1
|
Koch R, Nagoshi E. Examining the potential involvement of NONO in TDP-43 proteinopathy in Drosophila. Eur J Neurosci 2025; 61:e16632. [PMID: 39690447 DOI: 10.1111/ejn.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024]
Abstract
The misfolding and aggregation of TAR DNA binding protein-43 (TDP-43), leading to the formation of cytoplasmic inclusions, emerge as a key pathological feature in a spectrum of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). TDP-43 shuttles between the nucleus and cytoplasm but forms nuclear bodies (NBs) in response to stress. These NBs partially colocalise with nuclear speckles and paraspeckles that sequester RNAs and proteins, thereby regulating many cellular functions. The laboratory of Steven Brown has recently found that the non-POU domain-containing octamer-binding protein (NONO), a component of paraspeckles, forms novel nuclear speckle-like structures in mouse cortical neurons in response to stress and sleep deprivation. These findings suggest the possibility of a functional link between NONO and TDP-43, potentially contributing to TDP-43 proteinopathy. Here, we demonstrate that pathological phenotypes caused by TDP-43 gain of function-locomotor defects and life span shortening-are exacerbated by silencing the Drosophila homolog of NONO, no on or off transient A (NonA). Additionally, NonA silencing results in an increase in nuclear TDP-43 NBs. These results provide supporting evidence for the functional link between NONO and TDP-43 and lay the foundation for dissecting underlying mechanisms.
Collapse
Affiliation(s)
- Rafael Koch
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Bampton A, McHutchison C, Talbot K, Benatar M, Thompson AG, Turner MR. The Basis of Cognitive and Behavioral Dysfunction in Amyotrophic Lateral Sclerosis. Brain Behav 2024; 14:e70115. [PMID: 39501538 PMCID: PMC11538089 DOI: 10.1002/brb3.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE To summarize and evaluate evidence pertaining to the clinical, genetic, histopathological, and neuroimaging correlates of cognitive and behavioral dysfunction in amyotrophic lateral sclerosis (ALS). METHODOLOGY We comprehensively reviewed the literature on cognitive and behavioral manifestations of ALS, narrating findings from both cross-sectional and longitudinal studies. We discussed knowledge gaps in the evidence base and key limitations affecting studies to date, before formulating a framework for future research paradigms aimed at investigating clinicopathological correlates of neuropsychological dysfunction in ALS. RESULTS Studies have demonstrated clinical associations with cognitive dysfunction in ALS e.g., bulbar-onset of symptoms, pathological associations (extramotor TDP-43 deposition), and imaging associations (frontotemporal involvement). The most common behavioral deficit, apathy, is highly associated with verbal fluency, but longitudinal studies assessing behavioral dysfunction in ALS are comparatively lacking. CONCLUSION Longitudinal studies have been helpful in identifying several potential correlates of cognitive and behavioral dysfunction but have frequently been confounded by selection bias and inappropriate testing platforms. This review provides a framework for more robust assessment of clinicopathological associations of neuropsychological abnormalities in ALS in the future, advocating for greater utilization of pre-symptomatic C9orf72 repeat expansion-carrying cohorts.
Collapse
Affiliation(s)
- Alexander Bampton
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | | - Kevin Talbot
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Michael Benatar
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | | | - Martin R. Turner
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Chevalier E, Audrain M, Ratnam M, Ollier R, Fuchs A, Piorkowska K, Pfeifer A, Kosco-Vilbois M, Seredenina T, Afroz T. Targeting the TDP-43 low complexity domain blocks spreading of pathology in a mouse model of ALS/FTD. Acta Neuropathol Commun 2024; 12:156. [PMID: 39363348 PMCID: PMC11448013 DOI: 10.1186/s40478-024-01867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Abnormal cytoplasmic localization and accumulation of pathological transactive response DNA binding protein of 43 kDa (TDP-43) underlies several devastating diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). A key element is the correlation between disease progression and spatio-temporal propagation of TDP-43-mediated pathology in the central nervous system. Several lines of evidence support the concept of templated aggregation and cell to cell spreading of pathological TDP-43. To further investigate this mechanism in vivo, we explored the efficacy of capturing and masking the seeding-competent region of extracellular TDP-43 species. For this, we generated a novel monoclonal antibody (mAb), ACI-6677, that targets the pathogenic protease-resistant amyloid core of TDP-43. ACI-6677 has a picomolar binding affinity for TDP-43 and is capable of binding to all C-terminal TDP-43 fragments. In vitro, ACI-6677 inhibited TDP-43 aggregation and boosted removal of pathological TDP-43 aggregates by phagocytosis. When injecting FTLD-TDP brain extracts unilaterally in the CamKIIa-hTDP-43NLSm mouse model, ACI-6677 significantly limited the induction of phosphorylated TDP-43 (pTDP-43) inclusions. Strikingly, on the contralateral side, the mAb significantly prevented pTDP-43 inclusion appearance exemplifying blocking of the spreading process. Taken together, these data demonstrate for the first time that an immunotherapy targeting the protease-resistant amyloid core of TDP-43 has the potential to restrict spreading, substantially slowing or stopping progression of disease.
Collapse
Affiliation(s)
- Elodie Chevalier
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Mickael Audrain
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Monisha Ratnam
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Romain Ollier
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Aline Fuchs
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Kasia Piorkowska
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | | | - Tamara Seredenina
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland.
| | - Tariq Afroz
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
Ferro F, Wolf CR, Henstridge C, Inesta-Vaquera F. Novel in vivo TDP-43 stress reporter models to accelerate drug development in ALS. Open Biol 2024; 14:240073. [PMID: 39471842 PMCID: PMC11521617 DOI: 10.1098/rsob.240073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
The development of therapies to combat neurodegenerative diseases is widely recognized as a research priority. Despite recent advances in understanding their molecular basis, there is a lack of suitable early biomarkers to test selected compounds and accelerate their translation to clinical trials. We have investigated the utility of in vivo reporters of cytoprotective pathways (e.g. NRF2, p53) as surrogate early biomarkers of the ALS degenerative disease progression. We hypothesized that cellular stress observed in a model of ALS may precede overt cellular damage and could activate our cytoprotective pathway reporters. To test this hypothesis, we generated novel ALS-reporter mice by crossing the hTDP-43tg model into our oxidative stress/inflammation (Hmox1; NRF2 pathway) and DNA damage (p21; p53 pathway) stress reporter models. Histological analysis of reporter expression in a homozygous hTDP-43tg background demonstrated a time-dependent and tissue-specific activation of the reporters in tissues directly associated with ALS, before moderate clinical signs are observed. Further work is warranted to determine the specific mechanisms by which TDP-43 accumulation leads to reporter activation and whether therapeutic intervention modulates reporters' expression. We anticipate the reporter strategy could be of great value in developing treatments for a range of degenerative disorders.
Collapse
Affiliation(s)
- Febe Ferro
- Systems and Cellular Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - C. Roland Wolf
- Systems and Cellular Medicine, University of Dundee, Dundee DD1 9SY, UK
| | | | - Francisco Inesta-Vaquera
- Systems and Cellular Medicine, University of Dundee, Dundee DD1 9SY, UK
- Department of Biochemistry and Molecular Biology and Genetics, University of Extremadura, Badajoz06006, Spain
| |
Collapse
|
5
|
Shoemaker RL, Larsen RJ, Larsen PA. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front Immunol 2024; 15:1426656. [PMID: 39238639 PMCID: PMC11374656 DOI: 10.3389/fimmu.2024.1426656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability. This has led to a burgeoning interest in alternative immunotherapeutic avenues. Notably, single-domain antibodies (or nanobodies) and aptamers have emerged as promising candidates, as their reduced size facilitates high affinity antigen binding and they exhibit superior biophysical stability compared to mAbs. Aptamers, synthetic molecules generated from DNA or RNA ligands, present both rapid production times and cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities suitable for ND research and therapeutic development. Cross-seeding events must be considered in both traditional and small-molecule-based immunodiagnostic and therapeutic approaches, as well as subsequent neurotoxic impacts and complications beyond protein aggregates. This review delineates the challenges traditional immunological methods pose in ND research and underscores the potential of nanobodies and aptamers in advancing next-generation ND diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rachel L Shoemaker
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Roxanne J Larsen
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
- Priogen Corp., St. Paul, MN, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| |
Collapse
|
6
|
Guo J, You L, Zhou Y, Hu J, Li J, Yang W, Tang X, Sun Y, Gu Y, Dong Y, Chen X, Sato C, Zinman L, Rogaeva E, Wang J, Chen Y, Zhang M. Spatial enrichment and genomic analyses reveal the link of NOMO1 with amyotrophic lateral sclerosis. Brain 2024; 147:2826-2841. [PMID: 38643019 DOI: 10.1093/brain/awae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease with uncertain genetic predisposition in most sporadic cases. The spatial architecture of cell types and gene expression are the basis of cell-cell interactions, biological function and disease pathology, but are not well investigated in the human motor cortex, a key ALS-relevant brain region. Recent studies indicated single nucleus transcriptomic features of motor neuron vulnerability in ALS motor cortex. However, the brain regional vulnerability of ALS-associated genes and the genetic link between region-specific genes and ALS risk remain largely unclear. Here, we developed an entropy-weighted differential gene expression matrix-based tool (SpatialE) to identify the spatial enrichment of gene sets in spatial transcriptomics. We benchmarked SpatialE against another enrichment tool (multimodal intersection analysis) using spatial transcriptomics data from both human and mouse brain tissues. To investigate regional vulnerability, we analysed three human motor cortex and two dorsolateral prefrontal cortex tissues for spatial enrichment of ALS-associated genes. We also used Cell2location to estimate the abundance of cell types in ALS-related cortex layers. To dissect the link of regionally expressed genes and ALS risk, we performed burden analyses of rare loss-of-function variants detected by whole-genome sequencing in ALS patients and controls, then analysed differential gene expression in the TargetALS RNA-sequencing dataset. SpatialE showed more accurate and specific spatial enrichment of regional cell type markers than multimodal intersection analysis in both mouse brain and human dorsolateral prefrontal cortex. Spatial transcriptomic analyses of human motor cortex showed heterogeneous cell types and spatial gene expression profiles. We found that 260 manually curated ALS-associated genes are significantly enriched in layer 5 of the motor cortex, with abundant expression of upper motor neurons and layer 5 excitatory neurons. Burden analyses of rare loss-of-function variants in Layer 5-associated genes nominated NOMO1 as a novel ALS-associated gene in a combined sample set of 6814 ALS patients and 3324 controls (P = 0.029). Gene expression analyses in CNS tissues revealed downregulation of NOMO1 in ALS, which is consistent with a loss-of-function disease mechanism. In conclusion, our integrated spatial transcriptomics and genomic analyses identified regional brain vulnerability in ALS and the association of a layer 5 gene (NOMO1) with ALS risk.
Collapse
Affiliation(s)
- Jingyan Guo
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Linya You
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
- Key Laboratory of Medical Computing and Computer Assisted Intervention of Shanghai, 200032, Shanghai, China
| | - Yu Zhou
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Jiali Hu
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Jiahao Li
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
| | - Wanli Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
| | - Xuelin Tang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Yimin Sun
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yuqi Gu
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Yi Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xi Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Division of Neurology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Jian Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yan Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Ming Zhang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China
- Institute for Advanced Study, Tongji University, 200092, Shanghai, China
| |
Collapse
|
7
|
Zheng X, Wang M, He Q, Chen S, Simayi D, Ma X, Zhao J, Sun X, Yang P, Mao Q, Xia H. Production and characterization of novel monoclonal antibodies against pathological human TDP-43 proteins. J Neuropathol Exp Neurol 2024; 83:655-669. [PMID: 38728009 PMCID: PMC11258413 DOI: 10.1093/jnen/nlae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The RNA/DNA-binding protein TDP-43 plays a pivotal role in the ubiquitinated inclusions characteristic of TDP-43 proteinopathies, including most cases of frontotemporal lobar degeneration (FTLD-TDP) and Alzheimer disease (AD). To understand the mechanisms of pathological TDP-43 processing and identify potential biomarkers, we generated novel phosphorylation-independent monoclonal antibodies (MAbs) using bacteria-expressed human full-length recombinant TDP-43. Remarkably, we identified a distinctive MAb, No. 9, targeting an epitope in amino acid (aa) region 311-360 of the C-terminus. This antibody showed preferential reactivity for pathological TDP-43 inclusions, with only mild reactivity for normal nuclear TDP-43. MAb No. 9 revealed more pathology in FTLD-TDP type A and type B brains and in AD brains compared to the commercial p409/410 MAb. Using synthetic phosphorylated peptides, we also obtained MAbs targeting the p409/410 epitope. Interestingly, MAb No. 14 was found to reveal additional pathology in AD compared to the commercial p409/410 MAb, specifically, TDP-43-immunopositive deposits with amyloid plaques in AD brains. These unique immunopositivities observed with MAbs No. 9 and No. 14 are likely attributed to their conformation-dependent binding to TDP-43 inclusions. We expect that this novel set of MAbs will prove valuable as tools for future patient-oriented investigations into TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Mengtian Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Qiongyan He
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Shuyu Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Dilihumaer Simayi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Xia Ma
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Xiaohong Sun
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| |
Collapse
|
8
|
Duranti E, Villa C. Insights into Dysregulated Neurological Biomarkers in Cancer. Cancers (Basel) 2024; 16:2680. [PMID: 39123408 PMCID: PMC11312413 DOI: 10.3390/cancers16152680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The link between neurodegenerative diseases (NDs) and cancer has generated greater interest in biomedical research, with decades of global studies investigating neurodegenerative biomarkers in cancer to better understand possible connections. Tau, amyloid-β, α-synuclein, SOD1, TDP-43, and other proteins associated with nervous system diseases have also been identified in various types of solid and malignant tumors, suggesting a potential overlap in pathological processes. In this review, we aim to provide an overview of current evidence on the role of these proteins in cancer, specifically examining their effects on cell proliferation, apoptosis, chemoresistance, and tumor progression. Additionally, we discuss the diagnostic and therapeutic implications of this interconnection, emphasizing the importance of further research to completely comprehend the clinical implications of these proteins in tumors. Finally, we explore the challenges and opportunities in targeting these proteins for the development of new targeted anticancer therapies, providing insight into how to integrate knowledge of NDs in oncology research.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
9
|
Alsina R, Riba M, Pérez-Millan A, Borrego-Écija S, Aldecoa I, Romera C, Balasa M, Antonell A, Lladó A, Compta Y, Del Valle J, Sánchez-Valle R, Pelegrí C, Molina-Porcel L, Vilaplana J. Increase in wasteosomes (corpora amylacea) in frontotemporal lobar degeneration with specific detection of tau, TDP-43 and FUS pathology. Acta Neuropathol Commun 2024; 12:97. [PMID: 38879502 PMCID: PMC11179228 DOI: 10.1186/s40478-024-01812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 06/19/2024] Open
Abstract
Wasteosomes (or corpora amylacea) are polyglucosan bodies that appear in the human brain with aging and in some neurodegenerative diseases, and have been suggested to have a potential role in a nervous system cleaning mechanism. Despite previous studies in several neurodegenerative disorders, their status in frontotemporal lobar degeneration (FTLD) remains unexplored. Our study aims to characterize wasteosomes in the three primary FTLD proteinopathies, assessing frequency, distribution, protein detection, and association with aging or disease duration. Wasteosome scores were obtained in various brain regions from 124 post-mortem diagnosed sporadic FTLD patients, including 75 participants with tau (FTLD-tau), 42 with TAR DNA-binding protein 43 (FTLD-TDP), and 7 with Fused in Sarcoma (FTLD-FUS) proteinopathies, along with 29 control subjects. The wasteosome amount in each brain region for the different FLTD patients was assessed with a permutation test with age at death and sex as covariables, and multiple regressions explored associations with age at death and disease duration. Double immunofluorescence studies examined altered proteins linked to FTLD in wasteosomes. FTLD patients showed a higher accumulation of wasteosomes than control subjects, especially those with FTLD-FUS. Unlike FTLD-TDP and control subjects, wasteosome accumulation did not increase with age in FTLD-tau and FTLD-FUS. Cases with shorter disease duration in FTLD-tau and FTLD-FUS seemed to exhibit higher wasteosome quantities, whereas FTLD-TDP appeared to show an increase with disease progression. Immunofluorescence studies revealed the presence of tau and phosphorylated-TDP-43 in the periphery of isolated wasteosomes in some patients with FTLD-tau and FTLD-TDP, respectively. Central inclusions of FUS were observed in a higher number of wasteosomes in FTLD-FUS patients. These findings suggest a role of wasteosomes in FTLD, especially in the more aggressive forms of FLTD-FUS. Detecting these proteins, particularly FUS, in wasteosomes from cerebrospinal fluid could be a potential biomarker for FTLD.
Collapse
Affiliation(s)
- Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Agnès Pérez-Millan
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona, Spain
- Department of Pathology, Biomedical Diagnostic Center (CBD), Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, European Reference Network On Rare Neurological Diseases (ERN-RND), Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR), Barcelona, Spain
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
10
|
Wang HLV, Xiang JF, Yuan C, Veire AM, Gendron TF, Murray ME, Tansey MG, Hu J, Gearing M, Glass JD, Jin P, Corces VG, McEachin ZT. pTDP-43 levels correlate with cell type specific molecular alterations in the prefrontal cortex of C9orf72 ALS/FTD patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.12.523820. [PMID: 36711601 PMCID: PMC9882184 DOI: 10.1101/2023.01.12.523820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and familial frontotemporal dementia (ALS/FTD). To identify molecular defects that take place in the dorsolateral frontal cortex of patients with C9orf72 ALS/FTD, we compared healthy controls with C9orf72 ALS/FTD donor samples staged based on the levels of cortical phosphorylated TAR DNA binding protein (pTDP-43), a neuropathological hallmark of disease progression. We identified distinct molecular changes in different cell types that take place during FTD development. Loss of neurosurveillance microglia and activation of the complement cascade take place early, when pTDP-43 aggregates are absent or very low, and become more pronounced in late stages, suggesting an initial involvement of microglia in disease progression. Reduction of layer 2-3 cortical projection neurons with high expression of CUX2/LAMP5 also occurs early, and the reduction becomes more pronounced as pTDP-43 accumulates. Several unique features were observed only in samples with high levels of pTDP-43, including global alteration of chromatin accessibility in oligodendrocytes, microglia, and astrocytes; higher ratios of premature oligodendrocytes; increased levels of the noncoding RNA NEAT1 in astrocytes and neurons, and higher amount of phosphorylated ribosomal protein S6. Our findings reveal previously unknown progressive functional changes in major cell types found in the frontal cortex of C9orf72 ALS/FTD patients that shed light on the mechanisms underlying the pathology of this disease.
Collapse
Affiliation(s)
- Hsiao-Lin V. Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Chenyang Yuan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Austin M. Veire
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | | | | | - Malú G. Tansey
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32607
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32607
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Marla Gearing
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Jonathan D. Glass
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Zachary T. McEachin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
11
|
Godoy-Corchuelo JM, Ali Z, Brito Armas JM, Martins-Bach AB, García-Toledo I, Fernández-Beltrán LC, López-Carbonero JI, Bascuñana P, Spring S, Jimenez-Coca I, Muñoz de Bustillo Alfaro RA, Sánchez-Barrena MJ, Nair RR, Nieman BJ, Lerch JP, Miller KL, Ozdinler HP, Fisher EMC, Cunningham TJ, Acevedo-Arozena A, Corrochano S. TDP-43-M323K causes abnormal brain development and progressive cognitive and motor deficits associated with mislocalised and increased levels of TDP-43. Neurobiol Dis 2024; 193:106437. [PMID: 38367882 PMCID: PMC10988218 DOI: 10.1016/j.nbd.2024.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.
Collapse
Affiliation(s)
- Juan M Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK
| | - Jose M Brito Armas
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain
| | | | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Pablo Bascuñana
- Brain Mapping Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | | | - Maria J Sánchez-Barrena
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, Madrid, Spain
| | - Remya R Nair
- MRC Harwell Institute, Oxfordshire, UK; Nucleic Acid Therapy Accelerator (NATA), Harwell Campus, Oxfordshire, UK
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hande P Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, and UCL Queen Square Motor Neuron Disease Centre, UCL, Institute of Neurology, London, UK
| | - Thomas J Cunningham
- MRC Harwell Institute, Oxfordshire, UK; MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain.
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK.
| |
Collapse
|
12
|
Martin EJ, Santacruz C, Mitevska A, Jones IE, Krishnan G, Gao FB, Finan JD, Kiskinis E. Traumatic injury causes selective degeneration and TDP-43 mislocalization in human iPSC-derived C9orf72-associated ALS/FTD motor neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586073. [PMID: 38585915 PMCID: PMC10996466 DOI: 10.1101/2024.03.21.586073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A hexanucleotide repeat expansion (HRE) in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, patients with the HRE exhibit a wide disparity in clinical presentation and age of symptom onset suggesting an interplay between genetic background and environmental stressors. Neurotrauma as a result of traumatic brain or spinal cord injury has been shown to increase the risk of ALS/FTD in epidemiological studies. Here, we combine patient-specific induced pluripotent stem cells (iPSCs) with a custom-built device to deliver biofidelic stretch trauma to C9orf72 patient and isogenic control motor neurons (MNs) in vitro. We find that mutant but not control MNs exhibit selective degeneration after a single incident of severe trauma, which can be partially rescued by pretreatment with a C9orf72 antisense oligonucleotide. A single incident of mild trauma does not cause degeneration but leads to cytoplasmic accumulation of TDP-43 in C9orf72 MNs. This mislocalization, which only occurs briefly in isogenic controls, is eventually restored in C9orf72 MNs after 6 days. Lastly, repeated mild trauma ablates the ability of patient MNs to recover. These findings highlight alterations in TDP-43 dynamics in C9orf72 ALS/FTD patient MNs following traumatic injury and demonstrate that neurotrauma compounds neuropathology in C9orf72 ALS/FTD. More broadly, our work establishes an in vitro platform that can be used to interrogate the mechanistic interactions between ALS/FTD and neurotrauma.
Collapse
Affiliation(s)
- Eric J. Martin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Citlally Santacruz
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Angela Mitevska
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ian E. Jones
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Gopinath Krishnan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John D. Finan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
13
|
Ishibashi K. Clinical application of MAO-B PET using 18F-THK5351 in neurological disorders. Geriatr Gerontol Int 2024; 24 Suppl 1:31-43. [PMID: 37973072 PMCID: PMC11503588 DOI: 10.1111/ggi.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Monoamine oxidase B (MAO-B) is an enzyme localized to the outer mitochondrial membrane and highly concentrated in astrocytes. Temporal changes in regional MAO-B levels can be used as an index of astrocytic proliferation, known as activated astrocytes or astrogliosis. MAO-B is a marker to evaluate the degree of astrogliosis. Therefore, MAO-B positron emission tomography (PET) is a powerful imaging technique for visualizing and quantifying ongoing astrogliosis through the estimate of regional MAO-B levels. Each neurodegenerative disorder generally has a characteristic distribution pattern of astrogliosis secondary to neuronal loss and pathological protein aggregation. Therefore, by imaging astrogliosis, MAO-B PET can be used as a neurodegeneration marker for identifying degenerative lesions. Any inflammation in the brain usually accompanies astrogliosis starting from an acute phase to a chronic phase. Therefore, by imaging astrogliosis, MAO-B PET can be used as a neuroinflammation marker for identifying inflammatory lesions. MAO-B levels are high in gliomas originating from astrocytes but low in lymphoid tumors. Therefore, MAO-B PET can be used as a brain tumor marker for identifying astrocytic gliomas by imaging MAO-B levels and distinguishing between astrocytic and lymphoid tumors. This review summarizes the clinical application of MAO-B PET using 18F-THK5351 as markers for neurodegeneration, neuroinflammation, and brain tumors in neurological disorders. Because we assume that MAO-B PET is clinically applied to an individual patient, we focus on visual inspection of MAO-B images at the individual patient level. Geriatr Gerontol Int 2024; 24: 31-43.
Collapse
Affiliation(s)
- Kenji Ishibashi
- Diagnostic Neuroimaging Research, Research Team for NeuroimagingTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| |
Collapse
|
14
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
15
|
Yang L, Jasiqi Y, Zettor A, Vadas O, Chiaravalli J, Agou F, Lashuel HA. Effective Inhibition of TDP-43 Aggregation by Native State Stabilization. Angew Chem Int Ed Engl 2024; 63:e202314587. [PMID: 37949836 DOI: 10.1002/anie.202314587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Preventing the misfolding or aggregation of transactive response DNA binding protein with 43 kDa (TDP-43) is the most actively pursued disease-modifying strategy to treat amyotrophic lateral sclerosis and other neurodegenerative diseases. In this work, we provide proof of concept that native state stabilization of TDP-43 is a viable and effective strategy for treating TDP-43 proteinopathies. Firstly, we leveraged the Cryo-EM structures of TDP-43 fibrils to design C-terminal substitutions that disrupt TDP-43 aggregation. Secondly, we showed that these substitutions (S333D/S342D) stabilize monomeric TDP-43 without altering its physiological properties. Thirdly, we demonstrated that binding native oligonucleotide ligands stabilized monomeric TDP-43 and prevented its fibrillization and phase separation in the absence of direct binding to the aggregation-prone C-terminal domain. Fourthly, we showed that the monomeric TDP-43 variant could be induced to aggregate in a controlled manner, which enabled the design and implementation of a high-throughput screening assay to identify native state stabilizers of TDP-43. Altogether, our findings demonstrate that different structural domains in TDP-43 could be exploited and targeted to develop drugs that stabilize the native state of TDP-43 and provide a platform to discover novel drugs to treat TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Lixin Yang
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Agnès Zettor
- Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Université Paris Cité, CNRS, UMR 3523, C2RT, Paris, France
| | - Oscar Vadas
- Protein Platform, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211, Geneva, Switzerland
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Université Paris Cité, CNRS, UMR 3523, C2RT, Paris, France
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Université Paris Cité, CNRS, UMR 3523, C2RT, Paris, France
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Carlos AF, Sekiya H, Koga S, Gatto RG, Casey MC, Pham NTT, Sintini I, Machulda MM, Jack CR, Lowe VJ, Whitwell JL, Petrucelli L, Reichard RR, Petersen RC, Dickson DW, Josephs KA. Clinicopathologic features of a novel star-shaped transactive response DNA-binding protein 43 (TDP-43) pathology in the oldest old. J Neuropathol Exp Neurol 2023; 83:36-52. [PMID: 38086178 PMCID: PMC10746697 DOI: 10.1093/jnen/nlad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-β in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rodolfo G Gatto
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry (Psychology), Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
17
|
Candelise N, Caissutti D, Zenuni H, Nesci V, Scaricamazza S, Salvatori I, Spinello Z, Mattei V, Garofalo T, Ferri A, Valle C, Misasi R. Different Chronic Stress Paradigms Converge on Endogenous TDP43 Cleavage and Aggregation. Mol Neurobiol 2023; 60:6346-6361. [PMID: 37450246 PMCID: PMC10533643 DOI: 10.1007/s12035-023-03455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023]
Abstract
The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response.
Collapse
Affiliation(s)
- Niccolò Candelise
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Henri Zenuni
- Department of Systems Medicine, Tor Vergata" University of Rome, 00133, Rome, Italy
| | - Valentina Nesci
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
- Department of Systems Medicine, Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Illari Salvatori
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), 00185, Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), 00185, Rome, Italy.
| | - Roberta Misasi
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy.
| |
Collapse
|
18
|
Tanaka Y, Ito SI, Honma Y, Hasegawa M, Kametani F, Suzuki G, Kozuma L, Takeya K, Eto M. Dysregulation of the progranulin-driven autophagy-lysosomal pathway mediates secretion of the nuclear protein TDP-43. J Biol Chem 2023; 299:105272. [PMID: 37739033 PMCID: PMC10641265 DOI: 10.1016/j.jbc.2023.105272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 kDa (TDP-43) has been linked to the progression of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 secreted into the extracellular space has been suggested to contribute to the cell-to-cell spread of the cytoplasmic accumulation of TDP-43 throughout the brain; however, the underlying mechanisms remain unknown. We herein demonstrated that the secretion of TDP-43 was stimulated by the inhibition of the autophagy-lysosomal pathway driven by progranulin (PGRN), a causal protein of frontotemporal lobar degeneration. Among modulators of autophagy, only vacuolar-ATPase inhibitors, such as bafilomycin A1 (Baf), increased the levels of the full-length and cleaved forms of TDP-43 and the autophagosome marker LC3-II (microtubule-associated proteins 1A/1B light chain 3B) in extracellular vesicle fractions prepared from the culture media of HeLa, SH-SY5Y, or NSC-34 cells, whereas vacuolin-1, MG132, chloroquine, rapamycin, and serum starvation did not. The C-terminal fragment of TDP-43 was required for Baf-induced TDP-43 secretion. The Baf treatment induced the translocation of the aggregate-prone GFP-tagged C-terminal fragment of TDP-43 and mCherry-tagged LC3 to the plasma membrane. The Baf-induced secretion of TDP-43 was attenuated in autophagy-deficient ATG16L1 knockout HeLa cells. The knockdown of PGRN induced the secretion of cleaved TDP-43 in an autophagy-dependent manner in HeLa cells. The KO of PGRN in mouse embryonic fibroblasts increased the secretion of the cleaved forms of TDP-43 and LC3-II. The treatment inducing TDP-43 secretion increased the nuclear translocation of GFP-tagged transcription factor EB, a master regulator of the autophagy-lysosomal pathway in SH-SY5Y cells. These results suggest that the secretion of TDP-43 is promoted by dysregulation of the PGRN-driven autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Yoshinori Tanaka
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan.
| | - Shun-Ichi Ito
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| | - Yuki Honma
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Genjiro Suzuki
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Lina Kozuma
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| | - Kosuke Takeya
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| | - Masumi Eto
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| |
Collapse
|
19
|
Necarsulmer JC, Simon JM, Evangelista BA, Chen Y, Tian X, Nafees S, Marquez AB, Jiang H, Wang P, Ajit D, Nikolova VD, Harper KM, Ezzell JA, Lin FC, Beltran AS, Moy SS, Cohen TJ. RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy. eLife 2023; 12:RP85921. [PMID: 37819053 PMCID: PMC10567115 DOI: 10.7554/elife.85921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Julie C Necarsulmer
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Baggio A Evangelista
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Youjun Chen
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Xu Tian
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Sara Nafees
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Ariana B Marquez
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
| | - Huijun Jiang
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Ping Wang
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Deepa Ajit
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Viktoriya D Nikolova
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Kathryn M Harper
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - J Ashley Ezzell
- Department of Cell Biology & Physiology, Histology Research Core Facility, University of North CarolinaChapel HillUnited States
| | - Feng-Chang Lin
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Adriana S Beltran
- Department of Genetics, University of North CarolinaChapel HillUnited States
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Todd J Cohen
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Department of Biochemistry and Biophysics, University of North CarolinaChapel HillUnited States
| |
Collapse
|
20
|
Ozkizilcik A, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Nanowired delivery of antibodies to tau and neuronal nitric oxide synthase together with cerebrolysin attenuates traumatic brain injury induced exacerbation of brain pathology in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:83-121. [PMID: 37783564 DOI: 10.1016/bs.irn.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors for developing Parkinson's disease in later life of military personnel affecting lifetime functional and cognitive disturbances. Till date no suitable therapies are available to attenuate CHI or PD induced brain pathology. Thus, further exploration of novel therapeutic agents are highly warranted using nanomedicine in enhancing the quality of life of veterans or service members of US military. Since PD or CHI induces oxidative stress and perturbs neurotrophic factors regulation associated with phosphorylated tau (p-tau) deposition, a possibility exists that nanodelivery of agents that could enhance neurotrophic factors balance and attenuate oxidative stress could be neuroprotective in nature. In this review, nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies to neuronal nitric oxide synthase (nNOS) with p-tau antibodies was examined in PD following CHI in model experiments. Our results suggest that combined administration of nanowired antibodies to nNOS and p-tau together with cerebrolysin significantly attenuated CHI induced exacerbation of PD brain pathology. This combined treatment also has beneficial effects in CHI or PD alone, not reported earlier.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Dept. Biomedical Engineering, University of Arkansas, Fayetteville, AR, United Staes
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Ogonowski N, Santamaria-Garcia H, Baez S, Lopez A, Laserna A, Garcia-Cifuentes E, Ayala-Ramirez P, Zarante I, Suarez-Obando F, Reyes P, Kauffman M, Cochran N, Schulte M, Sirkis DW, Spina S, Yokoyama JS, Miller BL, Kosik KS, Matallana D, Ibáñez A. Frontotemporal dementia presentation in patients with heterozygous p.H157Y variant of TREM2. J Med Genet 2023; 60:894-904. [PMID: 36813542 PMCID: PMC10447405 DOI: 10.1136/jmg-2022-108627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The triggering receptor expressed on myeloid cell 2 (TREM2) is a major regulator of neuroinflammatory processes in neurodegeneration. To date, the p.H157Y variant of TREM2 has been reported only in patients with Alzheimer's disease. Here, we report three patients with frontotemporal dementia (FTD) from three unrelated families with heterozygous p.H157Y variant of TREM2: two patients from Colombian families (study 1) and a third Mexican origin case from the USA (study 2). METHODS To determine if the p.H157Y variant might be associated with a specific FTD presentation, we compared in each study the cases with age-matched, sex-matched and education-matched groups-a healthy control group (HC) and a group with FTD with neither TREM2 mutations nor family antecedents (Ng-FTD and Ng-FTD-MND). RESULTS The two Colombian cases presented with early behavioural changes, greater impairments in general cognition and executive function compared with both HC and Ng-FTD groups. These patients also exhibited brain atrophy in areas characteristic of FTD. Furthermore, TREM2 cases showed increased atrophy compared with Ng-FTD in frontal, temporal, parietal, precuneus, basal ganglia, parahippocampal/hippocampal and cerebellar regions. The Mexican case presented with FTD and motor neuron disease (MND), showing grey matter reduction in basal ganglia and thalamus, and extensive TDP-43 type B pathology. CONCLUSION In all TREM2 cases, multiple atrophy peaks overlapped with the maximum peaks of TREM2 gene expression in crucial brain regions including frontal, temporal, thalamic and basal ganglia areas. These results provide the first report of an FTD presentation potentially associated with the p.H157Y variant with exacerbated neurocognitive impairments.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile, Santiago de Chile, Chile
| | - Hernando Santamaria-Garcia
- Global Brain Health Institute (GBHI), University California San Francisco (UCSF), San Francisco, California, USA
- Pontificia Universidad Javeriana. Ph.D Program of Neuroscience, Bogotá, Colombia
- Hospital Universitario San Ignacio. Centro de Memoria y Cognición Intellectus, Bogotá, Colombia
| | | | - Andrea Lopez
- Hospital Universitario de la Fundación Santa Fe de Bogotá, Bogota, Colombia
- Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrés Laserna
- Pontificia Universidad Javeriana, Bogota, Colombia
- University of Rochester Medical Center. Department of Anesthesiology and Perioperative Medicine. of Anesthesiology and Perioperative Medicine, Rochester, NY, New York, USA
| | - Elkin Garcia-Cifuentes
- Pontificia Universidad Javeriana, Bogota, Colombia
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paola Ayala-Ramirez
- Human Genomics Institute, Pontificia Universidad Javeriana, Bogota, Colombia
| | | | | | - Pablo Reyes
- Pontificia Universidad Javeriana, Bogota, Colombia
| | - Marcelo Kauffman
- Hospital General de Agudos Jose Maria Ramos Mejia Consultorio y Laboratorio de Neurogenetica, Buenos Aires, Argentina
- Universidad Austral. IIMT-FCB. Conicet, Buenos Aires, Argentina
| | | | | | - Daniel W Sirkis
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Weil Institute of Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Salvatore Spina
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer S Yokoyama
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Weil Institute of Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | | | - Kenneth S Kosik
- University of California Santa Barbara, Santa Barbara, California, USA
| | - Diana Matallana
- Pontificia Universidad Javeriana, Bogota, Colombia
- Hospital Universitario Fundación Santa Fe, Bogotá, Colombia
| | - Agustín Ibáñez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile, Santiago de Chile, Chile
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andres & CONICET, Buenos Aires, Argentina
| |
Collapse
|
22
|
Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, Miller B, Piguet O, Rademakers R, Whitwell JL, Zetterberg H, van Swieten JC. Frontotemporal lobar degeneration. Nat Rev Dis Primers 2023; 9:40. [PMID: 37563165 DOI: 10.1038/s41572-023-00447-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social-emotional-behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20-25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5-10% of patients may have inclusions containing proteins from the FUS-Ewing sarcoma-TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.
Collapse
Affiliation(s)
- Murray Grossman
- Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam L Boxer
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Peter A Ljubenov
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Olivier Piguet
- School of Psychology and Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The University of Gothenburg, Mölndal, Sweden
- Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
23
|
Rojas F, Aguilar R, Almeida S, Fritz E, Corvalán D, Ampuero E, Abarzúa S, Garcés P, Amaro A, Diaz I, Arredondo C, Cortes N, Sanchez M, Mercado C, Varela-Nallar L, Gao FB, Montecino M, van Zundert B. Mature iPSC-derived astrocytes of an ALS/FTD patient carrying the TDP43 A90V mutation display a mild reactive state and release polyP toxic to motoneurons. Front Cell Dev Biol 2023; 11:1226604. [PMID: 37645251 PMCID: PMC10461635 DOI: 10.3389/fcell.2023.1226604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Astrocytes play a critical role in the maintenance of a healthy central nervous system and astrocyte dysfunction has been implicated in various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). There is compelling evidence that mouse and human ALS and ALS/FTD astrocytes can reduce the number of healthy wild-type motoneurons (MNs) in co-cultures or after treatment with astrocyte conditioned media (ACM), independently of their genotype. A growing number of studies have shown that soluble toxic factor(s) in the ACM cause non-cell autonomous MN death, including our recent identification of inorganic polyphosphate (polyP) that is excessively released from mouse primary astrocytes (SOD1, TARDBP, and C9ORF72) and human induced pluripotent stem cells (iPSC)-derived astrocytes (TARDBP) to kill MNs. However, others have reported that astrocytes carrying mutant TDP43 do not produce detectable MN toxicity. This controversy is likely to arise from the findings that human iPSC-derived astrocytes exhibit a rather immature and/or reactive phenotype in a number of studies. Here, we have succeeded in generating a highly homogenous population of functional quiescent mature astrocytes from control subject iPSCs. Using identical conditions, we also generated mature astrocytes from an ALS/FTD patient carrying the TDP43A90V mutation. These mutant TDP43 patient-derived astrocytes exhibit key pathological hallmarks, including enhanced cytoplasmic TDP-43 and polyP levels. Additionally, mutant TDP43 astrocytes displayed a mild reactive signature and an aberrant function as they were unable to promote synaptogenesis of hippocampal neurons. The polyP-dependent neurotoxic nature of the TDP43A90V mutation was further confirmed as neutralization of polyP in ACM derived from mutant TDP43 astrocytes prevented MN death. Our results establish that human astrocytes carrying the TDP43A90V mutation exhibit a cell-autonomous pathological signature, hence providing an experimental model to decipher the molecular mechanisms underlying the generation of the neurotoxic phenotype.
Collapse
Affiliation(s)
- Fabiola Rojas
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| | - Elsa Fritz
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Daniela Corvalán
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago, Santiago, Chile
| | - Sebastián Abarzúa
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Polett Garcés
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Armando Amaro
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Iván Diaz
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Cristian Arredondo
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Nicole Cortes
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Mario Sanchez
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Constanza Mercado
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Lorena Varela-Nallar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Institute Center for Genome Regulation CRG, Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| |
Collapse
|
24
|
Biagioli N, Cavallieri F, Marti A, Di Rauso G, Fioravanti V, Monfrini E, Gasparini F, Beltrami D, Grisanti S, Rossi J, Toschi G, Fraternali A, Versari A, Napoli M, Pascarella R, Di Fonzo A, Valzania F. Levodopa responsive asymmetric parkinsonism as clinical presentation of progranulin gene mutation. J Neurol Sci 2023; 451:120737. [PMID: 37487280 DOI: 10.1016/j.jns.2023.120737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Niccolò Biagioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Alessandro Marti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Di Rauso
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Edoardo Monfrini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Federico Gasparini
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniela Beltrami
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sara Grisanti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Italy
| | - Jessica Rossi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Italy
| | - Giulia Toschi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Fraternali
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Radiology Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Radiology Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
25
|
Mesulam MM, Gefen T, Flanagan M, Castellani R, Jamshidi P, Barbieri E, Sridhar J, Kawles A, Weintraub S, Geula C, Rogalski E. Frontotemporal Degeneration with Transactive Response DNA-Binding Protein Type C at the Anterior Temporal Lobe. Ann Neurol 2023; 94:1-12. [PMID: 37183762 PMCID: PMC10330481 DOI: 10.1002/ana.26677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
The anatomical distribution of most neurodegenerative diseases shows considerable interindividual variations. In contrast, frontotemporal lobar degeneration with transactive response DNA-binding protein type C (TDP-C) shows a consistent predilection for the anterior temporal lobe (ATL). The relatively selective atrophy of ATL in TDP-C patients has highlighted the importance of this region for complex cognitive and behavioral functions. This review includes observations on 28 TDP-C patients, 18 with semantic primary progressive aphasia and 10 with other syndromes. Longitudinal imaging allowed the delineation of progression trajectories. At post-mortem examination, the pathognomonic feature of TDP-C consisted of long, thick neurites found predominantly in superficial cortical layers. These neurites may represent dystrophic apical dendrites of layer III and V pyramidal neurons that are known to play pivotal roles in complex cortical computations. Other types of frontotemporal lobar degeneration TDP, such as TDP-A and TDP-B, are not associated with long dystrophic neurites in the cerebral cortex, and do not show similar predilection patterns for ATL. Research is beginning to identify molecular, structural, and immunological differences between pathological TDP-43 in TDP-C versus TDP-A and B. Parallel investigations based on proteomics, somatic mutations, and genome-wide association studies are detecting molecular features that could conceivably mediate the selective vulnerability of ATL to TDP-C. Future work will focus on characterizing the distinctive features of the abnormal TDP-C neurites, the mechanisms of neurotoxicity, initial cellular targets within the ATL, trajectory of spread, and the nature of ATL-specific markers that modulate vulnerability to TDP-C. ANN NEUROL 2023;94:1-12.
Collapse
Affiliation(s)
- Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Margaret Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pouya Jamshidi
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elena Barbieri
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
26
|
Afroz T, Chevalier E, Audrain M, Dumayne C, Ziehm T, Moser R, Egesipe AL, Mottier L, Ratnam M, Neumann M, Havas D, Ollier R, Piorkowska K, Chauhan M, Silva AB, Thapa S, Stöhr J, Bavdek A, Eligert V, Adolfsson O, Nelson PT, Porta S, Lee VMY, Pfeifer A, Kosco-Vilbois M, Seredenina T. Immunotherapy targeting the C-terminal domain of TDP-43 decreases neuropathology and confers neuroprotection in mouse models of ALS/FTD. Neurobiol Dis 2023; 179:106050. [PMID: 36809847 DOI: 10.1016/j.nbd.2023.106050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function. Thus, using both in vitro mechanistic studies in conjunction with the rNLS8 and CamKIIa inoculation mouse models of TDP-43 proteinopathy, we identified the key targeting domain in TDP-43 to accomplish these therapeutic objectives. Targeting the C-terminal domain of TDP-43 but not the RNA recognition motifs (RRM) reduces TDP-43 pathology and avoids neuronal loss in vivo. We demonstrate that this rescue is dependent on Fc receptor-mediated immune complex uptake by microglia. Furthermore, monoclonal antibody (mAb) treatment enhances phagocytic capacity of ALS patient-derived microglia, providing a mechanism to restore the compromised phagocytic function in ALS and FTD patients. Importantly, these beneficial effects are achieved while preserving physiological TDP-43 activity. Our findings demonstrate that a mAb targeting the C-terminal domain of TDP-43 limits pathology and neurotoxicity, enabling clearance of misfolded TDP-43 through microglia engagement, and supporting the clinical strategy to target TDP-43 by immunotherapy. SIGNIFICANCE STATEMENT: TDP-43 pathology is associated with various devastating neurodegenerative disorders with high unmet medical needs such as frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Thus, safely and effectively targeting pathological TDP-43 represents a key paradigm for biotechnical research as currently there is little in clinical development. After years of research, we have determined that targeting the C-terminal domain of TDP-43 rescues multiple patho-mechanisms involved in disease progression in two animal models of FTD/ALS. In parallel, importantly, our studies establish that this approach does not alter the physiological functions of this ubiquitously expressed and indispensable protein. Together, our findings substantially contribute to the understanding of TDP-43 pathobiology and support the prioritization for clinical testing of immunotherapy approaches targeting TDP-43.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Manuela Neumann
- Department of Neuropathology, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | - Sílvia Porta
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
27
|
TDP-43 Proteinopathy Specific Biomarker Development. Cells 2023; 12:cells12040597. [PMID: 36831264 PMCID: PMC9954136 DOI: 10.3390/cells12040597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
TDP-43 is the primary or secondary pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis, half of frontotemporal dementia cases, and limbic age-related TDP-43 encephalopathy, which clinically resembles Alzheimer's dementia. In such diseases, a biomarker that can detect TDP-43 proteinopathy in life would help to stratify patients according to their definite diagnosis of pathology, rather than in clinical subgroups of uncertain pathology. For therapies developed to target pathological proteins that cause the disease a biomarker to detect and track the underlying pathology would greatly enhance such undertakings. This article reviews the latest developments and outlooks of deriving TDP-43-specific biomarkers from the pathophysiological processes involved in the development of TDP-43 proteinopathy and studies using biosamples from clinical entities associated with TDP-43 pathology to investigate biomarker candidates.
Collapse
|
28
|
GBA1 Gene Mutations in α-Synucleinopathies-Molecular Mechanisms Underlying Pathology and Their Clinical Significance. Int J Mol Sci 2023; 24:ijms24032044. [PMID: 36768367 PMCID: PMC9917178 DOI: 10.3390/ijms24032044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
α-Synucleinopathies comprise a group of neurodegenerative diseases characterized by altered accumulation of a protein called α-synuclein inside neurons and glial cells. This aggregation leads to the formation of intraneuronal inclusions, Lewy bodies, that constitute the hallmark of α-synuclein pathology. The most prevalent α-synucleinopathies are Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). To date, only symptomatic treatment is available for these disorders, hence new approaches to their therapy are needed. It has been observed that GBA1 mutations are one of the most impactful risk factors for developing α-synucleinopathies such as PD and DLB. Mutations in the GBA1 gene, which encodes a lysosomal hydrolase β-glucocerebrosidase (GCase), cause a reduction in GCase activity and impaired α-synuclein metabolism. The most abundant GBA1 gene mutations are N370S or N409S, L444P/L483P and E326K/E365K. The mechanisms by which GCase impacts α-synuclein aggregation are poorly understood and need to be further investigated. Here, we discuss some of the potential interactions between α-synuclein and GCase and show how GBA1 mutations may impact the course of the most prevalent α-synucleinopathies.
Collapse
|
29
|
Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 24:ijms24010704. [PMID: 36614144 PMCID: PMC9820914 DOI: 10.3390/ijms24010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder characterized by selective loss of lower and upper motor neurons (MNs) in the brain and spinal cord, resulting in paralysis and eventually death due to respiratory insufficiency. Although the fundamental physiological mechanisms underlying ALS are not completely understood, the key neuropathological hallmarks of ALS pathology are the aggregation and accumulation of ubiquitinated protein inclusions within the cytoplasm of degenerating MNs. Herein, we discuss recent insights into the molecular mechanisms that lead to the accumulation of protein aggregates in ALS. This will contribute to a better understanding of the pathophysiology of the disease and may open novel avenues for the development of therapeutic strategies.
Collapse
|
30
|
Dhakal S, Robang AS, Bhatt N, Puangmalai N, Fung L, Kayed R, Paravastu AK, Rangachari V. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. J Biol Chem 2022; 298:102498. [PMID: 36116552 PMCID: PMC9587012 DOI: 10.1016/j.jbc.2022.102498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids. To answer this question, we investigated the effect of α-synuclein (αS) on the DNA-binding protein TDP-43 aggregation inspired by their coexistence in pathologies such as Lewy body dementia and limbic predominant age-related TDP-43 encephalopathy. We previously showed αS and prion-like C-terminal domain (PrLD) of TDP-43 synergistically interact to generate toxic heterotypic aggregates. Here, we extend these studies to investigate whether αS induces structurally and functionally distinct polymorphs of PrLD aggregates. Using αS-PrLD heterotypic aggregates generated in two different stoichiometric proportions, we show αS can affect PrLD fibril forms. PrLD fibrils show distinctive residue level signatures determined by solid state NMR, dye-binding capability, proteinase K (PK) stability, and thermal stability toward SDS denaturation. Furthremore, by gold nanoparticle labeling and transmission electron microscopy, we show the presence of both αS and PrLD proteins within the same fibrils, confirming the existence of heterotypic amyloid fibrils. We also observe αS and PrLD colocalize in the cytosol of neuroblastoma cells and show that the heterotypic PrLD fibrils selectively induce synaptic dysfunction in primary neurons. These findings establish the existence of heterotypic amyloid and provide a molecular basis for the observed overlap between synucleinopathies and TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA.
| |
Collapse
|
31
|
Del Tredici K, Braak H. Neuropathology and neuroanatomy of TDP-43 amyotrophic lateral sclerosis. Curr Opin Neurol 2022; 35:660-671. [PMID: 36069419 DOI: 10.1097/wco.0000000000001098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Intracellular inclusions consisting of the abnormal TDP-43 protein and its nucleocytoplasmic mislocalization in selected cell types are hallmark pathological features of sALS. Descriptive (histological, morphological), anatomical, and molecular studies all have improved our understanding of the neuropathology of sporadic amyotrophic lateral sclerosis (sALS). This review highlights some of the latest developments in the field. RECENT FINDINGS Increasing evidence exists from experimental models for the prion-like nature of abnormal TDP-43, including a strain-effect, and with the help of neuroimaging-based studies, for spreading of disease along corticofugal connectivities in sALS. Progress has also been made with respect to finding and establishing reliable biomarkers (neurofilament levels, diffusor tensor imaging). SUMMARY The latest findings may help to elucidate the preclinical phase of sALS and to define possible mechanisms for delaying or halting disease development and progression.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | | |
Collapse
|
32
|
Cappelli S, Spalloni A, Feiguin F, Visani G, Šušnjar U, Brown AL, De Bardi M, Borsellino G, Secrier M, Phatnani H, Romano M, Fratta P, Longone P, Buratti E. NOS1AP is a novel molecular target and critical factor in TDP-43 pathology. Brain Commun 2022; 4:fcac242. [PMID: 36267332 PMCID: PMC9576154 DOI: 10.1093/braincomms/fcac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many lines of evidence have highlighted the role played by heterogeneous nuclear ribonucleoproteins in amyotrophic lateral sclerosis. In this study, we have aimed to identify transcripts co-regulated by TAR DNA-binding protein 43 kDa and highly conserved heterogeneous nuclear ribonucleoproteins which have been previously shown to regulate TAR DNA-binding protein 43 kDa toxicity (deleted in azoospermia-associated protein 1, heterogeneous nuclear ribonucleoprotein -Q, -D, -K and -U). Using the transcriptome analyses, we have uncovered that Nitric Oxide Synthase 1 Adaptor Protein mRNA is a direct TAR DNA-binding protein 43 kDa target, and in flies, its modulation alone can rescue TAR DNA-binding protein 43 kDa pathology. In primary mouse cortical neurons, we show that TAR DNA-binding protein 43 kDa mediated downregulation of Nitric Oxide Synthase 1 Adaptor Protein expression strongly affects the NMDA-receptor signalling pathway. In human patients, the downregulation of Nitric Oxide Synthase 1 Adaptor Protein mRNA strongly correlates with TAR DNA-binding protein 43 kDa proteinopathy as measured by cryptic Stathmin-2 and Unc-13 homolog A cryptic exon inclusion. Overall, our results demonstrate that Nitric Oxide Synthase 1 Adaptor Protein may represent a novel disease-relevant gene, potentially suitable for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Alida Spalloni
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Fabian Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Giulia Visani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Urša Šušnjar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Marco De Bardi
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Patrizia Longone
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
33
|
Quintin S, Sorrentino ZA, Mehkri Y, Sriram S, Weisman S, Davidson CG, Lloyd GM, Sung E, Figg JW, Lucke-Wold B. Proteinopathies and Neurotrauma: Update on Degenerative Cascades. JSM NEUROSURGERY AND SPINE 2022; 9:1106. [PMID: 36466377 PMCID: PMC9717712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurotrauma, especially repetitive neurotrauma, is associated with the development of progressive neurodegeneration leading to chronic traumatic encephalopathy (CTE). Exposure to neurotrauma regularly occurs during sports and military service, often not requiring medical care. However, exposure to severe and/or repeated sub-clinical neurotrauma has been shown cause physical and psychological disability, leading to reduce life expectancy. Misfolding of proteins, or proteinopathy, is a pathological hallmark of CTE, in which chronic injury leads to local and diffuse protein aggregates. These aggregates are an overlapping feature of many neurodegenerative diseases such as CTE, Alzheimer's Disease, Parkinsons disease. Neurotrauma is also a significant risk factor for the development of these diseases, however the mechanism's underlying this association are not well understood. While phosphorylated tau aggregates are the primary feature of CTE, amyloid-beta, Transactive response DNA-binding protein 43 (TDP-43), and alpha-synuclein (αSyn) are also well documented. Aberrant misfolding of these proteins has been shown to disrupt brain homeostasis leading to neurodegeneration in a disease dependent manor. In CTE, the interaction between proteinopathies and their associated neurodegeneration is a current area of study. Here we provide an update on current literature surrounding the prevalence, characteristics, and pathogenesis of proteinopathies in CTE.
Collapse
Affiliation(s)
| | | | | | - Sai Sriram
- College of Medicine, University of Florida, USA
| | | | | | - Grace M Lloyd
- Department of Neuroscience, University of Florida, USA
| | - Eric Sung
- College of Medicine, University of Florida, USA
| | - John W Figg
- Department of Neurosurgery, University of Florida, USA
| | | |
Collapse
|
34
|
Liu BW, Wang XY, Cao JL, Chen LL, Wang YL, Zhao BQ, Zhou J, Shen ZF. TDP-43 upregulates lipid metabolism modulator ABHD2 to suppress apoptosis in hepatocellular carcinoma. Commun Biol 2022; 5:816. [PMID: 35963893 PMCID: PMC9376094 DOI: 10.1038/s42003-022-03788-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
TAR DNA-Binding Protein 43 (TDP-43) has been well studied in neurodegenerative diseases, but its potential role in malignance is still unclear. Here, we demonstrate that TDP-43 contributes to the suppression of apoptosis by facilitating lipid metabolism in hepatocellular carcinoma (HCC). In HCC cells, TDP-43 is able to suppress apoptosis while deletion of it markedly induces apoptosis. RNA-sequencing identifies the lipid metabolism gene abhydrolase domain containing 2 (ABHD2) as the target gene of TDP-43. Tissue microarray analysis shows the positive correlation of TDP-43 and ABHD2 in HCC. Mechanistically, TDP-43 binds with the UG-rich sequence1 of ABHD2 3’UTR to enhance the mRNA stability of ABHD2, thereby upregulating ABHD2. Afterwards, TDP-43 promotes the production of free fatty acid and fatty acid oxidation-originated reactive oxygen species (ROS) in an ABHD2-dependent manner, so as to suppress apoptosis of HCC. Our findings provide insights into the mechanism of HCC progression and reveal TDP-43/ABHD2 as potential targets for the precise treatment of HCC. TDP-43 acts as an RNA-binding protein that regulates the RNA stability of ABHD2 and affects the release of fatty acids and ROS, which in turn regulates apoptosis and affects the growth of liver tumors.
Collapse
Affiliation(s)
- Bo-Wen Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Xiang-Yun Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jin-Ling Cao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Lu-Lu Chen
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yi-Lei Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Bing-Qian Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jia Zhou
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhi-Fa Shen
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China.
| |
Collapse
|
35
|
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J, Tan Z, Wang L, Li S, Li XJ. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy 2022; 18:1955-1968. [PMID: 34936539 PMCID: PMC9466617 DOI: 10.1080/15548627.2021.2013653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further investigate how the cytoplasmic TARDBP mediates neuropathology. Here we reported that cytoplasmic mutant TARDBP reduced SQSTM1 expression selectively in the monkey brain, when compared with the mouse brain, by inducing SQSTM1 mRNA instability via its binding to the unique 3'UTR sequence (GU/UG)n of the primate SQSTM1 transcript. Overexpression of SQSTM1 could diminish the cytoplasmic C-terminal TARDBP accumulation in the monkey brain by augmenting macroautophagy/autophagy activity. Our findings provide additional clues for the pathogenesis of cytoplasmic TARDBP and a potential therapy for mutant TARDBP-mediated neuropathology.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Jianmeng Ye
- Guangdong Landao Biotechnology Co. Ltd, Guangzhou, China
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
36
|
Koyano S, Yagishita S, Tada M, Doi H, Uchihara T, Tanaka F. Parallel Appearance of Polyglutamine and Transactivation-Responsive DNA-Binding Protein 43 and Their Complementary Subcellular Localization in Brains of Patients With Spinocerebellar Ataxia Type 2. J Neuropathol Exp Neurol 2022; 81:535-544. [PMID: 35511239 DOI: 10.1093/jnen/nlac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is caused by mutations in the ATXN2 gene in which toxic effects are triggered by expanded polyglutamine repeats within ataxin-2. SCA2 is accompanied by motor neuron degeneration as occurs in amyotrophic lateral sclerosis (ALS). We investigated the distribution patterns of ataxin-2 and transactivation-responsive DNA-binding protein 43 (TDP-43), a major disease-related protein in ALS, in the CNS of 3 SCA2 patients. Phosphorylated TDP-43 (pTDP-43)-positive lesions were widely distributed throughout the CNS and generally overlapped with 1C2 (expanded polyglutamine)-immunoreactive lesions. This distribution pattern is different from the pattern in limbic-predominant age-related TDP-43 encephalopathy. In SCA2, double immunostaining of TDP-43 and 1C2 in motor neurons revealed 3 staining patterns: cytoplasmic 1C2 and nuclear TDP-43, nucleocytoplasmic 1C2 and nuclear TDP-43, and nuclear 1C2 and cytoplasmic TDP-43, which reflect the early, active, and final stages of pathological change, respectively. The translocation of TDP-43 from the nucleus to the cytoplasm along with the translocation of 1C2 in the opposite direction indicates that nuclear accumulation of the disease-specific protein ataxin-2 affects the intracellular dynamics of TDP-43. Such a close interrelationship between mutant ataxin-2 and TDP-43 in the cell might account for the similarity of their distribution in the CNS of patients with SCA2.
Collapse
Affiliation(s)
- Shigeru Koyano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Neurology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
| | - Saburo Yagishita
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano General Hospital, Tokyo, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
37
|
Ghosh S, Ghosh S. Exosome: The “Off-the-Shelf” Cellular Nanocomponent as a Potential Pathogenic Agent, a Disease Biomarker, and Neurotherapeutics. Front Pharmacol 2022; 13:878058. [PMID: 35685643 PMCID: PMC9170956 DOI: 10.3389/fphar.2022.878058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized “off-the-shelf” lipid vesicles released by almost all cell types and play a significant role in cell–cell communication. Exosomes have already been proven to carry cell-specific cargos of proteins, lipids, miRNA, and noncoding RNA (ribonucleic acid). These vesicles can be selectively taken up by the neighboring cell and can regulate cellular functions. Herein, we have discussed three different roles of exosomes in neuroscience. First, we have discussed how exosomes play the role of a pathogenic agent as a part of cell–cell communication and transmit pathogens such as amyloid-beta (Aβ), further helping in the propagation of neurodegenerative and other neurological diseases. In the next section, the review talks about the role of exosomes in biomarker discovery in neurological disorders. Toward the end, we have reviewed how exosomes can be harnessed and engineered for therapeutic purposes in different brain diseases. This review is based on the current knowledge generated in this field and our comprehension of this domain.
Collapse
|
38
|
Pandya S, Maia PD, Freeze B, Menke RAL, Talbot K, Turner MR, Raj A. Modeling seeding and neuroanatomic spread of pathology in amyotrophic lateral sclerosis. Neuroimage 2022; 251:118968. [PMID: 35143975 PMCID: PMC10729776 DOI: 10.1016/j.neuroimage.2022.118968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The neurodegenerative disorder amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of upper and lower motor neurons, with pathological involvement of cerebral motor and extra-motor areas in a clinicopathological spectrum with frontotemporal dementia (FTD). A key unresolved issue is how the non-random distribution of pathology in ALS reflects differential network vulnerability, including molecular factors such as regional gene expression, or preferential spread of pathology via anatomical connections. A system of histopathological staging of ALS based on the regional burden of TDP-43 pathology observed in postmortem brains has been supported to some extent by analysis of distribution of in vivo structural MRI changes. In this paper, computational modeling using a Network Diffusion Model (NDM) was used to investigate whether a process of focal pathological 'seeding' followed by structural network-based spread recapitulated postmortem histopathological staging and, secondly, whether this had any correlation to the pattern of expression of a panel of genes implicated in ALS across the healthy brain. Regionally parcellated T1-weighted MRI data from ALS patients (baseline n=79) was studied in relation to a healthy control structural connectome and a database of associated regional cerebral gene expression. The NDM provided strong support for a structural network-based basis for regional pathological spread in ALS, but no simple relationship to the spatial distribution of ALS-related genes in the healthy brain. Interestingly, OPTN gene was identified as a significant but a weaker non-NDM contributor within the network-gene interaction model (LASSO). Intriguingly, the critical seed regions for spread within the model were not within the primary motor cortex but basal ganglia, thalamus and insula, where NDM recapitulated aspects of the postmortem histopathological staging system. Within the ALS-FTD clinicopathological spectrum, non-primary motor structures may be among the earliest sites of cerebral pathology.
Collapse
Affiliation(s)
- Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, United States.
| | - Pedro D Maia
- Department of Mathematics, University of Texas at Arlington, TX, United States
| | - Benjamin Freeze
- Scripps Health/MD Anderson Cancer Center, Department of Radiology, CA, United States
| | - Ricarda A L Menke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, West Wing Level 6, Oxford OX2 7PZ, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, West Wing Level 6, Oxford OX2 7PZ, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94121, United States.
| |
Collapse
|
39
|
Frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43): its journey of more than 100 years. J Neurol 2022; 269:4030-4054. [PMID: 35320398 PMCID: PMC10184567 DOI: 10.1007/s00415-022-11073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) with TDP-43-immunoreactive inclusions (FTLD-TDP) is a neurodegenerative disease associated with clinical, genetic, and neuropathological heterogeneity. An association between TDP-43, FTLD and amyotrophic lateral sclerosis (ALS) was first described in 2006. However, a century before immunohistochemistry existed, atypical dementias displaying behavioral, language and/or pyramidal symptoms and showing non-specific FTLD with superficial cortical neuronal loss, gliosis and spongiosis were often confused with Alzheimer's or Pick's disease. Initially this pathology was termed dementia lacking distinctive histopathology (DLDH), but this was later renamed when ubiquitinated inclusions originally found in ALS were also discovered in (DLDH), thus warranting a recategorization as FTLD-U (ubiquitin). Finally, the ubiquitinated protein was identified as TDP-43, which aggregates in cortical, subcortical, limbic and brainstem neurons and glial cells. The topography and morphology of TDP-43 inclusions associate with specific clinical syndromes and genetic mutations which implies different pathomechanisms that are yet to be discovered; hence, the TDP-43 journey has actually just begun. In this review, we describe how FTLD-TDP was established and defined clinically and neuropathologically throughout the past century.
Collapse
|
40
|
Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43. Nat Commun 2022; 13:1223. [PMID: 35264561 PMCID: PMC8907366 DOI: 10.1038/s41467-022-28822-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Trans-activation response DNA-binding protein of 43 kDa (TDP-43) regulates RNA processing and forms neuropathological aggregates in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Investigating TDP-43 post-translational modifications, we discovered that K84 acetylation reduced nuclear import whereas K136 acetylation impaired RNA binding and splicing capabilities of TDP-43. Such failure of RNA interaction triggered TDP-43 phase separation mediated by the C-terminal low complexity domain, leading to the formation of insoluble aggregates with pathologically phosphorylated and ubiquitinated TDP-43. Introduction of acetyl-lysine at the identified sites via amber suppression confirmed the results from site-directed mutagenesis. K84-acetylated TDP-43 showed cytoplasmic mislocalization, and the aggregation propensity of K136-acetylated TDP-43 was confirmed. We generated antibodies selective for TDP-43 acetylated at these lysines, and found that sirtuin-1 can potently deacetylate K136-acetylated TDP-43 and reduce its aggregation propensity. Thus, distinct lysine acetylations modulate nuclear import, RNA binding and phase separation of TDP-43, suggesting regulatory mechanisms for TDP-43 pathogenesis.
Collapse
|
41
|
A Microplate-Based Approach to Map Interactions between TDP-43 and α-Synuclein. J Clin Med 2022; 11:jcm11030573. [PMID: 35160025 PMCID: PMC8836581 DOI: 10.3390/jcm11030573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Trans-active response DNA-binding protein (TDP-43) is a multifunctional regulatory protein, whose abnormal deposition in neurons was linked to debilitating neurodegenerative diseases, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, Limbic-predominant age-related TDP-43 encephalopathy, and Alzheimer’s disease with a secondary pathology. Several reports showed that TDP-43 proteinopathy as a comorbidity can form aggregates with other pathological proteins. The co-deposition of alpha synuclein and TDP-43 inclusions was previously reported in glial cells and by observing TDP-43 proteinopathy in Lewy body disease. In this study, it was hypothesized that alpha synuclein and TDP-43 may co-aggregate, resulting in comorbid synucleinopathy and TDP-43 proteinopathy. A solid-phase microplate-based immunoassay was used to map out the epitopes of anti-TDP-43 antibodies and locate the interaction of TDP-43 with α-synuclein. A region of the low complexity domain of TDP-43 (aa 311–314) was shown to interact with full-length α-synuclein. Conversely, full-length TDP-43 was shown to bind to the non-amyloid beta component of α-synuclein. Using in silico sequence-based prediction, the affinity and dissociation constant of full-length TDP-43 and α-synuclein were calculated to be −10.83 kcal/mol and 1.13 × 10−8, respectively. Taken together, this microplate-based method is convenient, economical, and rapid in locating antibody epitopes as well as interaction sites of two proteins.
Collapse
|
42
|
USP10 inhibits aberrant cytoplasmic aggregation of TDP-43 by promoting stress granule clearance. Mol Cell Biol 2022; 42:e0039321. [PMID: 35007165 DOI: 10.1128/mcb.00393-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TDP-43 is a causative factor of amyotrophic lateral sclerosis (ALS). Cytoplasmic TDP-43 aggregates in neurons are a hallmark pathology of ALS. Under various stress conditions, TDP-43 localizes sequentially to two cytoplasmic protein aggregates: stress granules (SGs) first, and then aggresomes. Accumulating evidence suggests that delayed clearance of TDP-43-positive SGs is associated with pathological TDP-43 aggregates in ALS. We found that USP10 promotes the clearance of TDP-43-positive SGs in cells treated with proteasome inhibitor, thereby promoting the formation of TDP-43-positive aggresomes, and the depletion of USP10 increases the amount of insoluble TDP-35, a cleaved product of TDP-43, in the cytoplasm. TDP-35 interacted with USP10 in an RNA-binding dependent manner; however, impaired RNA-binding of TDP-35 reduced the localization in SGs and aggresomes and induced USP10-negative TDP-35 aggregates. Immunohistochemistry showed that most of the cytoplasmic TDP-43/TDP-35-aggregates in the neurons of ALS patients were USP10-negative. Our findings suggest that USP10 inhibits aberrant aggregation of TDP-43/TDP-35 in the cytoplasm of neuronal cells by promoting the clearance of TDP-43/TDP-35-positive SGs and facilitating the formation of TDP-43/TDP-35-positive aggresomes.
Collapse
|
43
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
44
|
Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry 2022; 27:259-268. [PMID: 34285347 DOI: 10.1038/s41380-021-01233-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
Collapse
|
45
|
Higashihara M, Ishibashi K, Tokumaru AM, Iwata A, Ishii K. 18F-THK5351 PET Can Identify Core Lesions in Different Amyotrophic Lateral Sclerosis Phenotypes. Clin Nucl Med 2021; 46:e582-e583. [PMID: 34115705 DOI: 10.1097/rlu.0000000000003755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACT Two patients with different amyotrophic lateral sclerosis (ALS) phenotypes underwent 18F-THK5351 PET to visualize lesions undergoing astrogliosis by measuring monoamine oxidase B activity. Patient 1 was a 57-year-old man with flail leg syndrome. Elevated uptake was observed inside the motor cortex, corresponding to the leg area in a cortical homunculus. Patient 2 was a 64-year-old man with ALS-frontotemporal dementia semantic variant. Elevated uptake was observed around the left anterior temporal lobe. Both core lesions were consistent with their respective neurological features. Hence, 18F-THK5351 PET is a useful technique to assess ALS pathophysiology by visualizing the core lesions.
Collapse
Affiliation(s)
- Mana Higashihara
- From the Department of Neurology, Tokyo Metropolitan Geriatric Hospital
| | | | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Atsushi Iwata
- From the Department of Neurology, Tokyo Metropolitan Geriatric Hospital
| | | |
Collapse
|
46
|
Molecular Pathways Involved in Frontotemporal Lobar Degeneration with TDP-43 Proteinopathy: What Can We Learn from Proteomics? Int J Mol Sci 2021; 22:ijms221910298. [PMID: 34638637 PMCID: PMC8508653 DOI: 10.3390/ijms221910298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder clinically characterized by behavioral, language, and motor symptoms, with major impact on the lives of patients and their families. TDP-43 proteinopathy is the underlying neuropathological substrate in the majority of cases, referred to as FTLD-TDP. Several genetic causes have been identified, which have revealed some components of its pathophysiology. However, the exact mechanisms driving FTLD-TDP remain largely unknown, forestalling the development of therapies. Proteomic approaches, in particular high-throughput mass spectrometry, hold promise to help elucidate the pathogenic molecular and cellular alterations. In this review, we describe the main findings of the proteomic profiling studies performed on human FTLD-TDP brain tissue. Subsequently, we address the major biological pathways implicated in FTLD-TDP, by reviewing these data together with knowledge derived from genomic and transcriptomic literature. We illustrate that an integrated perspective, encompassing both proteomic, genetic, and transcriptomic discoveries, is vital to unravel core disease processes, and to enable the identification of disease biomarkers and therapeutic targets for this devastating disorder.
Collapse
|
47
|
Valori CF, Neumann M. Contribution of RNA/DNA Binding Protein Dysfunction in Oligodendrocytes in the Pathogenesis of the Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration Spectrum Diseases. Front Neurosci 2021; 15:724891. [PMID: 34539339 PMCID: PMC8440855 DOI: 10.3389/fnins.2021.724891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders, often considered as the extreme manifestations of a disease spectrum, as they share similar pathomechanisms. In support of this, pathological aggregation of the RNA/DNA binding proteins trans-activation response element DNA-binding protein 43 (TDP-43) or fused in sarcoma (FUS) is the pathological hallmark found in neurons and glial cells of subsets of patients affected by either condition (i.e., ALS/FTLD—TDP-43 or ALS/FTLD—FUS, respectively). Among glia, oligodendrocytes are the most abundant population, designated to ensheath the axons with myelin and to provide them with metabolic and trophic support. In this minireview, we recapitulate the neuropathological evidence for oligodendroglia impairment in ALS/FTLD. We then debate how TDP-43 and FUS target oligodendrocyte transcripts, thereby controlling their homeostatic abilities toward the axons. Finally, we discuss cellular and animal models aimed at investigating the functional consequences of manipulating TDP-43 and FUS in oligodendrocytes in vivo. Taken together, current data provide increasing evidence for an important role of TDP-43 and FUS-mediated oligodendroglia dysfunction in the pathogenesis of ALS/FTLD. Thus, targeting disrupted oligodendroglial functions may represent a new treatment approach for these conditions.
Collapse
Affiliation(s)
- Chiara F Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Molecular Pathology of ALS: What We Currently Know and What Important Information Is Still Missing. Diagnostics (Basel) 2021; 11:diagnostics11081365. [PMID: 34441299 PMCID: PMC8391180 DOI: 10.3390/diagnostics11081365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/23/2022] Open
Abstract
Despite an early understanding of amyotrophic lateral sclerosis (ALS) as a disease affecting the motor system, including motoneurons in the motor cortex, brainstem, and spinal cord, today, many cases involving dementia and behavioral disorders are reported. Therefore, we currently divide ALS not only based on genetic predisposition into the most common sporadic variant (90% of cases) and the familial variant (10%), but also based on cognitive and/or behavioral symptoms, with five specific subgroups of clinical manifestation—ALS with cognitive impairment, ALS with behavioral impairment, ALS with combined cognitive and behavioral impairment, the fully developed behavioral variant of frontotemporal dementia in combination with ALS, and comorbid ALS and Alzheimer’s disease (AD). Generally, these cases are referred to as amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD). Clinical behaviors and the presence of the same pathognomonic deposits suggest that FTLD and ALS could be a continuum of one entity. This review was designed primarily to compare neuropathological findings in different types of ALS relative to their characteristic locations as well as the immunoreactivity of the inclusions, and thus, foster a better understanding of the immunoreactivity, distribution, and morphology of the pathological deposits in relation to genetic mutations, which can be useful in specifying the final diagnosis.
Collapse
|
49
|
Dyer MS, Woodhouse A, Blizzard CA. Cytoplasmic Human TDP-43 Mislocalization Induces Widespread Dendritic Spine Loss in Mouse Upper Motor Neurons. Brain Sci 2021; 11:brainsci11070883. [PMID: 34209287 PMCID: PMC8301870 DOI: 10.3390/brainsci11070883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is defined by the destruction of upper- and lower motor neurons. Post-mortem, nearly all ALS cases are positive for cytoplasmic aggregates containing the DNA/RNA binding protein TDP-43. Recent studies indicate that this pathogenic mislocalization of TDP-43 may participate in generating hyperexcitability of the upper motor neurons, the earliest detectable change in ALS patients, yet the mechanisms driving this remain unclear. We investigated how mislocalisation of TDP-43 could initiate network dysfunction in ALS. We employed a tetracycline inducible system to express either human wildtype TDP-43 (TDP-43WT) or human TDP-43 that cannot enter the nucleus (TDP-43ΔNLS) in excitatory neurons (Camk2α promoter), crossed Thy1-YFPH mice to visualize dendritic spines, the major site of excitatory synapses. In comparison to both TDP-43WT and controls, TDP-43ΔNLS drove a robust loss in spine density in all the dendrite regions of the upper motor neurons, most affecting thin spines. This indicates that TDP-43 is involved in the generation of network dysfunction in ALS likely through impacting the formation or durability of excitatory synapses. These findings are relevant to the vast majority of ALS cases, and provides further evidence that upper motor neurons may need to be protected from TDP-43 mediated synaptic excitatory changes early in disease.
Collapse
Affiliation(s)
- Marcus S. Dyer
- Menzies Institute for Medical Research, College Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia;
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia;
| | - Catherine A. Blizzard
- Menzies Institute for Medical Research, College Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia;
- Correspondence:
| |
Collapse
|
50
|
Huang Z, Ba Z, Huang N, Li Y, Luo Y. Aberrant TDP-43 phosphorylation: a key wind gap from TDP-43 to TDP-43 proteinopathy. IBRAIN 2021; 7:119-131. [PMID: 37786905 PMCID: PMC10528777 DOI: 10.1002/j.2769-2795.2021.tb00074.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 03/24/2021] [Indexed: 10/04/2023]
Abstract
TDP-43 proteinopathy is a kind of neurodegenerative diseases related to the TAR DNA-binding protein of 43-kDa molecular weight (TDP-43). The typical neurodegenerative diseases include amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD) and so on. As the disease process cannot be blocked or slowed down, these patients have poor quality of life and poor prognosis, and bring a huge burden to the family and society. So far, the specific pathogenesis of TDP-43 proteinopathy is not clear, and there is no effective preventive measure and treatment program for this kind of disease. TDP-43 plays an important role in triggering or promoting the occurrence and progression of TDP-43 proteinopathy. The hyperphosphorylation of TDP-43 is undoubtedly an important factor in triggering or promoting the process of TDP-43 proteinopathy. Hyperphosphorylation of TDP-43 can inhibit the degradation of TDP-43, aggravate the aggregation of TDP-43 protein, increase the wrong localization of TDP-43 in cells, and enhance the cytotoxicity of TDP-43. More and more evidences show that the hyperphosphorylation of TDP-43 plays an important role in the pathogenesis of TDP-43 proteinopathy. Inhibition of TDP-43 hyperphosphorylation may be one of the important strategies for the treatment of TDP-43 proteinopathy. Therefore, this article reviews the role of TDP-43 phosphorylation in TDP-43 proteinopathy and the related mechanisms.
Collapse
Affiliation(s)
- Zi‐Qi Huang
- Department of NeurologyThird Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| | - Zhi‐Sheng Ba
- Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| | - Nan‐Qu Huang
- Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| | - Yuan‐Yuan Li
- Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| | - Yong Luo
- Department of NeurologyThird Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| |
Collapse
|