1
|
Loganathan S, Menegaz D, Delling JP, Eder M, Deussing JM. Cacna1c deficiency in forebrain glutamatergic neurons alters behavior and hippocampal plasticity in female mice. Transl Psychiatry 2024; 14:421. [PMID: 39370418 PMCID: PMC11456591 DOI: 10.1038/s41398-024-03140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
CACNA1C, coding for the α1 subunit of L-type voltage-gated calcium channel (LTCC) Cav1.2, has been associated with multiple psychiatric disorders. Clinical studies have revealed alterations in behavior as well as in brain structure and function in CACNA1C risk allele carriers. These findings are supported by rodent models of Cav1.2 deficiency, which showed increased anxiety, cognitive and social impairments as well as a shift towards active stress-coping strategies. These behavioral alterations were accompanied by functional deficits, such as reduced long-term potentiation (LTP) and an excitation/inhibition (E/I) imbalance. However, these preclinical studies are largely limited to male rodents, with few studies exploring sex-specific effects. Here, we investigated the effects of Cav1.2 deficiency in forebrain glutamatergic neurons in female conditional knockout (CKO) mice. CKO mice exhibited hyperlocomotion in a novel environment, increased anxiety-related behavior, cognitive deficits, and increased active stress-coping behavior. These behavioral alterations were neither influenced by the stage of the estrous cycle nor by the Nex/Neurod6 haploinsufficiency or Cre expression, which are intrinsically tied to the utilization of the Nex-Cre driver line for conditional inactivation of Cacna1c. In the hippocampus, Cav1.2 inactivation enhanced presynaptic paired-pulse facilitation without altering postsynaptic LTP at CA3-CA1 synapses. In addition, CA1 pyramidal neurons of female CKO mice displayed a reduction in dendritic complexity and spine density. Taken together, our findings extend the existing knowledge suggesting Cav1.2-dependent structural and functional alterations as possible mechanisms for the behavioral alterations observed in female Cav1.2-Nex mice.
Collapse
Affiliation(s)
- Srivaishnavi Loganathan
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan Philipp Delling
- Research Group Neural Dynamics and Behavior, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
2
|
Lima ALD, Silva EG, Cardozo PL, da Silva MCM, Koerich S, Ribeiro FM, Moreira FA, Vieira LB. Isradipine, an L-type calcium channel blocker, attenuates cocaine effects in mice by reducing central glutamate release. Eur J Pharmacol 2024; 971:176489. [PMID: 38492875 DOI: 10.1016/j.ejphar.2024.176489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Substance abuse disorder is a chronic condition for which pharmacological treatment options remain limited. L-type calcium channels (LTCC) have been implicated in drug-related plasticity and behavior. Specifically, dopaminergic neurons in the mesocorticolimbic pathway express Cav1.2 and Cav1.3 channels, which may regulate dopaminergic activity associated with reward behavior. Therefore, this study aimed to investigate the hypothesis that pre-administration of the LTCC blocker, isradipine can mitigate the effects of cocaine by modulating central glutamatergic transmission. For that, we administered isradipine at varying concentrations (1, 7.5, and 15 μg/μL) via intracerebroventricular injection in male Swiss mice. This pretreatment was carried out prior to subjecting animals to behavioral assessments to evaluate cocaine-induced locomotor sensitization and conditioned place preference (CPP). The results revealed that isradipine administered at a concentration of 1 μg/μL effectively attenuated both the sensitization and CPP induced by cocaine (15 mg/kg, via i. p.). Moreover, mice treated with 1 μg/μL of isradipine showed decreased presynaptic levels of glutamate and calcium in the cortex and hippocampus as compared to control mice following cocaine exposure. Notably, the gene expression of ionotropic glutamate receptors, AMPA, and NMDA, remained unchanged, as did the expression of Cav1.2 and Cav1.3 channels. Importantly, these findings suggest that LTCC blockage may inhibit behavioral responses to cocaine, most likely by decreasing glutamatergic input in areas related to addiction.
Collapse
Affiliation(s)
- Anna Luiza Diniz Lima
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emanuele Guimarães Silva
- Department of Immunology and Biochemistry, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Leal Cardozo
- Department of Immunology and Biochemistry, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Suélyn Koerich
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola Mara Ribeiro
- Department of Immunology and Biochemistry, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciene Bruno Vieira
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
The Functional Brain Network of Subcortical and Cortical Regions Underlying Time Estimation: An Functional MRI Study. Neuroscience 2023; 519:23-30. [PMID: 36871882 DOI: 10.1016/j.neuroscience.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Time estimation is fundamental for human survival. There have been increasing studies suggesting that distributed brain regions, such as the basal ganglia, cerebellum and the parietal cortex, may contribute to a dedicated neural mechanism of time estimation. However, evidence on the specific function of the subcortical and cortical brain regions and the interplay of them is scare. In this work, we explored how the subcortical and cortical networks function in time estimation during a time reproduction task using functional MRI (fMRI). Thirty healthy participants performed the time reproduction task in both auditory and visual modalities. Results showed that time estimation in visual and auditory modality recruited a subcortical-cortical brain network including the left caudate, left cerebellum, and right precuneus. Besides, the superior temporal gyrus (STG) was found essential in the difference between time estimation in visual and auditory modality. Using psychophysiological interaction (PPI) analysis, we observed an increase in the connection between left caudate and left precuneus using the left caudate as the seed region in temporal reproduction task than control task. This suggested that the left caudate is the key region connecting and transmitting information to other brain regions in the dedicated brain network of time estimation.
Collapse
|
4
|
Hamidian S, Pourshahbaz A, Bozorgmehr A, Ananloo ES, Dolatshahi B, Ohadi M. How obsessive-compulsive and bipolar disorders meet each other? An integrative gene-based enrichment approach. Ann Gen Psychiatry 2020; 19:31. [PMID: 32411272 PMCID: PMC7211339 DOI: 10.1186/s12991-020-00280-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/11/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The novel approaches to psychiatric classification assume that disorders, contrary to what was previously thought, are not completely separate phenomena. In this regard, in addition to symptom-based criteria, disturbances are also considered on the basis of lower level components. With this viewpoint, identifying common biochemical markers would be beneficial in adopting a comprehensive strategy for prevention, diagnosis and treatment. MAIN BODY One of the problematic areas in clinical settings is the coexistence of both obsessive-compulsive disorder (OCD) and bipolar disorder (BD) that is challenging and difficult to manage. In this study, using a system biologic approach we aimed to assess the interconnectedness of OCD and BD at different levels. Gene Set Enrichment Analysis (GSEA) method was used to identify the shared biological network between the two disorders. The results of the analysis revealed 34 common genes between the two disorders, the most important of which were CACNA1C, GRIA1, DRD2, NOS1, SLC18A1, HTR2A and DRD1. Dopaminergic synapse and cAMP signaling pathway as the pathways, dopamine binding and dopamine neurotransmitter receptor activity as the molecular functions, dendrite and axon part as the cellular component and cortex and striatum as the brain regions were the most significant commonalities. SHORT CONCLUSION The results of this study highlight the role of multiple systems, especially the dopaminergic system in linking OCD and BD. The results can be used to estimate the disease course, prognosis, and treatment choice, particularly in the cases of comorbidity. Such perspectives, going beyond symptomatic level, help to identify common endophenotypes between the disorders and provide diagnostic and therapeutic approaches based on biological in addition to the symptomatic level.
Collapse
Affiliation(s)
- Sajedeh Hamidian
- 1Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences (USWR), Tehran, Iran
| | - Abbas Pourshahbaz
- 1Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences (USWR), Tehran, Iran
| | - Ali Bozorgmehr
- 2Iran Psychiatric Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Esmaeil Shahsavand Ananloo
- 3Department of Psychosomatic, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Behrooz Dolatshahi
- 1Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences (USWR), Tehran, Iran
| | - Mina Ohadi
- 4Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences (USWR), Tehran, Iran
| |
Collapse
|
5
|
Meller T, Schmitt S, Stein F, Brosch K, Mosebach J, Yüksel D, Zaremba D, Grotegerd D, Dohm K, Meinert S, Förster K, Redlich R, Opel N, Repple J, Hahn T, Jansen A, Andlauer TFM, Forstner AJ, Heilmann-Heimbach S, Streit F, Witt SH, Rietschel M, Müller-Myhsok B, Nöthen MM, Dannlowski U, Krug A, Kircher T, Nenadić I. Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects. Schizophr Res 2019; 208:67-75. [PMID: 31076262 DOI: 10.1016/j.schres.2019.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/05/2019] [Accepted: 04/20/2019] [Indexed: 12/30/2022]
Abstract
Schizotypy is a multidimensional risk phenotype distributed in the general population, constituting of subclinical, psychotic-like symptoms. It is associated with psychosis proneness, and several risk genes for psychosis are associated with schizotypy in non-clinical populations. Schizotypy might also modulate cognitive abilities as it is associated with attentional deficits in healthy subjects. In this study, we tested the hypothesis that established genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737 are associated with psychometric schizotypy and that schizotypy mediates their effect on attention or vice versa. In 615 healthy subjects from the FOR2107 cohort study, we analysed the genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737, psychometric schizotypy (schizotypal personality questionnaire-brief SPQB), and a neuropsychological measure of sustained and selective attention (d2 test). ZNF804A rs1344706 C (non-risk) alleles were significantly associated with higher SPQ-B Cognitive-Perceptual subscores in women and with attention deficits in both sexes. This schizotypy dimension also mediated the effect of ZNF804A on attention in women, but not in men. CACNA1C rs1006737-A showed a significant sex-modulated negative association with Interpersonal schizotypy only in men, and no effect on attention. Our multivariate model demonstrates differential genetic contributions of two psychosis risk genes to dimensions of schizotypy and, partly, to attention. This supports a model of shared genetic influence between schizotypy and cognitive functions impaired in schizophrenia.
Collapse
Affiliation(s)
- Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany.
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Johannes Mosebach
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Dilara Yüksel
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; SRI International, Center for Health Sciences, Bioscience Division, 333 Ravenswood Avenue, 94025 Menlo Park, CA, USA
| | - Dario Zaremba
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Dominik Grotegerd
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Förster
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany; Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Till F M Andlauer
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany; Institute of Human Genetics, Philipps-Universität Marburg, Baldingerstraße, 35033 Marburg, Germany; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstr. 40, 4056 Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Fabian Streit
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Stephanie H Witt
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Bertram Müller-Myhsok
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany; Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
6
|
Zhang Z, Wang Y, Zhang Q, Zhao W, Chen X, Zhai J, Chen M, Du B, Deng X, Ji F, Wang C, Xiang Y, Li D, Wu H, Dong Q, Chen C, Li J. The effects of CACNA1C gene polymorphism on prefrontal cortex in both schizophrenia patients and healthy controls. Schizophr Res 2019; 204:193-200. [PMID: 30268820 DOI: 10.1016/j.schres.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 09/09/2018] [Indexed: 11/28/2022]
Abstract
CACNA1C gene polymorphism rs2007044 has been reported to be associated with schizophrenia, but its underlying brain mechanism is not clear. First, we conducted an exploratory functional magnetic resonance imaging (fMRI) study using an N-BACK task and a Stroop task in 194 subjects (55 schizophrenia patients and 139 healthy controls). Our whole brain analysis found that the risk allele was associated with reduced activation of the left inferior frontal gyrus (IFG) during the Stroop task (cluster size = 390 voxels, P < 0.05 TFCE-FWE corrected; peak MNI coordinates: x = -57, y = -6, z = 30). We also conducted a functional near-infrared spectroscopy (fNIRS) study using the same Stroop task in an independent sample of 126 healthy controls to validate the fMRI finding. Our repeated-measures ANCOVA on the six channels (20, 27, 33, 34, 40 and 46) within the left IFG also found significant result. The polymorphism rs2007044 showed significant effect on the oxy-Hb data (F = 5.072, P = 0.026) and showed significant interaction effect with channels on the deoxy-Hb data (F = 2.841, P = 0.015). Taken together, results of this study suggested that rs2007044 could affect the activation of the left IFG, which was a possible brain mechanism underlying the association between CACNA1C gene polymorphism and schizophrenia.
Collapse
Affiliation(s)
- Zhifang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Yanyan Wang
- Department of Psychiatry, HePing Hospital of Chang Zhou, Jiangsu 213003, China
| | - Qiumei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China; School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiongying Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Min Chen
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | | | - Yutao Xiang
- Beijing Anding Hospital, Beijing 100088, PR China; Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Hongjie Wu
- Shengli Hospital of Shengli Petroleum Administration Bureau, Dongying 257022, Shandong Province, PR China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, United States
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China.
| |
Collapse
|
7
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
8
|
Jiang W, King TZ, Turner JA. Imaging Genetics Towards a Refined Diagnosis of Schizophrenia. Front Psychiatry 2019; 10:494. [PMID: 31354550 PMCID: PMC6639711 DOI: 10.3389/fpsyt.2019.00494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/24/2019] [Indexed: 01/31/2023] Open
Abstract
Current diagnoses of schizophrenia and related psychiatric disorders are classified by phenomenological principles and clinical descriptions while ruling out other symptoms and conditions. Specific biomarkers are needed to assist the current diagnostic system. However, complicated gene and environment interactions induce great disease heterogeneity. This unclear etiology and heterogeneity raise difficulties in distinguishing schizophrenia-related effects. Simultaneously, the overlap in symptoms, genetic variations, and brain alterations in schizophrenia and related psychiatric disorders raises similar difficulties in determining disease-specific effects. Imaging genetics is a unique methodology to assess the impact of genetic factors on both brain structure and function. More importantly, imaging genetics builds a bridge to understand the behavioral and clinical implications of genetics and neuroimaging. By characterizing and quantifying the brain measures affected in psychiatric disorders, imaging genetics is contributing to identifying potential biomarkers for schizophrenia and related disorders. To date, candidate gene analysis, genome-wide association studies, polygenetic risk score analysis, and large-scale collaborative studies have made contributions to the understanding of schizophrenia with the potential to serve as biomarkers. Despite limitations, imaging genetics remains promising as more aggregative, clustering methods and imaging genetics-compatible clinical assessments are employed in future studies. We review imaging genetics' contribution to our understanding of the heterogeneity within schizophrenia and the commonalities across schizophrenia and other diagnostic borders, and we will discuss whether imaging genetics is ready to form its own diagnostic system.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jessica A Turner
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Mind Research Network, Albuquerque, NM, United States
| |
Collapse
|
9
|
Takeuchi H, Tomita H, Taki Y, Kikuchi Y, Ono C, Yu Z, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. A Common CACNA1C Gene Risk Variant has Sex-Dependent Effects on Behavioral Traits and Brain Functional Activity. Cereb Cortex 2018; 29:3211-3219. [DOI: 10.1093/cercor/bhy189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/23/2018] [Indexed: 01/08/2023] Open
Abstract
Abstract
Genome-wide association studies have suggested that allelic variations in the CACNA1C gene confer susceptibility to schizophrenia and bipolar disorder only in women. Here we investigated the sex-specific effects of the CACNA1C variant rs1024582 on psychiatry-related traits, brain activity during tasks and rest, and brain volume in 1207 normal male and female subjects. After correcting for multiple comparisons, there were significant interaction effects between sex and the minor allele of this polymorphism on the hostile behavior subscale scores of the Coronary-Prone Type Scale mediated by higher scores in female carriers of the minor allele. Imaging analyses revealed significant interaction effects between sex and the minor allele on fractional amplitude of low-frequency fluctuations in the right dorsolateral prefrontal cortex and on brain activity during the 2-back task in areas of the right posterior cingulate cortex, right thalamus, and right hippocampus, which were all mediated by reduced activity in female carriers of the minor allele. Our results demonstrated that the rs1024582 risk variant of CACNA1C is associated with reduced activity in the frontolimbic regions at rest and during a working memory task as well as with greater hostility in females in the healthy population.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical Research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Collaborative Research Center for Happiness Co-Creation Society through Intelligent Communications, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
|
11
|
Braun MD, Kisko TM, Vecchia DD, Andreatini R, Schwarting RKW, Wöhr M. Sex-specific effects of Cacna1c haploinsufficiency on object recognition, spatial memory, and reversal learning capabilities in rats. Neurobiol Learn Mem 2018; 155:543-555. [PMID: 29800644 DOI: 10.1016/j.nlm.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c+/- rats and compared to wildtype Cacna1c+/+ littermate controls in both sexes. Our results show that both Cacna1c+/+ and Cacna1c+/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c+/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c+/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c+/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats.
Collapse
Affiliation(s)
- Moria D Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Débora Dalla Vecchia
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Roberto Andreatini
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.
| |
Collapse
|
12
|
Klaus K, Butler K, Gutierrez H, Durrant SJ, Pennington K. Interactive effects of early life stress and CACNA1C genotype on cortisol awakening response. Biol Psychol 2018; 136:22-28. [PMID: 29733866 DOI: 10.1016/j.biopsycho.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
The rs1006737 (A/G) single nucleotide polymorphism within the gene encoding the Cav1.2 subunit of the L-type voltage-dependent calcium channel (CACNA1C) has been strongly implicated in psychiatric disorders. In addition, calcium channels are sensitive to the effects of glucocorticoids and functional variation may contribute to altered stress responsivity. This study aimed to investigate the role of early life stress (ELS) and its interaction with CACNA1C rs1006737 in affecting the cortisol awakening response (CAR), an indicator of HPA-axis function. Salivary cortisol was measured in 103 healthy adult males (aged 21-63) on two consecutive days at awakening and 30 min later. The ELS measure investigated self-reported adverse life events prior to age 17. The results revealed a marginally significant main effect of CACNA1C, a significant main effect of ELS, and a significant genotype-by-ELS interaction on the CAR, whereby non-risk allele carriers (GG) who had experienced early adversity showed higher CAR compared to the other groups. Further exploratory analyses showed that this interaction may have arisen from individuals who had experienced ELS before adolescence (prior to age 13). This study is the first to provide evidence that the effect of ELS on CAR may be partially moderated via CACNA1C rs1006737 genotype, whereby the heightened CAR in the GG-ELS group may be an indicator of mental health resilience in response to ELS.
Collapse
Affiliation(s)
- K Klaus
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK
| | - K Butler
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK
| | - H Gutierrez
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN7 6TS, UK
| | - S J Durrant
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK
| | - K Pennington
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK.
| |
Collapse
|
13
|
Extinction of Contextual Cocaine Memories Requires Ca v1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca v1.2-Dependent Signaling Mechanisms. J Neurosci 2017; 37:11894-11911. [PMID: 29089442 DOI: 10.1523/jneurosci.2397-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories.SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine addiction, can be precipitated by contextual cues, yet the molecular mechanisms required for extinction of these context-specific memories remain poorly understood. Here, we have uncovered a novel and selective role of the Cav1.2 L-type Ca2+ channel and its downstream signaling pathway in the hippocampus that mediate extinction of cocaine conditioned place preference (CPP). We additionally provide evidence that supports a role of Cav1.2 within dopamine D1 receptor-expressing cells of the hippocampus for extinction of cocaine CPP. Therefore, these findings reveal a previously unknown role of Cav1.2 channels within the hippocampus and in D1 receptor-expressing cells in extinction of cocaine-associated memories, providing a framework for further exploration of mechanisms underlying extinction of cocaine-seeking behavior.
Collapse
|
14
|
Yüksel D, Dietsche B, Forstner AJ, Witt SH, Maier R, Rietschel M, Konrad C, Nöthen MM, Dannlowski U, Baune BT, Kircher T, Krug A. Polygenic risk for depression and the neural correlates of working memory in healthy subjects. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28624581 DOI: 10.1016/j.pnpbp.2017.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Major depressive disorder (MDD) patients show impairments of cognitive functioning such as working memory (WM), and furthermore alterations during WM-fMRI tasks especially in frontal and parietal brain regions. The calculation of a polygenic risk score (PRS) can be used to describe the genetic influence on MDD, hence imaging genetic studies aspire to combine both genetics and neuroimaging data to identify the influence of genetic factors on brain functioning. We aimed to detect the effect of MDD-PRS on brain activation during a WM task measured with fMRI and expect healthy individuals with a higher PRS to be more resembling to MDD patients. METHOD In total, n=137 (80 men, 57 women, aged 34.5, SD=10.4years) healthy subjects performed a WM n-back task [0-back (baseline), 2-back and 3-back condition] in a 3T-MRI-tomograph. The sample was genotyped using the Infinium PsychArray BeadChip and a polygenic risk score was calculated for MDD using PGC MDD GWAS results. RESULTS A lower MDD risk score was associated with increased activation in the bilateral middle occipital gyri (MOG), the bilateral middle frontal gyri (MFG) and the right precentral gyrus (PCG) during the 2-back vs. baseline condition. Moreover, a lower PRS was associated with increased brain activation during the 3-back vs. baseline condition in the bilateral cerebellum, the right MFG and the left inferior parietal lobule. A higher polygenic risk score was associated with hyperactivation in brain regions comprising the right MFG and the right supplementary motor area during the 3-back vs. 2-back condition. DISCUSSION The results suggest that part of the WM-related brain activation patterns might be explained by genetic variants captured by the MDD-PRS. Furthermore we were able to detect MDD-associated activation patterns in healthy individuals depending on the MDD-PRS and the task complexity. Additional gene loci could contribute to these task-dependent brain activation patterns.
Collapse
Affiliation(s)
- Dilara Yüksel
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Andreas J Forstner
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany; Institute of Human Genetics, University of Bonn, Bonn, Germany; Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stephanie H Witt
- Discipline Department of Genetic Epidemiology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Robert Maier
- Discipline Queensland Brain Institute, The University of Queensland, Australia
| | - Marcella Rietschel
- Discipline Department of Genetic Epidemiology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Agaplesion Diakonieklinikum Rotenberg, Centre for Psychosocial Medicine, Elise-Averdieck-Straße 17, 27356 Rotenburg (Wümme), Germany
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany; Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Department of Psychiatry, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| |
Collapse
|
15
|
Fatima A, Farooq M, Abdullah U, Tariq M, Mustafa T, Iqbal M, Tommerup N, Mahmood Baig S. Genome-Wide Supported Risk Variants in MIR137, CACNA1C, CSMD1, DRD2, and GRM3 Contribute to Schizophrenia Susceptibility in Pakistani Population. Psychiatry Investig 2017; 14:687-692. [PMID: 29042896 PMCID: PMC5639139 DOI: 10.4306/pi.2017.14.5.687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Schizophrenia is a chronic neuropsychiatric disease afflicting around 1.1% of the population worldwide. Recently, MIR137, CACNA1C, CSMD1, DRD2, and GRM3 have been reported as the most robustly emerging candidates involved in the etiology of schizophrenia. In this case control study, we performed an association analysis of rs1625579 (MIR137), rs1006737, rs4765905 (CACNA1C), rs10503253 (CSMD1), rs1076560 (DRD2), rs12704290, rs6465084, and rs148754219 (GRM3) in Pakistani population. METHODS Schizophrenia was diagnosed on the basis of the Diagnostic and Statistical Manual of Mental Disorders 4th ed (DSM-IV). Detailed clinical information, family history of all patients and healthy controls were collected. RFLP based case control association study was performed in a Pakistani cohort of 508 schizophrenia patients and 300 healthy control subjects. Alleles and genotype frequencies were calculated using SPSS. RESULTS A significant difference in the genotype and allele frequencies for rs4765905, rs1076560 and rs6465084 were found between the patients and controls (p=0.000). CONCLUSION This study provides substantial evidence supporting the role of CACNA1C, GRM3 and DRD2 as schizophrenia susceptibility genes in Pakistani population.
Collapse
Affiliation(s)
- Ambrin Fatima
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Farooq
- Wilhelm Johannsen Centre for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Uzma Abdullah
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Tariq
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Tanveer Mustafa
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | | | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| |
Collapse
|
16
|
Erk S, Mohnke S, Ripke S, Lett TA, Veer IM, Wackerhagen C, Grimm O, Romanczuk-Seiferth N, Degenhardt F, Tost H, Mattheisen M, Mühleisen TW, Charlet K, Skarabis N, Kiefer F, Cichon S, Witt SH, Nöthen MM, Rietschel M, Heinz A, Meyer-Lindenberg A, Walter H. Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains. Transl Psychiatry 2017; 7:e997. [PMID: 28072415 PMCID: PMC5545733 DOI: 10.1038/tp.2016.272] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/23/2022] Open
Abstract
Recently, 125 loci with genome-wide support for association with schizophrenia were identified. We investigated the impact of these variants and their accumulated genetic risk on brain activation in five neurocognitive domains of the Research Domain Criteria (working memory, reward processing, episodic memory, social cognition and emotion processing). In 578 healthy subjects we tested for association (i) of a polygenic risk profile score (RPS) including all single-nucleotide polymorphisms (SNPs) reaching genome-wide significance in the recent genome-wide association studies (GWAS) meta-analysis and (ii) of all independent genome-wide significant loci separately that showed sufficient distribution of all allelic groups in our sample (105 SNPs). The RPS was nominally associated with perigenual anterior cingulate and posterior cingulate/precuneus activation during episodic memory (PFWE(ROI)=0.047) and social cognition (PFWE(ROI)=0.025), respectively. Single SNP analyses revealed that rs9607782, located near EP300, was significantly associated with amygdala recruitment during emotion processing (PFWE(ROI)=1.63 × 10-4, surpassing Bonferroni correction for the number of SNPs). Importantly, this association was replicable in an independent sample (N=150; PFWE(ROI)<0.025). Other SNP effects previously associated with imaging phenotypes were nominally significant, but did not withstand correction for the number of SNPs tested. To assess whether there was true signal within our data, we repeated single SNP analyses with 105 randomly chosen non-schizophrenia-associated variants, observing fewer significant results and lower association probabilities. Applying stringent methodological procedures, we found preliminary evidence for the notion that genetic risk for schizophrenia conferred by rs9607782 may be mediated by amygdala function. We critically evaluate the potential caveats of the methodological approaches employed and offer suggestions for future studies.
Collapse
Affiliation(s)
- S Erk
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, Berlin D-10117, Germany. E-mail: or
| | - S Mohnke
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, Berlin D-10117, Germany. E-mail: or
| | - S Ripke
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - T A Lett
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - I M Veer
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - C Wackerhagen
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - O Grimm
- Department of Psychiatry, Psychosomatic Medicine, Psychotherapy, Goethe-University Frankfurt, Frankfurt, Germany
| | - N Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - F Degenhardt
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - H Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - M Mattheisen
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - T W Mühleisen
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany,Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - K Charlet
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - N Skarabis
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - F Kiefer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - S Cichon
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany,Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - S H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - M M Nöthen
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - A Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - A Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - H Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany,Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
17
|
Kabir ZD, Lee AS, Rajadhyaksha AM. L-type Ca 2+ channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes. J Physiol 2016; 594:5823-5837. [PMID: 26913808 PMCID: PMC5063939 DOI: 10.1113/jp270673] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/28/2015] [Indexed: 01/07/2023] Open
Abstract
Brain Cav 1.2 and Cav 1.3 L-type Ca2+ channels play key physiological roles in various neuronal processes that contribute to brain function. Genetic studies have recently identified CACNA1C as a candidate risk gene for bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD) and autism spectrum disorder (ASD), and CACNA1D for BD and ASD, suggesting a contribution of Cav 1.2 and Cav 1.3 Ca2+ signalling to the pathophysiology of neuropsychiatric disorders. Once considered sole clinical entities, it is now clear that BD, SCZ, MDD and ASD share common phenotypic features, most likely due to overlapping neurocircuitry and common molecular mechanisms. A major future challenge lies in translating the human genetic findings to pathological mechanisms that are translatable back to the patient. One approach for tackling such a daunting scientific endeavour for complex behaviour-based neuropsychiatric disorders is to examine intermediate biological phenotypes in the context of endophenotypes within distinct behavioural domains. This will better allow us to integrate findings from genes to behaviour across species, and improve the chances of translating preclinical findings to clinical practice.
Collapse
Affiliation(s)
- Z D Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA
| | - A S Lee
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA
| | - A M Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA.
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
18
|
Lancaster TM, Foley S, Tansey KE, Linden DEJ, Caseras X. CACNA1C risk variant is associated with increased amygdala volume. Eur Arch Psychiatry Clin Neurosci 2016; 266:269-75. [PMID: 26048451 DOI: 10.1007/s00406-015-0609-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/28/2015] [Indexed: 01/17/2023]
Abstract
Genome-wide association studies suggest that genetic variation within L-type calcium channel subunits confer risk to psychosis. The single nucleotide polymorphism at rs1006737 in CACNA1C has been associated with both schizophrenia and bipolar disorder and with several intermediate phenotypes that may serve as neurobiological antecedents, linking psychosis to genetic aetiology. Amongst others, it has been implicated in alterations in amygdala structure and function. In the present study, we show that the risk allele (A) is associated with increased amygdala volume in healthy individuals (n = 258). This observation reinforces a hypothesis that genetic variation may confer risk to psychosis via alterations in limbic structures. Further study of CACNA1C using intermediate phenotypes for psychosis will determine the mechanisms by which variation in this gene confers risk.
Collapse
Affiliation(s)
- T M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, UK. .,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| | - S Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - K E Tansey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - D E J Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, UK.,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - X Caseras
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
19
|
Huang L, Mo Y, Sun X, Yu H, Li H, Wu L, Li M. The impact of CACNA1C allelic variation on regional gray matter volume in Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:396-401. [PMID: 26756527 DOI: 10.1002/ajmg.b.32418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/23/2015] [Indexed: 11/08/2022]
Abstract
The SNP rs1006737 in CACNA1C gene has been significantly associated with psychiatric disorders (e.g., schizophrenia and bipolar disorder) in European populations. In Han Chinese, rs1006737 is also strongly associated with schizophrenia, although the effects of the psychosis risk SNP on related brain functions and structures in this population remain unclear. Here, we examined the association of rs1006737 with gray matter volume in a sample of 278 healthy Han Chinese. A whole-brain voxel-based morphometry (VBM) analysis revealed a significant association in the region around right superior occipital gyrus (family-wise error corrected, P = 0.023). Our data provides initial evidence for the involvement of this psychosis genetic risk locus in brain structure variations in Chinese population, and calls for further investigations.
Collapse
Affiliation(s)
- Liang Huang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yin Mo
- Imaging Center, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Xuejin Sun
- Imaging Center, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Hualin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lichuan Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
20
|
Zanos P, Bhat S, Terrillion CE, Smith RJ, Tonelli LH, Gould TD. Sex-dependent modulation of age-related cognitive decline by the L-type calcium channel gene Cacna1c (Cav 1.2). Eur J Neurosci 2015; 42:2499-507. [PMID: 25989111 PMCID: PMC4615431 DOI: 10.1111/ejn.12952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
Abstract
Increased calcium influx through L-type voltage-gated calcium channels has been implicated in the neuronal dysfunction underlying age-related memory declines. The present study aimed to test the specific role of Cacna1c (which encodes Cav 1.2) in modulating age-related memory dysfunction. Short-term, spatial and contextual/emotional memory was evaluated in young and aged, wild-type as well as mice with one functional copy of Cacna1c (haploinsufficient), using the novel object recognition, Y-maze and passive avoidance tasks, respectively. Hippocampal expression of Cacna1c mRNA was measured by quantitative polymerase chain reaction. Ageing was associated with object recognition and contextual/emotional memory deficits, and a significant increase in hippocampal Cacna1c mRNA expression. Cacna1c haploinsufficiency was associated with decreased Cacna1c mRNA expression in both young and old animals. However, haploinsufficient mice did not manifest an age-related increase in expression of this gene. Behaviourally, Cacna1c haploinsufficiency prevented object recognition deficits during ageing in both male and female mice. A significant correlation between higher Cacna1c levels and decreased object recognition performance was observed in both sexes. Also, a sex-dependent protective role of decreased Cacna1c levels in contextual/emotional memory loss has been observed, specifically in male mice. These data provide evidence for an association between increased hippocampal Cacna1c expression and age-related cognitive decline. Additionally, they indicate an interaction between the Cacna1c gene and sex in the modulation of age-related contextual memory declines.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Shambhu Bhat
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | | | - Robert J. Smith
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Leonardo H. Tonelli
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Higgins GA, Allyn-Feuer A, Barbour E, Athey BD. A glutamatergic network mediates lithium response in bipolar disorder as defined by epigenome pathway analysis. Pharmacogenomics 2015; 16:1547-63. [PMID: 26343379 DOI: 10.2217/pgs.15.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM A regulatory network in the human brain mediating lithium response in bipolar patients was revealed by analysis of functional SNPs from genome-wide association studies (GWAS) and published gene association studies, followed by epigenome mapping. METHODS An initial set of 23,312 SNPs in linkage disequilibrium with lead SNPs, and sub-threshold GWAS SNPs rescued by pathway analysis, were studied in the same populations. These were assessed using our workflow and annotation by the epigenome roadmap consortium. RESULTS Twenty-seven percent of 802 SNPs that were associated with lithium response (13 published studies gene association studies and two GWAS) were shared in common with 1281 SNPs from 18 GWAS examining psychiatric disorders and adverse events associated with lithium treatment. Nineteen SNPs were annotated as active regulatory elements such as enhancers and promoters in a tissue-specific manner. They were located within noncoding regions of ten genes: ANK3, ARNTL, CACNA1C, CACNG2, CDKN1A, CREB1, GRIA2, GSK3B, NR1D1 and SLC1A2. Following gene set enrichment and pathway analysis, these genes were found to be significantly associated (p = 10(-27); Fisher exact test) with an AMPA2 glutamate receptor network in human brain. Our workflow results showed concordance with annotation of regulatory elements from the epigenome roadmap. Analysis of cognate mRNA and enhancer RNA exhibited patterns consistent with an integrated pathway in human brain. CONCLUSION This pharmacoepigenomic regulatory pathway is located in the same brain regions that exhibit tissue volume loss in bipolar disorder. Although in silico analysis requires biological validation, the approach provides value for identification of candidate variants that may be used in pharmacogenomic testing to identify bipolar patients likely to respond to lithium.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Pharmacogenomic Science, Assurex Health, Inc., Mason, OH 45040, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Edward Barbour
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian D Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Pall ML. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chem Neuroanat 2015; 75:43-51. [PMID: 26300312 DOI: 10.1016/j.jchemneu.2015.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/01/2015] [Accepted: 08/09/2015] [Indexed: 12/16/2022]
Abstract
Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970s to 1980s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression/depressive symptoms, fatigue/tiredness, dysesthesia, concentration/attention dysfunction, memory changes, dizziness, irritability, loss of appetite/body weight, restlessness/anxiety, nausea, skin burning/tingling/dermographism and EEG changes. In summary, then, the mechanism of action of microwave EMFs, the role of the VGCCs in the brain, the impact of non-thermal EMFs on the brain, extensive epidemiological studies performed over the past 50 years, and five criteria testing for causality, all collectively show that various non-thermal microwave EMF exposures produce diverse neuropsychiatric effects.
Collapse
Affiliation(s)
- Martin L Pall
- Professor Emeritus of Biochemistry and Basic Medical Sciences, Washington State University, 638 NE 41st Avenue, Portland, OR 97232-3312, USA.
| |
Collapse
|
23
|
Ou X, Crane DE, MacIntosh BJ, Young LT, Arnold P, Ameis S, Goldstein BI. CACNA1C rs1006737 genotype and bipolar disorder: Focus on intermediate phenotypes and cardiovascular comorbidity. Neurosci Biobehav Rev 2015; 55:198-210. [DOI: 10.1016/j.neubiorev.2015.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023]
|
24
|
Moreira-Filho CA, Bando SY, Bertonha FB, Iamashita P, Silva FN, Costa LDF, Silva AV, Castro LHM, Wen HT. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures. PLoS One 2015; 10:e0128174. [PMID: 26011637 PMCID: PMC4444281 DOI: 10.1371/journal.pone.0128174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery.
Collapse
Affiliation(s)
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Luiz Henrique Martins Castro
- Department of Neurology, FMUSP, São Paulo, SP, Brazil
- Clinical Neurology Division, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Oertel-Knöchel V, Reinke B, Matura S, Prvulovic D, Linden DEJ, van de Ven V. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder. Psychiatry Res 2015; 231:141-50. [PMID: 25575881 DOI: 10.1016/j.pscychresns.2014.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/07/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease.
Collapse
Affiliation(s)
- Viola Oertel-Knöchel
- Laboratory of Neurophysiology und Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Britta Reinke
- Laboratory of Neurophysiology und Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany; Brain Imaging Center Frankfurt, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Silke Matura
- Laboratory of Neurophysiology und Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany; Brain Imaging Center Frankfurt, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David Prvulovic
- Laboratory of Neurophysiology und Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David E J Linden
- Brain Imaging Center Frankfurt, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Vincent van de Ven
- MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
26
|
Flint J, Timpson N, Munafò M. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends Neurosci 2014; 37:733-41. [PMID: 25216981 PMCID: PMC4961231 DOI: 10.1016/j.tins.2014.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 01/19/2023]
Abstract
Intermediate phenotypes are traits positioned somewhere between genetic variation and disease. They represent a target for attempts to find disease-associated genetic variants and elucidation of mechanisms. Psychiatry has been particularly enamoured with intermediate phenotypes, due to uncertainty about disease aetiology, inconclusive results in early psychiatric genetic studies, and their appeal relative to traditional diagnostic categories. In this review, we argue that new genetic findings are relevant to the question of the utility of these constructs. In particular, results from genome-wide association studies of psychiatric disorders now allow an assessment of the potential role of particular intermediate phenotypes. Based on such an analysis, as well as other recent results, we conclude that intermediate phenotypes are likely to be most valuable in understanding mechanism.
Collapse
Affiliation(s)
- Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK.
| | - Nicholas Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Marcus Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK; UK Centre for Tobacco and Alcohol Studies and School of Experimental Psychology, University of Bristol, Bristol BS8 1TU, UK
| |
Collapse
|
27
|
CACNA1C risk variant affects reward responsiveness in healthy individuals. Transl Psychiatry 2014; 4:e461. [PMID: 25290268 PMCID: PMC4350510 DOI: 10.1038/tp.2014.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022] Open
Abstract
The variant at rs1006737 in the L-type voltage-gated calcium channel (alpha 1c subunit) CACNA1C gene is reliably associated with both bipolar disorder and schizophrenia. We investigated whether this risk variant affects reward responsiveness because reward processing is one of the central cognitive-motivational domains implicated in both disorders. In a sample of 164 young, healthy individuals, we show a dose-dependent response, where the rs1006737 risk genotype was associated with blunted reward responsiveness, whereas discriminability did not significantly differ between genotype groups. This finding suggests that the CACNA1C risk locus may have a role in neural pathways that facilitate value representation for rewarding stimuli. Impaired reward processing may be a transdiagnostic phenotype of variation in CACNA1C that could contribute to anhedonia and other clinical features common to both affective and psychotic disorders.
Collapse
|
28
|
Schmitt A, Malchow B, Keeser D, Falkai P, Hasan A. Neurobiologie der Schizophrenie. DER NERVENARZT 2014; 86:324-6, 328-31. [DOI: 10.1007/s00115-014-4115-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Erk S, Meyer-Lindenberg A, Linden DE, Lancaster T, Mohnke S, Grimm O, Degenhardt F, Holmans P, Pocklington A, Schmierer P, Haddad L, Mühleisen TW, Mattheisen M, Witt SH, Romanczuk-Seiferth N, Tost H, Schott BH, Cichon S, Nöthen MM, Rietschel M, Heinz A, Walter H. Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. Neuroimage 2014; 94:147-154. [DOI: 10.1016/j.neuroimage.2014.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/09/2014] [Accepted: 03/09/2014] [Indexed: 12/12/2022] Open
|
30
|
Backes H, Dietsche B, Nagels A, Konrad C, Witt SH, Rietschel M, Kircher T, Krug A. Genetic variation in CACNA1C affects neural processing in major depression. J Psychiatr Res 2014; 53:38-46. [PMID: 24612926 DOI: 10.1016/j.jpsychires.2014.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/28/2022]
Abstract
Genetic studies found the A allele of the single nucleotide polymorphism rs1006737 in the CACNA1C gene, which encodes for the alpha 1C subunit of the voltage-dependent, L-type calcium ion channel Cav1.2, to be overrepresented in patients with major depressive disorder (MDD). Altered prefrontal brain functioning and impaired semantic verbal fluency (SVF) are robust findings in these patients. A recent functional magnetic resonance imaging (fMRI) study found the A allele to be associated with poorer performance and increased left inferior frontal gyrus (IFG) activation during SVF tasks in healthy subjects. In the present study, we investigated the effects of rs1006737 on neural processing during SVF in MDD. In response to semantic category cues, 40 patients with MDD and 40 matched controls overtly generated words while brain activity was measured with fMRI. As revealed by whole brain analyses, genotype significantly affected brain activity in patients. Compared to patients with GG genotype, patients with A allele demonstrated increased task-related activation in the left middle/inferior frontal gyrus and the bilateral cerebellum. Patients with A allele also showed enhanced functional coupling between left middle/inferior and right superior/middle frontal gyri. No differential effects of genotype on SVF performance or brain activation were found between diagnostic groups. The current data provide further evidence for an impact of rs1006737 on the left IFG and demonstrate that genetic variation in CACNA1C modulates neural responses in patients with MDD. The observed functional alterations in prefrontal and cerebellar areas might represent a mechanism by which rs1006737 influences susceptibility to MDD.
Collapse
Affiliation(s)
- Heidelore Backes
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Arne Nagels
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| |
Collapse
|
31
|
Schmitt A, Falkai P. The new risk variant CACNA1C and brain circuits in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2014; 264:91-2. [PMID: 24481959 DOI: 10.1007/s00406-014-0487-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, Munich, Germany,
| | | |
Collapse
|
32
|
Abstract
Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs) and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a "risk" allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are currently not fulfilled for common genomic variants in psychiatric disorders. Further work is clearly needed before genetic testing for common variants in psychiatric disorders should be established.
Collapse
Affiliation(s)
- Berit Kerner
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Schmitt A, Malchow B, Hasan A, Falkai P. The impact of environmental factors in severe psychiatric disorders. Front Neurosci 2014; 8:19. [PMID: 24574956 PMCID: PMC3920481 DOI: 10.3389/fnins.2014.00019] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/23/2014] [Indexed: 01/08/2023] Open
Abstract
During the last decades, schizophrenia has been regarded as a developmental disorder. The neurodevelopmental hypothesis proposes schizophrenia to be related to genetic and environmental factors leading to abnormal brain development during the pre- or postnatal period. First disease symptoms appear in early adulthood during the synaptic pruning and myelination process. Meta-analyses of structural MRI studies revealing hippocampal volume deficits in first-episode patients and in the longitudinal disease course confirm this hypothesis. Apart from the influence of risk genes in severe psychiatric disorders, environmental factors may also impact brain development during the perinatal period. Several environmental factors such as antenatal maternal virus infections, obstetric complications entailing hypoxia as common factor or stress during neurodevelopment have been identified to play a role in schizophrenia and bipolar disorder, possibly contributing to smaller hippocampal volumes. In major depression, psychosocial stress during the perinatal period or in adulthood is an important trigger. In animal studies, chronic stress or repeated administration of glucocorticoids have been shown to induce degeneration of glucocorticoid-sensitive hippocampal neurons and may contribute to the pathophysiology of affective disorders. Epigenetic mechanisms altering the chromatin structure such as histone acetylation and DNA methylation may mediate effects of environmental factors to transcriptional regulation of specific genes and be a prominent factor in gene-environmental interaction. In animal models, gene-environmental interaction should be investigated more intensely to unravel pathophysiological mechanisms. These findings may lead to new therapeutic strategies influencing epigenetic targets in severe psychiatric disorders.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany ; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo São Paulo, Brazil
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| |
Collapse
|