1
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2025; 603:685-721. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies comports more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Ocklenburg S, Güntürkün O. Handedness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:379-391. [PMID: 40074409 DOI: 10.1016/b978-0-443-15646-5.00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This chapter offers an overview of the literature on human handedness and its assessment in clinical neurologic practice and research. There are two major forms of handedness: hand preference, which describes a subjective preference to use one hand over the other for skilled motor activities like writing, and hand skill, which describes objectively measured mother skill. This chapter gives an overview of widely used questionnaires and tests to assess hand preference and hand skill, as well as suggestions on how to determine handedness categories such as left-handed, right-handed, and mixed-handed based on the results of these questionnaires and tests. Handedness is just one form of hemispheric asymmetry in the human motor system, and the chapter also provides an overview of its association with other motor asymmetries such as footedness. Moreover, the associations of handedness with functional brain activation as well as with structural markers on the cortical, subcortical, cerebellar, and spinal levels are discussed. Furthermore, the potential relevance of handedness retraining for clinical neurologic research and the association of handedness and cognitive abilities are discussed. The chapter concludes with an outlook on the critical importance of including handedness in clinical neurologic research and practice.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Jidal M, Horache K, Fikri M, El Kettani N, Jiddane M, Touarsa F. A rare case of ispilateral hemiparesis in a patient with uncrossed pyramidal tract shown by tractography. Radiol Case Rep 2024; 19:3512-3516. [PMID: 38881617 PMCID: PMC11179576 DOI: 10.1016/j.radcr.2024.04.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 06/18/2024] Open
Abstract
This article presents a unique case of ipsilateral hemiparesis in a 66-year-old individual, contrary to the conventional understanding of supratentorial strokes causing contralateral neurological deficits. The patient exhibited persistent weakness and sensory abnormalities on the left side of the body following a left occipital infarct. Neuroimaging revealed a chronic stroke in the left occipital lobe, with diffusion tensor imaging demonstrating uncrossed pyramidal tracts at the level of the medulla. The discussion encompasses the anatomical basis of corticospinal tract crossing, historical perspectives, and previous documented cases of ipsilateral strokes. The rarity of complete uncrossed corticospinal tracts without underlying congenital abnormalities or genetic disorders is highlighted. The study underscores the importance of considering such atypical presentations in stroke evaluations and the role of advanced imaging techniques in confirming diagnosis and understanding underlying mechanisms.
Collapse
Affiliation(s)
- Manal Jidal
- Neuroradiology Department, Ibn Sina Hospital, Mohammed V University of Rabat, Lamfadel Cherkaoui street, Rabat, Morocco
| | - Kenza Horache
- Neuroradiology Department, Ibn Sina Hospital, Mohammed V University of Rabat, Lamfadel Cherkaoui street, Rabat, Morocco
| | - Meriem Fikri
- Neuroradiology Department, Ibn Sina Hospital, Mohammed V University of Rabat, Lamfadel Cherkaoui street, Rabat, Morocco
| | - Najwa El Kettani
- Neuroradiology Department, Ibn Sina Hospital, Mohammed V University of Rabat, Lamfadel Cherkaoui street, Rabat, Morocco
| | - Mohammed Jiddane
- Neuroradiology Department, Ibn Sina Hospital, Mohammed V University of Rabat, Lamfadel Cherkaoui street, Rabat, Morocco
| | - Firdaous Touarsa
- Neuroradiology Department, Ibn Sina Hospital, Mohammed V University of Rabat, Lamfadel Cherkaoui street, Rabat, Morocco
| |
Collapse
|
4
|
Kakhkharov RA, Kadyrov SU, Ogurtsova AA, Baev AA, Afandiev RM, Pronin IN. [Surgical treatment of brain tumors adjacent to corticospinal tract in children]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:97-102. [PMID: 38334736 DOI: 10.17116/neiro20248801197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An urgent problem in modern neurosurgery is resection of brain tumors adjacent to corticospinal tract (CST) due to high risk of its damage and subsequent disability. The main methods for prevention of intraoperative damage to CST are preoperative MR tractography and intraoperative electrophysiological monitoring. Both methods are used in pediatric neurosurgery. We reviewed the PubMed database since 2000 using the following keywords: «tumors of the hemispheres in children», «corticospinal tract», «MR tractography», «intraoperative electrophysiological monitoring». We present available literature data on preoperative MR tractography and intraoperative electrophysiological monitoring in children with supratentorial tumors near CST. Algorithm of intraoperative electrophysiological monitoring is often missing or insufficiently described. MR tractography is usually presented in case reports. Researchers do not compare the effectiveness of MR tractography and intraoperative electrophysiological monitoring. In case of MR tractography, a limitation is impossible CST reconstruction in children 2-3 years old. This may be due to unformed pyramidal system in these children. CONCLUSION Preoperative MR tractography and intraoperative electrophysiological monitoring are valid methods for assessment of CST. Optimal research parameters in children require careful study that will allow objective planning of each stage of preoperative management and increase resection quality for gliomas near CST in children without neurological deterioration.
Collapse
Affiliation(s)
| | | | | | - A A Baev
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
5
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
6
|
Ortug A, Valli B, Alatorre Warren JL, Shiohama T, van der Kouwe A, Takahashi E. Brain Pathways in LIS1-Associated Lissencephaly Revealed by Diffusion MRI Tractography. Brain Sci 2023; 13:1655. [PMID: 38137102 PMCID: PMC10742067 DOI: 10.3390/brainsci13121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Lissencephaly (LIS) is a rare neurodevelopmental disorder with severe symptoms caused by abnormal neuronal migration during cortical development. It is caused by both genetic and non-genetic factors. Despite frequent studies about the cortex, comprehensive elucidation of structural abnormalities and their effects on the white matter is limited. The main objective of this study is to analyze abnormal neuronal migration pathways and white matter fiber organization in LIS1-associated LIS using diffusion MRI (dMRI) tractography. For this purpose, slabs of brain specimens with LIS (n = 3) and age and sex-matched controls (n = 4) were scanned with 3T dMRI. Our high-resolution ex vivo dMRI successfully identified common abnormalities across the samples. The results revealed an abnormal increase in radially oriented subcortical fibers likely associated with radial migration pathways and u-fibers and a decrease in association fibers in all LIS specimens.
Collapse
Affiliation(s)
- Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA; (A.O.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Briana Valli
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - José Luis Alatorre Warren
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA; (A.O.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA; (A.O.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA; (A.O.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Ahmad E, Brumfield O, Masse O, Velasco-Annis C, Zhang J, Rollins CK, Connolly S, Barnewolt C, Shamshirsaz AA, Qaderi S, Javinani A, Warfield SK, Yang E, Gholipour A, Feldman HA, Estroff J, Grant PE, Vasung L. Atypical fetal brain development in fetuses with non-syndromic isolated musculoskeletal birth defects (niMSBDs). Cereb Cortex 2023; 33:10793-10801. [PMID: 37697904 PMCID: PMC10629896 DOI: 10.1093/cercor/bhad323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023] Open
Abstract
Non-syndromic, isolated musculoskeletal birth defects (niMSBDs) are among the leading causes of pediatric hospitalization. However, little is known about brain development in niMSBDs. Our study aimed to characterize prenatal brain development in fetuses with niMSBDs and identify altered brain regions compared to controls. We retrospectively analyzed in vivo structural T2-weighted MRIs of 99 fetuses (48 controls and 51 niMSBDs cases). For each group (19-31 and >31 gestational weeks (GW)), we conducted repeated-measures regression analysis with relative regional volume (% brain hemisphere) as a dependent variable (adjusted for age, side, and interactions). Between 19 and 31GW, fetuses with niMSBDs had a significantly (P < 0.001) smaller relative volume of the intermediate zone (-22.9 ± 3.2%) and cerebellum (-16.1 ± 3.5%,) and a larger relative volume of proliferative zones (38.3 ± 7.2%), the ganglionic eminence (34.8 ± 7.3%), and the ventricles (35.8 ± 8.0%). Between 32 and 37 GW, compared to the controls, niMSBDs showed significantly smaller volumes of central regions (-9.1 ± 2.1%) and larger volumes of the cortical plate. Our results suggest there is altered brain development in fetuses with niMSBDs compared to controls (13.1 ± 4.2%). Further basic and translational neuroscience research is needed to better visualize these differences and to characterize the altered development in fetuses with specific niMSBDs.
Collapse
Affiliation(s)
- Esha Ahmad
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Olivia Brumfield
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Olivia Masse
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Clemente Velasco-Annis
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jennings Zhang
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Caitlin K Rollins
- Department of Neurology Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Susan Connolly
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
- Maternal Fetal Care Center, Boston Children’s Hospital, Boston, MA 02115, United States
| | - Carol Barnewolt
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
- Maternal Fetal Care Center, Boston Children’s Hospital, Boston, MA 02115, United States
| | - Alireza A Shamshirsaz
- Maternal Fetal Care Center, Boston Children’s Hospital, Boston, MA 02115, United States
| | - Shohra Qaderi
- Maternal Fetal Care Center, Boston Children’s Hospital, Boston, MA 02115, United States
| | - Ali Javinani
- Maternal Fetal Care Center, Boston Children’s Hospital, Boston, MA 02115, United States
| | - Simon K Warfield
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Ali Gholipour
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Henry A Feldman
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Judy Estroff
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
- Maternal Fetal Care Center, Boston Children’s Hospital, Boston, MA 02115, United States
| | - Patricia E Grant
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Lana Vasung
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
8
|
Mala K, Harikrishna GV, Bhat V, Kodapala S. Ipsilateral Hemiparesis in a Patient With Existing Contralateral Hemiparesis: A Case Report of a Rare Presentation of Ischemic Stroke. Cureus 2023; 15:e37069. [PMID: 37153278 PMCID: PMC10155822 DOI: 10.7759/cureus.37069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
Supratentorial strokes causing ipsilateral hemiparesis (ILH) are rare. We report a middle-aged male with multiple atherosclerotic risk factors, who had previously suffered a right-hemispheric stroke that caused left hemiplegia. Subsequently, he presented with worsening left-sided hemiplegia, with imaging revealing a left-hemispheric stroke. Diffusion tensor tract imaging showed crossed motor tracts, with disruption of the left-sided pyramidal tract. During his stay, he developed right hemiplegia due to the expansion of the same left-hemispheric infarct. Potential mechanisms for ILH in a stroke include injury to reorganized tracts following an initial insult and congenitally uncrossed motor tracts. In our patient, after his first stroke, the left hemisphere likely assumed greater ipsilateral motor control, causing ILH after the recent stroke. Our case adds to the literature on this interesting phenomenon and provides further insight into post-stroke recovery.
Collapse
|
9
|
Structure of the Motor Descending Pathways Correlates with the Temporal Kinematics of Hand Movements. BIOLOGY 2022; 11:biology11101482. [PMID: 36290386 PMCID: PMC9598379 DOI: 10.3390/biology11101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary How hand motor behavior relates to the microstructure of the underlying subcortical white matter pathways is yet to be fully understood. Here we consider two well-known examples of our everyday motor repertoire, reaching and reach-to-grasp, by looking at their temporal unfolding and at the microstructure of descending projection pathways, conveying motor information from the motor cortices towards the more ventral regions of the nervous system. We combine three-dimensional kinematics, describing the temporal profile of hand movements, with diffusion imaging tractography, exploring the microstructure of specific segments of the projection pathways (internal capsule, corticospinal and hand motor tracts). The results indicate that the level of anisotropy characterizing these white matter tracts can influence the temporal unfolding of reaching and reach-to-grasp movements. Abstract The projection system, a complex organization of ascending and descending white matter pathways, is the principal system for conveying sensory and motor information, connecting frontal and sensorimotor regions with ventral regions of the central nervous system. The corticospinal tract (CST), one of the principal projection pathways, carries distal movement-related information from the cortex to the spinal cord, and whether its microstructure is linked to the kinematics of hand movements is still an open question. The aim of the present study was to explore how microstructure of descending branches of the projection system, namely the hand motor tract (HMT), the corticospinal tract (CST) and its sector within the internal capsule (IC), can relate to the temporal profile of reaching and reach-to-grasp movements. Projection pathways of 31 healthy subjects were virtually dissected by means of diffusion tractography and the kinematics of reaching and reach-to-grasp movements were also analyzed. A positive association between Hindrance Modulated Orientation Anisotropy (HMOA) and kinematics was observed, suggesting that anisotropy of the considered tract can influence the temporal unfolding of motor performance. We highlight, for the first time, that hand kinematics and the visuomotor transformation processes underlying reaching and reach-to-grasp movements relate to the microstructure of specific projection fibers subserving these movements.
Collapse
|
10
|
Son JH, Gerenza AK, Bingener GM, Bonkowsky JL. Hypoplasia of dopaminergic neurons by hypoxia-induced neurotoxicity is associated with disrupted swimming development of larval zebrafish. Front Cell Neurosci 2022; 16:963037. [PMID: 36212692 PMCID: PMC9540391 DOI: 10.3389/fncel.2022.963037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic injury to the developing brain increases the risk of permanent behavioral deficits, but the precise mechanisms of hypoxic injury to the developing nervous system are poorly understood. In this study, we characterized the effects of developmental hypoxia (1% pO2 from 24 to 48 h post-fertilization, hpf) on diencephalic dopaminergic (DA) neurons in larval zebrafish and the consequences on the development of swimming behavior. Hypoxia reduced the number of diencephalic DA neurons at 48 hpf. Returning zebrafish larvae to normoxia after the hypoxia (i.e., hypoxia-recovery, HR) induced reactive oxygen species (ROS) accumulation. Real-time qPCR results showed that HR caused upregulation of proapoptotic genes, including p53 and caspase3, suggesting the potential for ROS-induced cell death. With HR, we also found an increase in TUNEL-positive DA neurons, a persistent reduction in the number of diencephalic DA neurons, and disrupted swimming development and behavior. Interestingly, post-hypoxia (HR) with the antioxidant N-acetylcysteine partially restored the number of DA neurons and spontaneous swimming behavior, demonstrating potential recovery from hypoxic injury. The present study provides new insights for understanding the mechanisms responsible for motor disability due to developmental hypoxic injury.
Collapse
Affiliation(s)
- Jong-Hyun Son
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
- *Correspondence: Jong-Hyun Son,
| | - Amanda K. Gerenza
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
| | - Gabrielle M. Bingener
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
| | - Joshua L. Bonkowsky
- Department of Pediatrics, School of Medicine, Brain and Spine Center, Primary Children’s Hospital, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Pathophysiological Heterogeneity of the BBSOA Neurodevelopmental Syndrome. Cells 2022; 11:cells11081260. [PMID: 35455940 PMCID: PMC9024734 DOI: 10.3390/cells11081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype–phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence—whenever possible—for the existing genotype–phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.
Collapse
|
12
|
Chiba E, Kimura Y, Shimizu-Motohashi Y, Miyagawa N, Ota M, Shigemoto Y, Ohnishi M, Nakaya M, Nakagawa E, Sasaki M, Sato N. Clinical and neuroimaging findings in patients with lissencephaly/subcortical band heterotopia spectrum: a magnetic resonance conventional and diffusion tensor study. Neuroradiology 2021; 64:825-836. [PMID: 34693484 DOI: 10.1007/s00234-021-02836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To clarify brain abnormalities on magnetic resonance imaging (MRI) and its clinical implications in lissencephaly/subcortical band heterotopia (LIS/SBH) spectrum patients. METHODS The clinical severity and classification according to Di Donato were retrospectively reviewed in 23 LIS/SBH spectrum patients. The morphological and signal abnormalities of the brainstem, corpus callosum, and basal ganglia were also assessed. The brainstem distribution pattern of the corticospinal tract (CST) was analyzed by diffusion tensor imaging (DTI) and categorized into two types: normal pattern, in which the CST and medial lemniscus (ML) are separated by the dorsal portion of the transverse pontine fiber, and the abnormal pattern, in which the CST and ML are juxtaposed on the dorsal portion of a single transverse pontine fiber. Correlations between MR grading score and potential additional malformative findings of the brain and clinical symptoms were investigated. RESULTS All patients with grade 3 (n = 5) showed brainstem deformities, signal abnormalities of pontine surface and had a tendency of basal ganglia deformity and callosal hypoplasia whereas those abnormalities were rarely seen in patients with grade 1 and 2 (n = 18). For DTI analysis, the patients with grade 3 LIS/SBH had typically abnormal CST, whereas the patients with grade 1 and 2 LIS/SBH had normal CST. The classification was well correlated with CST and brainstem abnormalities and clinical severity. CONCLUSION MR assessment including DTI analysis may be useful in assessing the clinical severity in LIS/BH spectrum and may provide insight into its developmental pathology.
Collapse
Affiliation(s)
- Emiko Chiba
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, Japan
| | - Nozomi Miyagawa
- Department of Psychiatry, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, Japan
| | - Miho Ota
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Masahiro Ohnishi
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Moto Nakaya
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan.
| |
Collapse
|
13
|
Hill NM, Sukal-Moulton T, Dewald JPA. Between Limb Muscle Co-activation Patterns in the Paretic Arm During Non-paretic Arm Tasks in Hemiparetic Cerebral Palsy. Front Neurosci 2021; 15:666697. [PMID: 34393702 PMCID: PMC8358604 DOI: 10.3389/fnins.2021.666697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Tasks of daily life require the independent use of the arms and hands. Individuals with hemiparetic cerebral palsy (HCP) often experience difficulty with fine motor tasks demonstrating mirrored movements between the arms. In this study, bilateral muscle activations were quantified during single arm isometric maximum efforts and submaximal reaching tasks. The magnitude and direction of mirrored activation was examined in 14 individuals with HCP and 9 age-matched controls. Participants generated maximum voluntary torques (MVTs) in five different directions and completed ballistic reaches while producing up to 80% of shoulder abduction MVT. Electromyography (EMG) signals were recorded from six upper extremity muscles bilaterally. Participants with HCP demonstrated more mirrored activation when volitionally contracting the non-paretic (NP) arm than the paretic arm (F = 83.543, p < 0.001) in isometric efforts. Increased EMG activation during reach acceleration resulted in a larger increase in rest arm co-activation when reaching with the NP arm compared to the paretic arm in the HCP group (t = 8.425, p < 0.001). Mirrored activation is more pronounced when driving the NP arm and scales with effort level. This directionality of mirroring is indicative of the use of ipsilaterally terminating projections of the corticospinal tract (CST) originating in the non-lesioned hemisphere. Peripheral measures of muscle activation provide insight into the descending pathways available for control of the upper extremity after early unilateral brain injury.
Collapse
Affiliation(s)
- Nayo M Hill
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Theresa Sukal-Moulton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Pediatrics, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
14
|
Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The author presents his perspective on the character of science, development, and handedness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemispheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined.
Collapse
|
15
|
Filippopulos FM, Brem C, Seelos K, Köglsperger T, Sonnenfeld S, Kellert L, Vollmar C. Uncrossed corticospinal tract in health and genetic disorders: Review, case report, and clinical implications. Eur J Neurol 2021; 28:2804-2811. [PMID: 33949047 DOI: 10.1111/ene.14897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Crossing pathologies of the corticospinal tract (CST) are rare and often associated with genetic disorders. However, they can be present in healthy humans and lead to ipsilateral motor deficits when a lesion to motor areas occurs. Here, we review historical and current literature of CST crossing pathologies and present a rare case of asymmetric crossing of the CST. METHODS Description of the case and systematic review of the literature were based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The PubMed database was searched for peer-reviewed articles in English since 1950. All articles on ipsilateral stroke, uncrossed CST, and associated neurologic disorders were screened. Furthermore, a literature review between the years 1850 and 1980 including articles in other languages, books, opinions, and case studies was conducted. RESULTS Only a few descriptions of CST crossing pathologies exist in healthy humans, whereas they seem to be more common in genetic disorders such as horizontal gaze palsy with progressive scoliosis or congenital mirror movements. Our patient presented with aphasia and left-sided hemiparesis. Computed tomographic (CT) scan revealed a perfusion deficit in the left middle cerebral artery territory, which was confirmed by diffusion-weighted magnetic resonance imaging (MRI), so that thrombolysis was administered. Diffusion tensor imaging with fibre tracking revealed an asymmetric CST crossing. CONCLUSIONS The knowledge of CST crossing pathologies is essential if a motor deficit occurs ipsilateral to the lesion side. An ipsilateral deficit should not lead to exclusion or delay of therapeutic options in patients with suspected stroke. Here, a combined evaluation of CT perfusion imaging and MRI diffusion imaging may be of advantage.
Collapse
Affiliation(s)
| | - Christian Brem
- Institute of Neuroradiology, University Hospital of the LMU Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital of the LMU Munich, Munich, Germany
| | - Thomas Köglsperger
- Department of Neurology, University Hospital of the LMU Munich, Munich, Germany
| | - Stefan Sonnenfeld
- Department of Neurology, University Hospital of the LMU Munich, Munich, Germany
| | - Lars Kellert
- Department of Neurology, University Hospital of the LMU Munich, Munich, Germany
| | - Christian Vollmar
- Department of Neurology, University Hospital of the LMU Munich, Munich, Germany.,Institute of Neuroradiology, University Hospital of the LMU Munich, Munich, Germany
| |
Collapse
|
16
|
Persad AR, Gould L, Norton JA, Meguro K. Uncrossed corticospinal tracts presenting as transient tumor-related symptomatology. Acta Neurochir (Wien) 2021; 163:947-951. [PMID: 33479812 DOI: 10.1007/s00701-020-04672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Ipsilateral corticospinal innervation is rare. No prior cases have described ipsilateral tumor-associated symptoms as the presentation of an uncrossed corticospinal tract. Herein, we describe a case associated with a left frontal tumor, presenting with transient ipsilateral hemiparesis and aphasia. Due to the fluctuating symptomatology, we suspected a cerebrovascular cause and initially performed a workup for stroke. Ipsilateral motor innervation was discovered with intraoperative monitoring during the resection of the tumor, and confirmed with postoperative diffusion tensor imaging (DTI). Neurosurgeons should be aware of uncrossed motor system, and include it in the differential of ipsilateral deficit in patients with intracranial tumors.
Collapse
|
17
|
Tan YJ, Salkade P, Ho JXM, De Silva DA, Lo YL. Recurrent ipsilateral hemiparesis in a patient with both uncrossed corticospinal tracts and reorganization of cortical motor areas - An opportune visitation of the motor tracts. J Clin Neurosci 2021; 86:139-144. [PMID: 33775318 DOI: 10.1016/j.jocn.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/06/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
We report the case of a patient who experienced recurrent ipsilateral hemiparesis in the setting of predominantly-uncrossed corticospinal tracts, with concomitant neuronal reorganization of the cortical motor maps, and the presence of aberrant interhemispheric connections. Their presence was supported by our results from diffusion tensor imaging tractography, functional magnetic resonance imaging, and transcranial magnetic stimulation. To our knowledge, this has never been reported before, and provides valuable insights into the mechanisms behind post-stroke motor recovery.
Collapse
Affiliation(s)
- You-Jiang Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Parag Salkade
- Department of Radiology, Sengkang General Hospital, Singapore
| | | | - Deidre Anne De Silva
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Yew-Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| |
Collapse
|
18
|
Papadopoulou M, Karavasilis E, Christidi F, Argyropoulos GD, Skitsa I, Makrydakis G, Efstathopoulos E, Zambelis T, Karandreas N. Multimodal Neurophysiological and Neuroimaging Evidence of Genetic Influence on Motor Control: A Case Report of Monozygotic Twins. Cogn Behav Neurol 2021; 34:53-62. [PMID: 33652469 DOI: 10.1097/wnn.0000000000000262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
Considering genetic influence on brain structure and function, including motor control, we report a case of right-handed monozygotic twins with atypical organization of fine motor movement control that might imply genetic influence. Structural and functional organization of the twins' motor function was assessed using transcranial magnetic stimulation (TMS), fMRI with a motor-task paradigm, and diffusion tensor imaging (DTI) tractography. TMS revealed that both twins presented the same unexpected activation and inhibition of both motor cortices during volitional unilateral fine hand movement. The right ipsilateral corticospinal tract was weaker than the left contralateral one. The motor-task fMRI identified activation in the left primary motor cortex and bilateral secondary motor areas during right-hand (dominant) movement and activation in the bilateral primary motor cortex and secondary motor areas during left-hand movement. Based on DTI tractography, both twins showed a significantly lower streamline count (number of fibers) in the right corticospinal tract compared with a control group, which was not the case for the left corticospinal tract. Neither twin reported any difficulty in conducting fine motor movements during their activities of daily living. The combination of TMS and advanced neuroimaging techniques identified an atypical motor control organization that might be influenced by genetic factors. This combination emphasizes that activation of the unilateral uncrossed pyramidal tract represents an alternative scheme to a "failure" of building a standard pattern but may not necessarily lead to disability.
Collapse
Affiliation(s)
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- Department of Physiotherapy, University of West Attica, Athens, Greece
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios D Argyropoulos
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioulia Skitsa
- DNA Analysis Laboratory, Athens Legal Medicine Service Hellenic Ministry of Justice, Athens, Greece
| | - George Makrydakis
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Moreno-Madueño G, Rivero-Garvía M, Tirado-Caballero J, Márquez-Rivas J. Diastematobulbia type II without associated dermoid tumor: case report. J Neurosurg Pediatr 2021; 27:311-316. [PMID: 33338997 DOI: 10.3171/2020.7.peds20161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 11/06/2022]
Abstract
Split cord malformation (SCM) is a term used for all double spinal cords. It represents 3.8%-5% of spinal dysraphisms. Pang et al.'s embryological theory proposes the formation of an "accessory neurenteric canal" that communicates with the yolk sac and amnion. To the authors' knowledge, only three cases of diastematobulbia (basicranial SCM) associated with a spur or dermoid have been reported in the literature.The case patient is a newborn girl with an occipitocervical meningocele and dermal sinus associated with an anomaly of notochordal development in the transition between the medulla oblongata and the spinal cord (diastematobulbia) without a bony septum or dermoid cyst. The patient also has agenesis of the atlas and an absence of corticospinal tract decussation. This patient underwent reconstruction of the occipital meningocele and dermal sinus excision.To the authors' knowledge, this is the first described case of type II diastematobulbia (basicranial SCM), without a dermoid cyst. The authors analyzed the embryological errors present in the case patient and considered the option of further surgical treatment depending on the evolution of the patient's condition. At the time of this report, the patient had shown normal psychomotor development. However, this fact may only be due to the patient's young age. Considering that after initial untethering the patient remained clinically asymptomatic, conservative and close surveillance has been and continues to be the proposed treatment.
Collapse
Affiliation(s)
- Gloria Moreno-Madueño
- 1Pediatric Neurosurgery Unit, Hospital Universitario Virgen del Rocío, Seville
- 3Neuroscience Applied Group, Institute of Biomedicine of Seville, Spain
| | - Mónica Rivero-Garvía
- 1Pediatric Neurosurgery Unit, Hospital Universitario Virgen del Rocío, Seville
- 3Neuroscience Applied Group, Institute of Biomedicine of Seville, Spain
| | - Jorge Tirado-Caballero
- 1Pediatric Neurosurgery Unit, Hospital Universitario Virgen del Rocío, Seville
- 3Neuroscience Applied Group, Institute of Biomedicine of Seville, Spain
| | - Javier Márquez-Rivas
- 1Pediatric Neurosurgery Unit, Hospital Universitario Virgen del Rocío, Seville
- 2Center for Advanced Neurology, Seville; and
- 3Neuroscience Applied Group, Institute of Biomedicine of Seville, Spain
| |
Collapse
|
20
|
Kunisawa K, Hatanaka N, Shimizu T, Kobayashi K, Osanai Y, Mouri A, Shi Q, Bhat MA, Nambu A, Ikenaka K. Focal loss of the paranodal domain protein Neurofascin155 in the internal capsule impairs cortically induced muscle activity in vivo. Mol Brain 2020; 13:159. [PMID: 33228720 PMCID: PMC7685608 DOI: 10.1186/s13041-020-00698-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 11/12/2022] Open
Abstract
Paranodal axoglial junctions are essential for rapid nerve conduction and the organization of axonal domains in myelinated axons. Neurofascin155 (Nfasc155) is a glial cell adhesion molecule that is also required for the assembly of these domains. Previous studies have demonstrated that general ablation of Nfasc155 disorganizes these domains, reduces conduction velocity, and disrupts motor behaviors. Multiple sclerosis (MS), a typical disorder of demyelination in the central nervous system, is reported to have autoantibody to Nfasc. However, the impact of focal loss of Nfasc155, which may occur in MS patients, remains unclear. Here, we examined whether restricted focal loss of Nfasc155 affects the electrophysiological properties of the motor system in vivo. Adeno-associated virus type5 (AAV5) harboring EGFP-2A-Cre was injected into the glial-enriched internal capsule of floxed-Neurofascin (NfascFlox/Flox) mice to focally disrupt paranodal junctions in the cortico-fugal fibers from the motor cortex to the spinal cord. Electromyograms (EMGs) of the triceps brachii muscles in response to electrical stimulation of the motor cortex were successively examined in these awake mice. EMG analysis showed significant delay in the onset and peak latencies after AAV injection compared to control (Nfasc+/+) mice. Moreover, EMG half-widths were increased, and EMG amplitudes were gradually decreased by 13 weeks. Similar EMG changes have been reported in MS patients. These findings provide physiological evidence that motor outputs are obstructed by focal ablation of paranodal junctions in myelinated axons. Our findings may open a new path toward development of a novel biomarker for an early phase of human MS, as Nfasc155 detects microstructural changes in the paranodal junction.
Collapse
Affiliation(s)
- Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Nobuhiko Hatanaka
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kenta Kobayashi
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yasuyuki Osanai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Qian Shi
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | - Atsushi Nambu
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| |
Collapse
|
21
|
Yang H, Zhou H, Miao J. Uncrossed corticospinal tracts in a patient with ichthyosis and hemiparesis: a case report. BMC Neurol 2020; 20:120. [PMID: 32252685 PMCID: PMC7132884 DOI: 10.1186/s12883-020-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Anomalies of pyramidal tract decussation are rare phenomena that can be caused by ectodermal dysplasia. Herein, we describe a patient with ichthyosis who exhibited ipsilateral hemiparesis after stroke and whose neuroimaging results showed evidence of motor control being provided by the ipsilateral motor cortex. Case presentation A 24-year-old right-handed man presented with skin abnormalities, sudden-onset left hemiparesis, and dysarthria. He exhibited a mild-to-moderate left-sided weakness (grade 4 on the Medical Research Council scale). Magnetic resonance imaging revealed an acute infarct in the left corona radiata. Diffusion tensor imaging revealed uncrossed corticospinal tracts. Next-generation sequencing identified heterozygous FLG mutations. The patient was diagnosed with cerebral infarction and ichthyosis vulgaris and was treated with aspirin (100 mg/d). His symptoms gradually dissipated. Conclusions This case suggests that pyramidal decussation anomalies can be associated with ichthyosis. Patients with ichthyosis should therefore be evaluated for nerve involvement.
Collapse
Affiliation(s)
- Huijia Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Miao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
22
|
Son JH, Stevenson TJ, Bowles MD, Scholl EA, Bonkowsky JL. Dopaminergic Co-Regulation of Locomotor Development and Motor Neuron Synaptogenesis is Uncoupled by Hypoxia in Zebrafish. eNeuro 2020; 7:ENEURO.0355-19.2020. [PMID: 32001551 PMCID: PMC7046933 DOI: 10.1523/eneuro.0355-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Hypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish. We found that developmental hypoxia resulted in decreased spontaneous swimming behavior in larva, and that this motor impairment persisted into adulthood. In evaluation of the diencephalic dopaminergic neurons, which regulate early development of locomotion and constitute an evolutionarily conserved component of the vertebrate dopaminergic system, hypoxia caused a decrease in the number of synapses from the descending dopaminergic diencephalospinal tract (DDT) to spinal cord motor neurons. Moreover, dopamine signaling from the DDT was coupled jointly to motor neuron synaptogenesis and to locomotor development. Together, these results demonstrate the developmental processes regulating early locomotor development and a requirement for dopaminergic projections and motor neuron synaptogenesis. Our findings suggest new insights for understanding the mechanisms leading to motor disability from hypoxic injury of prematurity.
Collapse
Affiliation(s)
- Jong-Hyun Son
- Department of Biology, University of Scranton, Scranton, PA 18510
| | - Tamara J Stevenson
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Miranda D Bowles
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Erika A Scholl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
- Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT 84108
| |
Collapse
|
23
|
Govaert P, Triulzi F, Dudink J. The developing brain by trimester. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:245-289. [PMID: 32736754 DOI: 10.1016/b978-0-444-64239-4.00014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transient anatomical entities play a role in the maturation of brain regions and early functional fetal networks. At the postmenstrual age of 7 weeks, major subdivisions of the brain are visible. At the end of the embryonic period, the cortical plate covers the neopallium. The choroid plexus develops in concert with it, and the dorsal thalamus covers about half the diencephalic third ventricle surface. In addition to the fourth ventricle neuroepithelium the rhombic lips are an active neuroepithelial production site. Early reciprocal connections between the thalamus and cortex are present. The corticospinal tract has reached the pyramidal decussation, and the arteries forming the mature circle of Willis are seen. Moreover, the superior sagittal sinus has formed, and at the rostral neuropore the massa commissuralis is growing. At the viable preterm age of around 24 weeks PMA, white matter tracts are in full development. Asymmetric progenitor division permits production of neurons, subventricular zone precursors, and glial cells. Myelin is present in the ventral spinal quadrant, cuneate fascicle, and spinal motor fibers. The neopallial mantle has been separated into transient layers (stratified transitional fields) between the neuroepithelium and the cortical plate. The subplate plays an important role in organizing the structuring of the cortical plate. Commissural tracts have shaped the corpus callosum, early primary gyri are present, and opercularization has started caudally, forming the lateral fissure. Thalamic and striatal nuclei have formed, although GABAergic neurons continue to migrate into the thalamus from the corpus gangliothalamicum. Near-term PMA cerebral sublobulation is active. Between 24 and 32 weeks, primary sulci develop. Myelin is present in the superior cerebellar peduncle, rubrospinal tract, and inferior olive. Germinal matrix disappears from the telencephalon, except for the GABAergic frontal cortical subventricular neuroepithelium.
Collapse
Affiliation(s)
- Paul Govaert
- Department of Neonatology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Neonatology, ZNA Middelheim, Antwerp, Belgium; Department of Rehabilitation and Physical Therapy, Gent University Hospital, Gent, Belgium.
| | - Fabio Triulzi
- Department of Pediatric Neuroradiology, Università Degli Studi di Milano, Milan, Italy
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
24
|
Wolter S, Haberl H, Spies C, Sargut TA, Martin JH, Tafelski S, van Riesen A, Küchler I, Wegner B, Scholtz K, Thomale UW, Michael T, Murphy JF, Schulz M. Frequency distribution in intraoperative stimulation-evoked EMG responses during selective dorsal rhizotomy in children with cerebral palsy-part 2: gender differences and left-biased asymmetry. Childs Nerv Syst 2020; 36:1955-1965. [PMID: 32588175 PMCID: PMC7434795 DOI: 10.1007/s00381-020-04735-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Spinal reflexes reorganize in cerebral palsy (CP), producing hyperreflexia and spasticity. CP is more common among male infants, and gender might also influence brain and spinal-cord reorganization. This retrospective study investigated the frequency of higher-graded EMG responses elicited by electrical nerve-root stimulation during selective dorsal rhizotomy (SDR), prior to partial nerve- root deafferentation, considering not only segmental level and body side, but also gender. METHODS Intraoperative neuromonitoring (IOM) was used in SDR to pinpoint the rootlets most responsible for exacerbated stimulation-evoked EMG patterns recorded from lower-limb muscle groups. Responses were graded according to an objective response-classification system, ranging from no abnormalities (grade 0) to highly abnormal (grade 4+), based on ipsilateral spread and contralateral involvement. Non-parametric analysis of data with repeated measures was primarily used in investigating the frequency distribution of these various EMG response grades. Over 7000 rootlets were stimulated, and the results for 65 girls and 81 boys were evaluated, taking changes in the composition of patient groups into account when considering GMFCS levels. RESULTS The distribution of graded EMG responses varied according to gender, laterality, and level. Higher-graded EMG responses were markedly more frequent in the boys and at lower segmental levels (L5, S1). Left-biased asymmetry in higher-graded rootlets was also more noticeable in the boys and in patients with GMFCS level I. A close link was observed between higher-grade assessments and left-biased asymmetry. CONCLUSIONS Detailed insight into the patient's initial spinal-neurofunctional state prior to deafferentation suggests that differences in asymmetrical spinal reorganization might be attributable to a hemispheric imbalance.
Collapse
Affiliation(s)
- Simone Wolter
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Hannes Haberl
- Division of Pediatric Neurosurgery, Universitätsklinikum Bonn, 53127, Bonn, Germany
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - T Alp Sargut
- Division of Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | - John H Martin
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
- Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA
| | - Sascha Tafelski
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anne van Riesen
- Center for Chronically Sick Children (SPZ), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | - Ingeborg Küchler
- Institute of Medical Biometry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Brigitte Wegner
- Institute of Medical Biometry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Kathrin Scholtz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulrich-W Thomale
- Division of Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | - Theodor Michael
- Division of Pediatric Neurosurgery, Universitätsklinikum Bonn, 53127, Bonn, Germany
| | - James F Murphy
- Dahlem Research School, Freie Universität Berlin, 14195, Berlin, Germany
| | - Matthias Schulz
- Division of Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| |
Collapse
|
25
|
Schmitz J, Güntürkün O, Ocklenburg S. Building an Asymmetrical Brain: The Molecular Perspective. Front Psychol 2019; 10:982. [PMID: 31133928 PMCID: PMC6524718 DOI: 10.3389/fpsyg.2019.00982] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
The brain is one of the most prominent examples for structural and functional differences between the left and right half of the body. For handedness and language lateralization, the most widely investigated behavioral phenotypes, only a small fraction of phenotypic variance has been explained by molecular genetic studies. Due to environmental factors presumably also playing a role in their ontogenesis and based on first molecular evidence, it has been suggested that functional hemispheric asymmetries are partly under epigenetic control. This review article aims to elucidate the molecular factors underlying hemispheric asymmetries and their association with inner organ asymmetries. While we previously suggested that epigenetic mechanisms might partly account for the missing heritability of handedness, this article extends this idea by suggesting possible alternatives for transgenerational transmission of epigenetic states that do not require germ line epigenetic transmission. This is in line with a multifactorial model of hemispheric asymmetries, integrating genetic, environmental, and epigenetic influencing factors in their ontogenesis.
Collapse
Affiliation(s)
- Judith Schmitz
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
26
|
Bonkowsky JL, Son JH. Hypoxia and connectivity in the developing vertebrate nervous system. Dis Model Mech 2018; 11:11/12/dmm037127. [PMID: 30541748 PMCID: PMC6307895 DOI: 10.1242/dmm.037127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The developing nervous system depends upon precise regulation of oxygen levels. Hypoxia, the condition of low oxygen concentration, can interrupt developmental sequences and cause a range of molecular, cellular and neuronal changes and injuries. The roles and effects of hypoxia on the central nervous system (CNS) are poorly characterized, even though hypoxia is simultaneously a normal component of development, a potentially abnormal environmental stressor in some settings, and a clinically important complication, for example of prematurity. Work over the past decade has revealed that hypoxia causes specific disruptions in the development of CNS connectivity, altering axon pathfinding and synapse development. The goals of this article are to review hypoxia's effects on the development of CNS connectivity, including its genetic and molecular mediators, and the changes it causes in CNS circuitry and function due to regulated as well as unintended mechanisms. The transcription factor HIF1α is the central mediator of the CNS response to hypoxia (as it is elsewhere in the body), but hypoxia also causes a dysregulation of gene expression. Animals appear to have evolved genetic and molecular responses to hypoxia that result in functional behavioral alterations to adapt to the changes in oxygen concentration during CNS development. Understanding the molecular pathways underlying both the normal and abnormal effects of hypoxia on CNS connectivity may reveal novel insights into common neurodevelopmental disorders. In addition, this Review explores the current gaps in knowledge, and suggests important areas for future studies. Summary: The nervous system's exposure to hypoxia has developmental and clinical relevance. In this Review, the authors discuss the effects of hypoxia on the development of the CNS, and its long-term behavioral and neurodevelopmental consequences.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - Jong-Hyun Son
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,Department of Biology, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
27
|
Influence of the Montage of Stimulation Electrodes for Intraoperative Neuromonitoring During Orthopedic Spine Surgery. J Clin Neurophysiol 2018; 35:419-425. [PMID: 30024455 DOI: 10.1097/wnp.0000000000000498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In transcranial electrical stimulation, induced motor evoked potentials (MEPs) are influenced by the montage of stimulation electrodes. Differences are to be examined between coronal and sagittal stimulation. METHODS Forty-five patients with idiopathic scoliosis were included. Coronal and sagittal montages were obtained by electrode placement at C3C4 and Cz'F using large contact electrodes. Corkscrew and short needle electrodes were additionally placed at C3C4 in five patients. Voltage motor thresholds (MTvoltage) and MEP amplitudes at 2 times MTvoltage (MEP2MTvoltage) were obtained of upper and lower extremity muscles. Differences of MTvoltage and MEP2MTvoltage at Cz'F and C3C4 and between electrodes were analyzed. RESULTS MEP2MTvoltage benefits from coronal positioning. Correlations between MTvoltage and impedance were not significant for large electrodes at Cz'F, very low for C3C4, and high for short needles or corkscrew electrodes. MTvoltage of short needles and corkscrews was up to 200% higher compared with MTvoltage of long needles. MTcurrent is increased by 20% to 30% and 2% to 10% for the arm and leg muscles, respectively. CONCLUSIONS Biphasic stimulation at C3C4 is advised when constant voltage stimulation is used to monitor the spinal cord during orthopedic spine surgery. MTvoltage of corkscrew and small needle electrodes are highly sensitive to electrode impedances.
Collapse
|
28
|
Individual movement features during prism adaptation correlate with after-effects and interlimb transfer. PSYCHOLOGICAL RESEARCH 2018; 84:866-880. [PMID: 30406829 DOI: 10.1007/s00426-018-1110-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
The human nervous system displays such plasticity that we can adapt our motor behavior to various changes in environmental or body properties. However, how sensorimotor adaptation generalizes to new situations and new effectors, and which factors influence the underlying mechanisms, remains unclear. Here we tested the general hypothesis that differences across participants can be exploited to uncover what drives interlimb transfer. Twenty healthy adults adapted to prismatic glasses while reaching to visual targets with their dominant arm. Classic adaptation and generalization across movement directions were observed but transfer to the non-dominant arm was not significant and inter-individual differences were substantial. Interlimb transfer resulted for some participants in a directional shift of non-dominant arm movements that was consistent with an encoding of visuomotor adaptation in extrinsic coordinates. For some other participants, transfer was consistent with an intrinsic coordinate system. Simple and multiple regression analyses showed that a few kinematic parameters such as peak acceleration (or peak velocity) and variability of movement direction were correlated with interlimb transfer. Low peak acceleration and low variability were related to extrinsic transfer, while high peak acceleration and high variability were related to intrinsic transfer. Motor variability was also positively correlated with the magnitude of the after-effect systematically observed on the dominant arm. Overall, these findings on unconstrained movements support the idea that individual movement features could be linked to the sensorimotor adaptation and its generalization. The study also suggests that distinct movement characteristics may be related to different coordinate frames of action representations in the nervous system.
Collapse
|
29
|
Broser PJ, Knappe S, Kajal DS, Noury N, Alem O, Shah V, Braun C. Optically Pumped Magnetometers for Magneto-Myography to Study the Innervation of the Hand. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2226-2230. [PMID: 30273154 DOI: 10.1109/tnsre.2018.2871947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The central nervous system exerts control over the activation of muscles via a dense network of nerve fibers targeting each individual muscle. There are numerous clinical situations where a detailed assessment of the nerve-innervation pattern is required for diagnosis and treatment. Especially, deep muscles are hard to examine and are as yet only accessible by uncomfortable and painful needle EMG techniques. Just recently, a new and flexible method and device became available to measure the small magnetic fields generated by the contraction of the muscles: optically pumped magnetometers (OPMs). OPMs are small devices that measure the zero-field level crossing resonance of spin-polarized rubidium atoms. The resonance is dependent on the local magnetic field strength, and therefore, these devices are able to measure small magnetic fields in the range of a few hundred femtoteslas. In this paper, we demonstrate as a proof of principle that OPMs can be used to measure the low magnetic fields generated by small hand muscles after electric stimulation of the ulnar or median nerve. We show that using this technique, we are able to record differential innervation pattern of small palmar hand muscles and are capable of distinguishing between areas innervated by the median or ulnar nerve. We expect that the new approach will have an important impact on the diagnosis of nerve entrapment syndromes, spinal cord lesions, and neuromuscular diseases.
Collapse
|
30
|
Arrigoni F, Romaniello R, Peruzzo D, Poretti A, Bassi MT, Pierpaoli C, Valente EM, Nuovo S, Boltshauser E, Huisman TAGM, Triulzi F, Borgatti R. The spectrum of brainstem malformations associated to mutations of the tubulin genes family: MRI and DTI analysis. Eur Radiol 2018; 29:770-782. [DOI: 10.1007/s00330-018-5610-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023]
|
31
|
Development of corticospinal motor excitability and cortical silent period from mid-childhood to adulthood – a navigated TMS study. Neurophysiol Clin 2018; 48:65-75. [DOI: 10.1016/j.neucli.2017.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/26/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023] Open
|
32
|
Kuczynski AM, Dukelow SP, Hodge JA, Carlson HL, Lebel C, Semrau JA, Kirton A. Corticospinal tract diffusion properties and robotic visually guided reaching in children with hemiparetic cerebral palsy. Hum Brain Mapp 2018; 39:1130-1144. [PMID: 29193460 PMCID: PMC6866356 DOI: 10.1002/hbm.23904] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/01/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Perinatal stroke is the leading cause of hemiparetic cerebral palsy (CP), resulting in life-long disability. In this study, we examined the relationship between robotic upper extremity motor impairment and corticospinal tract (CST) diffusion properties. Thirty-three children with unilateral perinatal ischemic stroke (17 arterial, 16 venous) and hemiparesis were recruited from a population-based research cohort. Bilateral CSTs were defined using diffusion tensor imaging (DTI) and four diffusion metrics were quantified: fractional anisotropy (FA), mean (MD), radial (RD), and axial (AD) diffusivities. Participants completed a visually guided reaching task using the KINARM robot to define 10 movement parameters including movement time and maximum speed. Twenty-six typically developing children underwent the same evaluations. Partial correlations assessed the relationship between robotic reaching and CST diffusion parameters. All diffusion properties of the lesioned CST differed from controls in the arterial group, whereas only FA was reduced in the venous group. Non-lesioned CST diffusion measures were similar between stroke groups and controls. Both stroke groups demonstrated impaired reaching performance. Multiple reaching parameters of the affected limb correlated with lesioned CST diffusion properties. Lower FA and higher MD were associated with greater movement time. Few correlations were observed between non-lesioned CST diffusion and unaffected limb function though FA was associated with reaction time (R = -0.39, p < .01). Diffusion properties of the lesioned CST are altered after perinatal stroke, the degree of which correlates with specific elements of visually guided reaching performance, suggesting specific relevance of CST structural connectivity to clinical motor function in hemiparetic children.
Collapse
Affiliation(s)
- Andrea M. Kuczynski
- University of CalgaryCalgaryAlbertaCanada
- Section of Neurology, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
| | - Sean P. Dukelow
- University of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesHotchkiss Brain InstituteCalgaryAlbertaCanada
| | - Jacquie A. Hodge
- Section of Neurology, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
| | - Helen L. Carlson
- Section of Neurology, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
| | - Catherine Lebel
- University of CalgaryCalgaryAlbertaCanada
- Department of RadiologyAlberta Children's HospitalCalgaryAlbertaCanada
| | - Jennifer A. Semrau
- University of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesHotchkiss Brain InstituteCalgaryAlbertaCanada
| | - Adam Kirton
- University of CalgaryCalgaryAlbertaCanada
- Section of Neurology, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
- Department of Clinical NeurosciencesHotchkiss Brain InstituteCalgaryAlbertaCanada
| |
Collapse
|
33
|
Species-specific Posture of Human Foetus in Late First Trimester. Sci Rep 2018; 8:27. [PMID: 29311655 PMCID: PMC5758525 DOI: 10.1038/s41598-017-18384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/08/2017] [Indexed: 11/08/2022] Open
Abstract
The ontogeny associated with the arm-hanging posture, which is considered ape-specific, remains unknown. To examine its ontogeny, we measured foetal movements of 62 human foetuses aged 10-20 gestation weeks using four-dimensional sonography. We observed that the first-trimester foetuses show this particular species-specific posture. After 11 weeks of gestation, all foetuses showed the arm-hanging posture, and the posture was most frequently observed at 14-16 weeks of gestation. Moreover, this posture often involved extension of both arms and both legs, indicating that it is not myogenic but neurogenic. Furthermore, early ontogeny suggests that it originates because of subcortical activity. Such posture extension bias and persistence indicates that vestibulospinal tract maturation involves the ontogeny of arm-hanging posture during 14-16 weeks of gestation.
Collapse
|
34
|
Schmitz J, Metz GA, Güntürkün O, Ocklenburg S. Beyond the genome—Towards an epigenetic understanding of handedness ontogenesis. Prog Neurobiol 2017; 159:69-89. [DOI: 10.1016/j.pneurobio.2017.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022]
|
35
|
Arrigoni F, Romaniello R, Peruzzo D, De Luca A, Parazzini C, Valente EM, Borgatti R, Triulzi F. Anterior Mesencephalic Cap Dysplasia: Novel Brain Stem Malformative Features Associated with Joubert Syndrome. AJNR Am J Neuroradiol 2017; 38:2385-2390. [PMID: 28838911 DOI: 10.3174/ajnr.a5360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/30/2017] [Indexed: 11/07/2022]
Abstract
In Joubert syndrome, the "molar tooth" sign can be associated with several additional supra- and infratentorial malformations. Here we report on 3 subjects (2 siblings, 8-14 years of age) with Joubert syndrome, showing an abnormal thick bulging of the anterior profile of the mesencephalon causing a complete obliteration of the interpeduncular fossa. DTI revealed that the abnormal tissue consisted of an ectopic white matter tract with a laterolateral transverse orientation. Tractographic reconstructions support the hypothesis of impaired axonal guidance mechanisms responsible for the malformation. The 2 siblings were compound heterozygous for 2 missense variants in the TMEM67 gene, while no mutations in a panel of 120 ciliary genes were detected in the third patient. The name "anterior mesencephalic cap dysplasia," referring to the peculiar aspect of the mesencephalon on sagittal MR imaging, is proposed for this new malformative feature.
Collapse
Affiliation(s)
- F Arrigoni
- From the Neuroimaging Lab (F.A., D.P., A.D.L.)
| | - R Romaniello
- Neuropsychiatry and Neurorehabilitation Unit (R.R., R.B.), Scientific Institute Istituto Di Ricovero e Cura a Carattere Scientific Eugenio Medea, Bosisio Parini, Italy
| | - D Peruzzo
- From the Neuroimaging Lab (F.A., D.P., A.D.L.)
| | - A De Luca
- From the Neuroimaging Lab (F.A., D.P., A.D.L.)
- Department of Information Engineering (A.D.L.), University of Padova, Padova, Italy
| | - C Parazzini
- Department of Pediatric Radiology and Neuroradiology (C.P.), "V. Buzzi" Children's Hospital, Milan, Italy
| | - E M Valente
- Department of Molecular Medicine (E.M.V.), University of Pavia, Pavia, Italy
- Neurogenetics Unit (E.M.V.), Istituto Di Ricovero e Cura a Carattere Scientific Santa Lucia Foundation, Rome, Italy
| | - R Borgatti
- Neuropsychiatry and Neurorehabilitation Unit (R.R., R.B.), Scientific Institute Istituto Di Ricovero e Cura a Carattere Scientific Eugenio Medea, Bosisio Parini, Italy
| | - F Triulzi
- Department of Neuroradiology (F.T.), Scientific Institute Istituto Di Ricovero e Cura a Carattere Scientific Cà Granda Foundation-Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
36
|
Schmitz J, Kumsta R, Moser D, Güntürkün O, Ocklenburg S. DNA methylation in candidate genes for handedness predicts handedness direction. Laterality 2017; 23:441-461. [DOI: 10.1080/1357650x.2017.1377726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Judith Schmitz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Robert Kumsta
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|
37
|
Qi W, Gao S, Liu C, Lan G, Yang X, Guo Q. Diffusion tensor MR imaging characteristics of cerebral white matter development in fetal pigs. BMC Med Imaging 2017; 17:50. [PMID: 28830463 PMCID: PMC5568215 DOI: 10.1186/s12880-017-0205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/03/2017] [Indexed: 01/16/2023] Open
Abstract
Background The purpose of this study was to investigate the anisotropic features of fetal pig cerebral white matter (WM) development by magnetic resonance diffusion tensor imaging, and to evaluate the developmental status of cerebral WM in different anatomical sites at different times. Methods Fetal pigs were divided into three groups according to gestational age: E69 (n = 8), E85 (n = 11), and E114 (n = 6). All pigs were subjected to conventional magnetic resonance imaging (MRI) and diffusion tensor imaging using a GE Signa 3.0 T MRI system (GE Healthcare, Sunnyvale, CA, USA). Fractional anisotropy (FA) was measured in deep WM structures and peripheral WM regions. After the MRI scans,the animals were sacrificed and pathology sections were prepared for hematoxylin & eosin (HE) staining and luxol fast blue (LFB) staining. Data were statistically analyzed with SPSS version 16.0 (SPSS, Chicago, IL, USA). A P-value < 0.05 was considered statistically significant. Mean FA values for each subject region of interest (ROI), and deep and peripheral WM at different gestational ages were calculated, respectively, and were plotted against gestational age with linear correlation statistical analyses. The differences of data were analyzed with univariate ANOVA analyses. Results There were no significant differences in FAs between the right and left hemispheres. Differences were observed between peripheral WM and deep WM in fetal brains. A significant FA growth with increased gestational age was found when comparing E85 group and E114 group. There was no difference in the FA value of deep WM between the E69 group and E85 group. The HE staining and LFB staining of fetal cerebral WM showed that the development from the E69 group to the E85 group, and the E85 group to the E114 group corresponded with myelin gliosis and myelination, respectively. Conclusions FA values can be used to quantify anisotropy of the different cerebral WM areas. FA values did not change significantly between 1/2 way and 3/4 of the way through gestation but was then increased dramatically at term, which could be explained by myelin gliosis and myelination ,respectively.
Collapse
Affiliation(s)
- Wenxu Qi
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Song Gao
- Morphology Teaching and Reasearch Section, Liaoning Vocational College of Medcine, Shenyang, 110100, People's Republic of China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Gongyu Lan
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Xue Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
38
|
de Kovel CGF, Lisgo S, Karlebach G, Ju J, Cheng G, Fisher SE, Francks C. Left-Right Asymmetry of Maturation Rates in Human Embryonic Neural Development. Biol Psychiatry 2017; 82:204-212. [PMID: 28267988 DOI: 10.1016/j.biopsych.2017.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Left-right asymmetry is a fundamental organizing feature of the human brain, and neuropsychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks postconception, the majority of human fetuses move their right arms more than their left arms, but because nerve fiber tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role. METHODS We used RNA sequencing to measure gene expression levels in the left and right spinal cords, and the left and right hindbrains, of 18 postmortem human embryos aged 4 to 8 weeks postconception. Genes showing embryonic lateralization were tested for an enrichment of signals in genome-wide association data for schizophrenia. RESULTS The left side of the embryonic spinal cord was found to mature faster than the right side. Both sides transitioned from transcriptional profiles associated with cell division and proliferation at earlier stages to neuronal differentiation and function at later stages, but the two sides were not in synchrony (p = 2.2 E-161). The hindbrain showed a left-right mirrored pattern compared with the spinal cord, consistent with the well-known crossing over of function between these two structures. Genes that showed lateralization in the embryonic spinal cord were enriched for association signals with schizophrenia (p = 4.3 E-05). CONCLUSIONS These are the earliest stage left-right differences of human neural development ever reported. Disruption of the lateralized developmental program may play a role in the genetic susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Carolien G F de Kovel
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Steven Lisgo
- Institute of Genetic Medicine, Newcastle, United Kingdom
| | - Guy Karlebach
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jia Ju
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Gang Cheng
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Ocklenburg S, Schmitz J, Moinfar Z, Moser D, Klose R, Lor S, Kunz G, Tegenthoff M, Faustmann P, Francks C, Epplen JT, Kumsta R, Güntürkün O. Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries. eLife 2017; 6. [PMID: 28145864 PMCID: PMC5295814 DOI: 10.7554/elife.22784] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022] Open
Abstract
Lateralization is a fundamental principle of nervous system organization but its molecular determinants are mostly unknown. In humans, asymmetric gene expression in the fetal cortex has been suggested as the molecular basis of handedness. However, human fetuses already show considerable asymmetries in arm movements before the motor cortex is functionally linked to the spinal cord, making it more likely that spinal gene expression asymmetries form the molecular basis of handedness. We analyzed genome-wide mRNA expression and DNA methylation in cervical and anterior thoracal spinal cord segments of five human fetuses and show development-dependent gene expression asymmetries. These gene expression asymmetries were epigenetically regulated by miRNA expression asymmetries in the TGF-β signaling pathway and lateralized methylation of CpG islands. Our findings suggest that molecular mechanisms for epigenetic regulation within the spinal cord constitute the starting point for handedness, implying a fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans. DOI:http://dx.doi.org/10.7554/eLife.22784.001
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Department Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Judith Schmitz
- Institute of Cognitive Neuroscience, Department Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Zahra Moinfar
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Dirk Moser
- Department of Genetic Psychology, Ruhr University Bochum, Bochum, Germany
| | - Rena Klose
- Institute of Cognitive Neuroscience, Department Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Lor
- Institute of Cognitive Neuroscience, Department Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Georg Kunz
- Department of Obstetrics and Gynecology, St. Johannes Hospital, Dortmund, Germany
| | - Martin Tegenthoff
- Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - Pedro Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Jörg T Epplen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Department Biopsychology, Ruhr University Bochum, Bochum, Germany.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
40
|
Ku J, Mendelsohn D, Chew J, Shewchuk J, Dong C, Akagami R. Ipsilateral Motor Innervation Discovered Incidentally on Intraoperative Monitoring: A Case Report. Neurosurgery 2017; 80:E194-E200. [DOI: 10.1093/neuros/nyw074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND AND IMPORTANCE: Lesions in the corticospinal tract above the decussation at the medullary pyramids almost universally produce contralateral deficits. Rare cases of supratentorial lesions causing ipsilateral motor deficits have been reported previously, but only ever found secondary to stroke or congenital pyramidal tract malformations.
CLINICAL PRESENTATION: Herein, we report a case of ipsilateral corticospinal tract innervation discovered incidentally with intraoperative monitoring during a microsurgical resection of a vestibular schwannoma. Intraoperative monitoring with electrical transcranial stimulation of the frontal scalp triggered motor-evoked potentials in the ipsilateral arms. The uncrossed pathways were later confirmed with MRI tractography using diffusion tensor imaging.
CONCLUSION: To the best of our knowledge, this is the first case of isolated ipsilateral motor innervation of the corticospinal tract discovered incidentally during a neurosurgical procedure. Given the increasing use of intraoperative monitoring, this case underscores the importance of cautious interpretation of seemingly discordant neurophysiological findings. Once technical issues have been ruled out, ipsilateral motor innervation may be considered as a possible explanation and neurosurgeons should be aware of the existence of this rare anatomic variant.
Collapse
Affiliation(s)
- Jerry Ku
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Univer-sity of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Mendelsohn
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Univer-sity of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Chew
- Division of Neuroradiology, Department of Radi-ology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Shewchuk
- Division of Neuroradiology, Department of Radi-ology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles Dong
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Univer-sity of British Columbia, Vancouver, British Columbia, Canada
| | - Ryojo Akagami
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Univer-sity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Serradj N, Agger SF, Hollis ER. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury. Neurosci Lett 2016; 652:94-104. [PMID: 27939980 DOI: 10.1016/j.neulet.2016.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 11/18/2022]
Abstract
Restoring corticospinal function after spinal cord injury is a significant challenge as the corticospinal tract elicits no substantive, spontaneous regeneration, and its interruption leaves a permanent deficit. The corticospinal circuit serves multiple motor and sensory functions within the mammalian nervous system as the direct link between isocortex and spinal cord. Maturation of the corticospinal circuit involves the refinement of projections within the spinal cord and a subsequent refinement of motor maps within the cortex. The plasticity of these cortical motor maps mirrors the acquisition of skilled motor learning, and both the maps and motor skills are disrupted following injury to the corticospinal tract. The motor cortex exhibits the capacity to incorporate changes in corticospinal projections induced by both spontaneous and therapeutic-mediated plasticity of corticospinal axons through appropriate rehabilitation. An understanding of the mechanisms of corticospinal plasticity in motor learning will undoubtedly help inform strategies to improve motor rehabilitation after spinal cord injury.
Collapse
Affiliation(s)
- Najet Serradj
- Burke Medical Research Institute, White Plains, New York, NY 10605, United States
| | - Sydney F Agger
- Burke Medical Research Institute, White Plains, New York, NY 10605, United States
| | - Edmund R Hollis
- Burke Medical Research Institute, White Plains, New York, NY 10605, United States; Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
42
|
Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol 2016; 77:810-829. [PMID: 27706924 DOI: 10.1002/dneu.22455] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023]
Abstract
The corticospinal tract (CST) plays a major role in cortical control of spinal cord activity. In particular, it is the principal motor pathway for voluntary movements. Here, we discuss: (i) the anatomic evolution and development of the CST across mammalian species, focusing on its role in motor functions; (ii) the molecular mechanisms regulating corticospinal tract formation and guidance during mouse development; and (iii) human disorders associated with abnormal CST development. A comparison of CST anatomy and development across mammalian species first highlights important similarities. In particular, most CST axons cross the anatomical midline at the junction between the brainstem and spinal cord, forming the pyramidal decussation. Reorganization of the pattern of CST projections to the spinal cord during evolution led to improved motor skills. Studies of the molecular mechanisms involved in CST formation and guidance in mice have identified several factors that act synergistically to ensure proper formation of the CST at each step of development. Human CST developmental disorders can result in a reduction of the CST, or in guidance defects associated with abnormal CST anatomy. These latter disorders result in altered midline crossing at the pyramidal decussation or in the spinal cord, but spare the rest of the CST. Careful appraisal of clinical manifestations associated with CST malformations highlights the critical role of the CST in the lateralization of motor control. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 810-829, 2017.
Collapse
Affiliation(s)
- Quentin Welniarz
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Isabelle Dusart
- Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Emmanuel Roze
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Département des Maladies du Système Nerveux, AP-HP, Hôpital de la Salpêtrière, Paris, France
| |
Collapse
|
43
|
Farmer S, Choi D. Spinal Column and Spinal Cord Disorders. Neurology 2016. [DOI: 10.1002/9781118486160.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - David Choi
- National Hospital for Neurology & Neurosurgery
| |
Collapse
|
44
|
Fuller HR, Slade R, Jovanov-Milošević N, Babić M, Sedmak G, Šimić G, Fuszard MA, Shirran SL, Botting CH, Gates MA. Stathmin is enriched in the developing corticospinal tract. Mol Cell Neurosci 2015; 69:12-21. [PMID: 26370173 DOI: 10.1016/j.mcn.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
Understanding the intra- and extracellular proteins involved in the development of the corticospinal tract (CST) may offer insights into how the pathway could be regenerated following traumatic spinal cord injury. Currently, however, little is known about the proteome of the developing corticospinal system. The present study, therefore, has used quantitative proteomics and bioinformatics to detail the protein profile of the rat CST during its formation in the spinal cord. This analysis identified increased expression of 65 proteins during the early ingrowth of corticospinal axons into the spinal cord, and 36 proteins at the period of heightened CST growth. A majority of these proteins were involved in cellular assembly and organization, with annotations being most highly associated with cytoskeletal organization, microtubule dynamics, neurite outgrowth, and the formation, polymerization and quantity of microtubules. In addition, 22 proteins were more highly expressed within the developing CST in comparison to other developing white matter tracts of the spinal cord of age-matched animals. Of these differentially expressed proteins, only one, stathmin 1 (a protein known to be involved in microtubule dynamics), was both highly enriched in the developing CST and relatively sparse in other developing descending and ascending spinal tracts. Immunohistochemical analyses of the developing rat spinal cord and fetal human brain stem confirmed the enriched pattern of stathmin expression along the developing CST, and in vitro growth assays of rat corticospinal neurons showed a reduced length of neurite processes in response to pharmacological perturbation of stathmin activity. Combined, these findings suggest that stathmin activity may modulate axonal growth during development of the corticospinal projection, and reinforces the notion that microtubule dynamics could play an important role in the generation and regeneration of the CST.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK; Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK; Postgraduate Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Robert Slade
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK; Postgraduate Medicine, Keele University, Staffordshire ST5 5BG, UK
| | | | - Mirjana Babić
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Matthew A Fuszard
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Monte A Gates
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
45
|
Motor behaviour of human foetuses during the second trimester of gestation: A longitudinal ultrasound study. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.anpede.2014.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Chédotal A. Development and plasticity of commissural circuits: from locomotion to brain repair. Trends Neurosci 2014; 37:551-62. [DOI: 10.1016/j.tins.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
|
47
|
Reynoso C, Crespo-Eguílaz N, Alcázar JL, Narbona J. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study]. An Pediatr (Barc) 2014; 82:183-91. [PMID: 25001373 DOI: 10.1016/j.anpedi.2014.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/08/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). METHODS A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. RESULTS All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. CONCLUSIONS All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy.
Collapse
Affiliation(s)
- C Reynoso
- Unidad de Neurología Pediátrica, Departamento de Pediatría, Clínica Universidad de Navarra, Pamplona, Navarra, España; Centro Médico ABC, México DF, México
| | - N Crespo-Eguílaz
- Unidad de Neurología Pediátrica, Departamento de Pediatría, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - J L Alcázar
- Departamento de Obstetricia y Ginecología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - J Narbona
- Unidad de Neurología Pediátrica, Departamento de Pediatría, Clínica Universidad de Navarra, Pamplona, Navarra, España.
| |
Collapse
|
48
|
Ding Y, Qu Y, Feng J, Wang M, Han Q, So KF, Wu W, Zhou L. Functional motor recovery from motoneuron axotomy is compromised in mice with defective corticospinal projections. PLoS One 2014; 9:e101918. [PMID: 25003601 PMCID: PMC4087004 DOI: 10.1371/journal.pone.0101918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/12/2014] [Indexed: 12/28/2022] Open
Abstract
Brachial plexus injury (BPI) and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST) is genetically absent. In adult mice, we tore off right C5-C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP) in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs) and reduced peak-to-peak amplitudes in electromyogram (EMG), than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI.
Collapse
Affiliation(s)
- Yuetong Ding
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Jia Feng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Meizhi Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Qi Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
- Department of Anatomy LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Wutian Wu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
- Department of Anatomy LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
- Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, P.R. China
- Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, P.R. China
| |
Collapse
|
49
|
Kanazawa H, Kawai M, Kinai T, Iwanaga K, Mima T, Heike T. Cortical muscle control of spontaneous movements in human neonates. Eur J Neurosci 2014; 40:2548-53. [PMID: 24827432 DOI: 10.1111/ejn.12612] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 11/29/2022]
Abstract
Anatomical studies show the existence of corticomotor neuronal projections to the spinal cord before birth, but whether the primary motor cortex drives muscle activity in neonatal 'spontaneous' movements is unclear. To investigate this issue, we calculated corticomuscular coherence (CMC) and Granger causality in human neonates. CMC is widely used as an index of functional connectivity between the primary motor cortex and limb muscles, and Granger causality is used across many fields of science to detect the direction of coherence. To calculate CMC and Granger causality, we used electroencephalography (EEG) to measure activity over the cortical region that governs leg muscles, and surface electromyography (EMG) over the right and left tibialis anterior muscles, in 15 healthy term and preterm neonates, during spontaneous movements without any external stimulation. We found that 17 leg muscles (10 right, seven left) in 12 neonates showed significant CMC, whose magnitude significantly correlated with postnatal age only in the beta frequency band. Further analysis revealed Granger causal drive from EEG to EMG in 14 leg muscles. Our findings suggest that the primary motor cortex drives muscle activity when neonates move their limbs. Moreover, the positive correlation between CMC magnitude and postnatal age suggests that corticomuscular communication begins to develop during the neonatal stage. This process may facilitate sensory-motor integration and activity-dependent development.
Collapse
Affiliation(s)
- Hoshinori Kanazawa
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 606-8507, Kyoto, Japan; Japan Society for the Promotion of Science, 102-0083, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Sukal-Moulton T, Krosschell KJ, Gaebler-Spira DJ, Dewald JP. Motor impairment factors related to brain injury timing in early hemiparesis. Part I: expression of upper-extremity weakness. Neurorehabil Neural Repair 2014; 28:13-23. [PMID: 24009182 PMCID: PMC3974904 DOI: 10.1177/1545968313500564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. OBJECTIVE This study investigated the impact of timing of brain injury on the magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. METHODS A total of 24 individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), or after 6 months of age (POST-natal, n = 8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple-degree-of-freedom load cell to quantify torques in 10 directions. A mixed-model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. RESULTS There was a significant effect of both time of injury group (P < .001) and joint torque direction (P < .001) on the relative weakness of the paretic arm. Distal joints were more affected compared with proximal joints, especially in the POST-natal group. CONCLUSIONS The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, whereas those who sustained later injury may rely more on indirect ipsilateral corticobulbospinal projections during the generation of torques with the paretic arm.
Collapse
Affiliation(s)
- Theresa Sukal-Moulton
- Department of Biomedical Engineering, Northwestern University
- Department of Physical Therapy and Human Movement Sciences, Northwestern University
| | | | - Deborah J. Gaebler-Spira
- Department of Physical Medicine and Rehabilitation, Northwestern University
- The Rehabilitation Institute of Chicago
| | - Julius P.A. Dewald
- Department of Biomedical Engineering, Northwestern University
- Department of Physical Therapy and Human Movement Sciences, Northwestern University
- Department of Physical Medicine and Rehabilitation, Northwestern University
| |
Collapse
|