1
|
Zhou Y, Jin Y, Wu T, Wang Y, Dong Y, Chen P, Hu C, Pan N, Ye C, Shen L, Lin M, Fang T, Wu R. New insights on mitochondrial heteroplasmy observed in ovarian diseases. J Adv Res 2024; 65:211-226. [PMID: 38061426 PMCID: PMC11519015 DOI: 10.1016/j.jare.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The reportedly high mutation rate of mitochondrial DNA (mtDNA) may be attributed to the absence of histone protection and complete repair mechanisms. Mitochondrial heteroplasmy refers to the coexistence of wild-type and mutant mtDNA. Most healthy individuals carry a low point mutation load (<1 %) in their mtDNA, typically without any discernible phenotypic effects. However, as it exceeds a certain threshold, it may cause the onset of various diseases. Since the ovary is a highly energy-intensive organ, it relies heavily on mitochondrial function. Mitochondrial heteroplasmy can potentially contribute to a variety of significant ovarian disorders. AIM OF REVIEW In this review, we have elucidated the close relationship between mtDNA heteroplasmy and ovarian diseases, and summarized novel avenues and strategies for the potential treatment of these ovarian diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Mitochondrial heteroplasmy can potentially contribute to a variety of significant ovarian disorders, including polycystic ovary syndrome, premature ovarian insufficiency, and endometriosis. Current strategies related to mitochondrial heteroplasmy are untargeted and have low bioavailability. Nanoparticle delivery systems loaded with mitochondrial modulators, mitochondrial replacement/transplantation therapy, and mitochondria-targeted gene editing therapy may offer promising paths towards potentially more effective treatments for these diseases, despite ongoing challenges.
Collapse
Affiliation(s)
- Yong Zhou
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China; Women's Reproductive Health Key Laboratory of Zhejiang Province, People's Republic of China
| | - Yang Jin
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Tianyu Wu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yinfeng Wang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yuanhang Dong
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Pei Chen
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Changchang Hu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Ningping Pan
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Chaoshuang Ye
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Li Shen
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Mengyan Lin
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Tao Fang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Ruijin Wu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China; Women's Reproductive Health Key Laboratory of Zhejiang Province, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, People's Republic of China.
| |
Collapse
|
2
|
Tharayil SP, Rasal S, Gawde U, Mukherjee S, Patil A, Joshi B, Idicula-Thomas S, Shukla P. Relation of mitochondrial DNA copy number and variants with the clinical characteristics of polycystic ovary syndrome. Mol Cell Endocrinol 2024; 594:112386. [PMID: 39423939 DOI: 10.1016/j.mce.2024.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Mounting evidences suggests mitochondrial dysfunction as a novel contributor in the pathogenesis of PCOS. Herein, we analyzed mtDNA copy number, a biomarker of mitochondrial function in women with PCOS and non-PCOS participants and study its correlation with their clinical characteristics. In this study, we further analyzed association of 383 mtDNA variants, as reported previously by us, with characteristic traits of PCOS and perform structural analysis of mutated protein. Our results indicate relative mitochondrial DNA (mtDNA) copy number to be significantly reduced in women with PCOS compared to non-PCOS group and significantly inversely related to waist to hip ratio (WHR), triglycerides and positively related to high density lipoprotein-cholesterol (HDL-C). After adjustment of the age in the PCOS group, significantly negative correlation of mtDNA copy number with WHR was observed. Unsupervised hierarchical clustering analysis revealed rare, low heteroplasmic mtDNA variants such as 12556G, 1488T, 9200G, 9670G, 3308G, 14480G, 15914T and 5426G to be strongly associated with PCOS related traits. Among these variants, variant 12256G in ND5 gene affected both the flexibility and overall stability of the protein structure. This study is first to reveal significant correlation of mtDNA copy number with WHR in women with PCOS indicating link between mitochondrial dysfunction with central obesity in PCOS. we also first time showed association of rare mtDNA variants with characteristics traits of PCOS highlighting the clinical significance of rare mtDNA variants, which may cumulatively act as early predictors of risk of PCOS and its related comorbidities which may help in the management of PCOS.
Collapse
Affiliation(s)
- Samia Palat Tharayil
- Department of Molecular Endocrinology, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Sayli Rasal
- Department of Molecular Endocrinology, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Ulka Gawde
- Biomedical Informatics Centre, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Anushree Patil
- Department of Clinical Research, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Beena Joshi
- Department of Operational and Implementation Research, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Pallavi Shukla
- Department of Molecular Endocrinology, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
3
|
Bril F, Ezeh U, Amiri M, Hatoum S, Pace L, Chen YH, Bertrand F, Gower B, Azziz R. Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2023; 109:10-24. [PMID: 37329216 PMCID: PMC10735305 DOI: 10.1210/clinem/dgad356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a complex genetic trait and the most common endocrine disorder of women, clinically evident in 5% to 15% of reproductive-aged women globally, with associated cardiometabolic dysfunction. Adipose tissue (AT) dysfunction appears to play an important role in the pathophysiology of PCOS even in patients who do not have excess adiposity. METHODS We undertook a systematic review concerning AT dysfunction in PCOS, and prioritized studies that assessed AT function directly. We also explored therapies that targeted AT dysfunction for the treatment of PCOS. RESULTS Various mechanisms of AT dysfunction in PCOS were identified including dysregulation in storage capacity, hypoxia, and hyperplasia; impaired adipogenesis; impaired insulin signaling and glucose transport; dysregulated lipolysis and nonesterified free fatty acids (NEFAs) kinetics; adipokine and cytokine dysregulation and subacute inflammation; epigenetic dysregulation; and mitochondrial dysfunction and endoplasmic reticulum and oxidative stress. Decreased glucose transporter-4 expression and content in adipocytes, leading to decreased insulin-mediated glucose transport in AT, was a consistent abnormality despite no alterations in insulin binding or in IRS/PI3K/Akt signaling. Adiponectin secretion in response to cytokines/chemokines is affected in PCOS compared to controls. Interestingly, epigenetic modulation via DNA methylation and microRNA regulation appears to be important mechanisms underlying AT dysfunction in PCOS. CONCLUSION AT dysfunction, more than AT distribution and excess adiposity, contributes to the metabolic and inflammation abnormalities of PCOS. Nonetheless, many studies provided contradictory, unclear, or limited data, highlighting the urgent need for additional research in this important field.
Collapse
Affiliation(s)
- Fernando Bril
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Uche Ezeh
- California IVF Fertility Center, Sacramento, CA 95833, USA
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Mina Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Lauren Pace
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Yen-Hao Chen
- Department of Research, Biomere-West, Richmond, CA 94806, USA
| | - Fred Bertrand
- Department of Clinical and Diagnostic Sciences, School of Health Professions, UAB, Birmingham, AL 35294, USA
| | - Barbara Gower
- Department of Nutrition Sciences, School of Health Professions, UAB, Birmingham, AL 35294, USA
| | - Ricardo Azziz
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
- Department of Healthcare Organization and Policy, School of Public Health, UAB, Birmingham, AL 35233, USA
- Department of Health Policy, Management and Behavior, School of Public Health, University at Albany, SUNY, Rensselaer, NY 12144, USA
| |
Collapse
|
4
|
Zeber-Lubecka N, Kulecka M, Suchta K, Dąbrowska M, Ciebiera M, Hennig EE. Association of Mitochondrial Variants with the Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto's Thyroiditis. Antioxidants (Basel) 2023; 12:1983. [PMID: 38001836 PMCID: PMC10669137 DOI: 10.3390/antiox12111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The prevalence of Hashimoto's thyroiditis (HT) among women with polycystic ovary syndrome (PCOS) is higher than in the general female population, but the factors predisposing to the coexistence of these disorders remain unclear. This study employed whole genome sequencing of mitochondrial DNA to identify genetic variants potentially associated with the development of PCOS and HT and predisposing to their joint occurrence. RESULTS A total of 84 women participated, including patients with PCOS, HT, coexisting PCOS and HT (PCOS + HT) and healthy women. Both Fisher's exact and Mann-Whitney U statistical analyses were performed to compare the frequency of variants between groups. Ten differentiating variants were common to both analyses in PCOS + HT vs. PCOS, one in PCOS + HT vs. HT, and six in PCOS + HT vs. control. Several variants differentiating the PCOS + HT group from PCOS and controls were identified, located both in the mitochondrial genes (including the MT-CYB, MT-ND1, MT-ND2, MT-ND4, MT-ND6, MT-CO1, MT-CO3) and the D-loop region. Only two variants differentiated PCOS + HT and HT groups. One variant (13237a in MT-ND5) was common for all three comparisons and underrepresented in the PCOS + HT group. Functional enrichment analysis showed 10 pathways that were unique for the comparison of PCOS + HT and PCOS groups, especially related to ATP production and oxidative phosphorylation, and one pathway, the NADH-quinone oxidoreductase, chain M/4, that was unique for the comparison of PCOS + HT and control groups. Notably, nine pathways shared commonality between PCOS + HT vs. PCOS and PCOS + HT vs. control, related to the biogenesis and assembly of Complex I. CONCLUSION This study provides novel insights into the genetic variants associated with oxidative stress in women with coexisting PCOS and HT. Mitochondrial dysfunction and oxidative stress appear to play a role in the pathogenesis of both conditions. However, more mitochondrial variants were found to differentiate women with both PCOS and HT from those with PCOS alone than from those with HT alone.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Katarzyna Suchta
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland;
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
5
|
Yang N, Ma K, Liu W, Zhang N, Shi Z, Ren J, Xu W, Li Y, Su R, Liang Y, Wang S, Li X. Serum metabolomics probes the molecular mechanism of action of acupuncture on metabolic pathways related to glucose metabolism in patients with polycystic ovary syndrome-related obesity. Biomed Chromatogr 2023; 37:e5710. [PMID: 37593801 DOI: 10.1002/bmc.5710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine syndrome, and obesity is the most common clinical manifestation. Acupuncture is effective in treating PCOS, but the differences in the biological mechanisms of acupuncture therapy and Western medicine treatment have not been determined. Thus, the purpose of this study was to find glucose metabolism-related pathways in acupuncture treatment and differentiate them from Western medical treatment. Sixty patients with PCOS-related obesity were randomly distributed into three groups: patients receiving (1) acupuncture treatment alone, (2) conventional Western medicine treatment, and (3) acupuncture combined with Western medicine treatment. A targeted metabolomics approach was used to identify small molecules and metabolites related to glucose metabolism in the serum of each group, and ultra-high-performance liquid chromatography-tandem mass spectrometry was used to analyze different metabolic fractions. The results showed acupuncture treatment modulates the activity of citric and succinic acids in the tricarboxylic acid cycle, regulates glycolytic and gluconeogenesis pathways, and improves the levels of sex hormones and energy metabolism. The intervention effects on the metabolic pathways were different between patients receiving combination therapy and patients receiving acupuncture therapy alone, suggesting that the dominant modulatory effect of Western drugs may largely conceal the efficacy of acupuncture intervention.
Collapse
Affiliation(s)
- Nan Yang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ke Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhouhua Shi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jian Ren
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wanli Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqiu Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Riliang Su
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanbo Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shijun Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuyang Li
- Postdoctoral Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Zeber-Lubecka N, Ciebiera M, Hennig EE. Polycystic Ovary Syndrome and Oxidative Stress-From Bench to Bedside. Int J Mol Sci 2023; 24:14126. [PMID: 37762427 PMCID: PMC10531631 DOI: 10.3390/ijms241814126] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a condition that occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the body's ability to detoxify and neutralize them. It can play a role in a variety of reproductive system conditions, including polycystic ovary syndrome (PCOS), endometriosis, preeclampsia, and infertility. In this review, we briefly discuss the links between oxidative stress and PCOS. Mitochondrial mutations may lead to impaired oxidative phosphorylation (OXPHOS), decreased adenosine triphosphate (ATP) production, and an increased production of ROS. These functional consequences may contribute to the metabolic and hormonal dysregulation observed in PCOS. Studies have shown that OS negatively affects ovarian follicles and disrupts normal follicular development and maturation. Excessive ROS may damage oocytes and granulosa cells within the follicles, impairing their quality and compromising fertility. Impaired OXPHOS and mitochondrial dysfunction may contribute to insulin resistance (IR) by disrupting insulin signaling pathways and impairing glucose metabolism. Due to dysfunctional OXPHOS, reduced ATP production, may hinder insulin-stimulated glucose uptake, leading to IR. Hyperandrogenism promotes inflammation and IR, both of which can increase the production of ROS and lead to OS. A detrimental feedback loop ensues as IR escalates, causing elevated insulin levels that exacerbate OS. Exploring the relations between OS and PCOS is crucial to fully understand the role of OS in the pathophysiology of PCOS and to develop effective treatment strategies to improve the quality of life of women affected by this condition. The role of antioxidants as potential therapies is also discussed.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
7
|
Chen Y, Wu WJ, Xing LW, Zhang XJ, Wang J, Xia XY, Zhao R, Zhao R. Investigating the role of mitochondrial DNA D-loop variants, haplotypes, and copy number in polycystic ovary syndrome: implications for clinical phenotypes in the Chinese population. Front Endocrinol (Lausanne) 2023; 14:1206995. [PMID: 37745710 PMCID: PMC10512090 DOI: 10.3389/fendo.2023.1206995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Background The presence of genetic variations in mitochondrial DNA (mtDNA) has been associated with a diverse array of diseases. The objective of this study was to examine the correlations between mtDNA D-loop, its haplotypes, and polycystic ovary syndrome (PCOS) in the Chinese population, and the associations between mtDNA D-loop and symptoms of PCOS. The study also sought to determine whether the mtDNA copy number in Chinese patients with PCOS differed from that of individuals in the control group. Methods Infertile individuals who only had tubal or male factor treatment were the focus of research by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). mtDNA haplotypes were categorized using polymorphic D-loop sites. mtDNA D-loop, PCOS features, and mtDNA haplotypes were analyzed using R software to determine the strength of the association between the three. There are certain DNA haplotypes linked to PCOS. Microdroplet digital polymerase chain reaction (PCR) was used to determine the mtDNA copy number in a convenience sample of 168 PCOS patients and 83 controls. Results Among the research group, the majority of D-loop mutations were infrequent (frequency< 1%), with only 45 variants displaying a minimum allele frequency (MAF) of 5% or higher. No association was found between polymorphism loci in PCOS patients and body mass index (BMI). Noteworthy, C194T, 1A200G, 523delAC, and C16234T showed positive correlations with elevated LH/FSH levels. Additionally, specific polymorphic loci G207A, 16036GGins, and 16049Gins within the D-loop region of mtDNA potentially exerted a protective role in PCOS development. Conversely, no statistical significance was observed in the expression levels of C16291T and T489C. Chinese women with mtDNA haplotype A15 exhibited a decreased risk of developing PCOS. Moreover, a significant difference in mtDNA copy number was detected, with controls averaging 25.87 (21.84, 34.81), while PCOS patients had a mean of 129.91 (99.38, 168.63). Conclusion Certain mtDNA D-loop mutations and haplotypes appear to confer protection against PCOS in Chinese women. In addition, elevated mtDNA copy number may serve as an indicator during early stages of PCOS.
Collapse
Affiliation(s)
- Yang Chen
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Wei-jia Wu
- Department of Scientific Research, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Li-wei Xing
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-juan Zhang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Jing Wang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Xiao-yan Xia
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rui Zhao
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rong Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
8
|
Siemers KM, Klein AK, Baack ML. Mitochondrial Dysfunction in PCOS: Insights into Reproductive Organ Pathophysiology. Int J Mol Sci 2023; 24:13123. [PMID: 37685928 PMCID: PMC10488260 DOI: 10.3390/ijms241713123] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex, but relatively common endocrine disorder associated with chronic anovulation, hyperandrogenism, and micro-polycystic ovaries. In addition to reduced fertility, people with PCOS have a higher risk of obesity, insulin resistance, and metabolic disease, all comorbidities that are associated with mitochondrial dysfunction. This review summarizes human and animal data that report mitochondrial dysfunction and metabolic dysregulation in PCOS to better understand how mitochondria impact reproductive organ pathophysiology. This in-depth review considers all the elements regulating mitochondrial quantity and quality, from mitochondrial biogenesis under the transcriptional regulation of both the nuclear and mitochondrial genome to the ultrastructural and functional complexes that regulate cellular metabolism and reactive oxygen species production, as well as the dynamics that regulate subcellular interactions that are key to mitochondrial quality control. When any of these mitochondrial functions are disrupted, the energetic equilibrium within the cell changes, cell processes can fail, and cell death can occur. If this process is ongoing, it affects tissue and organ function, causing disease. The objective of this review is to consolidate and classify a broad number of PCOS studies to understand how various mitochondrial processes impact reproductive organs, including the ovary (oocytes and granulosa cells), uterus, placenta, and circulation, causing reproductive pathophysiology. A secondary objective is to uncover the potential role of mitochondria in the transgenerational transmission of PCOS and metabolic disorders.
Collapse
Affiliation(s)
- Kyle M. Siemers
- Physician Scientist (MD/Ph.D.) Program, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA;
| | - Abigail K. Klein
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Lee Medical Building, 414 E. Clark St., Sioux Falls, SD 57069, USA;
| | - Michelle L. Baack
- Department of Pediatrics, Division of Neonatology, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, USA
- Environmental Influences on Health and Disease Group, Sanford Research, 2301 E. 60th St., Sioux Falls, SD 57104, USA
| |
Collapse
|
9
|
He S, Ji D, Liu Y, Deng X, Zou W, Liang D, Du Y, Zong K, Jiang T, Li M, Zhang D, Yue X, Tao F, Cao Y, Liang C. Polymorphisms of mtDNA in the D-loop region moderate the associations of BMI with HOMA-IR and HOMA-β among women with polycystic ovary syndrome: a cross-sectional study. J Assist Reprod Genet 2023; 40:1983-1993. [PMID: 37358742 PMCID: PMC10371916 DOI: 10.1007/s10815-023-02843-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/29/2023] [Indexed: 06/27/2023] Open
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is one of the leading causes of infertility in women of childbearing age, and many patients with PCOS have obesity and insulin resistance (IR). Although obesity is related to an increased risk of IR, in clinical practice, PCOS patients exhibit different effects on improving insulin sensitivity after weight loss. Therefore, in the present study, we aimed to examine the moderating effect of polymorphisms of mtDNA in the D-loop region on the associations of body mass index (BMI) with the homeostasis model assessment of insulin resistance index (HOMA-IR) and pancreatic β cell function index (HOMA-β) among women with PCOS. METHODS Based on a cross-sectional study, women with PCOS were recruited from the Reproductive Center of the First Affiliated Hospital of Anhui Medical University from 2015 to 2018. A total of 520 women who were diagnosed with PCOS based on the revised 2003 Rotterdam criteria were included in the study. Peripheral blood was collected from these patients, followed by DNA extraction, PCR amplification, and sequencing at baseline. HOMA-IR and HOMA-β were calculated according to blood glucose-related indices. Moderating effect models were performed with BMI as an independent variable, polymorphisms of mtDNA in the D-loop region as moderators, and ln (HOMA-IR) and ln (HOMA-β) as dependent variables. To verify the stability of moderating effect, sensitivity analysis was performed with the quantitative insulin sensitivity check index (QUICKI), fasting plasma glucose/fasting insulin (G/I), and fasting insulin as dependent variables. RESULTS BMI was positively associated with ln (HOMA-IR) and ln (HOMA-β) (β = 0.090, p < 0.001; β = 0.059, p < 0.001, respectively), and the relationship between BMI and ln (HOMA-IR) or ln (HOMA-β) was moderated by the polymorphisms of mtDNA in the D-loop region. Compared with the respective wild-type, the variant -type of m.16217 T > C enhanced the association between BMI and HOMA-IR, while the variant-type of m.16316 A > G weakened the association. On the other hand, the variant-type of m.16316 A > G and m.16203 A > G weakened the association between BMI and HOMA-β, respectively. The results of QUICKI and fasting insulin as dependent variables were generally consistent with HOMA-IR, and the results of G/I as dependent variables were generally consistent with HOMA-β. CONCLUSION Polymorphisms of mtDNA in the D-loop region moderate the associations of BMI with HOMA-IR and HOMA-β among women with PCOS.
Collapse
Affiliation(s)
- Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaohong Deng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kai Zong
- Technical Center of Hefei Customs District, No. 329 Tunxi Road, Hefei, 230022, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mengzhu Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongyang Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Shukla P, Mukherjee S, Patil A, Joshi B. Molecular characterization of variants in mitochondrial DNA encoded genes using next generation sequencing analysis and mitochondrial dysfunction in women with PCOS. Gene 2023; 855:147126. [PMID: 36563715 DOI: 10.1016/j.gene.2022.147126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Emerging studies indicates mitochondrial dysfunction and involvement of mitochondrial DNA (mtDNA) variants in the pathogenesis of polycystic ovary syndrome (PCOS). Cumulative effect of mtDNA rare variants are now gaining considerable interest apart from common variants in the pathogenesis of complex diseases. Rare variants may modify the effect of polymorphism or in combination with the common variants may affect the risk of disease. With the evolution of high throughput sequencing techniques, which can be utilized to identify common as well as rare variants along with heteroplasmy levels, comprehensive characterization of the mtDNA variants is possible. Till date, few studies reported common mtDNA variants using traditional sequencing techniques but rare variants in mtDNA encoding genes remain unexplored in women with PCOS. These mtDNA variants may be responsible for mitochondrial dysfunction and may contribute in PCOS pathogenesis. In this study we determined mtDNA copy number, a biomarker of mitochondrial dysfunction and first time analysed variants in mtDNA encoded genes in women with PCOS using mitochondrial Next Generation sequencing (NGS) approach and compared allele frequency from mitochondrial 1000 genome dataset. Variant annotation and prioritization was done using highly automated pipeline, MToolBox that excludes reads mapped from nuclear mitochondrial DNA sequences (NumtS) to identify unique mtDNA reads. The present study identified significant reduction in mtDNA copy number in women with PCOS compared to non-PCOS women. A total of unique 214 prioritized common to rare variants were identified in mtDNA encoded genes, 183 variants in OXPHOS complexes, 14 variants in MT-tRNA and 17 variants in MT-rRNA genes that may be involved in mitochondrial dysfunction in PCOS. Numerous variants were heteroplasmic, pathogenic in nature and occurred in evolutionary conserved region. Heteroplasmic variants were more frequently occurred in MT-CO3 gene. Non-synonymous variants were more than synonymous variants and mainly occurred in OXPHOS complex I and IV. Few variants were found to be associated with diseases in MITOMAP database. The study provides a better understanding towards pathogenesis of PCOS from novel aspects focusing on mitochondrial genetic defects as underlying cause for contributing mitochondrial dysfunction in women with PCOS.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India.
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India
| | - Anushree Patil
- Department of Clinical Research, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India
| | - Beena Joshi
- Department of Operational Research, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India
| |
Collapse
|
11
|
Dong XC, Liu C, Zhuo GC, Ding Y. Potential Roles of mtDNA Mutations in PCOS-IR: A Review. Diabetes Metab Syndr Obes 2023; 16:139-149. [PMID: 36760584 PMCID: PMC9884460 DOI: 10.2147/dmso.s393960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disease that affecting females in reproductive age. Insulin resistance (IR), an important molecular basis for PCOS, accounts for at least 75% of women carrying this syndrome. Although there have been many studies on PCOS-IR, the detailed mechanisms are not fully understood. As essential hub for energy generation, mitochondria are critical to insulin secretion and normal function, whereas mutations in mitochondrial DNA (mtDNA) result in mitochondrial dysfunctions contributing to the pathophysiology of PCOS-IR via the regulation of balance of oxidative stress (OS), energy deficiency, or hormone metabolism. In the current review, we summarize the clinical and molecular features of PCOS-IR and discuss molecular mechanisms related to mtDNA mutations.
Collapse
Affiliation(s)
- Xiao-Chao Dong
- Department of Gynecology and Obstetrics, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Chang Liu
- Department of Gynecology and Obstetrics, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guang-Chao Zhuo
- Central Laboratory, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yu Ding
- Central Laboratory, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Yu Ding, Central Laboratory, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, People’s Republic of China, Tel/Fax +86-571-5600-5600, Email
| |
Collapse
|
12
|
Moosa A, Ghani M, O'Neill HC. Genetic associations with polycystic ovary syndrome: the role of the mitochondrial genome; a systematic review and meta-analysis. J Clin Pathol 2022; 75:815-824. [DOI: 10.1136/jcp-2021-208028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
BackgroundPolycystic ovary syndrome (PCOS) remains the most common female reproductive endocrine disorder. Genetic studies have predominantly focused on the role of the nuclear genome, while the contribution of mitochondrial genetics in PCOS remains largely unknown.AimThis study aims to systematically evaluate the literature regarding the associations between the mitochondrial genome and PCOS.MethodsA literature search focused on PCOS and mitochondrial genetics was conducted on (1) MEDLINE, (2) EMBASE and (3) The Cochrane Library (CENTRAL and Cochrane Reviews). Search results were screened for eligibility, and data involving genetic variants of mitochondrial DNA (mtDNA) were extracted. Quantitative data were presented in forest plots, and where this was not possible, data were analysed in a qualitative manner. Quality of studies was assessed using the Q-Genie tool.ResultsOf the 13 812 identified studies, 15 studies were eligible for inclusion, with 8 studies suitable for meta-analysis. Women with PCOS showed higher frequencies of a 9 bp deletion, and aberrant single nucleotide polymorphisms (SNPs) in the ND5, A6 and 7 transfer RNA-encoding genes. They also showed lower frequencies of two SNPs in the D-loop of the genome. Women with PCOS also exhibited significantly lowered mtDNA copy number.ConclusionWomen with PCOS harbour genetic variants in coding and non-coding regions of the mitochondrial genome. This may disrupt the electron transport chain and lead to oxidative stress, causing apoptosis of cells and further genetic damage. However, further studies of higher quality are required to confirm these associations.PROSPERO registration numberCRD42021267991.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To provide an overview of mitochondrial functional alterations in women with polycystic ovary syndrome (PCOS). RECENT FINDINGS Although numerous studies have focused on PCOS, the pathophysiological mechanisms that cause this common disease remain unclear. Mitochondria play a central role in energy production, and mitochondrial dysfunction may underlie several abnormalities observed in women with PCOS. Recent studies associated mtDNA mutations and low mtDNA copy number with PCOS, and set out to characterize the potential protective role of mitochondrial and endoplasmic reticulum unfolded protein responses (UPR and UPR). SUMMARY Mitochondrial dysfunction likely plays a role in the pathogenesis of PCOS by increasing reactive oxygen (ROS) and oxidative stress. This occurs in a metabolic milieu often affected by insulin resistance, which is a common finding in women with PCOS, especially in those who are overweight or obese. Mutations in mtDNA and low mtDNA copy number are found in these patients and may have potential as diagnostic modalities for specific PCOS phenotypes. More recently, UPR and UPR are being investigated as potential cellular rescue mechanisms in PCOS, the failure of which may lead to apoptosis, and contribute to decreased reproductive potential.
Collapse
|
14
|
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:3923. [PMID: 33920227 PMCID: PMC8070512 DOI: 10.3390/ijms22083923] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine-metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus
| | - Nikita G. Nikiforov
- Center of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| |
Collapse
|
15
|
Eiras MC, Pinheiro DP, Romcy KAM, Ferriani RA, Reis RMD, Furtado CLM. Polycystic Ovary Syndrome: the Epigenetics Behind the Disease. Reprod Sci 2021; 29:680-694. [PMID: 33826098 DOI: 10.1007/s43032-021-00516-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders, affecting approximately 5-20% of women of reproductive age. PCOS is a multifactorial, complex, and heterogeneous disease, characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries, which may lead to impaired fertility. Besides the reproductive outcomes, multiple comorbidities, such as metabolic disturbances, insulin resistance, obesity, diabetes, and cardiovascular disease, are associated with PCOS. In addition to the clear genetic basis, epigenetic alterations may also play a central role in PCOS outcomes, as environmental and hormonal alterations directly affect clinical manifestations and PCOS development. Here, we highlighted the epigenetic modifications in the multiplicity of clinical manifestations, as well as environmental epigenetic disruptors, as intrauterine hormonal and metabolic alterations affecting embryo development and the adulthood lifestyle, which may contribute to PCOS development. Additionally, we also discussed the new approaches for future studies and potential epigenetic biomarkers for the treatment of associated comorbidities and improvement in quality of life of women with PCOS.
Collapse
Affiliation(s)
- Matheus Credendio Eiras
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil
| | - Daniel Pascoalino Pinheiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, 60430-275, CE, Brazil
| | - Kalil Andrade Mubarac Romcy
- Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil.
| | - Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil. .,Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil.
| |
Collapse
|
16
|
Oxidative Stress and Low-Grade Inflammation in Polycystic Ovary Syndrome: Controversies and New Insights. Int J Mol Sci 2021; 22:ijms22041667. [PMID: 33562271 PMCID: PMC7915804 DOI: 10.3390/ijms22041667] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of Polycystic Ovary Syndrome (PCOS) is quite complex and different mechanisms could contribute to hyperandrogenism and anovulation, which are the main features of the syndrome. Obesity and insulin-resistance are claimed as the principal factors contributing to the clinical presentation; in normal weight PCOS either, increased visceral adipose tissue has been described. However, their role is still debated, as debated are the biochemical markers linked to obesity per se. Oxidative stress (OS) and low-grade inflammation (LGI) have recently been a matter of researcher attention; they can influence each other in a reciprocal vicious cycle. In this review, we summarize the main mechanism of radical generation and the link with LGI. Furthermore, we discuss papers in favor or against the role of obesity as the first pathogenetic factor, and show how OS itself, on the contrary, can induce obesity and insulin resistance; in particular, the role of GH-IGF-1 axis is highlighted. Finally, the possible consequences on vitamin D synthesis and activation on the immune system are briefly discussed. This review intends to underline the key role of oxidative stress and low-grade inflammation in the physiopathology of PCOS, they can cause or worsen obesity, insulin-resistance, vitamin D deficiency, and immune dyscrasia, suggesting an inverse interaction to what is usually considered.
Collapse
|
17
|
tRNA Biology in the Pathogenesis of Diabetes: Role of Genetic and Environmental Factors. Int J Mol Sci 2021; 22:ijms22020496. [PMID: 33419045 PMCID: PMC7825315 DOI: 10.3390/ijms22020496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The global rise in type 2 diabetes results from a combination of genetic predisposition with environmental assaults that negatively affect insulin action in peripheral tissues and impair pancreatic β-cell function and survival. Nongenetic heritability of metabolic traits may be an important contributor to the diabetes epidemic. Transfer RNAs (tRNAs) are noncoding RNA molecules that play a crucial role in protein synthesis. tRNAs also have noncanonical functions through which they control a variety of biological processes. Genetic and environmental effects on tRNAs have emerged as novel contributors to the pathogenesis of diabetes. Indeed, altered tRNA aminoacylation, modification, and fragmentation are associated with β-cell failure, obesity, and insulin resistance. Moreover, diet-induced tRNA fragments have been linked with intergenerational inheritance of metabolic traits. Here, we provide a comprehensive review of how perturbations in tRNA biology play a role in the pathogenesis of monogenic and type 2 diabetes.
Collapse
|
18
|
Polymorphisms and haplotype of mitochondrial DNA D-loop region are associated with polycystic ovary syndrome in a Chinese population. Mitochondrion 2020; 57:173-181. [PMID: 33385542 DOI: 10.1016/j.mito.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Polymorphisms in mitochondrial DNA (mtDNA) have been linked to a range of diseases. Here we investigate the relationship between mtDNA D-loop region polymorphisms, mtDNA haplotype and polycystic ovary syndrome (PCOS), as well as the correlation of D-loop variants and clinical characteristics of PCOS, in a Chinese population. The mtDNA D-loop of whole blood samples from 421 PCOS patients and 409 controls underwent next generation sequencing. The variants G207A (PBH<0.05), 16036GGins (PBH<0.05) and 16049Gins (PBH<0.001) were associated with decreased risk of PCOS. No variants were associated with PCOS, and within the PCOS group, no statistical significance was found between D-loop polymorphisms and clinical characteristics. Patient haplotype was identified from D-loop single nucleotide polymorphisms and analysis suggested that haplotype A15 (P adjusted <0.01) was significantly associated with decreased risk of PCOS. In conclusion, mtDNA D-loop alterations and haplotype appear to confer resistance to PCOS in Chinese women.
Collapse
|
19
|
Shukla P, Mukherjee S, Patil A. Identification of Variants in Mitochondrial D-Loop and OriL Region and Analysis of Mitochondrial DNA Copy Number in Women with Polycystic Ovary Syndrome. DNA Cell Biol 2020; 39:1458-1466. [PMID: 32513025 DOI: 10.1089/dna.2019.5323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial disorder characterized by irregular menstrual problems, hyperandrogenism, and presence of polycystic ovaries. Till date, molecular mechanism underlying PCOS remains elusive. Recently mitochondrial displacement loop (D-loop) variants have been identified to be novel players in the pathogenesis of PCOS. At present, rare variants, besides common variants, are also the focus of research as it is believed to make essential contribution to the risk of complex diseases. However, rare and low hetroplasmic variants in mitochondrial D-loop are still not investigated in PCOS women. Furthermore, variants in light-strand origin of DNA replication (OriL) of mitochondrial DNA (mtDNA) have not been explored in PCOS. Hence, in this study, we investigated rare to common mitochondrial D-loop and OriL region variants obtained using mtDNA next-generation sequencing in women with PCOS. Furthermore, we also assessed mtDNA copy number, a biomarker of mitochondrial dysfunction (MD) in women with PCOS, as the variants in mtDNA are known to be associated with low mtDNA copy number in PCOS women. A total of 67 D-loop variants including 6 novel variants were identified in 30 PCOS women. Among 67 variants, 29 variants were reported in PCOS women. A single variant, 5746A was found in OriL region in two PCOS women. Both transition and transversion variants were found but transition variants occur at very high frequency compared with transversions (82.35% vs. 17.64%, respectively). As transition variants in mtDNA are known to arise because of polymerase γ errors, occurrence of high transition rates indicates that most mutation arises because of defect in replication errors that causes mtDNA damage leading to MD. Furthermore, mtDNA copy number was found to be low in women with PCOS compared with healthy control women suggesting that MD may be the contributing factor in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Molecular Endocrinology and Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology and Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Anushree Patil
- Department of Clinical Research, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
20
|
Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion 2020; 52:24-39. [PMID: 32081727 DOI: 10.1016/j.mito.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/31/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by irregular menstrual cycles, hyperandrogenism and subfertility. Due to its complex manifestation, the pathogenic mechanism of PCOS is not well defined. Cumulative effect of altered genetic and epigenetic factors along with environmental factors may play a role in the manifestation of PCOS leading to systemic malfunction. With failure of genome-wide association study (GWAS) and other studies performed on nuclear genome to provide any clue for precise mechanism of PCOS pathogenesis, attention has been diverted to mitochondria. Mitochondrion plays an important role in cellular metabolic functions and is linked to Insulin Resistance (IR). Recently, increasing reports suggest that mitochondrial dysfunction may be a contributing factor in the pathogenesis of PCOS. Hence, in this review, we have discussed mitochondrial biology in brief and emphasizes on genetic and epigenetic aspects of mitochondrial dysfunction studied in PCOS women and PCOS-like animal models. We also highlight underlying mechanism behind mitochondrial dysfunction contributing to PCOS and its related complications such as obesity, diabetes, cardiovascular diseases, metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and cancer. Furthermore, contrasting remarks against involvement of mitochondrial dysfunction in PCOS pathophysiology have also been presented. This review enhances our understanding in relation to mitochondrial dysfunction in the etiology of PCOS and stimulates further research to explore a clear link between mitochondrial dysfunction and PCOS pathogenesis and progression. Understanding pathogenic mechanisms underlying PCOS will open new windows to develop promising therapeutic strategies against PCOS.
Collapse
|
21
|
Safaei Z, Bakhshalizadeh S, Nasr-Esfahani MH, Akbari Sene A, Najafzadeh V, Soleimani M, Shirazi R. Vitamin D3 affects mitochondrial biogenesis through mitogen-activated protein kinase in polycystic ovary syndrome mouse model. J Cell Physiol 2020; 235:6113-6126. [PMID: 32048305 DOI: 10.1002/jcp.29540] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a disorder characterized by oligomenorrhea, anovulation, and hyperandrogenism. Altered mitochondrial biogenesis can result in hyperandrogenism. The goal of this study was to examine the effect of vitamin D3 on mitochondrial biogenesis of the granulosa cells in the PCOS-induced mouse model. Vitamin D3 applies its effect via the mitogen-activated pathway kinase-extracellular signal-regulated kinases (MAPK-ERK1/2) pathway. The PCOS mouse model was induced by the injection of dehydroepiandrosterone (DHEA). Isolated granulosa cells were subsequently treated with vitamin D3, MAPK activator, and MAPK inhibitor. Gene expression levels were measured using real-time polymerase chain reaction. MAPK proteins were investigated by western blot analysis. We also determined reactive oxygen species (ROS) levels with 2', 7'-dichlorofluorescein diacetate. Mitochondrial membrane potential (mtMP) was also measured by TMJC1. Mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-α and nuclear respiratory factor), antioxidant (superoxide dismutase, glutathione peroxidase, and catalase), and antiapoptotic (B-cell lymphoma-2) genes were upregulated in the PCOS mice that treated with vitamin D3 compared with the PCOS mice without any treatment. Vitamin D3 and MAPK activator-treated groups also reduced ROS levels compared with the nontreated PCOS group. In summary, vitamin D3 and MAPK activator increased the levels of mitochondrial biogenesis, MAPK pathway, and mtMP markers, while concomitantly decreased ROS levels in granulosa cells of the PCOS-induced mice. This study suggests that vitamin D3 may improve mitochondrial biogenesis through stimulation of the MAPK pathway in cultured granulosa cells of DHEA-induced PCOS mice which yet to be investigated.
Collapse
Affiliation(s)
- Zahra Safaei
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Bakhshalizadeh
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Azadeh Akbari Sene
- Department of Obstetrics and Gynecology, Shahid Akbarabadi Hospital IVF Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, Anatomy & Biochemistry Section, University of Copenhagen, Copenhagen, Denmark
| | - Mansoureh Soleimani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Shirazi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Zhang J, Bao Y, Zhou X, Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol 2019; 17:67. [PMID: 31420039 PMCID: PMC6698037 DOI: 10.1186/s12958-019-0509-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent hormonal disorder of premenopausal women worldwide and is characterized by reproductive, endocrine, and metabolic abnormalities. The clinical manifestations of PCOS include oligomenorrhea or amenorrhea, hyperandrogenism, ovarian polycystic changes, and infertility. Women with PCOS are at an increased risk of suffering from type 2 diabetes; me\tabolic syndrome; cardiovascular events, such as hypertension, dyslipidemia; gynecological diseases, including infertility, endometrial dysplasia, endometrial cancer, and ovarian malignant tumors; pregnancy complications, such as premature birth, low birthweight, and eclampsia; and emotional and mental disorders in the future. Although numerous studies have focused on PCOS, the underlying pathophysiological mechanisms of this disease remain unclear. Mitochondria play a key role in energy production, and mitochondrial dysfunction at the cellular level can affect systemic metabolic balance. The recent wide acceptance of functional mitochondrial disorders as a correlated factor of numerous diseases has led to the presupposition that abnormal mitochondrial metabolic markers are associated with PCOS. Studies conducted in the past few years have confirmed that increased oxidative stress is associated with the progression and related complications of PCOS and have proven the relationship between other mitochondrial dysfunctions and PCOS. Thus, this review aims to summarize and discuss previous and recent findings concerning the relationship between mitochondrial dysfunction and PCOS.
Collapse
Affiliation(s)
- Jingshun Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yigang Bao
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| | - Xu Zhou
- 0000 0004 1760 5735grid.64924.3dCollege of Animal Sciences, Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
23
|
Wang D, Ning C, Xiang H, Zheng X, Kong M, Yin T, Liu J, Zhao X. Polymorphism of mitochondrial tRNA genes associated with the number of pigs born alive. J Anim Sci Biotechnol 2018; 9:86. [PMID: 30534375 PMCID: PMC6260895 DOI: 10.1186/s40104-018-0299-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background Mutations in mitochondrial tRNA genes have been widely reported association with human reproductions. It is also important to explore the effect on the number of piglets born alive (NBA). Here, 1017 sows were used to investigate the association between polymorphisms in mitochondrial tRNA genes and NBA. Results In total, 16 mutations were found in mitochondrial tRNA genes, of which 13 mutations were significantly associated with NBA (P < 0.05). The reproductions of mutant carriers were significantly greater than that of wild carriers by 0.989 piglets born alive/sow farrowing. To test whether the mutations altered the structure of mitochondrial tRNAs, the secondary and tertiary structures were predicted. In result, C2255T changed the secondary structure of tRNA-Val by elongating the T stem and shrinking the T loop, and C2255T and G2259A in the tRNA-Val gene, C6217T and T6219C in the tRNA-Ala gene, and T15283C in the tRNA-Glu gene altered the tertiary structure of their tRNAs, respectively by changing the folding form of the T arm, and C16487T in the tRNA-Thr gene changed the tertiary structure of mitochondrial tRNA-Thr by influencing the folding form of the acceptor arm. Conclusions Results highlight the effect of mitochondrial tRNA genes on the number of piglets born alive, and suggest that polymorphic sites of the tRNA genes be genetic markers for selection of pig reproduction. Electronic supplementary material The online version of this article (10.1186/s40104-018-0299-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Wang
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Chao Ning
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hai Xiang
- 2School of Life Science and Engineering, Foshan University, Foshan, 528225 China
| | - Xianrui Zheng
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Minghua Kong
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Tao Yin
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianfeng Liu
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xingbo Zhao
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
24
|
Ilie IR. Advances in PCOS Pathogenesis and Progression-Mitochondrial Mutations and Dysfunction. Adv Clin Chem 2018; 86:127-155. [PMID: 30144838 DOI: 10.1016/bs.acc.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common female endocrine disorder, which still remains largely unsolved in terms of etiology and pathogenesis despite important advances in our understanding of its genetic, epigenetic, or environmental factor implications. It is a heterogeneous disease, frequently associated with insulin resistance, chronic inflammation, and oxidative stress and probably accompanied with subclinical cardiovascular disease (CVD) and some malignant lesions as well, such as endometrial cancer. Discrepancies in the clinical phenotype and progression of PCOS exist between different population groups, which nuclear genetic studies have so far failed to explain. Over the last years, mitochondrial dysfunction has been increasingly recognized as an important contributor to an array of diseases. Because mitochondria are under the dual genetic control of both the mitochondrial and nuclear genomes, mutations within either DNA molecule may result in deficiency in respiratory chain function that leads to a reduced ability to produce cellular adenosine-5'-triphosphate and to an excessive production of reactive oxygen species. However, the association between variants in mitochondrial genome, mitochondrial dysfunction, and PCOS has been investigated to a lesser extent. May mutations in mitochondrial DNA (mtDNA) become an additional target of investigations on the missing PCOS heritability? Are mutations in mtDNA implicated in the initiation and progression of PCOS complications, e.g., CVDs, diabetes mellitus, cancers?
Collapse
Affiliation(s)
- Ioana R Ilie
- Department of Endocrinology, University of Medicine and Pharmacy 'Iuliu-Hatieganu', Cluj-Napoca, Romania; E-mail:
| |
Collapse
|
25
|
Morphological and molecular variations induce mitochondrial dysfunction as a possible underlying mechanism of athletic amenorrhea. Exp Ther Med 2018; 15:993-998. [PMID: 29403550 DOI: 10.3892/etm.2017.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
Abstract
Female athletes may experience difficulties in achieving pregnancy due to athletic amenorrhea (AA); however, the underlying mechanisms of AA remain unknown. The present study focuses on the mitochondrial alteration and its function in detecting the possible mechanism of AA. An AA rat model was established by excessive swimming. Hematoxylin and eosin staining, and transmission electron microscopic methods were performed to evaluate the morphological changes of the ovary, immunohistochemical examinations and radioimmunoassays were used to detect the reproductive hormones and corresponding receptors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to test the mtDNA copy number. PCR and western blot analysis were used to test the expression of ND2. The change of morphological features of the rat ovaries revealed evident abnormalities. Particularly, the features of the mitochondria were markedly altered. In addition, reproductive hormones in the serum and tissues of AA rats were also detected to evaluate the function of the ovaries, and the levels of these hormones were significantly decreased. Furthermore, the mitochondrial DNA copy number (mtDNA) and expression of NADH dehydrogenase subunit 2 (ND2) were quantitated by qPCR or western blot analysis. Accordingly, the mtDNA copy number and expression of ND2 expression were markedly reduced in the AA rats. In conclusion, mitochondrial dysfunction in AA may affect the cellular energy supply and, therefore, result in dysfunction of the ovary. Thus, mitochondrial dysfunction may be considered as a possible underlying mechanism for the occurrence of AA.
Collapse
|
26
|
Reddy TV, Govatati S, Deenadayal M, Sisinthy S, Bhanoori M. Impact of mitochondrial DNA copy number and displacement loop alterations on polycystic ovary syndrome risk in south Indian women. Mitochondrion 2017; 44:35-40. [PMID: 29278759 DOI: 10.1016/j.mito.2017.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/18/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
Sequencing of mitochondrial displacement-loop (D-loop) of polycystic ovary syndrome (PCOS) patients and (n=118) and controls (n=114) of south Indian origin showed significant association of D310 (P=0.042) and A189G (P=0.018) SNPs with PCOS. qRT-PCR analysis revealed significantly diminished mtDNA copy number in PCOS patients compared to controls (P=0.038). Furthermore, mtDNA copy number was significantly lower in PCOS cases carrying D310 and 189G alleles when compared to non-carriers (P=0.001 and 0.006 respectively). The D310 carriers also showed significantly elevated LH/FSH ratio (P=0.026). In conclusion, mtDNA D-loop and copy number alterations may constitute an inheritable risk factor for PCOS in south Indian women.
Collapse
Affiliation(s)
| | - Suresh Govatati
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Mamata Deenadayal
- Infertility Institute and Research Centre (IIRC), Secundrabad, India
| | - Shivaji Sisinthy
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, India.
| |
Collapse
|
27
|
Ding Y, Xia BH, Zhang CJ, Zhuo GC. Mitochondrial tRNA Leu(UUR) C3275T, tRNA Gln T4363C and tRNA Lys A8343G mutations may be associated with PCOS and metabolic syndrome. Gene 2017; 642:299-306. [PMID: 29155328 DOI: 10.1016/j.gene.2017.11.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/26/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNALeu(UUR), whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNAGln, furthermore, the A8343G mutation occurred at the very conserved position of tRNALys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this family, which shaded additional light into the pathophysiology of PCOS that were manifestated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China.
| | - Bo-Hou Xia
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Cai-Juan Zhang
- Department of Gynecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Guang-Chao Zhuo
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
28
|
Wang HR, Li YW, Wu JL, Guo SL. Mitochondrial tRNA mutations in patients with myelodysplastic syndromes. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 27:2315-7. [PMID: 25812051 DOI: 10.3109/19401736.2015.1022760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing evidence showed that mitochondria play an important role in the development of myelodysplastic syndromes (MDS). Mitochondrial dysfunctions caused by mitochondrial DNA mutations, especially mitochondrial tRNA mutations, were found to be associated with MDS in many studies. However, the link between a candidate mitochondrial tRNA mutation and MDS was not clear. In this study, we investigated the role of some mitochondrial tRNA mutations, and their deleterious roles were further discussed.
Collapse
Affiliation(s)
- Hui-Rui Wang
- a Department of Hematology , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , China
| | - Ya-Wei Li
- a Department of Hematology , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , China
| | - Jun-Long Wu
- a Department of Hematology , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , China
| | - Shu-Li Guo
- a Department of Hematology , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , China
| |
Collapse
|
29
|
Ding Y, Zhuo G, Zhang C, Leng J. Point mutation in mitochondrial tRNA gene is associated with polycystic ovary syndrome and insulin resistance. Mol Med Rep 2016; 13:3169-72. [PMID: 26935780 DOI: 10.3892/mmr.2016.4916] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 01/20/2016] [Indexed: 11/06/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is characterized by chronic anovulation, hyperandrogenism and polycystic ovaries. To date, the molecular mechanisms underlying PCOS have remained to be fully elucidated. As recent studies have revealed a positive association between mitochondrial dysfunction and PCOS, current investigations focus on mutations in the mitochondrial genome of patients with POCS. The present study reported a Chinese patient with PCOS. Sequence analysis of the mitochondrial genome showed the presence of homoplasmic ND5 T12338C and tRNASer (UCN) C7492T mutations as well as a set of polymorphisms belonging to the human mitochondrial haplogroup F2. The T12338C mutation is known to decrease the ND5 mRNA levels and to inhibit the processing of RNA precursors. The C7492T mutation, which occurred at the highly conserved nucleotide in the anticodon stem of the tRNASer (UCN) gene, is important for the tRNA steady‑state level as well as the aminoacylation ability. Therefore, the combination of the ND5 T12338C and tRNASer (UCN) C7492T mutations may lead to mitochondrial dysfunction, and is likely to be involved in the pathogenesis of PCOS. The present study provided novel insight into the molecular mechanisms of PCOS.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital Affiliated to Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Guangchao Zhuo
- Central Laboratory, Hangzhou First People's Hospital Affiliated to Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Caijuan Zhang
- Central Laboratory, Hangzhou First People's Hospital Affiliated to Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jianhang Leng
- Central Laboratory, Hangzhou First People's Hospital Affiliated to Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
30
|
Ding Y, Zhuo G, Zhang C. The Mitochondrial tRNALeu(UUR) A3302G Mutation may be Associated With Insulin Resistance in Woman With Polycystic Ovary Syndrome. Reprod Sci 2015; 23:228-33. [PMID: 26335180 DOI: 10.1177/1933719115602777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of this study was to investigate the role of mitochondrial DNA (mtDNA) mutations in polycystic ovary syndrome (PCOS) with insulin resistance (IR), and to explore the possible maternally effects on PCOS. We performed clinical, genetic, and molecular characterization of a Han Chinese family with maternally inherited IR, and we further investigated the possible relationship between mitochondrial genetic background, copy number, and IR. Most strikingly, members from the first and second generation of this family exhibited the type 2 diabetes mellitus (T2DM) with IR, while the member in the third generation of this family manifested the PCOS. Sequence analysis of the complete mitochondrial genome showed the presence of a homoplasmic A3302G in the acceptor arm of transfer RNA(Leu(UUR)) (tRNA(Leu(UUR))) gene. This mutation disrupted the highly conserved base pairing (2T-71A) and resulted a failure in mt-tRNA metabolism. Analysis of the mitochondrial copy number showed that the patients with PCOS and IR had lower copy number than the health controls, suggesting that mitochondrial dysfunction may be involved in the pathogenesis of IR. Taken together, the A3302G mutation was a pathogenic mutation associated with IR in this Chinese family.
Collapse
Affiliation(s)
- Yu Ding
- Central laboratory, Hangzhou First People's Hospital, Hangzhou, China Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - Guangchao Zhuo
- Central laboratory, Hangzhou First People's Hospital, Hangzhou, China Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - Caijuan Zhang
- Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China Department of Gynecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
31
|
Yi QY, Deng G, Zhou HJ, Wu GH, Tang L. Mitochondrial transfer RNA variants and primary congenital glaucoma. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2405-7. [PMID: 25835039 DOI: 10.3109/19401736.2015.1028050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Variants in mitochondrial DNA (mtDNA) are the most important causes for vision loss, the mt-tRNA variants being the largest group among them. In this study, we report the molecular characterization of 15 mt-tRNA variants with primary congenital glaucoma (PCG). Based on phylogenetic approach, we found that only half of them were definitely pathogenic with PCG, other mutations were single nucleotide polymorphisms (SNP) in human population. Thus, our study provided novel insight into the pathogenesis of PCG.
Collapse
Affiliation(s)
- Quan-Yong Yi
- a Department of Ophthalmology , Xiangya NO 2 Hospital of Central South University , Changsha , P.R. China .,b Department of Ophthalmology , Ningbo Eye Hospital , Zhejiang , P.R. China , and
| | - Gang Deng
- c The First Affiliated Hospital of Soochow University , Jiangsu , P.R. China
| | - Hong-Jian Zhou
- b Department of Ophthalmology , Ningbo Eye Hospital , Zhejiang , P.R. China , and
| | - Guo-Hai Wu
- b Department of Ophthalmology , Ningbo Eye Hospital , Zhejiang , P.R. China , and
| | - Luosheng Tang
- a Department of Ophthalmology , Xiangya NO 2 Hospital of Central South University , Changsha , P.R. China
| |
Collapse
|
32
|
Ben-Shlomo I, Younis JS. Basic research in PCOS: are we reaching new frontiers? Reprod Biomed Online 2014; 28:669-83. [DOI: 10.1016/j.rbmo.2014.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/21/2013] [Accepted: 02/12/2014] [Indexed: 01/05/2023]
|
33
|
Chen R, Wang H, Li S, Ren Y. Mitochondrial DNA mutations may not be frequent in patients with polycystic ovary syndrome. MITOCHONDRIAL DNA 2013; 24:418-9. [PMID: 23369089 DOI: 10.3109/19401736.2012.760554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ruixiang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.
| | | | | | | |
Collapse
|