neurotoxic properties suggest it may have an important pathogenic role. In the current study we show by using immunohistochemistry that in unimmunized AD patients Aβ43 is a frequent constituent of plaques (6.0% immunostained area), similar to Aβ42 (3.9% immunostained area). Aβ43 immunostained area was significantly higher than that of Aβ40 (2.3%, p = 0.006). In addition, we show that Aβ43 is only a minor component of CAA in both parenchymal vessels (1.5 Aβ43-positive vessels per cm2 cortex vs. 5.3 Aβ42-positive vessels, p = 0.03, and 6.2 Aβ40-positive vessels, p = 0.045) and leptomeningeal vessels (5.6% Aβ43-positive vessels vs. 17.3% Aβ42-positive vessels, p = 0.007, and 27.4% Aβ40-positive vessels, p = 0.003). Furthermore, we have shown that Aβ43 is cleared from plaques after Aβ immunotherapy, similar to Aβ42 and Aβ40. Cerebrovascular Aβ43 levels did not change after immunotherapy.
Collapse
|
46
|
Ambrosini YM, Borcherding D, Kanthasamy A, Kim HJ, Willette AA, Jergens A, Allenspach K, Mochel JP. The Gut-Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review. Front Aging Neurosci 2019; 11:130. [PMID: 31275138 PMCID: PMC6591269 DOI: 10.3389/fnagi.2019.00130] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Identifying appropriate animal models is critical in developing translatable in vitro and in vivo systems for therapeutic drug development and investigating disease pathophysiology. These animal models should have direct biological and translational relevance to the underlying disease they are supposed to mimic. Aging dogs not only naturally develop a cognitive decline in many aspects including learning and memory deficits, but they also exhibit human-like individual variability in the aging process. Neurodegenerative processes that can be observed in both human and canine brains include the progressive accumulation of β-amyloid (Aβ) found as diffuse plaques in the prefrontal cortex (PFC), including the gyrus proreus (i.e., medial orbital PFC), as well as the hippocampus and the cerebral vasculature. Tau pathology, a marker of neurodegeneration and dementia progression, was also found in canine hippocampal synapses. Various epidemiological data show that human patients with neurodegenerative diseases have concurrent intestinal lesions, and histopathological changes in the gastrointestinal (GI) tract occurs decades before neurodegenerative changes. Gut microbiome alterations have also been reported in many neurodegenerative diseases including Alzheimer's (AD) and Parkinson's diseases, as well as inflammatory central nervous system (CNS) diseases. Interestingly, the dog gut microbiome more closely resembles human gut microbiome in composition and functional overlap compared to rodent models. This article reviews the physiology of the gut-brain axis (GBA) and its involvement with neurodegenerative diseases in humans. Additionally, we outline the advantages and weaknesses of current in vitro and in vivo models and discuss future research directions investigating major human neurodegenerative diseases such as AD and Parkinson's diseases using dogs.
Collapse
Affiliation(s)
- Yoko M. Ambrosini
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Dana Borcherding
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Hyun Jung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Auriel A. Willette
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
| | - Albert Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
47
|
Abstract
This chapter describes the main neuropathological features of the most common age associated neurodegenerative diseases including Alzheimer's disease, Lewy body diseases, vascular dementia and the various types of frontotemporal lobar degeneration. In addition, the more recent concepts of primary age-related tauopathy and ageing-related tau astrogliopathy as well as chronic traumatic encephalopathy are briefly described. One section is dedicated to cerebral multi-morbidity as it is becoming increasingly clear that the old brain is characterised by the presence of multiple pathologies (to varying extent) rather than by one single, disease specific pathology alone. The main aim of this chapter is to inform the reader about the neuropathological basics of age associated neurodegenerative diseases as we feel this is crucial to meaningfully interpret the vast literature that is published in the broad field of dementia research.
Collapse
Affiliation(s)
- Lauren Walker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty E McAleese
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
48
|
Prpar Mihevc S, Majdič G. Canine Cognitive Dysfunction and Alzheimer's Disease - Two Facets of the Same Disease? Front Neurosci 2019; 13:604. [PMID: 31249505 PMCID: PMC6582309 DOI: 10.3389/fnins.2019.00604] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases present a major and increasing burden in the societies worldwide. With aging populations, the prevalence of neurodegenerative diseases is increasing, yet there are no effective cures and very few treatment options are available. Alzheimer's disease is one of the most prevalent neurodegenerative conditions and although the pathology is well studied, the pathogenesis of this debilitating illness is still poorly understood. This is, among other reasons, also due to the lack of good animal models as laboratory rodents do not develop spontaneous neurodegenerative diseases and human Alzheimer's disease is only partially mimicked by transgenic rodent models. On the other hand, older dogs commonly develop canine cognitive dysfunction, a disease that is similar to Alzheimer's disease in many aspects. Dogs show cognitive deficits that could be paralleled to human symptoms such as disorientation, memory loss, changes in behavior, and in their brains, beta amyloid plaques are commonly detected both in extracellular space as senile plaques and around the blood vessels. Dogs could be therefore potentially a very good model for studying pathological process and novel treatment options for Alzheimer's disease. In the present article, we will review the current knowledge about the pathogenesis of canine cognitive dysfunction, its similarities and dissimilarities with Alzheimer's disease, and developments of novel treatments for these two diseases with a focus on canine cognitive dysfunction.
Collapse
Affiliation(s)
- Sonja Prpar Mihevc
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
- Medical Faculty, Institute for Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
49
|
A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer’s disease. Neurosci Lett 2019; 701:125-131. [DOI: 10.1016/j.neulet.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 11/22/2022]
|
50
|
Clinical significance of amyloid β positivity in patients with probable cerebral amyloid angiopathy markers. Eur J Nucl Med Mol Imaging 2019; 46:1287-1298. [DOI: 10.1007/s00259-019-04314-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
|