1
|
Kim JH, Han YE, Oh SJ, Lee B, Kwon O, Choi CW, Kim MS. Enhanced neuronal activity by suffruticosol A extracted from Paeonia lactiflora via partly BDNF signaling in scopolamine-induced memory-impaired mice. Sci Rep 2023; 13:11731. [PMID: 37474737 PMCID: PMC10359324 DOI: 10.1038/s41598-023-38773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Neurodegenerative diseases are explained by progressive defects of cognitive function and memory. These defects of cognition and memory dysfunction can be induced by the loss of brain-derived neurotrophic factors (BDNF) signaling. Paeonia lactiflora is a traditionally used medicinal herb in Asian countries and some beneficial effects have been reported, including anti-oxidative, anti-inflammatory, anti-cancer activity, and potential neuroprotective effects recently. In this study, we found that suffruticosol A is a major compound in seeds of Paeonia lactiflora. When treated in a SH-SY5 cell line for measuring cell viability and cell survival, suffruticosol A increased cell viability (at 20 µM) and recovered scopolamine-induced neurodegenerative characteristics in the cells. To further confirm its neural amelioration effects in the animals, suffruticosol A (4 or 15 ng, twice a week) was administered into the third ventricle beside the brain of C57BL/6 mice for one month then the scopolamine was intraperitoneally injected into these mice to induce impairments of cognition and memory before conducting behavioral experiments. Central administration of suffruticosol A into the brain restored the memory and cognition behaviors in mice that received the scopolamine. Consistently, the central treatments of suffruticosol A showed rescued cholinergic deficits and BDNF signaling in the hippocampus of mice. Finally, we measured the long-term potentiation (LTP) in the hippocampal CA3-CA1 synapse to figure out the restoration of the synaptic mechanism of learning and memory. Bath application of suffruticosol A (40 µM) improved LTP impairment induced by scopolamine in hippocampal slices. In conclusion, the central administration of suffruticosol A ameliorated neuronal effects partly through elevated BDNF signaling.
Collapse
Affiliation(s)
- June Hee Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chun Whan Choi
- Natural Biomaterial Team, Biocenter, Gyeonggido Business and Science Accelerator, Suwon, 16229, Gyeonggi-do, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Oroszi T, Geerts E, Rajadhyaksha R, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-body vibration ameliorates glial pathological changes in the hippocampus of hAPP transgenic mice, but does not affect plaque load. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:5. [PMID: 36941713 PMCID: PMC10026461 DOI: 10.1186/s12993-023-00208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the core cause of dementia in elderly populations. One of the main hallmarks of AD is extracellular amyloid beta (Aβ) accumulation (APP-pathology) associated with glial-mediated neuroinflammation. Whole-Body Vibration (WBV) is a passive form of exercise, but its effects on AD pathology are still unknown. METHODS Five months old male J20 mice (n = 26) and their wild type (WT) littermates (n = 24) were used to investigate the effect of WBV on amyloid pathology and the healthy brain. Both J20 and WT mice underwent WBV on a vibration platform or pseudo vibration treatment. The vibration intervention consisted of 2 WBV sessions of 10 min per day, five days per week for five consecutive weeks. After five weeks of WBV, the balance beam test was used to assess motor performance. Brain tissue was collected to quantify Aβ deposition and immunomarkers of astrocytes and microglia. RESULTS J20 mice have a limited number of plaques at this relatively young age. Amyloid plaque load was not affected by WBV. Microglia activation based on IBA1-immunostaining was significantly increased in the J20 animals compared to the WT littermates, whereas CD68 expression was not significantly altered. WBV treatment was effective to ameliorate microglia activation based on morphology in both J20 and WT animals in the Dentate Gyrus, but not so in the other subregions. Furthermore, GFAP expression based on coverage was reduced in J20 pseudo-treated mice compared to the WT littermates and it was significantly reserved in the J20 WBV vs. pseudo-treated animals. Further, only for the WT animals a tendency of improved motor performance was observed in the WBV group compared to the pseudo vibration group. CONCLUSION In accordance with the literature, we detected an early plaque load, reduced GFAP expression and increased microglia activity in J20 mice at the age of ~ 6 months. Our findings indicate that WBV has beneficial effects on the early progression of brain pathology. WBV restored, above all, the morphology of GFAP positive astrocytes to the WT level that could be considered the non-pathological and hence "healthy" level. Next experiments need to be performed to determine whether WBV is also affective in J20 mice of older age or other AD mouse models.
Collapse
Affiliation(s)
- Tamas Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary.
| | - Eva Geerts
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Reuben Rajadhyaksha
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis Univesity, Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
3
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
4
|
Frye CA, Lembo VF, Walf AA. Progesterone's Effects on Cognitive Performance of Male Mice Are Independent of Progestin Receptors but Relate to Increases in GABA A Activity in the Hippocampus and Cortex. Front Endocrinol (Lausanne) 2021; 11:552805. [PMID: 33505354 PMCID: PMC7829189 DOI: 10.3389/fendo.2020.552805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023] Open
Abstract
Progestogens' (e.g., progesterone and its neuroactive metabolite, allopregnanolone), cognitive effects and mechanisms among males are not well-understood. We hypothesized if progestogen's effects on cognitive performance are through its metabolite allopregnanolone, and not actions via binding to traditional progestin receptors (PRs), then progesterone administration would enhance performance in tasks mediated by the hippocampus and cortex, coincident with increasing allopregnanolone concentrations, brain derived neurotrophic factor (BDNF) and/or muscimol binding of PR knock out (PRKO) and wild-type PR replete mice. Experiment 1: Progesterone (4 mg/kg, subcutaneously (SC; n = 12/grp), or oil vehicle control, was administered to gonadally-intact adult male mice PRKO mice and their wild-type counterparts and cognitive behaviors in object recognition, T-maze and water maze was examined. Progesterone, compared to vehicle, when administered post-training increased time investigating novel objects by the PRKO and wild-type mice in the object recognition task. In the T-maze task, progesterone administration to wild-type and PRKO mice had significantly greater number of spontaneous alternations compared to their vehicle-administered counterparts. In the water maze task, PRKO mice administered vehicle spent significantly fewer seconds in the quadrant associated with the escape platform on testing compared to all other groups. Experiment 2: Progesterone administered to wild-type and PRKO mice increased plasma progesterone and allopregnanolone levels (n = 5/group). PRKO mice had higher allopregnanolone levels in plasma and hippocampus, but not cortex, when administered progesterone and compared to wild-type mice. Experiment 3: Assessment of PR binding revealed progesterone administered wild-type mice had significantly greater levels of PRs in the hippocampus and cortex, compared to all other groups (n = 5/group). Wild-type mice administered progesterone, but not vehicle, had increased BDNF levels in the hippocampus, but not the cortex, compared to PRKOs. Wild-type as well as PRKO mice administered progesterone experienced significant increases in maximal GABAA agonist, muscimol, binding in hippocampus and cortex, compared to their vehicle-administered counterparts. Thus, adult male mice can be responsive to progesterone for cognitive performance, and such effects may be independent of PRs trophic actions of BDNF levels in the hippocampus and/or increases in GABAA activity in the hippocampus and cortex.
Collapse
Affiliation(s)
- Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Department of Biological Sciences, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- The Center for Neuroscience Research, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- The Center for Life Sciences Research, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, United States
- Department of Chemistry, University of Alaska–Fairbanks, Fairbanks, AK, United States
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska–Fairbanks, Fairbanks, AK, United States
- Comprehensive Neuropsychological Services, Albany, NY, United States
| | - Vincent F. Lembo
- Comprehensive Neuropsychological Services, Albany, NY, United States
| | - Alicia A. Walf
- Department of Psychology, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, United States
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska–Fairbanks, Fairbanks, AK, United States
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
5
|
Sannier G, Dubé M, Kaufmann DE. Single-Cell Technologies Applied to HIV-1 Research: Reaching Maturity. Front Microbiol 2020; 11:297. [PMID: 32194526 PMCID: PMC7064469 DOI: 10.3389/fmicb.2020.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
The need for definitive answers probably explains our natural tendency to seek simplicity. The reductionist “bulk” approach, in which a mean behavior is attributed to a heterogeneous cell population, fulfills this need by considerably helping the conceptualization of complex biological processes. However, the limits of this methodology are becoming increasingly clear as models seek to explain biological events occurring in vivo, where heterogeneity is the rule. Research in the HIV-1 field is no exception: the challenges encountered in the development of preventive and curative anti-HIV-1 strategies may well originate in part from inadequate assumptions built on bulk technologies, highlighting the need for new perspectives. The emergence of diverse single-cell technologies set the stage for potential breakthrough discoveries, as heterogeneous processes can now be investigated with an unprecedented depth in topics as diverse as HIV-1 tropism, dynamics of the replication cycle, latency, viral reservoirs and immune control. In this review, we summarize recent advances in the HIV-1 field made possible by single-cell technologies, and contextualize their importance.
Collapse
Affiliation(s)
- Gérémy Sannier
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Consortium for HIV/AIDS Vaccine Development (Scripps CHAVD), La Jolla, CA, United States
| |
Collapse
|
6
|
The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:309-321. [PMID: 28669580 DOI: 10.1016/j.pnpbp.2017.06.036] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/05/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
A growing body of evidence suggests that inflammation, mitochondrial dysfunction and oxidant-antioxidant imbalance may play a significant role in the development and progression of depression. Elevated levels of reactive oxygen and nitrogen species - a result of oxidant-antioxidant imbalance - may lead to increased damage of biomolecules, including DNA. This was confirmed in depressed patients in a research study conducted by our team and other scientists. 8-oxoguanine - a marker of oxidative DNA damage - was found in the patients' lymphocytes, urine and serum. These results were confirmed using a comet assay on lymphocytes. Furthermore, it was shown that the patients' cells repaired peroxide-induced DNA damage less efficiently than controls' cells and that some single nucleotide polymorphisms (SNP) of the genes involved in oxidative DNA damage repair may modulate the risk of depression. Lastly, less efficient DNA damage repair observed in the patients can be, at least partly, attributed to the presence of specific SNP variants, as it was revealed through a genotype-phenotype analysis. In conclusion, the available literature shows that both oxidative stress and less efficient DNA damage repair may lead to increased DNA damage in depressed patients. A similar mechanism may result in mitochondrial dysfunction, which is observed in depression.
Collapse
|
7
|
Vieira MNN, Lima-Filho RAS, De Felice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology 2017; 136:160-171. [PMID: 29129775 DOI: 10.1016/j.neuropharm.2017.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a risk factor for type 2 diabetes and vice versa, and a growing body of evidence indicates that these diseases are connected both at epidemiological, clinical and molecular levels. Recent studies have begun to reveal common pathogenic mechanisms shared by AD and type 2 diabetes. Impaired neuronal insulin signaling and endoplasmic reticulum (ER) stress are present in animal models of AD, similar to observations in peripheral tissue in T2D. These findings shed light into novel diabetes-related mechanisms leading to brain dysfunction in AD. Here, we review the literature on selected mechanisms shared between these diseases and discuss how the identification of such mechanisms may lead to novel therapeutic targets in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
8
|
Vieira MNN, Lyra E Silva NM, Ferreira ST, De Felice FG. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy? Front Aging Neurosci 2017; 9:7. [PMID: 28197094 PMCID: PMC5281585 DOI: 10.3389/fnagi.2017.00007] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023] Open
Abstract
Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's UniversityKingston, ON, Canada
| |
Collapse
|
9
|
Comorbidity Factors and Brain Mechanisms Linking Chronic Stress and Systemic Illness. Neural Plast 2016; 2016:5460732. [PMID: 26977323 PMCID: PMC4761674 DOI: 10.1155/2016/5460732] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/16/2022] Open
Abstract
Neuropsychiatric symptoms and mental illness are commonly present in patients with chronic systemic diseases. Mood disorders, such as depression, are present in up to 50% of these patients, resulting in impaired physical recovery and more intricate treatment regimen. Stress associated with both physical and emotional aspects of systemic illness is thought to elicit detrimental effects to initiate comorbid mental disorders. However, clinical reports also indicate that the relationship between systemic and psychiatric illnesses is bidirectional, further increasing the complexity of the underlying pathophysiological processes. In this review, we discuss the recent evidence linking chronic stress and systemic illness, such as activation of the immune response system and release of common proinflammatory mediators. Altogether, discovery of new targets is needed for development of better treatments for stress-related psychiatric illnesses as well as improvement of mental health aspects of different systemic diseases.
Collapse
|
10
|
Baudry M, Bi X, Aguirre C. Progesterone-estrogen interactions in synaptic plasticity and neuroprotection. Neuroscience 2013; 239:280-94. [PMID: 23142339 PMCID: PMC3628409 DOI: 10.1016/j.neuroscience.2012.10.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 01/01/2023]
Abstract
17ß-Estradiol and progesterone exert a number of physiological effects throughout the brain due to interactions with several types of receptors belonging to the traditional family of intracellular hormonal receptors as well as to membrane-bound receptors. In particular, both hormones elicit rapid modifications of neuronal excitability that have been postulated to underlie their effects on synaptic plasticity and learning and memory. Likewise, both hormones have been shown to be neuroprotective under certain conditions, possibly due to the activation of pro-survival pathways and the inhibition of pro-apoptotic cascades. Because of the similarities in their cellular effects, there have been a number of questions raised by numerous observations that progesterone inhibits the effects of estrogen. In this manuscript, we first review the interactions between 17ß-estradiol (E2) and progesterone (P4) in synaptic plasticity, and conclude that, while E2 exerts a clear and important role in long-term potentiation of synaptic transmission in hippocampal neurons, the role of P4 is much less clear, and could be accounted by the direct or indirect regulation of GABAA receptors. We then discuss the neuroprotective roles of both hormones, in particular against excitotoxicity. In this case, the neuroprotective effects of these hormones are very similar to those of the neurotrophic factor BDNF. Interestingly, P4 antagonizes the effects of E2, possibly through the regulation of estrogen receptors or of proteins associated with the receptors or interactions with signaling pathways activated by E2. Overall, this review emphasizes the existence of common molecules and pathways that participate in the regulation of both synaptic plasticity and neurodegeneration.
Collapse
Affiliation(s)
- M Baudry
- GCBS and COMP, Western University of Health Sciences, Pomona, CA, USA.
| | | | | |
Collapse
|
11
|
Pizarro JM, Chang WE, Bah MJ, Wright LKM, Saviolakis GA, Alagappan A, Robison CL, Shah JD, Meyerhoff JL, Cerasoli DM, Midboe EG, Lumley LA. Repeated Exposure to Sublethal Doses of the Organophosphorus Compound VX Activates BDNF Expression in Mouse Brain. Toxicol Sci 2012; 126:497-505. [DOI: 10.1093/toxsci/kfr353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
12
|
von Bohlen und Halbach O. Involvement of BDNF in age-dependent alterations in the hippocampus. Front Aging Neurosci 2010; 2. [PMID: 20941325 PMCID: PMC2952461 DOI: 10.3389/fnagi.2010.00036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/26/2010] [Indexed: 12/30/2022] Open
Abstract
It is known since a long time that the hippocampus is sensitive to aging. Thus, there is a reduction in the hippocampal volume during aging. This age-related volume reduction is paralleled by behavioral and functional deficits in hippocampus-dependent learning and memory tasks. This age-related volume reduction of the hippocampus is not a consequence of an age-related loss of hippocampal neurons. The morphological changes associated with aging include reductions in the branching pattern of dendrites, as well as reductions in spine densities, reductions in the densities of fibers projecting into the hippocampus as well as declines in the rate of neurogenesis. It is very unlikely that a single factor or a single class of molecules is responsible for all these age-related morphological changes in the hippocampus. Nevertheless, it would be of advantage to identify possible neuromodulators or neuropeptides that may contribute to these age-related changes. In this context, growth factors may play an important role in the maintenance of the postnatal hippocampal architecture. In this review it is hypothesized that brain-derived neurotrophic factor (BDNF) is a factor critically involved in the regulation of age-related processes in the hippocampus. Moreover, evidences suggest that disturbances in the BDNF-system also affect hippocampal dysfunctions, as e.g. seen in major depression or in Alzheimer disease.
Collapse
|
13
|
Schulte-Herbrüggen O, Eckart S, Deicke U, Kühl A, Otten U, Danker-Hopfe H, Abramowski D, Staufenbiel M, Hellweg R. Age-dependent time course of cerebral brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in APP23 transgenic mice. J Neurosci Res 2008; 86:2774-83. [DOI: 10.1002/jnr.21704] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Ginés S, Bosch M, Marco S, Gavaldà N, Díaz-Hernández M, Lucas JJ, Canals JM, Alberch J. Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain. Eur J Neurosci 2006; 23:649-58. [PMID: 16487146 DOI: 10.1111/j.1460-9568.2006.04590.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Deficits of neurotrophic support caused by reduced levels of brain-derived neurotrophic factor (BDNF) have been implicated in the selective vulnerability of striatal neurones in Huntington's disease (HD). Therapeutic strategies based on BDNF administration have been proposed to slow or prevent the disease progression. However, the effectiveness of BDNF may depend on the proper expression of its receptor TrkB. In this study, we analysed the expression of TrkB in several HD models and in postmortem HD brains. We found a specific reduction of TrkB receptors in transgenic exon-1 and full-length knock-in HD mouse models and also in the motor cortex and caudate nucleus of HD brains. Our findings also demonstrated that continuous expression of mutant huntingtin is required to down-regulate TrkB levels. This was shown by findings in an inducible HD mouse model showing rescue of TrkB by turning off mutant huntingtin expression. Interestingly, the length of the polyglutamine tract in huntingtin appears to modulate the reduction of TrkB. Finally, to analyse the effect of BDNF in TrkB we compared TrkB expression in mutant huntingtin R6/1 and double mutant (R6/1 : BDNF+/-) mice. Similar TrkB expression was found in both transgenic mice suggesting that reduced TrkB is not a direct consequence of decreased BDNF. Therefore, taken together our findings identify TrkB as an additional component that potentially might contribute to the altered neurotrophic support in HD.
Collapse
Affiliation(s)
- Silvia Ginés
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rumajogee P, Vergé D, Darmon M, Brisorgueil MJ, Hamon M, Miquel MC. Rapid up-regulation of the neuronal serotoninergic phenotype by brain-derived neurotrophic factor and cyclic adenosine monophosphate: relations with raphe astrocytes. J Neurosci Res 2005; 81:481-7. [PMID: 15968642 DOI: 10.1002/jnr.20572] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Up-regulation of the neuronal serotoninergic phenotype in relation to astrocytic population was studied in primary cultures of rat embryonic rostral raphe. Short treatments (18 hr at day in vitro 4) with brain-derived neurotrophic factor (BDNF) or dibutyryl-cAMP (dBcAMP) increased the number of serotoninergic neurons by approximately 80% and approximately 40%, respectively, and markedly enhanced the branching (by 11-fold and 5-fold, respectively) and total length (by 4-fold and 2.5-fold, respectively) of their neurites. Concomitantly, under BDNF treatment, the astrocyte population was decreased by half and became mostly protoplasmic-like. In contrast, dBcAMP treatment also reduced the astrocytic cell density (by one-third) but induced a stellate morphology. Similar short treatment with the astrocyte-derived S100beta factor induced no modification of the serotonin (5-HT) neuronal phenotype nor of astrocytes morphology. Both BDNF- and cAMP-induced effects were abolished by simultaneous treatment with the specific tyrosine kinase inhibitor genistein, suggesting a role for the high-affinity BDNF receptor tyrosine kinase (TrkB). These data suggest that BDNF and cAMP, but not S100beta, rapidly induce both an up-regulation of the 5-HT neuronal phenotype and modifications of the neighboring astrocytes in a TrkB-dependent manner.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Laboratoire de Neurobiologie des Signaux Intercellulaires, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Schmitt HP. Neuro-modulation, aminergic neuro-disinhibition and neuro-degeneration. Draft of a comprehensive theory for Alzheimer disease. Med Hypotheses 2005; 65:1106-19. [PMID: 16125326 DOI: 10.1016/j.mehy.2005.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 12/18/2022]
Abstract
A comprehensive theory for Alzheimer disease (AD) which can provide a clue to the neuronal selective vulnerability (pathoklisis) is still missing. Based upon evidence from the current literature, the present work is aimed at proposing such a theory, namely the 'aminergic disinhibition theory' of AD. It includes data-based hypotheses as to the pathoklisis, mechanisms of neuro-degeneration and dementia as well as the aetiology of the disease. Alzheimer disease is regarded as a disorder of neural input modulation caused by the degeneration of four modulatory amine transmitter (MAT) systems, namely the serotoninergic, the noradrenergic, the histaminergic, and the cholinergic systems with ascending projections. MATs modulate cognitive processing including arousal, attention, and synaptic plasticity in learning and memory, not only through direct, mostly inhibitory impact on principal neurones but also partially through interaction with local networks of GABA-ergic inter-neurones. The distribution and magnitude of the pathology in AD roughly correlate with the distribution and magnitude of MAT modulation: Regions more densely innervated by ascending MAT projections are, as a rule, more severely affected than areas receiving less MAT innervation. Because the global effect of MATs in the forebrain is inhibition, the degeneration of four MAT systems, some related peptidergic systems and a secondary alleviation of the GABA-ergic transmission means a fundamental loss of inhibitory impact in the neuronal circuitry resulting in neuronal (aminergic) disinhibition. Clearly, the basic mechanism promoting neuronal death in AD is thought to be a chronic disturbance of the inhibition-excitation balance to the advantage of excitation. Chronic over-excitation is conceived to result in Ca2+ dependent cellular excito-toxicity leading to neuro-degeneration including amyloid-beta production and NFT formation. Disinhibited neurons will degenerate while less excited (relatively over-inhibited) neurones will survive. Because the decline of aminergic transmission in AD is likely to start at the receptor level, it is hypothesized that early impairment by a molecular 'hit' to an MAT receptor (or a group of receptors) initiates a pathogenetic cascade that develops in an avalanche-like manner. Based on experimental evidence from the literature, the 'hit' might be the attachment of a targeted pathogen like a small roaming amino acid sequence to the receptor(s), e.g., the serotoninergic 5-HT2A-R. Referential sequence analysis could be a means to identify such a small pathogen hidden in a large receptor molecule.
Collapse
Affiliation(s)
- H Peter Schmitt
- Institute of Pathology, Department for Neuropathology, University of Heidelberg, Im Neuernheimer Feld 220-221, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Chen MJ, Russo-Neustadt AA. Exercise activates the phosphatidylinositol 3-kinase pathway. ACTA ACUST UNITED AC 2005; 135:181-93. [PMID: 15857681 DOI: 10.1016/j.molbrainres.2004.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 12/07/2004] [Accepted: 12/13/2004] [Indexed: 11/17/2022]
Abstract
Physical exercise is known to enhance psychological well-being and coping capacity. Voluntary physical exercise in rats also robustly and rapidly up-regulates hippocampal brain-derived neurotrophic factor (BDNF) mRNA levels, which are potentiated following a regimen of chronic antidepressant treatment. Increased BDNF levels are associated with enhanced activity of cyclic AMP response element binding protein (CREB). So far, relatively little is known about the intracellular signaling mechanisms mediating this effect of exercise. We wished to explore the possibility that exercise and/or antidepressant treatment activate the hippocampal phosphatidylinositol-3 (PI-3) kinase pathway, which mediates cellular survival. In young male Sprague-Dawley rats, we examined the effects of 2 weeks of daily voluntary wheel-running activity and/or tranylcypromine (n = 7 per group) on the levels of the active forms of protein-dependent kinase-1 (PDK-1), PI-3 kinase, phospho-thr308-Akt, phospho-ser473-Akt, and phospho-glycogen synthase kinase-3beta (GSK3beta; inactive form), as well as BDNF, activated CREB, and the phospho-Trk receptor, in the rat hippocampus, and compared these with sedentary saline-treated controls. Immunoblotting analyses revealed that in exercising rats, there was a significant increase in PI-3 kinase expression (4.61 times that of controls, P = 0.0161) and phosphorylation of PDK-1 (2.73 times that of controls, P = 0.0454), thr308-Akt (2.857 times that of controls, P = 0.0082), CREB (60.27 times that of controls, P = 0.05), and Trk (35.3 times that of controls, P < 0.0001) in the hippocampi of exercising animals; BDNF was also increased (3.2 times that of controls), but this was not statistically significant. In rats receiving both exercise and tranylcypromine, BDNF (4.51 times that of controls, P = 0.0068) and PI-3 kinase (4.88 times that of controls, P = 0.0103), and the phospho- forms of Trk (13.67 times that of controls, P = 0.0278), thr308-Akt (3.644 times that of controls, P = 0.0004), GSK-3beta (2.93 times that of controls, P = 0.026), and CREB (88.97 times that of controls, P = 0.0053) were significantly increased. These results suggest that the exercise-induced expression of BDNF is associated with the increased expression of several key intermediates of the PI-3 kinase/Akt pathway, which is known for its role in enhancing neuronal survival.
Collapse
Affiliation(s)
- Michael J Chen
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | | |
Collapse
|
18
|
Achim CL, White MG. Brain derived neurotrophic factor and neurodegeneration. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.9.12.1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Ozbas-Gerçeker F, Gorter JA, Redeker S, Ramkema M, van der Valk P, Baayen JC, Ozgüç M, Saygi S, Soylemezoglu F, Akalin N, Troost D, Aronica E. Neurotrophin receptor immunoreactivity in the hippocampus of patients with mesial temporal lobe epilepsy. Neuropathol Appl Neurobiol 2004; 30:651-64. [PMID: 15541005 DOI: 10.1111/j.1365-2990.2004.00582.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent evidence supports a critical role of neurotrophins in the regulation of both neuronal survival and synaptic transmission during epileptogenesis. We have examined the immunohistochemical expression of high- (tyrosine kinase receptors, trk) and low-affinity (p75) neurotrophin receptors (NTRs) in the hippocampal specimens from 18 patients with chronic temporal lobe epilepsy [TLE; 14 patients with hippocampal sclerosis (HS) and four with focal lesions (tumours) not involving the hippocampus proper]. Nonepileptic autopsy brains (n = 6) and surgical specimens from tumour patients without epilepsy (n = 3) were used as controls. Immunoreactivity (IR) for the trk receptors (trkA, trkB, trkC) was detected in normal human brain within the pyramidal neurones of hippocampal cornus ammoni (CA) regions and in the dentate gyrus. There were no detectable differences in the neuronal trk IR patterns in the hippocampus between control and TLE cases with HS, except for a decrease in neuronal density in regions where cell death had occurred (CA1, CA3 and CA4). In contrast, a consistent increase in trkA IR was observed in reactive astrocytes in CA1 and dentate gyrus. The low-affinity p75 neurotrophin receptor (p75(NTR)) was expressed in low levels in postnatal normal hippocampus. In contrast, neuronal p75(NTR) IR was detected in 10/14 cases of HS in spared neurones within the CA and hilar regions of the hippocampus. Double labelling revealed that p75(NTR)-positive neurones also contain trk receptor IR. In six cases with prominent glial activation strong p75(NTR) IR was observed in microglial cells within the sclerotic hippocampus. The present results indicate that changes in NTR expression are still detectable in the hippocampus of patients with chronic TLE and involve both glial and neuronal cells. Reactive astrocytes were immunoreactive for trkA, whereas activated microglia cells were reactive for p75(NTR), suggesting different functions for specific NTRs in the development of reactive gliosis. Moreover, the increased expression of p75(NTR) in hippocampal neurones of TLE patients may critically influence the neuronal survival during the epileptogenic process.
Collapse
Affiliation(s)
- F Ozbas-Gerçeker
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Burbach GJ, Hellweg R, Haas CA, Del Turco D, Deicke U, Abramowski D, Jucker M, Staufenbiel M, Deller T. Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J Neurosci 2004; 24:2421-30. [PMID: 15014117 PMCID: PMC6729483 DOI: 10.1523/jneurosci.5599-03.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a versatile neurotrophic factor that has been implicated in cell survival, cell differentiation, axonal growth, and activity-dependent synaptic plasticity. Changes in BDNF expression have also been reported during the course of several neurological disorders, including Alzheimer's disease (AD). The role of BDNF in AD, however, has remained elusive. To learn more about this neurotrophic factor, we investigated BDNF expression in brain of amyloid precursor protein overexpressing mice (APP23 transgenic mice). In situ hybridization revealed BDNF mRNA signals associated with amyloid plaques. Laser microdissection in combination with quantitative RT-PCR demonstrated a sixfold increase of BDNF mRNA in the immediate plaque vicinity, a threefold increase in a tissue ring surrounding the plaque, and control levels in interplaque areas comparable with those measured in age-matched nontransgenic mice. Double immunofluorescence localized BDNF to microglial cells and astrocytes surrounding the plaque. Cortical BDNF protein levels were quantified by ELISA demonstrating a >10-fold increase compared with age-matched controls. This upregulation of BDNF protein significantly correlated with the beta-amyloid load in the transgenic animals. Taken together, our data demonstrate a plaque-associated upregulation of BDNF in APP23 transgenic mice and implicate this neurotrophin in the regulation of inflammatory and axonal growth processes in the plaque vicinity.
Collapse
Affiliation(s)
- Guido J Burbach
- Institute of Clinical Neuroanatomy, J. W. Goethe University, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fanous AH, Neale MC, Straub RE, Webb BT, O'Neill AF, Walsh D, Kendler KS. Clinical features of psychotic disorders and polymorphisms in HT2A, DRD2, DRD4, SLC6A3 (DAT1), and BDNF: a family based association study. Am J Med Genet B Neuropsychiatr Genet 2004; 125B:69-78. [PMID: 14755448 DOI: 10.1002/ajmg.b.20103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia is clinically heterogeneous and multidimensional, but it is not known whether this is due to etiological heterogeneity. Previous studies have not consistently reported association between any specific polymorphisms and clinical features of schizophrenia, and have primarily used case-control designs. We tested for the presence of association between clinical features and polymorphisms in the genes for the serotonin 2A receptor (HT2A), dopamine receptor types 2 and 4, dopamine transporter (SLC6A3), and brain-derived neurotrophic factor (BDNF). Two hundred seventy pedigrees were ascertained on the basis of having two or more members with schizophrenia or poor outcome schizoaffective disorder. Diagnoses were made using a structured interview based on the SCID. All patients were rated on the major symptoms of schizophrenia scale (MSSS), integrating clinical and course features throughout the course of illness. Factor analysis revealed positive, negative, and affective symptom factors. The program QTDT was used to implement a family-based test of association for quantitative traits, controlling for age and sex. We found suggestive evidence of association between the His452Tyr polymorphism in HT2A and affective symptoms (P = 0.02), the 172-bp allele of BDNF and negative symptoms (P = 0.04), and the 480-bp allele in SLC6A3 (= DAT1) and negative symptoms (P = 0.04). As total of 19 alleles were tested, we cannot rule out false positives. However, given prior evidence of involvement of the proteins encoded by these genes in psychopathology, our results suggest that more attention should be focused on the impact of these alleles on clinical features of schizophrenia.
Collapse
Affiliation(s)
- Ayman H Fanous
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dou H, Kingsley JD, Mosley RL, Gelbard HA, Gendelman HE. Neuroprotective strategies for HIV-1 associated dementia. Neurotox Res 2004; 6:503-21. [PMID: 15639783 DOI: 10.1007/bf03033447] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human immunodeficiency virus-1 (HIV-1) commonly affects cognitive, behavioral and motor functions during the disease course. The neuropathogenesis of viral infection revolves around neurotoxins produced from infected and immune-activated mononuclear phagocytes (MP; perivascular macrophages and microglia). Direct infection of neurons occurs rarely, if at all. Neurologic disease arises in part as a consequence of MP metabolic dysfunction. Although the advent of highly active antiretroviral therapy (HAART) has attenuated the incidence and severity of neurologic disease, it, nonetheless, remains a common and disabling problem for those living with HIV-1 infection. Adjunctive therapies are currently designed to ameliorate clinical outcomes and are included in the therapeutic armamentarium. Anti-inflammatory drugs that inhibit cytokines, chemokines and interferons linked to neurodegenerative processes can significantly ameliorate neuronal function. HIV-1 neurotoxins have the unique ability to up-regulate glycogen synthase kinase-3beta (GSK-3beta) activity that in turn elicits neuronal apoptosis. GSK-3beta inhibitors are neuroprotective in animal models of Neuro AIDS. They are also currently in Phase 1 clinical trials designed for safety and tolerability in patients with HIV-1 infection. Neurotrophins are only beginning to be realized for their therapeutic potential in HIV-1 associated neurologic disease. This review article provides a broad overview of neuroprotective strategies for HIV-1 infection and details how such strategies act and may be implemented for treatment of human disease.
Collapse
Affiliation(s)
- Huanyu Dou
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | | | | | | | |
Collapse
|
23
|
Tsai SJ. Brain-derived neurotrophic factor: a bridge between major depression and Alzheimer's disease? Med Hypotheses 2003; 61:110-3. [PMID: 12781652 DOI: 10.1016/s0306-9877(03)00141-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cognitive impairment is common in major depression (MD) patients, with these individuals incurring increased risk for development of Alzheimer's disease (AD). Further, depressive symptoms are common in AD patients. This apparent convergence suggests pathogenic factors common to AD and MD. Since decreased brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, is related to both AD and MD, the author suggests that BDNF could be a bridge between AD and MD, explaining both the depressive symptoms in AD, and, cognitive impairment in MD. Evidence supporting this hypothesis suggests that early antidepressants treatment for aged MD patients may decrease the risk of AD, and agents that increase central BDNF may offer an alternative treatment for MD patients with cognitive impairment and/or for AD sufferers with depressive symptoms.
Collapse
|
24
|
Kruttgen A, Saxena S, Evangelopoulos ME, Weis J. Neurotrophins and neurodegenerative diseases: receptors stuck in traffic? J Neuropathol Exp Neurol 2003; 62:340-50. [PMID: 12722826 DOI: 10.1093/jnen/62.4.340] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neurotrophins are well known for their physiological role as key modulators of neuronal survival, neurite out-growth, and synaptic connectivity during development and into adulthood. Moreover, neurotrophins are potent agents, ameliorating neuronal degeneration in many model systems for neurological diseases. However, a causal role for mutations in neurotrophins or neurotrophin receptors in human neurodegenerative diseases has been largely lacking. As neurotrophin receptors are located at synapses and as their signaling involves the neuronal nucleus, they need to bridge tantalizing distances in order to retrogradely communicate their survival signals. On the other hand, anterogradely transported neurotrophins are released at the synapse and act on postsynaptic cells. Antero- and retrograde signaling and trafficking is an emerging focus of interest in neurotrophin research. Some neurodegenerative diseases are known to affect transport of organelles. Thus, it appears likely that neurodegeneration could be caused by "indirect" effects on neurotrophin trafficking and, hence, signaling. In this review we summarize recent work on neurotrophins in neurodegenerative diseases with special focus on possible implications of disturbed trafficking of organelles and retrograde axonal signaling.
Collapse
Affiliation(s)
- Alex Kruttgen
- Division of Neuropathology, Institute of Pathology, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
25
|
Wildemann B, Haas J, Stingele K, Storch-Hagenlocher B, McArthur JC, Dawson TM, Dawson VL. Identification by mRNA Differential Display of Two Up-regulated Genes as Candidate Mediators of AIDS Dementia. Mol Med 2001. [DOI: 10.1007/bf03401953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
26
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 633] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay.
| | | | | |
Collapse
|