1
|
Nieto-Estevez V, Varma P, Mirsadeghi S, Caballero J, Gamero-Alameda S, Hosseini A, Silvosa MJ, Thodeson DM, Lybrand ZR, Giugliano M, Navara C, Hsieh J. Dual effects of ARX poly-alanine mutations in human cortical and interneuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577271. [PMID: 38328230 PMCID: PMC10849640 DOI: 10.1101/2024.01.25.577271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Infantile spasms, with an incidence of 1.6 to 4.5 per 10,000 live births, are a relentless and devastating childhood epilepsy marked by severe seizures but also leads to lifelong intellectual disability. Alarmingly, up to 5% of males with this condition carry a mutation in the Aristaless-related homeobox ( ARX ) gene. Our current lack of human-specific models for developmental epilepsy, coupled with discrepancies between animal studies and human data, underscores the gap in knowledge and urgent need for innovative human models, organoids being one of the best available. Here, we used human neural organoid models, cortical organoids (CO) and ganglionic eminences organoids (GEO) which mimic cortical and interneuron development respectively, to study the consequences of PAE mutations, one of the most prevalent mutation in ARX . ARX PAE produces a decrease expression of ARX in GEOs, and an enhancement in interneuron migration. That accelerated migration is cell autonomously driven, and it can be rescued by inhibiting CXCR4. We also found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, followed by a subsequent loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in COs derived from patients at 30 DIV and is associated with alterations in the expression of CDKN1C . Furthermore, ARX PAE assembloids had hyperactivity which were evident at early stages of development. With effective treatments for infantile spasms and developmental epilepsies still elusive, delving into the role of ARX PAE mutations in human brain organoids represents a pivotal step toward uncovering groundbreaking therapeutic strategies.
Collapse
|
2
|
Gras M, Heide S, Keren B, Valence S, Garel C, Whalen S, Jansen AC, Keymolen K, Stouffs K, Jennesson M, Poirsier C, Lesca G, Depienne C, Nava C, Rastetter A, Curie A, Cuisset L, Des Portes V, Milh M, Charles P, Mignot C, Héron D. Further characterisation of ARX-related disorders in females due to inherited or de novo variants. J Med Genet 2024; 61:103-108. [PMID: 37879892 DOI: 10.1136/jmg-2023-109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.
Collapse
Affiliation(s)
- Mathilde Gras
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Boris Keren
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Stéphanie Valence
- Unit of Pediatric Neurology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilites of rare causes » Déficiences Intellectuelles de Causes Rares, Armand-Trousseau Hospital, Paris, France
| | - Catherine Garel
- Unit of Pediatric Radiology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Sandra Whalen
- Department of Clinical Genetics and Reference Center for Rare Diseases « Developmental disorders and syndromes », APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katrien Stouffs
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mélanie Jennesson
- Pediatrics Unit, University Hospital of Reims, American Memorial Hospital, Reims, France
| | - Céline Poirsier
- UF génétique clinique, Pôle Femme-Parents-Enfants, CHU Reims, Reims, France
| | - Gaetan Lesca
- Department of Genetics, Referral Center for Developmental Anomalies and Malformative Syndromes, Centre-est HCL, Hospices Civils de Lyon, Lyon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Aurore Curie
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Laurence Cuisset
- APHP Centre Université Paris Cité, Service de Médecine Génomique des Maladies de Système et d'Organe, Cochin Hospital, Paris, France
| | - Vincent Des Portes
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Mathieu Milh
- Department of Neurology Pediatrics, AP-HM, Hôpital de la Timone, Marseille, France
| | - Perrine Charles
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| |
Collapse
|
3
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
4
|
Scalia B, Venti V, Ciccia LM, Criscione R, Lo Bianco M, Sciuto L, Falsaperla R, Zanghì A, Praticò AD. Aristaless-Related Homeobox (ARX): Epilepsy Phenotypes beyond Lissencephaly and Brain Malformations. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe Aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans and are responsible for both malformation (in particular lissencephaly) and nonmalformation complex phenotypes. The epilepsy phenotypes related to ARX mutations are West syndrome and X-linked infantile spasms, X-linked myoclonic epilepsy with spasticity and intellectual development and Ohtahara and early infantile epileptic encephalopathy syndrome, which are related in most of the cases to intellectual disability and are often drug resistant. In this article, we shortly reviewed current knowledge of the function of ARX with a particular attention on its consequences in the development of epilepsy during early childhood.
Collapse
Affiliation(s)
- Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina M. Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Criscione
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Neonatal Intensive Care unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Maeyama H, Shinmyo Y, Kawasaki H. The expression of aristaless-related homeobox in neural progenitors of gyrencephalic carnivore ferrets. Biochem Biophys Rep 2021; 26:100970. [PMID: 33732905 PMCID: PMC7941032 DOI: 10.1016/j.bbrep.2021.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
Aristaless-related homeobox (ARX) has important functions in the development of various organs including the brain. Mutations of the human ARX gene have been associated with malformations of the cerebral cortex such as microcephaly and lissencephaly. Although the expression patterns of ARX in the lissencephalic cerebral cortex of mice have been intensively investigated, those in expanded gyrencephalic brains remained unclear. Here, we show the expression patterns of ARX in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that ARX was expressed not only in intermediate progenitor (IP) cells but also in outer radial glial (oRG) cells, which are neural progenitors preferentially observed in the gyrencephalic cerebral cortex. We found that the majority of ARX-positive oRG cells expressed the proliferating cell marker Ki-67. These results may indicate that ARX in oRG cells mediates the expansion of the gyrencephalic cerebral cortex during development and evolution. We investigated the distribution of ARX in the germinal zone of the ferret cerebrum. ARX was abundantly expressed in outer radial glial (oRG) cells. Most of the ARX-positive oRG cells were positive for the proliferation marker Ki-67.
Collapse
Affiliation(s)
- Hiroki Maeyama
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
6
|
Brock S, Cools F, Jansen AC. Neuropathology of genetically defined malformations of cortical development-A systematic literature review. Neuropathol Appl Neurobiol 2021; 47:585-602. [PMID: 33480109 PMCID: PMC8359484 DOI: 10.1111/nan.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
AIMS Malformations of cortical development (MCD) include a heterogeneous spectrum of clinical, imaging, molecular and histopathological entities. While the understanding of genetic causes of MCD has improved with the availability of next-generation sequencing modalities, genotype-histopathological correlations remain limited. This is the first systematic review of molecular and neuropathological findings in patients with MCD to provide a comprehensive overview of the literature. METHODS A systematic review was performed between November 2019 and February 2020. A MEDLINE search was conducted for 132 genes previously linked to MCD in order to identify studies reporting macroscopic and/or microscopic findings in patients with a confirmed genetic cause. RESULTS Eighty-one studies were included in this review reporting neuropathological features associated with pathogenic variants in 46 genes (46/132 genes, 34.8%). Four groups emerged, consisting of (1) 13 genes with well-defined histological-genotype correlations, (2) 27 genes for which neuropathological reports were limited, (3) 5 genes with conflicting neuropathological features, and (4) 87 genes for which no histological data were available. Lissencephaly and polymicrogyria were reported most frequently. Associated brain malformations were variably present, with abnormalities of the corpus callosum as most common associated feature. CONCLUSIONS Neuropathological data in patients with MCD with a defined genetic cause are available only for a small number of genes. As each genetic cause might lead to unique histopathological features of MCD, standardised thorough neuropathological assessment and reporting should be encouraged. Histological features can help improve the understanding of the pathogenesis of MCD and generate hypotheses with impact on further research directions.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Filip Cools
- Department of Neonatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
7
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
De Mori R, Severino M, Mancardi MM, Anello D, Tardivo S, Biagini T, Capra V, Casella A, Cereda C, Copeland BR, Gagliardi S, Gamucci A, Ginevrino M, Illi B, Lorefice E, Musaev D, Stanley V, Micalizzi A, Gleeson JG, Mazza T, Rossi A, Valente EM. Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2. Brain 2019; 142:2965-2978. [PMID: 31412107 PMCID: PMC6776115 DOI: 10.1093/brain/awz247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Basal ganglia are subcortical grey nuclei that play essential roles in controlling voluntary movements, cognition and emotion. While basal ganglia dysfunction is observed in many neurodegenerative or metabolic disorders, congenital malformations are rare. In particular, dysplastic basal ganglia are part of the malformative spectrum of tubulinopathies and X-linked lissencephaly with abnormal genitalia, but neurodevelopmental syndromes characterized by basal ganglia agenesis are not known to date. We ascertained two unrelated children (both female) presenting with spastic tetraparesis, severe generalized dystonia and intellectual impairment, sharing a unique brain malformation characterized by agenesis of putamina and globi pallidi, dysgenesis of the caudate nuclei, olfactory bulbs hypoplasia, and anomaly of the diencephalic-mesencephalic junction with abnormal corticospinal tract course. Whole-exome sequencing identified two novel homozygous variants, c.26C>A; p.(S9*) and c.752A>G; p.(Q251R) in the GSX2 gene, a member of the family of homeobox transcription factors, which are key regulators of embryonic development. GSX2 is highly expressed in neural progenitors of the lateral and median ganglionic eminences, two protrusions of the ventral telencephalon from which the basal ganglia and olfactory tubercles originate, where it promotes neurogenesis while negatively regulating oligodendrogenesis. The truncating variant resulted in complete loss of protein expression, while the missense variant affected a highly conserved residue of the homeobox domain, was consistently predicted as pathogenic by bioinformatic tools, resulted in reduced protein expression and caused impaired structural stability of the homeobox domain and weaker interaction with DNA according to molecular dynamic simulations. Moreover, the nuclear localization of the mutant protein in transfected cells was significantly reduced compared to the wild-type protein. Expression studies on both patients' fibroblasts demonstrated reduced expression of GSX2 itself, likely due to altered transcriptional self-regulation, as well as significant expression changes of related genes such as ASCL1 and PAX6. Whole transcriptome analysis revealed a global deregulation in genes implicated in apoptosis and immunity, two broad pathways known to be involved in brain development. This is the first report of the clinical phenotype and molecular basis associated to basal ganglia agenesis in humans.
Collapse
Affiliation(s)
- Roberta De Mori
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | | - Danila Anello
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Silvia Tardivo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, San Giovanni Rotondo (FG), Italy
| | - Valeria Capra
- Neurosurgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Cristina Cereda
- Genomic and Postgenomic Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Brett R Copeland
- Laboratory for Pediatric Brain Diseases, Rady Children’s Institute for Genomic Medicine, University of California San Diego, Howard Hughes Medical Institute, La Jolla (CA), USA
| | - Stella Gagliardi
- Genomic and Postgenomic Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessandra Gamucci
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Monia Ginevrino
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Elisa Lorefice
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Damir Musaev
- Laboratory for Pediatric Brain Diseases, Rady Children’s Institute for Genomic Medicine, University of California San Diego, Howard Hughes Medical Institute, La Jolla (CA), USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Diseases, Rady Children’s Institute for Genomic Medicine, University of California San Diego, Howard Hughes Medical Institute, La Jolla (CA), USA
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Diseases, Rady Children’s Institute for Genomic Medicine, University of California San Diego, Howard Hughes Medical Institute, La Jolla (CA), USA
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, San Giovanni Rotondo (FG), Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enza Maria Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
10
|
Katsarou A, Moshé SL, Galanopoulou AS. INTERNEURONOPATHIES AND THEIR ROLE IN EARLY LIFE EPILEPSIES AND NEURODEVELOPMENTAL DISORDERS. Epilepsia Open 2017; 2:284-306. [PMID: 29062978 PMCID: PMC5650248 DOI: 10.1002/epi4.12062] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
GABAergic interneurons control the neural circuitry and network activity in the brain. The advances in genetics have identified genes that control the development, maturation and integration of GABAergic interneurons and implicated them in the pathogenesis of epileptic encephalopathies or neurodevelopmental disorders. For example, mutations of the Aristaless-Related homeobox X-linked gene (ARX) may result in defective GABAergic interneuronal migration in infants with epileptic encephalopathies like West syndrome (WS), Ohtahara syndrome or X-linked lissencephaly with abnormal genitalia (XLAG). The concept of "interneuronopathy", i.e. impaired development, migration or function of interneurons, has emerged as a possible etiopathogenic mechanism for epileptic encephalopathies. Treatments that enhance GABA levels, may help seizure control but do not necessarily show disease modifying effect. On the other hand, interneuronopathies can be seen in other conditions in which epilepsy may not be the primary manifestation, such as autism. In this review, we plan to outline briefly the current state of knowledge on the origin, development, and migration and integration of GABAergic interneurons, present neurodevelopmental conditions, with or without epilepsy, that have been associated with interneuronopathies and discuss the evidence linking certain types of interneuronal dysfunction with epilepsy and/or cognitive or behavioral deficits.
Collapse
Affiliation(s)
- Anna‐Maria Katsarou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
11
|
ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindin-positive cortical GABAergic interneurons. Neuroscience 2017. [PMID: 28627419 DOI: 10.1016/j.neuroscience.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Aristaless-related homeobox gene (ARX) is indispensable for interneuron development. Patients with ARX polyalanine expansion mutations of the first two tracts (namely PA1 and PA2) suffer from intellectual disability of varying severity, with seizures a frequent comorbidity. The impact of PA1 and PA2 mutations on the brain development is unknown, hindering the search for therapeutic interventions. Here, we characterized the disturbances to cortical interneuron development in mice modeling the two most common ARX polyalanine expansion mutations in human. We found a consistent ∼40-50% reduction of calbindin-positive interneurons, but not Stt+ or Cr+ interneurons, within the cortex of newborn hemizygous mice (p=0.024) for both mutant strains compared to wildtype (p=0.011). We demonstrate that this was a consequence of calbindin precursor cells being arrested or delayed at the ventral subpallium en route of tangential migration. Ex-vivo assay validated this migration deficit in PA1 cells (p=0.0002) suggesting that the defect is contributed by intrinsic loss of Arx function within migrating cells. Both humans and mice with PA1 mutations present with severe clinical features, including intellectual disability and infantile spasms. Our data further demonstrated the pathogenic mechanism was robustly shared between PA1 and PA2 mutations, as previously reported including Arx protein reduction and overlapping transcriptome profiles within the developing mouse brains. Data from our study demonstrated that cortical calbindin interneuron development and migration is negatively affected by ARX polyalanine expansion mutations. Understanding the cellular pathogenesis contributing to disease manifestation is necessary to screen efficacy of potential therapeutic interventions.
Collapse
|
12
|
Chao HT, Davids M, Burke E, Pappas JG, Rosenfeld JA, McCarty AJ, Davis T, Wolfe L, Toro C, Tifft C, Xia F, Stong N, Johnson TK, Warr CG, Yamamoto S, Adams DR, Markello TC, Gahl WA, Bellen HJ, Wangler MF, Malicdan MCV, Adams DR, Adams CJ, Alejandro ME, Allard P, Ashley EA, Bacino CA, Balasubramanyam A, Barseghyan H, Beggs AH, Bellen HJ, Bernstein JA, Bick DP, Birch CL, Boone BE, Briere LC, Brown DM, Brush M, Burrage LC, Chao KR, Clark GD, Cogan JD, Cooper CM, Craigen WJ, Davids M, Dayal JG, Dell'Angelica EC, Dhar SU, Dipple KM, Donnell-Fink LA, Dorrani N, Dorset DC, Draper DD, Dries AM, Eckstein DJ, Emrick LT, Eng CM, Esteves C, Estwick T, Fisher PG, Frisby TS, Frost K, Gahl WA, Gartner V, Godfrey RA, Goheen M, Golas GA, Goldstein DB, Gordon M“GG, Gould SE, Gourdine JPF, Graham BH, Groden CA, Gropman AL, Hackbarth ME, Haendel M, Hamid R, Hanchard NA, Handley LH, Hardee I, Herzog MR, Holm IA, Howerton EM, Jacob HJ, Jain M, Jiang YH, Johnston JM, Jones AL, Koehler AE, Koeller DM, Kohane IS, Kohler JN, Krasnewich DM, Krieg EL, Krier JB, Kyle JE, Lalani SR, Latham L, Latour YL, Lau CC, Lazar J, Lee BH, Lee H, Lee PR, Levy SE, Levy DJ, Lewis RA, Liebendorder AP, Lincoln SA, Loomis CR, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV, Malicdan MCV, Mamounas LA, Manolio TA, Markello TC, Mashid AS, Mazur P, McCarty AJ, McConkie-Rosell A, McCray AT, Metz TO, Might M, Moretti PM, Mulvihill JJ, Murphy JL, Muzny DM, Nehrebecky ME, Nelson SF, Newberry JS, Newman JH, Nicholas SK, Novacic D, Orange JS, Pallais JC, Palmer CG, Papp JC, Pena LD, Phillips JA, Posey JE, Postlethwait JH, Potocki L, Pusey BN, Ramoni RB, Rodan LH, Sadozai S, Schaffer KE, Schoch K, Schroeder MC, Scott DA, Sharma P, Shashi V, Silverman EK, Sinsheimer JS, Soldatos AG, Spillmann RC, Splinter K, Stoler JM, Stong N, Strong KA, Sullivan JA, Sweetser DA, Thomas SP, Tift CJ, Tolman NJ, Toro C, Tran AA, Valivullah ZM, Vilain E, Waggott DM, Wahl CE, Walley NM, Walsh CA, Wangler MF, Warburton M, Ward PA, Waters KM, Webb-Robertson BJM, Weech AA, Westerfield M, Wheeler MT, Wise AL, Worthe LA, Worthey EA, Yamamoto S, Yang Y, Yu G, Zornio PA. A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3. Am J Hum Genet 2017; 100:128-137. [PMID: 28017372 PMCID: PMC5223093 DOI: 10.1016/j.ajhg.2016.11.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations.
Collapse
|
13
|
Desikan RS, Barkovich AJ. Malformations of cortical development. Ann Neurol 2016; 80:797-810. [PMID: 27862206 PMCID: PMC5177533 DOI: 10.1002/ana.24793] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 01/05/2023]
Abstract
Malformations of cortical development (MCDs) compose a diverse range of disorders that are common causes of neurodevelopmental delay and epilepsy. With improved imaging and genetic methodologies, the underlying molecular and pathobiological characteristics of several MCDs have been recently elucidated. In this review, we discuss genetic and molecular alterations that disrupt normal cortical development, with emphasis on recent discoveries, and provide detailed radiological features of the most common and important MCDs. Ann Neurol 2016;80:797-810.
Collapse
Affiliation(s)
- Rahul S. Desikan
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - A. James Barkovich
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Abstract
Malformations of cortical development (MCD) represent a major cause of developmental disabilities, severe epilepsy, and reproductive disadvantage. Genes that have been associated to MCD are mainly involved in cell proliferation and specification, neuronal migration, and late cortical organization. Lissencephaly-pachygyria-severe band heterotopia are diffuse neuronal migration disorders causing severe global neurological impairment. Abnormalities of the LIS1, DCX, ARX, RELN, VLDLR, ACTB, ACTG1, TUBG1, KIF5C, KIF2A, and CDK5 genes have been associated with these malformations. More recent studies have also established a relationship between lissencephaly, with or without associated microcephaly, corpus callosum dysgenesis as well as cerebellar hypoplasia, and at times, a morphological pattern consistent with polymicrogyria with mutations of several genes (TUBA1A, TUBA8, TUBB, TUBB2B, TUBB3, and DYNC1H1), regulating the synthesis and function of microtubule and centrosome key components and hence defined as tubulinopathies. MCD only affecting subsets of neurons, such as mild subcortical band heterotopia and periventricular heterotopia, have been associated with abnormalities of the DCX, FLN1A, and ARFGEF2 genes and cause neurological and cognitive impairment that vary from severe to mild deficits. Polymicrogyria results from abnormal late cortical organization and is inconstantly associated with abnormal neuronal migration. Localized polymicrogyria has been associated with anatomo-specific deficits, including disorders of language and higher cognition. Polymicrogyria is genetically heterogeneous, and only in a small minority of patients, a definite genetic cause has been identified. Megalencephaly with normal cortex or polymicrogyria by MRI imaging, hemimegalencephaly and focal cortical dysplasia can all result from mutations in genes of the PI3K-AKT-mTOR pathway. Postzygotic mutations have been described for most MCD and can be limited to the dysplastic tissue in the less diffuse forms.
Collapse
Affiliation(s)
- Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Wash., USA
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Chachua T, Di Grazia P, Chern CR, Johnkutty M, Hellman B, Lau HA, Shakil F, Daniel M, Goletiani C, Velíšková J, Velíšek L. Estradiol does not affect spasms in the betamethasone-NMDA rat model of infantile spasms. Epilepsia 2016; 57:1326-36. [PMID: 27328917 PMCID: PMC10765244 DOI: 10.1111/epi.13434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study attempted to validate the effects of neonatal estradiol in ameliorating the spasms in the prenatally betamethasone-primed N-methyl-d-aspartate (NMDA) model of infantile spasms in rats as shown previously in a mouse Arx gene knock-in expansion model of infantile spasms. METHODS Neonatal rats prenatally exposed to betamethasone (on day 15 of pregnancy) were treated with subcutaneous 40 ng/g estradiol benzoate (EB) between postnatal days (P)3-P10 or P0-P5. A synthetic estrogen analogue, diethylstilbestrol, was used between P0 and P5 (2 μg per rat, s.c.). On P12, P13, and P15, the rats were subjected to NMDA-triggered spasms, and latency to onset and number of spasms were evaluated. Rats with EB on P3-P10 were tested after spasms in the open field, novel object recognition, and elevated plus maze to determine effects of treatment on behavior. Additional rats with P3-P10 or P0-P5 EB were investigated for γ-aminobutyric acid (GABA)ergic neurons (glutamate decarboxylase [GAD]67 expression) in the neocortex. As a positive control, a group of rats received either subcutaneous adrenocorticotropic hormone (ACTH) (2 × 0.3 mg/kg on P12 and 3 × 0.3 mg/kg on P13 and P14) or vehicle after the first episode of spasms on P12. RESULTS Neither EB treatment nor diethylstilbestrol consistently affected expression of spasms in this model, although we found a significant increase in GAD67-immunopositive cells in the neocortex after P3-P10 and P0-P5 EB treatment, consistent with a study in mice. Behavioral tests showed increase in lateralization in male rats treated with P3-P10 EB, a behavioral trait usually associated with female sex. Diethylstilbestrol treatment in male rats resulted in arrested pubertal descent of testes. ACTH had robust effects in suppressing spasms. SIGNIFICANCE Treatment of infantile spasms (IS) using neonatal EB may be justified in those cases of IS that present with detectable deficits in GABAergic neurons. In other types of IS, the efficacy of neonatal EB and its analogues is not supported.
Collapse
Affiliation(s)
- Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Paola Di Grazia
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Chian-Ru Chern
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Meenu Johnkutty
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Benjamin Hellman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Ho An Lau
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Faariah Shakil
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Margaret Daniel
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Cezar Goletiani
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
16
|
Expanding the spectrum of congenital anomalies of the diencephalic–mesencephalic junction. Neuroradiology 2015; 58:33-44. [DOI: 10.1007/s00234-015-1601-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023]
|
17
|
Moey C, Topper S, Karn M, Johnson AK, Das S, Vidaurre J, Shoubridge C. Reinitiation of mRNA translation in a patient with X-linked infantile spasms with a protein-truncating variant in ARX. Eur J Hum Genet 2015; 24:681-9. [PMID: 26306640 DOI: 10.1038/ejhg.2015.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 12/30/2022] Open
Abstract
Mutations in the Aristaless-related homeobox gene (ARX) lead to a range of X-linked intellectual disability phenotypes, with truncating variants generally resulting in severe X-linked lissencephaly with ambiguous genitalia (XLAG), and polyalanine expansions and missense variants resulting in infantile spasms. We report two male patients with early-onset infantile spasms in whom a novel c.34G>T (p.(E12*)) variant was identified in the ARX gene. A similar variant c.81C>G (p.(Y27*)), has previously been described in two affected cousins with early-onset infantile spasms, leading to reinitiation of ARX mRNA translation resulting in an N-terminal truncated protein. We show that the novel c.34G>T (p.(E12*)) variant also reinitiated mRNA translation at the next AUG codon (c.121-123 (p.M41)), producing the same N-terminally truncated protein. The production of both of these truncated proteins was demonstrated to be at markedly reduced levels using in vitro cell assays. Using luciferase reporter assays, we demonstrate that transcriptional repression capacity of ARX was diminished by both the loss of the N-terminal corepressor octapeptide domain, as a consequence of truncation, and the marked reduction in mutant protein expression. Our study indicates that premature termination mutations very early in ARX lead to reinitiation of translation to produce N-terminally truncated protein at markedly reduced levels of expression. We conclude that even low levels of N-terminally truncated ARX is sufficient to improve the patient's phenotype compared with the severe phenotype of XLAG that includes malformations of the brain and genitalia normally seen in complete loss-of-function mutations in ARX.
Collapse
Affiliation(s)
- Ching Moey
- Department of Paediatrics, School of Peadiatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Scott Topper
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mary Karn
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Soma Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Jorge Vidaurre
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Cheryl Shoubridge
- Department of Paediatrics, School of Peadiatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022392. [PMID: 25934463 DOI: 10.1101/cshperspect.a022392] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malformations of cortical development (MCDs) are an important cause of epilepsy and an extremely interesting group of disorders from the perspective of brain development and its perturbations. Many new MCDs have been described in recent years as a result of improvements in imaging, genetic testing, and understanding of the effects of mutations on the ability of their protein products to correctly function within the molecular pathways by which the brain functions. In this review, most of the major MCDs are reviewed from a clinical, embryological, and genetic perspective. The most recent literature regarding clinical diagnosis, mechanisms of development, and future paths of research are discussed.
Collapse
Affiliation(s)
- A James Barkovich
- Department of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, California 94143-0628
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer, University of Florence, Florence 50139, Italy
| |
Collapse
|
19
|
Inoue T, Kawawaki H, Kuki I, Nabatame S, Tomonoh Y, Sukigara S, Horino A, Nukui M, Okazaki S, Tomiwa K, Kimura-Ohba S, Inoue T, Hirose S, Shiomi M, Itoh M. A case of severe progressive early-onset epileptic encephalopathy: unique GABAergic interneuron distribution and imaging. J Neurol Sci 2013; 327:65-72. [PMID: 23422026 DOI: 10.1016/j.jns.2013.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/26/2012] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
Abstract
Early-onset epileptic encephalopathies include various diseases such as early-infantile epileptic encephalopathy with suppression burst. We experimentally investigated the unique clinicopathological features of a 28-month-old girl with early-onset epileptic encephalopathy. Her initial symptom was intractable epilepsy with a suppression-burst pattern of electroencephalography (EEG) from 7 days of age. The suppression-burst pattern was novel, appearing during sleep, but disappearing upon waking and after becoming 2 months old. The EEG showed multifocal spikes and altered with age. Her seizures demonstrated various clinical features and continued until death. She did not show any developmental features, including no social smiling or head control. Head MRI revealed progressive atrophy of the cerebral cortex and white matter after 1 month of age. (123)IMZ-SPECT demonstrated hypo-perfusion of the cerebral cortex, but normo-perfusion of the diencephalon and cerebellum. Such imaging information indicated GABA-A receptor dysfunction of the cerebral cortex. The genetic analyses of major neonatal epilepsies showed no mutation. The neuropathology revealed atrophy and severe edema of the cerebral cortex and white matter. GAD-immunohistochemistry exhibited imbalanced distribution of GABAergic interneurons between the striatum and cerebral cortex. The results were similar to those of focal cortical dysplasia with transmantle sign and X-linked lissencephaly with ARX mutation. We performed various metabolic examinations, detailed pathological investigations and genetic analyses, but could not identify the cause. To our knowledge, her clinical and pathological courses have never been described in the literature.
Collapse
Affiliation(s)
- T Inoue
- Department of Child Neurology, Osaka City General Hospital, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sakakibara T, Sukigara S, Otsuki T, Takahashi A, Kaneko Y, Kaido T, Saito Y, Sato N, Nakagawa E, Sugai K, Sasaki M, Goto Y, Itoh M. Imbalance of interneuron distribution between neocortex and basal ganglia: Consideration of epileptogenesis of focal cortical dysplasia. J Neurol Sci 2012; 323:128-33. [DOI: 10.1016/j.jns.2012.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/06/2012] [Accepted: 08/31/2012] [Indexed: 01/17/2023]
|
21
|
Bettella E, Di Rosa G, Polli R, Leonardi E, Tortorella G, Sartori S, Murgia A. Early-onset epileptic encephalopathy in a girl carrying a truncating mutation of the ARX gene: rethinking the ARX phenotype in females. Clin Genet 2012; 84:82-5. [PMID: 23039062 DOI: 10.1111/cge.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 11/26/2022]
Abstract
Severe early-onset epilepsy is due to a number of known causes, although a clear etiology is not identifiable in up to a third of all the cases. Pathogenic sequence variations in the ARX gene have been described almost exclusively in males, whereas heterozygous female relatives, such as mothers, sisters and even grandmothers have been largely reported as asymptomatic or mildly affected. To investigate the pathogenic role of ARX in refractory epilepsy of early onset even in females, we have screened the ARX sequence in a population of 50 female subjects affected with unexplained epileptic encephalopathy with onset in the first year of life. We report the identification of a novel truncating mutation of the coding region of the ARX gene in a girl with a structurally normal brain. Our findings confirm the role of ARX in the pathogenesis of early epilepsy and underline the importance of screening of the ARX gene in both male and female subjects with otherwise unexplained early onset epileptic encephalopathy.
Collapse
Affiliation(s)
- E Bettella
- Department of Pediatrics, Laboratory of Molecular Genetics of Neurodevelopment, University of Padua, Via Giustiniani 3, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Iwasa M, Yamagata T, Mizuguchi M, Itoh M, Matsumoto A, Hironaka M, Honda A, Momoi MY, Shimozawa N. ContiguousABCD1 DXS1357Edeletion syndrome: Report of an autopsy case. Neuropathology 2012; 33:292-8. [DOI: 10.1111/j.1440-1789.2012.01348.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Mitsuaki Iwasa
- Department of Pediatrics; Jichi Medical University; Tochigi
| | | | - Masashi Mizuguchi
- Department of Developmental Medical Sciences; Graduate School of Medicine; the University of Tokyo; Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo; Japan
| | | | | | - Ayako Honda
- Division of Genomics Research; Life Science Research Center; Gifu University; Gifu; Japan
| | | | - Nobuyuki Shimozawa
- Division of Genomics Research; Life Science Research Center; Gifu University; Gifu; Japan
| |
Collapse
|
23
|
Delayed Maturation and Differentiation of Neurons in Focal Cortical Dysplasia With the Transmantle Sign: Analysis of Layer-Specific Marker Expression. J Neuropathol Exp Neurol 2012; 71:741-9. [DOI: 10.1097/nen.0b013e318262e41a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
24
|
Beguin S, Crépel V, Aniksztejn L, Becq H, Pelosi B, Pallesi-Pocachard E, Bouamrane L, Pasqualetti M, Kitamura K, Cardoso C, Represa A. An epilepsy-related ARX polyalanine expansion modifies glutamatergic neurons excitability and morphology without affecting GABAergic neurons development. ACTA ACUST UNITED AC 2012; 23:1484-94. [PMID: 22628459 DOI: 10.1093/cercor/bhs138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epileptic encephalopathies comprise a heterogeneous group of severe infantile disorders for which the pathophysiological basis of epilepsy is inaccurately clarified by genotype-phenotype analysis. Because a deficit of GABA neurons has been found in some of these syndromes, notably in patients with X-linked lissencephaly with abnormal genitalia, epilepsy was suggested to result from an imbalance in GABAergic inhibition, and the notion of "interneuronopathy" was proposed. Here, we studied the impact of a polyalanine expansion of aristaless-related homeobox (ARX) gene, a mutation notably found in West and Ohtahara syndromes. Analysis of Arx((GCG)7/Y) knock-in mice revealed that GABA neuron development is not affected. Moreover, pyramidal cell migration and cortical layering are unaltered in these mice. Interestingly, electrophysiological recordings show that hippocampal pyramidal neurons displayed a frequency of inhibitory postsynaptic currents similar to wild-type (WT) mice. However, these neurons show a dramatic increase in the frequency of excitatory inputs associated with a remodeling of their axonal arborization, suggesting that epilepsy in Arx((GCG)7/Y)mice would result from a glutamate network remodeling. We therefore propose that secondary alterations are instrumental for the development of disease-specific phenotypes and should be considered to explain the phenotypic diversity associated with epileptogenic mutations.
Collapse
|
25
|
Faux C, Rakic S, Andrews W, Britto JM. Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 2012; 20:168-89. [PMID: 22572780 DOI: 10.1159/000334489] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of cortical activity by GABAergic interneurons is required for normal brain function and is achieved through the immense level of heterogeneity within this neuronal population. Cortical interneurons share a common origin in the ventral telencephalon, yet during the maturation process diverse subtypes are generated that form the characteristic laminar arrangement observed in the adult brain. The long distance tangential and short-range radial migration into the cortical plate is regulated by a combination of intrinsic and extrinsic signalling mechanisms, and a great deal of progress has been made to understand these developmental events. In this review, we will summarize current findings regarding the molecular control of subtype specification and provide a detailed account of the migratory cues influencing interneuron migration and lamination. Furthermore, a dysfunctional GABAergic system is associated with a number of neurological and psychiatric conditions, and some of these may have a developmental aetiology with alterations in interneuron generation and migration. We will discuss the notion of additional sources of interneuron progenitors found in human and non-human primates and illustrate how the disruption of early developmental events can instigate a loss in GABAergic function.
Collapse
Affiliation(s)
- Clare Faux
- Centre for Neuroscience, University of Melbourne, Parkville, Vic, Australia
| | | | | | | |
Collapse
|
26
|
Distinct DNA binding and transcriptional repression characteristics related to different ARX mutations. Neurogenetics 2012; 13:23-9. [PMID: 22252899 DOI: 10.1007/s10048-011-0304-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/31/2011] [Indexed: 01/04/2023]
Abstract
Mutations in the Aristaless-related homeobox gene (ARX) are associated with a wide variety of neurologic disorders including lissencephaly, hydrocephaly, West syndrome, Partington syndrome, and X-linked intellectual disability with or without epilepsy. A genotype-phenotype correlation exists for ARX mutations; however, the molecular basis for this association has not been investigated. To begin understanding the molecular basis for ARX mutations, we tested the DNA binding sequence preference and transcriptional repression activity for Arx, deletion mutants and mutants associated with various neurologic disorders. We found DNA binding preferences of Arx are influenced by the amino acid sequences adjacent to the homeodomain. Mutations in the homeodomain show a loss of DNA binding activity, while the T333N and P353R homeodomain mutants still possess DNA binding activities, although less than the wild type. Transcription repression activity, the primary function of ARX, is reduced in all mutants except the L343Q, which has no DNA binding activity and does not functionally repress Arx targets. These data indicate that mutations in the homeodomain result in not only a loss of DNA binding activity but also loss of transcriptional repression activity. Our results provide novel insights into the pathogenesis of ARX-related disorders and possible directions to pursue potential therapeutic interventions.
Collapse
|
27
|
Friocourt G, Parnavelas JG. Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation. Front Cell Neurosci 2011; 5:28. [PMID: 22355284 PMCID: PMC3280452 DOI: 10.3389/fncel.2011.00028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/08/2011] [Indexed: 11/13/2022] Open
Abstract
Mutations in the homeobox transcription factor ARX have been found to be responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Slc 12a5, Ets2, Phlda1, Egr1, Igf1, Lmo3, Sema6, Lgi1, Alk, Tgfb3, and Napb) and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b, and Slit2) in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.
Collapse
Affiliation(s)
- Gaëlle Friocourt
- Laboratory of Molecular Genetics and Histocompatibility Inserm U613, Brest, France
| | | |
Collapse
|
28
|
High-throughput analysis of promoter occupancy reveals new targets for Arx, a gene mutated in mental retardation and interneuronopathies. PLoS One 2011; 6:e25181. [PMID: 21966449 PMCID: PMC3178625 DOI: 10.1371/journal.pone.0025181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/26/2011] [Indexed: 12/11/2022] Open
Abstract
Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development. However, to date, little is known about how ARX functions as a transcription factor and the nature of its targets. To better understand its role, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified a total of 1006 gene promoters bound by Arx in transfected neuroblastoma (N2a) cells and in mouse embryonic brain. Approximately 24% of Arx-bound genes were found to show expression changes following Arx overexpression or knock-down. Several of the Arx target genes we identified are known to be important for a variety of functions in brain development and some of them suggest new functions for Arx. Overall, these results identified multiple new candidate targets for Arx and should help to better understand the pathophysiological mechanisms of intellectual disability and epilepsy associated with ARX mutations.
Collapse
|
29
|
Conti V, Marini C, Gana S, Sudi J, Dobyns WB, Guerrini R. Corpus callosum agenesis, severe mental retardation, epilepsy, and dyskinetic quadriparesis due to a novel mutation in the homeodomain of ARX. Am J Med Genet A 2011; 155A:892-7. [PMID: 21416597 DOI: 10.1002/ajmg.a.33923] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/10/2011] [Indexed: 02/06/2023]
Abstract
We report on a patient with agenesis of the corpus callosum (ACC), severe mental retardation, infantile spasms and subsequent intractable epilepsy, spastic/dyskinetic quadriparesis, severe limb contractures, and scoliosis. This complex, newly described phenotype, is due to a novel non-conservative missense mutation in the ARX homeodomain (c.1072A>T; p.R358W), inherited from the unaffected mother. Differently from previously reported non-conservative mutations falling within the same domain, p.R358W did not cause XLAG. It is therefore possible that differences in clinical manifestations between our patient and those with XLAG, are related to the different position of the amino acid substitution in the homeodomain, or to the different chemical properties introduced by the substitution itself. To test the hypothesis that the patient's mother was asymptomatic because of non-random X chromosome inactivation (XCI), we performed DNA methylation studies of the human androgen receptor gene, demonstrating skewing of the XCI ratio (85:15). The complex phenotype described here combines different traits that had previously been linked to various ARX mutations, including conservative missense mutations in the homeodomain and expansion in the first ARX polyalanine tract and contributes to the expanding pleiotropy associated with ARX mutations.
Collapse
Affiliation(s)
- Valerio Conti
- Paediatric Neurology and Neurogenetics Unit and Laboratories, Children's Hospital A. Meyer, University of Florence, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly. Acta Neuropathol 2011; 121:149-70. [PMID: 21046408 PMCID: PMC3037170 DOI: 10.1007/s00401-010-0768-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/24/2023]
Abstract
Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation.
Collapse
|
31
|
Poduri A, Lowenstein D. Epilepsy genetics--past, present, and future. Curr Opin Genet Dev 2011; 21:325-32. [PMID: 21277190 DOI: 10.1016/j.gde.2011.01.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/31/2010] [Accepted: 01/04/2011] [Indexed: 12/13/2022]
Abstract
Human epilepsy is a common and heterogeneous condition in which genetics play an important etiological role. We begin by reviewing the past history of epilepsy genetics, a field that has traditionally included studies of pedigrees with epilepsy caused by defects in ion channels and neurotransmitters. We highlight important recent discoveries that have expanded the field beyond the realm of channels and neurotransmitters and that have challenged the notion that single genes produce single disorders. Finally, we project toward an exciting future for epilepsy genetics as large-scale collaborative phenotyping studies come face to face with new technologies in genomic medicine.
Collapse
Affiliation(s)
- Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Fegan 9, Boston, MA 02115, United States.
| | | |
Collapse
|
32
|
Hammock EAD, Eagleson KL, Barlow S, Earls LR, Miller DM, Levitt P. Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain. Neural Dev 2010; 5:32. [PMID: 21122108 PMCID: PMC3006369 DOI: 10.1186/1749-8104-5-32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 12/01/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In an effort to identify genes that specify the mammalian forebrain, we used a comparative approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly expressed in embryonic C. elegans GABAergic neurons. RESULTS Bioinformatic analyses identified mouse protein homologs of these selected transcripts and their expression pattern was mapped in the mouse embryonic forebrain by in situ hybridization. A review of human homologs indicates several of these genes are potential candidates in neurodevelopmental disorders. CONCLUSIONS Our comparative approach has revealed several novel candidates that may serve as future targets for studies of mammalian forebrain development.
Collapse
Affiliation(s)
- Elizabeth AD Hammock
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kathie L Eagleson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan Barlow
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Siskin Hospital for Physical Rehabilitation, One Siskin Plaza, Chattanooga, TN 37403, USA
| | - Laurie R Earls
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David M Miller
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Pat Levitt
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
33
|
Shoubridge C, Fullston T, Gécz J. ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 2010; 31:889-900. [PMID: 20506206 DOI: 10.1002/humu.21288] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Aristaless-related homeobox gene (ARX) is one of the most frequently mutated genes in a spectrum of X-chromosome phenotypes with intellectual disability (ID) as their cardinal feature. To date, close to 100 families and isolated cases have been reported to carry 44 different mutations, the majority of these (59%) being a result of polyalanine tract expansions. At least 10 well-defined clinical entities, including Ohtahara, Partington, and Proud syndromes, X-linked infantile spasms, X-linked lissencephaly with ambiguous genitalia, X-linked myoclonic epilepsy and nonsyndromic intellectual disability have been ascertained from among the patients with ARX mutations. The striking intra- and interfamilial pleiotropy together with genetic heterogeneity (same clinical entities associated with different ARX mutations) are becoming a hallmark of ARX mutations. Although males are predominantly affected, some mutations associated with malformation phenotypes in males also show a phenotype in carrier females. Recent progress in the study of the effect of ARX mutations through sophisticated animal (mice) and cellular models begins to provide crucial insights into the molecular function of ARX and associated molecular pathology, thus guiding future inquiries into therapeutic interventions.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Department of Genetics and Molecular Pathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia.
| | | | | |
Collapse
|
34
|
Marcorelles P, Laquerrière A, Adde-Michel C, Marret S, Saugier-Veber P, Beldjord C, Friocourt G. Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes. Acta Neuropathol 2010; 120:503-15. [PMID: 20461390 DOI: 10.1007/s00401-010-0692-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 01/31/2023]
Abstract
During corticogenesis, neurons adopt different migration pathways to reach their final position. The precursors of pyramidal neurons migrate radially, whereas most of the GABA-containing interneurons are generated in the ventral telencephalon and migrate tangentially into the neocortex. Then, they use a radial migration mode to establish themselves in an inside-out manner in the neocortex, similarly to pyramidal neurons. In humans, the most severe defects in radial migration result in lissencephaly. Lately, a few studies suggested that lissencephaly was also associated with tangential neuronal migration deficits. In the present report, we investigated potential anomalies of this migration mode in three agyric/pachygyric syndromes due to defects in the LIS1, DCX and ARX genes. Immunohistochemistry was performed on paraffin-embedded supra- and infratentorial structures using calretinin, calbindin and parvalbumin antisera. The results were compared with age-matched control brain tissue. In the Miller-Dieker syndrome, GABAergic neurons were found both in upper layers of the cortex and in heterotopic positions in the intermediate zone and in ganglionic eminences. In the DCX mutant brain, few interneurons were dispersed in the cortical plate, with a massive accumulation in the intermediate zone and subventricular zone as well as in the ganglionic eminences. In the ARX-mutated brain, the cortical plate contained almost exclusively pyramidal cells and was devoid of interneurons. The ganglionic eminences and basal ganglia were poorly cellular, suggesting an interneuron production and/or differentiation defect. These data argue for different mechanisms of telencephalic tangential migration impairment in these three agyric/pachygyric syndromes.
Collapse
Affiliation(s)
- Pascale Marcorelles
- Pathology Laboratory, Pole Pathologie-Biologie, Brest University Hospital, Brest, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Itoh M, Takizawa Y, Hanai S, Okazaki S, Miyata R, Inoue T, Akashi T, Hayashi M, Goto YI. Partial loss of pancreas endocrine and exocrine cells of human ARX-null mutation: Consideration of pancreas differentiation. Differentiation 2010; 80:118-22. [DOI: 10.1016/j.diff.2010.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
36
|
Saito T, Hanai S, Takashima S, Nakagawa E, Okazaki S, Inoue T, Miyata R, Hoshino K, Akashi T, Sasaki M, Goto YI, Hayashi M, Itoh M. Neocortical layer formation of human developing brains and lissencephalies: consideration of layer-specific marker expression. ACTA ACUST UNITED AC 2010; 21:588-96. [PMID: 20624841 DOI: 10.1093/cercor/bhq125] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To investigate layer-specific molecule expression in human developing neocortices, we performed immunohistochemistry of the layer-specific markers (TBR1, FOXP1, SATB2, OTX1, CUTL1, and CTIP2), using frontal neocortices of the dorsolateral precentral gyri of 16 normal controls, aged 19 gestational weeks to 1 year old, lissencephalies of 3 Miller-Dieker syndrome (MDS) cases, 2 X-linked lissencephaly with abnormal genitalia (XLAG) cases, and 4 Fukuyama-type congenital muscular dystrophy (FCMD) cases. In the fetal period, we observed SATB2+ cells in layers II-IV, CUTL1+ cells in layers II-V, FOXP1+ cells in layer V, OTX1+ cells in layers II or V, and CTIP2+ and TBR1+ cells in layers V and VI. SATB2+ and CUTL1+ cells appeared until 3 months of age, but the other markers disappeared after birth. Neocortices of MDS and XLAG infants revealed SATB2+, CUTL1+, FOXP1+, and TBR1+ cells diffusely located in the upper layers. In fetal FCMD neocortex, neurons labeled with the layer-specific markers located over the glia limitans. The present study provided new knowledge indicating that the expression pattern of these markers in the developing human neocortex was similar to those in mice. Various lissencephalies revealed abnormal layer formation by random migration.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Human lissencephaly with cerebellar hypoplasia due to mutations in TUBA1A: expansion of the foetal neuropathological phenotype. Acta Neuropathol 2010; 119:779-89. [PMID: 20376468 DOI: 10.1007/s00401-010-0684-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Neuronal migration disorders account for a substantial number of cortical malformations, the most severe forms being represented by lissencephalies. Classical lissencephaly has been shown to result from mutations in LIS1 (PAFAH1B1; MIM#601545), DCX (Doublecortin; MIM#300121), ARX (Aristaless-related homeobox gene; MIM#300382), RELN (Reelin; MIM#600514) and VLDLR (Very low density lipoprotein receptor; MIM#224050). More recently, de novo missense mutations in the alpha-tubulin 1a gene (TUBA1A) located on chromosome 12q13.12, have also been associated with more or less severe defects of cortical development, resulting in complete agyria in the most severe cases of lissencephaly. We report here the cerebral lesions in a 36 weeks' gestation female foetus with a novel de novo missense mutation in the TUBA1A gene, presenting the most severe antenatal phenotype reported so far. Using routine immunohistochemistry and confocal microscopy, we show evidence for defects in axonal transport in addition to defects in neuronal migration and differentiation, giving new insights to the pathophysiology of this form of lissencephaly.
Collapse
|
38
|
Friocourt G, Parnavelas JG. Mutations in ARX Result in Several Defects Involving GABAergic Neurons. Front Cell Neurosci 2010; 4:4. [PMID: 20300201 PMCID: PMC2841486 DOI: 10.3389/fncel.2010.00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/24/2010] [Indexed: 01/15/2023] Open
Abstract
Genetic investigations of X-linked mental retardation have demonstrated the implication of ARX in a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities, but with associated features of dystonia and epilepsy. These investigations have in recent years directed attention to the role of this gene in brain development. Analysis of its spatio-temporal localization profile revealed expression in telencephalic structures at all stages of development, mainly restricted to populations of GABA-containing neurons. Furthermore, studies of the effects of ARX loss of function either in humans or in lines of mutant mice revealed varying defects, suggesting multiple roles of this gene during development. In particular, Arx has been shown to contribute to almost all fundamental processes of brain development: patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. In this review, we will present and discuss recent findings concerning the role of ARX in brain development and how this information will be useful to better understand the pathophysiological mechanisms of mental retardation and epilepsy associated with ARX mutations.
Collapse
Affiliation(s)
- Gaëlle Friocourt
- U613, Institut National de la Santé et de la Recherche Médicale Brest, France
| | | |
Collapse
|
39
|
Shoubridge C, Tan MH, Fullston T, Cloosterman D, Coman D, McGillivray G, Mancini GM, Kleefstra T, Gécz J. Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division. PATHOGENETICS 2010; 3:1. [PMID: 20148114 PMCID: PMC2819251 DOI: 10.1186/1755-8417-3-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/05/2010] [Indexed: 01/21/2023]
Abstract
Background Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe malformation phenotypes, such as X-linked lissencephaly with ambiguous genitalia (XLAG), are frequently observed in individuals with protein truncating or missense mutations clustered in the highly conserved paired-type homeodomain. Results We have identified two novel point mutations in the R379 residue of the ARX homeodomain; c.1135C>A, p.R379S in a patient with infantile spasms and intellectual disability and c.1136G>T, p.R379L in a patient with XLAG. We investigated these and other missense mutations (R332P, R332H, R332C, T333N: associated with XLAG and Proud syndrome) predicted to affect the nuclear localisation sequences (NLS) flanking either end of the ARX homeodomain. The NLS regions are required for correct nuclear import facilitated by Importin 13 (IPO13). We demonstrate that missense mutations in either the N- or C-terminal NLS regions of the homeodomain cause significant disruption to nuclear localisation of the ARX protein in vitro. Surprisingly, none of these mutations abolished the binding of ARX to IPO13. This was confirmed by co-immunoprecipitation and immmuno fluorescence studies. Instead, tagged and endogenous IPO13 remained bound to the mutant ARX proteins, even in the RanGTP rich nuclear environment. We also identify the microtubule protein TUBA1A as a novel interacting protein for ARX and show cells expressing mutant ARX protein accumulate in mitosis, indicating normal cell division may be disrupted. Conclusions We show that the most likely, common pathogenic mechanism of the missense mutations in NLS regions of the ARX homeodomain is inadequate accumulation and distribution of the ARX transcription factor within the nucleus due to sequestration of ARX with IPO13.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Department of Genetics and Molecular Pathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Naegele JR. Westward Ho! Pioneering Mouse Models for X-Linked Infantile Spasms Syndrome. Epilepsy Curr 2010; 10:24-7. [DOI: 10.1111/j.1535-7511.2009.01343.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Targeted Loss of Arx Results in a Developmental Epilepsy Mouse Model and Recapitulates the Human Phenotype in Heterozygous Females. Marsh E, Fulp C, Gomez E, Nasrallah I, Minarcik J, Sudi J, Christian SL, Mancini G, Labosky P, Dobyns W, Brooks-Kayal A, Golden JA. Brain 2009;132(Pt 6):1563–1576. Mutations in the X-linked aristaless-related homeobox gene (ARX) have been linked to structural brain anomalies as well as multiple neurocognitive deficits. The generation of Arx-deficient mice revealed several morphological anomalies, resembling those observed in patients and an interneuron migration defect but perinatal lethality precluded analyses of later phenotypes. Interestingly, many of the neurological phenotypes observed in patients with various ARX mutations can be attributed, in part, to interneuron dysfunction. To directly test this possibility, mice carrying a floxed –Arx allele were generated and crossed to Dlx5/6 CRE-IRES-GFP( Dlx5/6 CIG ) mice, conditionally deleting Arx from ganglionic eminence derived neurons including cortical interneurons. We now report that Arx- /y; Dlx5/6 CIG (male) mice exhibit a variety of seizure types beginning in early-life, including seizures that behaviourally and electroencephalographically resembles infantile spasms, and show evolution through development. Thus, this represents a new genetic model of a malignant form of paediatric epilepsy, with some characteristics resembling infantile spasms, caused by mutations in a known infantile spasms gene. Unexpectedly, approximately half of the female mice carrying a single mutant Arx allele ( Arx-/+; Dlx5/6 CIG) also developed seizures. We also found that a subset of human female carriers have seizures and neurocognitive deficits. In summary, we have identified a previously unrecognized patient population with neurological deficits attributed to ARX mutations that are recapitulated in our mouse model. Furthermore, we show that perturbation of interneuron subpopulations is an important mechanism underling the pathogenesis of developmental epilepsy in both hemizygous males and carrier females. Given the frequency of ARX mutations in patients with infantile spasms and related disorders, our data unveil a new model for further understanding the pathogenesis of these disorders. A Triplet Repeat Expansion Genetic Mouse Model of Infantile Spasms Syndrome, Arx(GCG)10+7, with Interneuronopathy, Spasms in Infancy, Persistent Seizures, and Adult Cognitive and Behavioral Impairment. Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD Jr, Noebels JL. J Neurosci 2009;29(27):8752–8763. Infantile spasms syndrome (ISS) is a catastrophic pediatric epilepsy with motor spasms, persistent seizures, mental retardation, and in some cases, autism. One of its monogenic causes is an insertion mutation [c.304ins (GCG)7] on the X chromosome, expanding the first polyalanine tract of the interneuron-specific transcription factor Aristaless-related homeobox (ARX) from 16 to 23 alanine codons. Null mutation of the Arx gene impairs GABA and cholinergic interneuronal migration but results in a neonatal lethal phenotype. We developed the first viable genetic mouse model of ISS that spontaneously recapitulates salient phenotypic features of the human triplet repeat expansion mutation. Arx(GCG)10+7 (“ Arx plus 7”) pups display abnormal spasm-like myoclonus and other key EEG features, including multifocal spikes, electrodecremental episodes, and spontaneous seizures persisting into maturity. The neurobehavioral profile of Arx mutants was remarkable for lowered anxiety, impaired associative learning, and abnormal social interaction. Laminar decreases of Arx+ cortical interneurons and a selective reduction of calbindin-, but not parvalbumin- or calretinin-expressing interneurons in neo-cortical layers and hippocampus indicate that specific classes of synaptic inhibition are missing from the adult forebrain, providing a basis for the seizures and cognitive disorder. A significant reduction of calbindin-, NPY (neuropeptide Y)-expressing, and cholinergic interneurons in the mutant striatum suggest that dysinhibition within this network may contribute to the dyskinetic motor spasms. This mouse model narrows the range of critical pathogenic elements within brain inhibitory networks essential to recreate this complex neurodevelopmental syndrome.
Collapse
|
41
|
Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity. Dev Biol 2009; 334:59-71. [PMID: 19627984 DOI: 10.1016/j.ydbio.2009.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 05/28/2009] [Accepted: 07/06/2009] [Indexed: 12/17/2022]
Abstract
The homeobox-containing gene Arx is expressed during ventral telencephalon development and required for correct GABAergic interneuron tangential migration from the ganglionic eminences to the olfactory bulbs, cerebral cortex and striatum. Its human ortholog is associated with a variety of neurological clinical manifestations whose symptoms are compatible with the loss of cortical interneurons and altered basal ganglia-related activities. Herein, we report the identification of a number of genes whose expression is consistently altered in Arx mutant ganglionic eminences. Our analyses revealed a striking ectopic expression in the ganglionic eminences of several of these genes normally at most marginally expressed in the ventral telencephalon. Among them, Ebf3 was functionally analyzed. Thus, its ectopic expression in ventral telencephalon was found to prevent neuronal tangential migration. Further, we showed that Arx is sufficient to repress Ebf3 endogenous expression and that its silencing in Arx mutant tissues partially rescues tangential cell movement. Together, these data provide new insights into the molecular pathways regulated by Arx during telencephalon development.
Collapse
|
42
|
Kitamura K, Itou Y, Yanazawa M, Ohsawa M, Suzuki-Migishima R, Umeki Y, Hohjoh H, Yanagawa Y, Shinba T, Itoh M, Nakamura K, Goto YI. Three human ARX mutations cause the lissencephaly-like and mental retardation with epilepsy-like pleiotropic phenotypes in mice. Hum Mol Genet 2009; 18:3708-24. [PMID: 19605412 DOI: 10.1093/hmg/ddp318] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ARX (the aristaless-related homeobox gene) is a transcription factor that participates in the development of GABAergic and cholinergic neurons in the forebrain. Many ARX mutations have been identified in X-linked lissencephaly and mental retardation with epilepsy, and thus ARX is considered to be a causal gene for the two syndromes although the neurobiological functions of each mutation remain unclear. We attempted to elucidate the causal relationships between individual ARX mutations and disease phenotypes by generating a series of mutant mice. We generated three types of mice with knocked-in ARX mutations associated with X-linked lissencephaly (P353R) and mental retardation [P353L and 333ins(GCG)7]. Mice with the P355R mutation (equivalent to the human 353 position) that died after birth were significantly different in Arx transcript/protein amounts, GABAergic and cholinergic neuronal development, brain morphology and lifespan from mice with P355L and 330ins(GCG)7 but considerably similar to Arx-deficient mice with truncated ARX mutation in lissencephaly. Mice with the 330ins(GCG)7 mutation showed severe seizures and impaired learning performance, whereas mice with the P355L mutation exhibited mild seizures and only slightly impaired learning performance. Both types of mutant mice exhibited the mutation-specific lesser presence of GABAergic and cholinergic neurons in the striatum, medial septum and ventral forebrain nuclei when compared with wild-type mice. Present findings that reveal a causal relationship between ARX mutations and the pleiotropic phenotype in mice, suggest that the ARX-related syndrome, including lissencephaly or mental retardation, is caused by only the concerned ARX mutations without the involvement of other genetic factors.
Collapse
Affiliation(s)
- Kunio Kitamura
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Spalice A, Parisi P, Nicita F, Pizzardi G, Del Balzo F, Iannetti P. Neuronal migration disorders: clinical, neuroradiologic and genetics aspects. Acta Paediatr 2009; 98:421-33. [PMID: 19120042 DOI: 10.1111/j.1651-2227.2008.01160.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Disorders of neuronal migration are a heterogeneous group of disorders of nervous system development. One of the most frequent disorders is lissencephaly, characterized by a paucity of normal gyri and sulci resulting in a 'smooth brain'. There are two pathologic subtypes: classical and cobblestone. Six different genes could be responsible for this entity (LIS1, DCX, TUBA1A, VLDLR, ARX, RELN), although co-delection of YWHAE gene with LIS1 could result in Miller-Dieker Syndrome. Heterotopia is defined as a cluster of normal neurons in abnormal locations, and divided into three main groups: periventricular nodular heterotopia, subcortical heterotopia and marginal glioneural heterotopia. Genetically, heterotopia is related to Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2) genes mutations. Polymicrogyria is described as an augmentation of small circonvolutions separated by shallow enlarged sulci; bilateral frontoparietal form is characterized by bilateral, symmetric polymicrogyria in the frontoparietal regions. Bilateral perisylvian polymicrogyria results in a clinical syndrome manifested by mild mental retardation, epilepsy and pseudobulbar palsy. Gene mutations linked to this disorder are SRPX2, PAX6, TBR2, KIAA1279, RAB3GAP1 and COL18A1. Schizencephaly, consisting in a cleft of cerebral hemisphere connecting extra-axial subaracnoid spaces and ventricles, is another important disorder of neuronal migration whose clinical characteristics are extremely variable. EMX2 gene could be implicated in its genesis. Focal cortical dysplasia is characterized by three different types of altered cortical laminations, and represents one of most severe cause of epilepsy in children. TSC1 gene could play a role in its etiology. CONCLUSION This review reports the main clinical, genetical and neuroradiological aspects of these disorders. It is hoped that accumulating data of the development mechanisms underlying the expanded network formation in the brain will lead to the development of therapeutic options for neuronal migration disorders.
Collapse
Affiliation(s)
- Alberto Spalice
- Department of Paediatrics, Division of Child Neurology, University of Rome La Sapienza, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Neuronal migration disorders. Neurobiol Dis 2009; 38:154-66. [PMID: 19245832 DOI: 10.1016/j.nbd.2009.02.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/21/2009] [Accepted: 02/06/2009] [Indexed: 01/08/2023] Open
Abstract
Lissencephaly-pachygyria-severe band heterotopia are diffuse neuronal migration disorders (NMDs) causing severe, global neurological impairment. Abnormalities of the LIS1, DCX, ARX, TUBA1A and RELN genes have been associated with these malformations. NMDs only affecting subsets of neurons, such as mild subcortical band heterotopia and periventricular heterotopia, cause neurological and cognitive impairment that vary from severe to mild deficits. They have been associated with abnormalities of the DCX, FLN1A, and ARFGEF2 genes. Polymicrogyria results from abnormal late cortical organization and is inconstantly associated with abnormal neuronal migration. Localized polymicrogyria has been associated with anatomo-specific deficits, including disorders of language and higher cognition. Polymicrogyria is genetically heterogeneous and only in a small minority of patients a definite genetic cause has been identified. Mutations of the GPR56 and SRPX2 genes have been related to isolated polymicrogyria. Focal migration abnormalities associated with abnormal cell types, such as focal cortical dysplasia, are highly epileptogenic and variably influence the functioning of the affected cortex. The functional consequences of abnormal neuronal migration are still poorly understood. Conservation of function in the malformed cortex, its atypical representation, and relocation outside the malformed area are all possible. Localization of function based on anatomic landmarks may not be reliable.
Collapse
|
45
|
Itoh M. An 11-month-old boy with intractable epilepsy from birth. Neuropathology 2008; 29:196-9. [PMID: 19019176 DOI: 10.1111/j.1440-1789.2008.00982.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|