1
|
Fuentes JJ, Mayans J, Guarro M, Canosa I, Mestre-Pintó JI, Fonseca F, Torrens M. Peripheral endocannabinoids in major depressive disorder and alcohol use disorder: a systematic review. BMC Psychiatry 2024; 24:551. [PMID: 39118031 PMCID: PMC11308641 DOI: 10.1186/s12888-024-05986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) and Alcohol Use Disorder (AUD) are two high-prevalent conditions where the Endocannabinoid system (ECS) is believed to play an important role. The ECS regulates how different neurotransmitters interact in both disorders, which is crucial for controlling emotions and responses to stress and reward stimuli. Measuring peripheral endocannabinoids (eCBs) in human serum and plasma can help overcome the limitations of detecting endocannabinoid levels in the brain. This systematic review aims to identify levels of peripheral eCBs in patients with MDD and/or AUD and find eCBs to use as diagnostic, prognostic biomarkers, and potential therapeutic targets. METHODS We conducted a systematic literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines from the earliest manuscript until October 22, 2023, in three electronic databases. We included studies of human adults who had a current diagnosis of AUD and/or MDD and evaluated plasma or serum endocannabinoids. We carefully considered known variables that may affect endocannabinoid levels. RESULTS We included 17 articles in this systematic review, which measured peripheral eCBs in 170 AUD and 359 MDD patients. Stressors increase peripheral 2-arachidonyl-glycerol (2-AG) concentrations, and 2-AG may be a particular feature of depression severity and chronicity. Anxiety symptoms are negatively correlated with anandamide (AEA) concentrations, and AEA significantly increases during early abstinence in AUD. Studies suggest a negative correlation between Oleoylethanolamide (OEA) and length of abstinence in AUD patients. They also show a significant negative correlation between peripheral levels of AEA and OEA and fatty acid amide hydrolase (FAAH) activity. Eicosapentaenoylethanolamide (EPEA) is correlated to clinical remission rates in depression. Included studies show known variables such as gender, chronicity, symptom severity, comorbid psychiatric symptoms, length of abstinence in the case of AUD, and stress-inducibility that can affect peripheral eCBs. CONCLUSIONS This systematic review highlights the important role that the ECS plays in MDD and AUD. Peripheral eCBs appear to be useful biomarkers for these disorders, and further research may identify potential therapeutic targets. Using accessible biological samples such as blood in well-designed clinical studies is crucial to develop novel therapies for these disorders.
Collapse
Affiliation(s)
- J J Fuentes
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - J Mayans
- Department of Psychiatry, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - M Guarro
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
| | - I Canosa
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - J I Mestre-Pintó
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - F Fonseca
- Mental Health Institute, Hospital del Mar, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - M Torrens
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med 2023; 53:7006-7024. [PMID: 37671673 PMCID: PMC10719691 DOI: 10.1017/s0033291723002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Collapse
Affiliation(s)
- Matthew N. Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, Hotchkiss Brain Institute and The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, New York, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Debra S. Karhson
- Department of Psychology, University of New Orleans, New Orleans, USA
| | | |
Collapse
|
3
|
Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int J Mol Sci 2023; 24:ijms24065926. [PMID: 36983000 PMCID: PMC10053024 DOI: 10.3390/ijms24065926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, 98122 Messina, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
4
|
Hosseinzadeh Anvar L, Ahmadalipour A. Fatty acid amide hydrolase C385A polymorphism affects susceptibility to various diseases. Biofactors 2023; 49:62-78. [PMID: 36300805 DOI: 10.1002/biof.1911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/24/2022] [Indexed: 11/08/2022]
Abstract
The endocannabinoid (eCB) system is an important neuromodulatory system with its extensive network of receptors throughout the human body that has complex actions in the nervous system, immune system, and all of the body's other organs. Fatty acid amide hydrolase (FAAH) is an important membrane-bound homodimeric degrading enzyme that controls the biological activity of N-arachidonoylethanolamide (AEA) in the eCB system and other relevant bioactive lipids. It has been shown that several single nucleotide polymorphisms (SNPs) of FAAH are associated with various phenotypes and diseases including cardiovascular, endocrine, drug abuse, and neuropsychiatric disorders. A common functional and most studied polymorphism of this gene is C385A (rs324420), which results in the replacement of a conserved proline to threonine in the FAAH enzyme structure, leads to a reduction of the activity and expression of FAAH, compromises the inactivation of AEA and causes higher synaptic concentrations of AEA that can be associated with several various phenotypes. The focus of this review is on evidence-based studies on the associations of the FAAH C385A polymorphism and the various diseases or traits. Although there was variability in the results of these reports, the overall consensus is that the FAAH C385A genotype can affect susceptibility to some multifactorial disorders and can be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Leila Hosseinzadeh Anvar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Green DGJ, Westwood DJ, Kim J, Best LM, Kish SJ, Tyndale RF, McCluskey T, Lobaugh NJ, Boileau I. Fatty acid amide hydrolase levels in brain linked with threat-related amygdala activation. NEUROIMAGE. REPORTS 2022; 2:100094. [PMID: 37235067 PMCID: PMC10206405 DOI: 10.1016/j.ynirp.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 05/28/2023]
Abstract
Background Preclinical evidence suggests that increasing levels of the major endocannabinoid anandamide decreases anxiety and fear responses potentially through its effects in the amygdala. Here we used neuroimaging to test the hypothesis that lower fatty acid amide hydrolase (FAAH), the main catabolic enzyme for anandamide, is associated with a blunted amygdala response to threat. Methods Twenty-eight healthy participants completed a positron emission tomography (PET) scan with the radiotracer for FAAH, [11C]CURB, as well as a block-design functional magnetic resonance imaging session during which angry and fearful faces meant to activate the amygdala were presented. Results [11C]CURB binding in the amygdala as well as in the medial prefrontal cortex, cingulate and hippocampus correlated positively with blood-oxygen-level-dependent (BOLD) signal during processing of angry and fearful faces (pFWE < 0.05). Conclusion Our finding that lower levels of FAAH in amygdala, medial prefrontal cortex, cingulate and hippocampus was associated with a dampened amygdala response to a threatening social cue aligns with preclinical and neuroimaging studies in humans and suggests the involvement of FAAH in modulating stress and anxiety in humans. The current neuroimaging study also lends support for the potential use of FAAH inhibitors to control amygdala hyperactivity, which is known to be involved in the pathophysiology of anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Duncan GJ. Green
- Addiction Imaging Research Group, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Jinhee Kim
- Departments of Psychiatry, Canada
- Department of Psychology, Korea University, Republic of Korea
| | - Laura M. Best
- Addiction Imaging Research Group, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Stephen J. Kish
- Human Brain Lab, Canada
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Departments of Psychiatry, Canada
- Pharmacology & Toxicology, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Canada
- Departments of Psychiatry, Canada
- Pharmacology & Toxicology, Canada
| | - Tina McCluskey
- Human Brain Lab, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
| | - Nancy J. Lobaugh
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Canada
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Departments of Psychiatry, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
7
|
Spohrs J, Ulrich M, Grön G, Plener PL, Abler B. FAAH polymorphism (rs324420) modulates extinction recall in healthy humans: an fMRI study. Eur Arch Psychiatry Clin Neurosci 2022; 272:1495-1504. [PMID: 34893921 PMCID: PMC9653364 DOI: 10.1007/s00406-021-01367-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Gold standard treatments for anxiety- and trauma-related disorders focus on exposure therapy promoting extinction learning and extinction retention. However, its efficacy is limited. Preclinical and particularly animal research has been able to demonstrate that homozygosity for the fatty acid amide hydrolase (FAAH) C385A allele, similar to FAAH inhibition, is associated with elevated concentrations of anandamide (AEA) and facilitates extinction learning and extinction recall. However, in humans, the underlying neurobiological processes are less well understood, and further knowledge might enhance the development of more effective therapies. In this functional magnetic resonance imaging (fMRI) study, a fear conditioning, fear extinction and extinction recall paradigm was conducted with 55 healthy male adults. They were genotyped for the FAAH single-nucleotide polymorphism (SNP) rs324420 to investigate differences related to extinction recall in neural activation and State-Trait Anxiety Inventory (STAI) ratings between AC heterozygotes and CC homozygotes (FAAH C385A SNP). Differential brain activation upon an unextinguished relative to an extinguished stimulus, was greater in AC heterozygotes as compared to CC homozygotes in core neural structures previously related to extinction recall, such as the medial superior frontal gyrus, the dorsal anterior cingulate and the anterior and middle insular cortex. Furthermore, AC heterozygotes displayed higher AEA levels and lower STAI-state ratings. Our data can be interpreted in line with previous suggestions of more successful extinction recall in A-allele carriers with elevated AEA levels. Data corroborate the hypothesis that the endocannabinoid system, particularly AEA, plays a modulatory role in the extinction of aversive memory.
Collapse
Affiliation(s)
- Jennifer Spohrs
- Department of Child and Adolescent Psychiatry/Psychotherapy, Ulm University, Ulm, Germany
| | - Martin Ulrich
- Clinic for Psychiatry and Psychotherapy III, Ulm University, Ulm, Germany
| | - Georg Grön
- Clinic for Psychiatry and Psychotherapy III, Ulm University, Ulm, Germany
| | - Paul L. Plener
- Department of Child and Adolescent Psychiatry/Psychotherapy, Ulm University, Ulm, Germany ,Department of Child and Adolescent Psychiatry, Medical University Vienna, Vienna, Austria
| | - Birgit Abler
- Clinic for Psychiatry and Psychotherapy III, Ulm University, Ulm, Germany.
| |
Collapse
|
8
|
Vecchiarelli HA, Aukema RJ, Hume C, Chiang V, Morena M, Keenan CM, Nastase AS, Lee FS, Pittman QJ, Sharkey KA, Hill MN. Genetic Variants of Fatty Acid Amide Hydrolase Modulate Acute Inflammatory Responses to Colitis in Adult Male Mice. Front Cell Neurosci 2021; 15:764706. [PMID: 34916909 PMCID: PMC8670533 DOI: 10.3389/fncel.2021.764706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabinoids, including cannabis derived phytocannabinoids and endogenous cannabinoids (endocannabinoids), are typically considered anti-inflammatory. One such endocannabinoid is N-arachidonoylethanolamine (anandamide, AEA), which is metabolized by fatty acid amide hydrolase (FAAH). In humans, there is a loss of function single nucleotide polymorphism (SNP) in the FAAH gene (C385A, rs324420), that leads to increases in the levels of AEA. Using a mouse model with this SNP, we investigated how this SNP affects inflammation in a model of inflammatory bowel disease. We administered 2,4,6-trinitrobenzene sulfonic acid (TNBS) intracolonically, to adult male FAAH SNP mice and examined colonic macroscopic tissue damage and myeloperoxidase activity, as well as levels of plasma and amygdalar cytokines and chemokines 3 days after administration, at the peak of colitis. We found that mice possessing the loss of function alleles (AC and AA), displayed no differences in colonic damage or myeloperoxidase activity compared to mice with wild type alleles (CC). In contrast, in plasma, colitis-induced increases in interleukin (IL)-2, leukemia inhibitory factor (LIF), monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF) were reduced in animals with an A allele. A similar pattern was observed in the amygdala for granulocyte colony stimulating factor (G-CSF) and MCP-1. In the amygdala, the mutant A allele led to lower levels of IL-1α, IL-9, macrophage inflammatory protein (MIP)-1β, and MIP-2 independent of colitis-providing additional understanding of how FAAH may serve as a regulator of inflammatory responses in the brain. Together, these data provide insights into how FAAH regulates inflammatory processes in disease.
Collapse
Affiliation(s)
- Haley A Vecchiarelli
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Aukema
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine Hume
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vincent Chiang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrei S Nastase
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, United States
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Sisk LM, Rapuano KM, Conley MI, Greene AS, Horien C, Rosenberg MD, Scheinost D, Constable RT, Glatt CE, Casey BJ, Gee DG. Genetic variation in endocannabinoid signaling is associated with differential network-level functional connectivity in youth. J Neurosci Res 2021; 100:731-743. [PMID: 34496065 DOI: 10.1002/jnr.24946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system is an important regulator of emotional responses such as fear, and a number of studies have implicated endocannabinoid signaling in anxiety. The fatty acid amide hydrolase (FAAH) C385A polymorphism, which is associated with enhanced endocannabinoid signaling in the brain, has been identified across species as a potential protective factor from anxiety. In particular, adults with the variant FAAH 385A allele have greater fronto-amygdala connectivity and lower anxiety symptoms. Whether broader network-level differences in connectivity exist, and when during development this neural phenotype emerges, remains unknown and represents an important next step in understanding how the FAAH C385A polymorphism impacts neurodevelopment and risk for anxiety disorders. Here, we leveraged data from 3,109 participants in the nationwide Adolescent Brain Cognitive Development Study℠ (10.04 ± 0.62 years old; 44.23% female, 55.77% male) and a cross-validated, data-driven approach to examine associations between genetic variation and large-scale resting-state brain networks. Our findings revealed a distributed brain network, comprising functional connections that were both significantly greater (95% CI for p values = [<0.001, <0.001]) and lesser (95% CI for p values = [0.006, <0.001]) in A-allele carriers relative to non-carriers. Furthermore, there was a significant interaction between genotype and the summarized connectivity of functional connections that were greater in A-allele carriers, such that non-carriers with connectivity more similar to A-allele carriers (i.e., greater connectivity) had lower anxiety symptoms (β = -0.041, p = 0.030). These findings provide novel evidence of network-level changes in neural connectivity associated with genetic variation in endocannabinoid signaling and suggest that genotype-associated neural differences may emerge at a younger age than genotype-associated differences in anxiety.
Collapse
Affiliation(s)
- Lucinda M Sisk
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - May I Conley
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | | | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Charles E Glatt
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - B J Casey
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Diers K, Dörfel D, Gärtner A, Schönfeld S, Walter H, Strobel A, Brocke B. Should we keep some distance from distancing? Regulatory and post-regulatory effects of emotion downregulation. PLoS One 2021; 16:e0255800. [PMID: 34473749 PMCID: PMC8412372 DOI: 10.1371/journal.pone.0255800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/24/2021] [Indexed: 11/21/2022] Open
Abstract
Emotion regulation is an indispensable part of mental health and adaptive behavior. Research into emotion regulation processes has largely focused on the concurrent effects of volitional emotion regulation. However, there is scarce evidence considering post-regulatory effects with regard to neural mechanisms and emotional experiences. Therefore, we compared concurrent effects of cognitive emotion regulation with effects at different (immediate, short- and long-term) time intervals. In an fMRI study with N = 46 (N = 30 at re-exposure) young healthy adults, we compared neuronal responses to negative and neutral pictures while participants had to distance themselves from or to actively permit emotions in response to these pictures. We investigated the temporal dynamics of activation changes related to regulation in cognitive control brain networks as well as in the amygdala during stimulation (concurrent effects, timepoint 1) and post-stimulation (immediate, timepoint 2), as well as during re-exposure with the same pictures after short (10 minutes, timepoint 3) and long (1 week, timepoint 4) time intervals. At timepoint 1, negative pictures (versus neutral pictures) elicited a strong response in regions of affective processing, including the amygdala. Distancing (as compared to permit) led to a decrease of this response, and to an increase of activation in the right middle frontal and inferior parietal cortex. We observed an interaction effect of time (stimulation vs. post-stimulation) and regulation (distance vs. permit), indicating a partial reversal of regulation effects during the post-stimulation phase (timepoint 2). Similarly, after 10 minutes (timepoint 3) and after 1 week (timepoint 4), activation in the amygdala was higher during pictures that participants were previously instructed to distance from as compared to permit. These results show that the temporal dynamics are highly variable both within experimental trials and across brain regions. This can even take the form of paradoxical aftereffects at immediate and persistent effects at prolonged time scales.
Collapse
Affiliation(s)
- Kersten Diers
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Denise Dörfel
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| | - Anne Gärtner
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Sabine Schönfeld
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, CCM, Charité Universitätsmedizin, Berlin, Germany
| | - Alexander Strobel
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Burkhard Brocke
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Zabik NL, Iadipaolo AS, Marusak HA, Peters C, Burghardt K, Rabinak CA. A common genetic variant in fatty acid amide hydrolase is linked to alterations in fear extinction neural circuitry in a racially diverse, nonclinical sample of adults. J Neurosci Res 2021; 100:744-761. [PMID: 34051704 DOI: 10.1002/jnr.24860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023]
Abstract
Poor fear extinction learning and recall are linked to the development of fear-based disorders, like posttraumatic stress disorder, and are associated with aberrant activation of fear-related neural circuitry. This includes greater amygdala activation during extinction learning and lesser hippocampal and ventromedial prefrontal cortex (vmPFC) activation during recall. Emerging data indicate that genetic variation in fatty acid amide hydrolase (FAAH C385A; rs324420) is associated with increased peripheral endocannabinoid (eCB) levels and lesser threat-related amygdala reactivity. Preclinical studies link increased eCB signaling to better extinction learning and recall, thus FAAH C385A may protect against the development of trauma-related psychopathology by facilitating extinction learning. However, how this FAAH variant affects fear extinction neural circuitry remains unknown. In the present study, we used a novel, immersive-reality fear extinction paradigm paired with functional neuroimaging to assess FAAH C385A effects on fear-related neural circuitry and conditioned fear responding (US expectancy ratings, subjective units of distress, and skin conductance responding) in healthy adults from an urban area (Detroit, MI; N = 59; C/C = 35, A-carrier = 24). We found lesser amygdala activation in A-allele carriers, compared to C/C homozygotes, during early extinction recall. Likewise, we found lesser dorsal anterior cingulate cortex and greater hippocampus activation in early extinction learning in A-carriers compared to C/C homozygotes. We found no effects of FAAH C385A on vmPFC activation or behavioral fear indices. These data support and extend previous findings that FAAH genetic variation, associated with increased eCB signaling and subsequent enhanced fear extinction, may predict individual differences in successful fear learning.
Collapse
Affiliation(s)
- Nicole L Zabik
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA.,Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | | | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.,Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA
| | - Craig Peters
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Kyle Burghardt
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA.,Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Christine A Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA.,Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.,Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA.,Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
12
|
Green DGJ, Kim J, Kish SJ, Tyndale RF, Hill MN, Strafella AP, Tong J, McCluskey T, Westwood DJ, Houle S, Lobaugh NJ, Boileau I. Fatty acid amide hydrolase binding is inversely correlated with amygdalar functional connectivity: a combined positron emission tomography and magnetic resonance imaging study in healthy individuals. J Psychiatry Neurosci 2021; 46:E238-E246. [PMID: 33729738 PMCID: PMC8061733 DOI: 10.1503/jpn.200010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/03/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Background Upregulation of the endocannabinoid enzyme fatty acid amide hydrolase (FAAH) has been linked to abnormal activity in frontoamygdalar circuits, a hallmark of posttraumatic stress disorder. We tested the hypothesis that FAAH levels in the amygdala were negatively correlated with functional connectivity between the amygdala and prefrontal cortex, subserving stress and affect control. Methods Thirty-one healthy participants completed positron emission tomography (PET) imaging with the FAAH probe [C-11]CURB, and resting-state functional MRI scans. Participants were genotyped for the FAAH polymorphism rs324420, and trait neuroticism was assessed. We calculated amygdala functional connectivity using predetermined regions of interest (including the subgenual ventromedial prefrontal cortex [sgvmPFC] and the dorsal anterior cingulate cortex [dACC]) and a seed-to-voxel approach. We conducted correlation analyses on functional connectivity, with amygdala [C-11]CURB binding as a variable of interest. Results The strength of amygdala functional connectivity with the sgvmPFC and dACC was negatively correlated with [C-11]CURB binding in the amygdala (sgvmPFC: r = -0.38, q = 0.04; dACC: r = -0.44; q = 0.03). Findings were partly replicated using the seed-to-voxel approach, which showed a cluster in the ventromedial prefrontal cortex, including voxels in the dACC but not the sgvmPFC (cluster-level, family-wise error rate corrected p < 0.05). Limitations We did not replicate earlier findings of a relationship between an FAAH polymorphism (rs324420) and amygdala functional connectivity. Conclusion Our data provide preliminary evidence that lower levels of FAAH in the amygdala relate to increased frontoamygdalar functional coupling. Our findings were consistent with the role of FAAH in regulating brain circuits that underlie fear and emotion processing in humans.
Collapse
Affiliation(s)
- Duncan G J Green
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Jinhee Kim
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Stephen J Kish
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Rachel F Tyndale
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Matthew N Hill
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Antonio P Strafella
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Junchao Tong
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Tina McCluskey
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Duncan J Westwood
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Sylvain Houle
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Nancy J Lobaugh
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| | - Isabelle Boileau
- From the Addiction Imaging Research Group, Toronto, Ont., Canada (Green, Westwood, Boileau); the Human Brain Lab, Toronto, Ont., Canada (Kish, Tong, McCluskey); the Campbell Family Mental Health Research Institute, Ont., Canada (Kim, Tyndale, Strafella, Houle, Lobaugh, Boileau); the Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Kim, Kish, Strafella, Tong, McCluskey, Houle, Lobaugh); the Departments of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale, Strafella, Houle, Boileau); the Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ont., Canada (Kish, Tyndale); the Institute of Medical Sciences, University of Toronto, Toronto, Ont., Canada (Green, Kish, Houle, Lobaugh, Boileau); the Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alta., Canada (Hill); the Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Ont., Canada (Strafella); and the Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada (Lobaugh)
| |
Collapse
|
13
|
Filbey FM, Beaton D, Prashad S. The contributions of the endocannabinoid system and stress on the neural processing of reward stimuli. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110183. [PMID: 33221340 PMCID: PMC8204292 DOI: 10.1016/j.pnpbp.2020.110183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
The brain's endocannabinoid system plays a crucial role in reward processes by mediating appetitive learning and encoding the reinforcing properties of substances. Evidence also suggests that endocannabinoids are an important constituent of neuronal substrates involved in emotional responses to stress. Thus, it is critical to understand how the endocannabinoid system and stress may affect reward processes given their importance in substance use disorders. We examined the relationship between factors that regulate endocannabinoid system signaling (i.e., cannabinoid receptor genes and prolonged cannabis exposure) and stress on fMRI BOLD response to reward cues using multivariate statistical analysis. We found that proxies for endocannabinoid system signaling (i.e., endocannabinoid genes and chronic exposure to cannabis) and stress have differential effects on neural response to cannabis cues. Specifically, a single nucleotide polymorphism (SNP) variant in the cannabinoid receptor 1 (CNR1) gene, early life stress, and current perceived stress modulated reward responsivity in long-term, heavy cannabis users, while a variant in the fatty acid amide hydrolase (FAAH) gene and current perceived stress modulated cue-elicited response in non-using controls. These associations were related to distinct neural responses to cannabis-related cues compared to natural reward cues. Understanding the contributions of endocannabinoid system factors and stress that lead to downstream effects on neural mechanisms underlying sensitivity to rewards, such as cannabis, will contribute towards a better understanding of endocannabinoid-targeted therapies as well as individual risks for cannabis use disorder.
Collapse
Affiliation(s)
- F M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, TX, USA.
| | - D Beaton
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - S Prashad
- Department of Kinesiology and Educational Psychology, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
14
|
Lazary J, Eszlari N, Kriko E, Tozser D, Dome P, Deakin JFW, Juhasz G, Bagdy G. Genetic analyses of the endocannabinoid pathway in association with affective phenotypic variants. Neurosci Lett 2021; 744:135600. [PMID: 33421489 DOI: 10.1016/j.neulet.2020.135600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
BACKGORUND Increasing experimental data confirm the crucial role of the endocannabinoid (eCB) system in the regulation of stress response and emotional processes. Despite of the fact, that genetically determined vulnerability for stress is a widely accepted concept in the pathomechanism of affective disorders, replicable human genetic results with interaction analyses of early life trauma and eCB genes are rare. The aim of this study is to test the associations between genetic variants of the eCB pathway, childhood trauma and affective phenotypes. METHODS We selected 18,897 SNPs in the eCB pathway of a GWAS dataset in two general population cohorts (BP sample N = 837; MN sample N = 988). Association analyses were performed on the anxious and depressive subscales of the Brief Symptom Inventory (BSI-ANX and BSI-DEP, respectively). Childhood trauma was assessed by the Childhood Adversity Questionnaire (CAQ). Association analyses were performed in the R 2.0. statistical program using the SNPassoc package. REULTS Genetic effect was more robust in the BP sample than in the MN sample. The most comprehensive results showed that SNPs in the CACNA1C gene associated with depressive phenotype in interaction with CAQ in both BP (p = 1.2 × 10-4) and MN samples (p = 1.6 × 10-4). Direct association analyses (without interaction) provided significant associations between SNPs in different genesets of the two study populations. SNPs in KCNJ3 and GNB5 genes on the BSI-DEP (p = 6.1 × 10-5; p = 7.1 × 10-4) and GNG12 gene on the BSI-ANX (p = 7.4 × 10-6) in the BP sample, while GABAergic, ADCY1 and HTR2A gene variants can be outlined from results of MN sample with less strong p-values. CONCLUSION Our results confirmed the prominent role of CACNA1C gene in the pathogenic effect of early life stress in the development of affective vulnerability in two different study populations using GxE interaction analysis. CACNA1C gene, as it encodes for L-type voltage-gated calcium channel, contributes to neuronal excitability, plasticity and neurogenesis being a crucial effector of both eCB signaling and the BDNF-CREB pathway as well. Our findings suggest that childhood trauma related depression may have more robust genetically determined basis than without early life stress.
Collapse
Affiliation(s)
- Judit Lazary
- National Institute of Psychiatry and Addictions, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Eszter Kriko
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Hungary
| | - Dora Tozser
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Hungary
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Fonseca R, Madeira N, Simoes C. Resilience to fear: The role of individual factors in amygdala response to stressors. Mol Cell Neurosci 2020; 110:103582. [PMID: 33346000 DOI: 10.1016/j.mcn.2020.103582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022] Open
Abstract
Resilience to stress is an adaptive process that varies individually. Resilience refers to the adaptation, or the ability to maintain or regain mental health, despite being subject to adverse situation. Resilience is a dynamic concept that reflects a combination of internal individual factors, including age and gender interacting with external factors such as social, cultural and environmental factors. In the last decade, we have witnessed an increase in the prevalence of anxiety disorders, including post-traumatic stress disorder. Given that stress in unavoidable, it is of great interest to understand the neurophysiological mechanisms of resilience, the individual factors that may contribute to susceptibility and promote efficacious approaches to improve resilience. Here, we address this complex question, attempting at defining clear and operational definitions that may allow us to improve our analysis of behavior incorporating individuality. We examine how individual perception of the stressor can alter the outcome of an adverse situation using as an example, the fear-conditioning paradigm and discuss how individual differences in the reward system can contribute to resilience. Given the central role of the endocannabinoid system in regulating fear responses and anxiety, we discuss the evidence that polymorphisms in several molecules of this signaling system contribute to different anxiety phenotypes. The endocannabinoid system is highly interconnected with the serotoninergic and dopaminergic modulatory systems, contributing to individual differences in stress perception and coping mechanisms. We review how the individual variability in these modulatory systems can be used towards a multivariable assessment of stress risk. Incorporating individuality in our research will allow us to define biomarkers of anxiety disorders as well as assess prognosis, towards a personalized clinical approach to mental health.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal.
| | - Natália Madeira
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| | - Carla Simoes
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| |
Collapse
|
16
|
Dörfel D, Gärtner A, Scheffel C. Resting State Cortico-Limbic Functional Connectivity and Dispositional Use of Emotion Regulation Strategies: A Replication and Extension Study. Front Behav Neurosci 2020; 14:128. [PMID: 32848654 PMCID: PMC7399345 DOI: 10.3389/fnbeh.2020.00128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging functional connectivity analyses have shown that the negative coupling between the amygdala and cortical regions is linked to better emotion regulation (ER) in experimental task settings. However, less is known about the neural correlates of ER traits or dispositions. The present study aimed to: (1) replicate the findings of differential cortico-limbic coupling during resting-state depending on the dispositional use of emotion regulation strategies. Furthermore, the study aimed to: (2) extend prior findings by examining whether differences in cortico-limbic coupling during resting-state predict experiential and neuronal ER success in a standard ER task. To this end, N = 107 healthy adults completed the Emotion Regulation Questionnaire (ERQ), underwent an 8-min resting-state fMRI acquisition, and completed a reappraisal task during fMRI. Functional connectivity maps of basolateral and centromedial amygdala nuclei were estimated with a seed-based approach regarding associations with regions of the prefrontal cortex and were then correlated with ERQ scores as well as experiential and neuronal ER success. All hypotheses and the analysis plan are preregistered at https://osf.io/8wsgu. Opposed to prior findings, we were not able to replicate a correlation of dispositional ER strategy use with functional connectivity between the amygdala and PFC regions (p > 0.05, FWE-corrected). Furthermore, there was no association of experiential and neuronal reappraisal success with functional connectivity between amygdala and insula as well as PFC (p > 0.05, FWE-corrected). The present preregistered study calls into question the reported association between individual differences in resting-state cortico-limbic connectivity and dispositional use of ER strategies. However, ongoing advances in functional brain imaging and distributed network approaches may leverage the identification of reliable functional connectivity patterns that underlie successful emotion regulation.
Collapse
Affiliation(s)
- Denise Dörfel
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Anne Gärtner
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
17
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
18
|
Mayo LM, Asratian A, Lindé J, Morena M, Haataja R, Hammar V, Augier G, Hill MN, Heilig M. Elevated Anandamide, Enhanced Recall of Fear Extinction, and Attenuated Stress Responses Following Inhibition of Fatty Acid Amide Hydrolase: A Randomized, Controlled Experimental Medicine Trial. Biol Psychiatry 2020; 87:538-547. [PMID: 31590924 DOI: 10.1016/j.biopsych.2019.07.034] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Posttraumatic stress disorder, an area of large unmet medical needs, is characterized by persistence of fear memories and maladaptive stress responses. In rodents, elevation of the endocannabinoid anandamide due to inhibition of fatty acid amide hydrolase (FAAH) facilitates fear extinction and protects against the anxiogenic effects of stress. We recently reported that elevated anandamide levels in people homozygous for a loss-of-function FAAH mutation are associated with a similar phenotype, suggesting a translational validity of the preclinical findings. METHODS In this double-blind, placebo-controlled experimental medicine study, healthy adults were randomized to an FAAH inhibitor (PF-04457845, 4 mg orally, once daily; n = 16) or placebo (n = 29) for 10 days. On days 9 and 10, participants completed a task battery assessing psychophysiological indices of fear learning, stress reactivity, and stress-induced affective responses. RESULTS FAAH inhibition produced a 10-fold increase in baseline anandamide. This was associated with potentiated recall of fear extinction memory when tested 24 hours after extinction training. FAAH inhibition also attenuated autonomic stress reactivity, assessed via electrodermal activity, and protected against stress-induced negative affect, measured via facial electromyography. CONCLUSIONS Our data provide preliminary human evidence that FAAH inhibition can improve the recall of fear extinction memories and attenuate the anxiogenic effects of stress, in a direct translation of rodent findings. The beneficial effects of FAAH inhibition on fear extinction, as well as stress- and affect-related behaviors, provide a strong rationale for developing this drug class as a treatment for posttraumatic stress disorder.
Collapse
Affiliation(s)
- Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Anna Asratian
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Johan Lindé
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maria Morena
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Cummings Scool of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roosa Haataja
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Valter Hammar
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gaëlle Augier
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Matthew N Hill
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Cummings Scool of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
20
|
Cannabinoids and the endocannabinoid system in anxiety, depression, and dysregulation of emotion in humans. Curr Opin Psychiatry 2020; 33:20-42. [PMID: 31714262 DOI: 10.1097/yco.0000000000000562] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This review is to summarize most recent evidence published in the last 18 months on medical and recreational use of cannabis and cannabinoids in relation to anxiety, depression (unipolar and bipolar), and dysregulation of emotions as part of posttraumatic stress disorders (PTSD) and emotionally instable personality disorders. It also covers the investigation of endocannabinoids as potential biomarkers in these conditions. This is important with increasing medicinal use of cannabinoids and growing social tolerance towards recreational cannabis use. RECENT FINDINGS There is some recent evidence suggesting cannabinoids, cannabidiol or cannabidiol-enriched cannabis preparations have anxiolytic properties. In addition, depression may be worsened by cannabis use, however, randomized controlled trials (RCT) are lacking. New evidence also suggests that cannabidiol or cannabidiol-enriched cannabis use for PTSD and emotion regulation can induce hyporesponse to fear and stress. Further, several lines of evidence point to the endocannabinoid system as a key player in some of the reviewed disorders, in particular anxiety and PTSD. SUMMARY The most recent evidence for a therapeutic use of cannabinoids in the reviewed conditions is weak and lacking well designed RCTs. However, there is some indication of the role of the endocannabinoid system in these conditions that warrant further studies.
Collapse
|
21
|
Impact of FAAH gene, hyperactivation in emotion processing brain regions and Lavender oil preparation Silexan in anxiety. Eur Arch Psychiatry Clin Neurosci 2019; 269:145-146. [PMID: 30680488 DOI: 10.1007/s00406-019-00987-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Mayo LM, Heilig M. In the face of stress: Interpreting individual differences in stress-induced facial expressions. Neurobiol Stress 2019; 10:100166. [PMID: 31193535 PMCID: PMC6535645 DOI: 10.1016/j.ynstr.2019.100166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022] Open
Abstract
Stress is an inevitable part of life that can profoundly impact social and emotional functioning, contributing to the development of psychiatric disease. One key component of emotion and social processing is facial expressions, which humans can readily detect and react to even without conscious awareness. Facial expressions have been the focus of philosophic and scientific interest for centuries. Historically, facial expressions have been relegated to peripheral indices of fixed emotion states. More recently, affective neuroscience has undergone a conceptual revolution, resulting in novel interpretations of these muscle movements. Here, we review the role of facial expressions according to the leading affective neuroscience theories, including constructed emotion and social-motivation accounts. We specifically highlight recent data (Mayo et al, 2018) demonstrating the way in which stress shapes facial expressions and how this is influenced by individual factors. In particular, we focus on the consequence of genetic variation within the endocannabinoid system, a neuromodulatory system implicated in stress and emotion, and its impact on stress-induced facial muscle activity. In a re-analysis of this dataset, we highlight how gender may also influence these processes, conceptualized as variation in the "fight-or-flight" or "tend-and-befriend" behavioral responses to stress. We speculate on how these interpretations may contribute to a broader understanding of facial expressions, discuss the potential use of facial expressions as a trans-diagnostic marker of psychiatric disease, and suggest future work necessary to resolve outstanding questions.
Collapse
Affiliation(s)
- Leah M. Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | | |
Collapse
|