1
|
Agah E, Mojtabavi H, Behkar A, Heidari A, Ajdari A, Shaka Z, Mousavi SV, Firoozeh N, Tafakhori A, Rezaei N. CSF and blood levels of Neurofilaments, T-Tau, P-Tau, and Abeta-42 in amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Transl Med 2024; 22:953. [PMID: 39434139 PMCID: PMC11492992 DOI: 10.1186/s12967-024-05767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Recent literature suggests that markers of neuroaxonal damage, such as neurofilaments and tau protein, might serve as potential biomarkers for ALS. We conducted this systematic review and meta-analysis study to compare cerebrospinal fluid (CSF) and blood levels of total tau (t-tau), phosphorylated tau (p-tau), amyloid beta peptide 42 (Abeta-42), and neurofilaments in ALS patients and controls. A systematic search of Cochrane Library, PubMed, Embase, and ISI Web of Science was conducted on March 18, 2022, and updated on January 26, 2023. Observational studies that compared the concentrations of neurofilament light chain (NfL), neurofilament heavy chain (NFH), t-tau, p-tau, or Abeta-42 in CSF or peripheral blood of ALS patients and controls were included. Data from relevant studies were independently extracted and screened for quality using a standard tool, by at least two authors. Meta-analysis was conducted when a minimum of 3 studies reported the same biomarker within the same biofluid. A total of 100 studies were eligible for at least one meta-analysis. CSF and blood levels of NfL (standardized mean difference (SMD) [95% CI]; CSF: 1.46 [1.25-1.68]; blood: 1.35 [1.09-1.60]) and NFH (CSF: 1.32 [1.13-1.50], blood: 0.90 [0.58-1.22]) were significantly higher in ALS patients compared with controls. The pooled differences between ALS patients and controls were not significant for CSF t-tau, blood t-tau, and CSF Abeta-42, but CSF p-tau was lower in ALS patients (-0.27 [-0.47- -0.07]). Significantly decreased p-tau/t-tau ratios were found in ALS patients compared with controls (-0.84 [-1.16- -0.53]). Heterogeneity was considerable in most of our meta-analyses. CSF and blood neurofilament levels, as well as the CSF p-tau/t-tau ratio, might be potential candidates for improving ALS diagnosis. Further research is warranted to better understand the underlying mechanisms and the clinical implications of these biomarker alterations.
Collapse
Affiliation(s)
- Elmira Agah
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Helia Mojtabavi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- National Center for Adaptive Neurotechnologies (NCAN), Albany, NY, USA
| | - Atefeh Behkar
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atra Ajdari
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zoha Shaka
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Vahid Mousavi
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Firoozeh
- Department of Radiology, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
3
|
Martínez-Payá JJ, Ríos-Díaz J, Del Baño-Aledo ME, Hervás D, Tembl-Ferrairó JI, Sevilla-Mantecón T, Vázquez-Costa JF. The cross-sectional area of the median nerve: An independent prognostic biomarker in amyotrophic lateral sclerosis. Neurologia 2024; 39:564-572. [PMID: 39232594 DOI: 10.1016/j.nrleng.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/15/2022] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Ultrasound changes in the cross-sectional area of the median nerve (CSAmn) could be of interest as biomarkers in patients with amyotrophic lateral sclerosis (ALS). METHODS Eighty-four ALS patients (51 men [60.7%]; mean 62.0 [SD 11.46] years old) and forty-six controls (27 men [58.7%]; mean 59.9 [SD 8.08] years old) of two different cohorts were recruited between September 2013 and February 2018. The CSAmn was measured bilaterally in each cohort, by two different examiners with two different ultrasound machines (one in each cohort). Its association with clinical variables (disease duration, muscle strength, disability, progression rate and tracheostomy-free survival) was assessed. RESULTS The CSAmn was smaller in patients than in controls, and the study cohort did not influence its values. A mild correlation between the strength of the wrist flexor and the CSAmn was found. In the multivariable analysis, the probability of this association being true was 90%. In the cox regression, both a faster progression rate and a larger CSAmn independently predicted poor survival (HR=4.29, [Cr.I95%: 2.71-6.80], p<0.001; and HR=1.14, [Cr.I95%: 1.03-1.25], p=0.01), after adjusting by age, body mass index, bulbar onset, and diagnostic delay. CONCLUSIONS The CSAmn is an easy to assess biomarker that seems reliable and reproducible. Our data also suggest that it could act as a progression and prognostic biomarker in ALS patients. Longitudinal studies with repeated measures are warranted to confirm its usefulness in the clinical practice.
Collapse
Affiliation(s)
- J J Martínez-Payá
- Physiotherapy Department, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - J Ríos-Díaz
- Campus San Rafael, Escuela de Enfermería y Fisioterapia San Juan de Dios, Universidad Pontificia de Comillas, Madrid, Spain.
| | - M E Del Baño-Aledo
- Physiotherapy Department, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - D Hervás
- Department of Applied Statistics and Operations Research, and Quality, Universitat Politècnica de València, Valencia, Spain; Medicine Department, Facultad de Medicina, Universitat de València, Valencia, Spain
| | - J I Tembl-Ferrairó
- Neurosonology Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - T Sevilla-Mantecón
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medicine Department, Facultad de Medicina, Universitat de València, Valencia, Spain
| | - J F Vázquez-Costa
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medicine Department, Facultad de Medicina, Universitat de València, Valencia, Spain.
| |
Collapse
|
4
|
Roca-Pereira S, Domínguez R, Moreno León I, Colomina MJ, Martínez Yélamos A, Martínez Yélamos S, Povedano M, Andrés-Benito P. Increased CXCL12, a potential CSF biomarker for differential diagnosis of amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae271. [PMID: 39188590 PMCID: PMC11346361 DOI: 10.1093/braincomms/fcae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Amyotrophic lateral sclerosis is a debilitating and lethal neurodegenerative disorder marked by the gradual deterioration of motor neurons. Diagnosing amyotrophic lateral sclerosis is challenging due to the lack of reliable diagnostic tools, with clinical assessment being the primary criterion. Recently, increased levels of neurofilament light chain in CSF have been considered a useful biomarker in disease, correlating with disease progression but not specific for diagnosis. This study utilized enzyme-linked immunosorbent assay to measure CSF C-X-C motif chemokine ligand 12 levels in healthy controls, amyotrophic lateral sclerosis patients and patients with amyotrophic lateral sclerosis-mimic disorders, assessing its potential as a diagnostic biomarker and comparing it with neurofilament light chain levels. Our results confirmed previous findings, showing increased C-X-C motif chemokine ligand 12 levels in amyotrophic lateral sclerosis patients compared to healthy control (797.07 ± 31.84 pg/mL versus 316.15 ± 16.6 pg/mL; P = 0.000) and increased CSF neurofilament light chain levels in amyotrophic lateral sclerosis (4565.63 ± 263.77 pg/mL) compared to healthy control (847.86 ± 214.37 pg/mL; P = 0.000). Increased C-X-C motif chemokine ligand levels were specific to amyotrophic lateral sclerosis, not seen in amyotrophic lateral sclerosis-mimic conditions like myelopathies (252.20 ± 23.16 pg/mL; P = 0.000), inflammatory polyneuropathies (270.24 ± 32.23 pg/mL; P = 0.000) and other mimic diseases (228.91 ± 29.20 pg/mL; P = 0.000). In contrast, CSF neurofilament light chain levels in amyotrophic lateral sclerosis overlapped with those in myelopathies (2900.11 ± 872.20 pg/mL; P = 0.821) and other mimic diseases (3169.75 ± 1096.65 pg/mL; P = 0.63), but not with inflammatory polyneuropathies (1156.4 ± 356.6 pg/mL; P = 0.000). Receiver operating characteristic curve analysis indicated significant differences between the area under the curve values of C-X-C motif chemokine ligand and neurofilament light chain in their diagnostic capacities. C-X-C motif chemokine ligand could differentiate between amyotrophic lateral sclerosis and myelopathies (area under the curve 0.99 ± 0.005), inflammatory polyneuropathies (area under the curve 0.962 ± 0.027) and other mimic diseases (area under the curve 1.00 ± 0.00), whereas neurofilament light chain was only effective in inflammatory polyneuropathies cases (area under the curve 0.92 ± 0.048), not in myelopathies (area under the curve 0.71 ± 0.09) or other mimic diseases (area under the curve 0.69 ± 0.14). We also evaluated C-X-C motif chemokine ligand levels in plasma [amyotrophic lateral sclerosis (2022 ± 81.8 pg/mL) versus healthy control (1739.43 ± 77.3 pg/mL; P = 0.015)] but found CSF determination (area under the curve 0.97 ± 0.012) to be more accurate than plasma determination (area under the curve 0.65 ± 0.063). In plasma, single molecule array (SIMOA) neurofilament light chain determination [amyotrophic lateral sclerosis (86.00 ± 12.23 pg/mL) versus healthy control (12.69 ± 1.15 pg/mL); P = 0.000] was more accurate than plasma C-X-C motif chemokine ligand 12 (area under the curve 0.98 ± 0.01405). These findings suggest that CSF C-X-C motif chemokine ligand 12 levels can enhance diagnostic specificity in distinguishing amyotrophic lateral sclerosis from amyotrophic lateral sclerosis-mimic disorders, compared to neurofilament light chain. Larger studies are needed to validate these results, but C-X-C motif chemokine ligand 12 determination shows promising diagnostic potential.
Collapse
Affiliation(s)
- Sergio Roca-Pereira
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Raúl Domínguez
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology—Bellvitge University Hospital (HUB), L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Isabel Moreno León
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Department of Neurology, Multiple Sclerosis Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - María J Colomina
- Anesthesia and Critical Care Department, Bellvitge University Hospital—University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Antonio Martínez Yélamos
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Department of Neurology, Multiple Sclerosis Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Departament de Ciències Clíniques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Sergio Martínez Yélamos
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Department of Neurology, Multiple Sclerosis Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Departament de Ciències Clíniques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mónica Povedano
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology—Bellvitge University Hospital (HUB), L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Pol Andrés-Benito
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
5
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Xu CZ, Huan X, Luo SS, Zhong HH, Zhao CB, Chen Y, Zou ZY, Chen S. Serum cytokines profile changes in amyotrophic lateral sclerosis. Heliyon 2024; 10:e28553. [PMID: 38596011 PMCID: PMC11002056 DOI: 10.1016/j.heliyon.2024.e28553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder, characterized by progressive limb weakness, dysphagia, dysphonia, and respiratory failure due to degeneration of upper and lower motor neurons. The pathogenesis of ALS is still unclear. Neuroinflammation has been found to be involved in its development and progression. Cytokines play a significant role in the inflammatory process. This study aims to identify novel biomarkers that may assist in the diagnosis of ALS. Methods In Fujian Medical University Union Hospital and Huashan Hospital Fudan University, two independent centers, we prospectively recruited 50 ALS patients, and 41 healthy controls (25 ALS and 26 controls in the first stage and 25 ALS and 15 controls in the validation stage). An 18-plex Luminex kit was used to screen the serum cytokines levels in the first stage. Commercial ELISA kits were used to measure the levels of target cytokines in the validation stage. A single-molecule array HD-X platform was applied to assess the levels of serum neurofilament light chain (NFL). Results The levels of serum IL-18 were markedly increased in patients with ALS in the first stage (p = 0.016). The ROC curve showed an area under the curve at 0.695 (95% CI 0.50-0.84) in distinguishing ALS patients from healthy controls. The IL-21 was decreased in elderly patients when grouped by 55 years old (the medium age). Furthermore, the IL-5, IL-13, IL-18, and NFL had a positive relationship with the disease progression of ALS. We also found that serum IL-18 was markedly increased in ALS patients in the validation stage (167.67 [148.25-175.59] vs 116.44 [102.43-122.19]pg/ml, p < 0.0015). Conclusion In this study, we identified systemic cytokine profile changes in the serum of ALS patients, especially the elevated IL-18, as well as the decreased IL-21 in elder patients. These changes in serum cytokine profiles may shed new light on an in-depth understanding of the immunopathogenic characteristics of ALS.
Collapse
Affiliation(s)
- Chun-Zuan Xu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiao Huan
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Su-Shan Luo
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Hua-Hua Zhong
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Chong-Bo Zhao
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yan Chen
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Irwin KE, Sheth U, Wong PC, Gendron TF. Fluid biomarkers for amyotrophic lateral sclerosis: a review. Mol Neurodegener 2024; 19:9. [PMID: 38267984 PMCID: PMC10809579 DOI: 10.1186/s13024-023-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Rogers ML, Schultz DW, Karnaros V, Shepheard SR. Urinary biomarkers for amyotrophic lateral sclerosis: candidates, opportunities and considerations. Brain Commun 2023; 5:fcad287. [PMID: 37946793 PMCID: PMC10631861 DOI: 10.1093/braincomms/fcad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Amyotrophic lateral sclerosis is a relentless neurodegenerative disease that is mostly fatal within 3-5 years and is diagnosed on evidence of progressive upper and lower motor neuron degeneration. Around 15% of those with amyotrophic lateral sclerosis also have frontotemporal degeneration, and gene mutations account for ∼10%. Amyotrophic lateral sclerosis is a variable heterogeneous disease, and it is becoming increasingly clear that numerous different disease processes culminate in the final degeneration of motor neurons. There is a profound need to clearly articulate and measure pathological process that occurs. Such information is needed to tailor treatments to individuals with amyotrophic lateral sclerosis according to an individual's pathological fingerprint. For new candidate therapies, there is also a need for methods to select patients according to expected treatment outcomes and measure the success, or not, of treatments. Biomarkers are essential tools to fulfil these needs, and urine is a rich source for candidate biofluid biomarkers. This review will describe promising candidate urinary biomarkers of amyotrophic lateral sclerosis and other possible urinary candidates in future areas of investigation as well as the limitations of urinary biomarkers.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - David W Schultz
- Neurology Department and MND Clinic, Flinders Medical Centre, Adelaide 5042, South Australia, Australia
| | - Vassilios Karnaros
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - Stephanie R Shepheard
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| |
Collapse
|
10
|
Verde F, Milone I, Colombo E, Maranzano A, Solca F, Torre S, Doretti A, Gentile F, Manini A, Bonetti R, Peverelli S, Messina S, Maderna L, Morelli C, Poletti B, Ratti A, Silani V, Ticozzi N. Phenotypic correlates of serum neurofilament light chain levels in amyotrophic lateral sclerosis. Front Aging Neurosci 2023; 15:1132808. [PMID: 37009451 PMCID: PMC10050442 DOI: 10.3389/fnagi.2023.1132808] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
ObjectiveTo investigate the relationship between serum levels of the neuroaxonal degeneration biomarker neurofilament light chain (NFL) and phenotype in ALS.Materials and methodsSerum NFL (sNFL) concentration was quantified in 209 ALS patients and 46 neurologically healthy controls (NHCs).ResultssNFL was clearly increased in ALS patients and discriminated them from NHCs with AUC = 0.9694. Among ALS patients, females had higher sNFL levels, especially in case of bulbar onset. sNFL was more increased in phenotypes with both upper (UMN) and lower motor neuron (LMN) signs, and particularly in those with UMN predominance, compared to LMN forms. At the same time, primary lateral sclerosis (PLS) had significantly lower levels compared to UMN-predominant ALS (AUC = 0.7667). sNFL correlated negatively with disease duration at sampling and ALSFRS-R score, positively with disease progression rate, differed among King’s stages, and was negatively associated with survival. It also correlated with clinical/neurophysiological indices of UMN and LMN dysfunction (Penn UMN Score, LMN score, MRC composite score, active spinal denervation score). On the contrary, sNFL was not associated with cognitive deficits nor with respiratory parameters. Notably, we found a negative correlation between sNFL and estimated glomerular filtration rate (eGFR).InterpretationWe confirm that ALS is characterized by increased sNFL levels, whose main determinant is the rate of degeneration of both UMNs and LMNs. sNFL is a biomarker of only motor, not of extra-motor, disease. The negative correlation with kidney function might reflect varying renal clearance of the molecule and deserves further investigation before introducing sNFL measurement as routine test in clinical care of ALS patients.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Federico Verde,
| | - Ilaria Milone
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Francesco Gentile
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Arianna Manini
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Ruggero Bonetti
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefano Messina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Höhn L, Hußler W, Richter A, Smalla KH, Birkl-Toeglhofer AM, Birkl C, Vielhaber S, Leber SL, Gundelfinger ED, Haybaeck J, Schreiber S, Seidenbecher CI. Extracellular Matrix Changes in Subcellular Brain Fractions and Cerebrospinal Fluid of Alzheimer’s Disease Patients. Int J Mol Sci 2023; 24:ijms24065532. [PMID: 36982604 PMCID: PMC10058969 DOI: 10.3390/ijms24065532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The brain’s extracellular matrix (ECM) is assumed to undergo rearrangements in Alzheimer’s disease (AD). Here, we investigated changes of key components of the hyaluronan-based ECM in independent samples of post-mortem brains (N = 19), cerebrospinal fluids (CSF; N = 70), and RNAseq data (N = 107; from The Aging, Dementia and TBI Study) of AD patients and non-demented controls. Group comparisons and correlation analyses of major ECM components in soluble and synaptosomal fractions from frontal, temporal cortex, and hippocampus of control, low-grade, and high-grade AD brains revealed a reduction in brevican in temporal cortex soluble and frontal cortex synaptosomal fractions in AD. In contrast, neurocan, aggrecan and the link protein HAPLN1 were up-regulated in soluble cortical fractions. In comparison, RNAseq data showed no correlation between aggrecan and brevican expression levels and Braak or CERAD stages, but for hippocampal expression of HAPLN1, neurocan and the brevican-interaction partner tenascin-R negative correlations with Braak stages were detected. CSF levels of brevican and neurocan in patients positively correlated with age, total tau, p-Tau, neurofilament-L and Aβ1-40. Negative correlations were detected with the Aβ ratio and the IgG index. Altogether, our study reveals spatially segregated molecular rearrangements of the ECM in AD brains at RNA or protein levels, which may contribute to the pathogenic process.
Collapse
Affiliation(s)
- Lukas Höhn
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Wilhelm Hußler
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Anna-Maria Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
| | - Stefan L. Leber
- Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, 8036 Graz, Austria
| | - Eckart D. Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- German Center for Neurodegenerative Disorders (DZNE), 39120 Magdeburg, Germany
| | - Constanze I. Seidenbecher
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
12
|
Diagnostic Role of Tau Proteins in Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Acta Neurol Scand 2023. [DOI: 10.1155/2023/2791622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Background. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that currently lacks reliable diagnostic biomarkers. The meta-analysis is performed with an aim to evaluate the diagnostic potential of cerebrospinal fluid (CSF) total tau (t-tau), phosphorylated-tau (p-tau), and their ratio in ALS patients. Methods. A comprehensive search for literature published between the 1st of January 2000 and the 15th of May 2022 was performed in databases PubMed, medRxiv, and Google Scholar. The retrieved articles were first screened by title and abstract, and later, full-text screening was performed based on the eligibility criteria. Data on p-tau and t-tau levels and p-tau/t-tau ratio in ALS patients and controls were extracted, and a meta-analysis was performed using random-effects models in Review Manager version 5.4. Results. Data were analyzed from seven studies reporting p-tau and t-tau levels and their ratio among ALS patients and controls. The number of total study participants was 1,100. In ALS patients, the levels of p-tau didn’t differ significantly with controls (standardized mean difference (SMD): 0.14 (95% CI: -0.41 to 0.70);
). In contrast, there were significantly elevated levels of t-tau and significantly lowered p-tau/t-tau ratio in ALS (SMD: 1.76 (95% CI: 0.53 to 2.98);
and SMD: -3.09 (95% CI: -5.33 to -0.86);
, respectively). Conclusion. Our meta-analysis study supports the role of core CSF biomarkers of neurodegeneration: t-tau and p-tau/t-tau ratio as a diagnostic biomarker of amyotrophic lateral sclerosis. This study found that t-tau is elevated while p-tau/t-tau ratio is lowered in ALS.
Collapse
|
13
|
Diagnostic utility of neurofilament markers for MND is limited in restricted disease phenotype and for differentiation from compressive myeloradiculopathies. J Neurol 2023; 270:1600-1614. [PMID: 36456758 DOI: 10.1007/s00415-022-11504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
Misdiagnosis is frequent in early motor neuron disease (MND), typically compressive radiculopathy, or in patients with restricted MND phenotype. In this retrospective, single tertiary centre study, we measured levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (p-NfH) chain in cerebrospinal fluid (CSF) and of p-NfH in serum with commercially available ELISA kits and assessed their respective diagnostic performance as a marker of MND. The entire study population (n = 164) comprised 71 MND patients, 30 patients with compressive myelo- or radiculopathy, and 63 disease controls (DC). Among MND patients, we specified subgroups with only lower motoneuron involvement (MND-LMN, n = 15) and with confounding nerve roots or spinal cord compression (MND-C, n = 18), representing clinical diagnostic pitfalls. MND-LMN displayed significantly lower CSF NfL (p = 0.003) and p-NFH (p = 0.017), but not serum p-NfH (p = 0.347) levels compared to other MND patients (n = 56). The discriminative ability (area under the curve-AUC) of both CSF Nfs towards all MND patients was comparable to each other but significantly higher than that of p-NfH in serum (ps < 0.001). AUC of both CSF Nfs between MND-LMN and DC and also between MND-C and myelo-/radiculopathies were reduced, as compared to AUC between other MND and DC or myelo-/radiculopathies, respectively. Our results suggest that both Nfs in CSF represent a reliable diagnostic marker in a general MND population, fulfilling Awaji criteria. As for diagnostic pitfalls, and also for p-NfH in serum, their discriminative ability and, therefore, clinical utility appears to be limited.
Collapse
|
14
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Gong Z, Gao L, Lu Y, Wang Z. CSF p-tau as a potential cognition impairment biomarker in ALS. Front Neurol 2022; 13:991143. [PMID: 36388201 PMCID: PMC9663818 DOI: 10.3389/fneur.2022.991143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 09/11/2023] Open
Abstract
Background Cerebrospinal fluid (CSF) and serum tau (t-tau, p-tau) are potential biomarkers for neurodegeneration in Alzheimer disease (AD), but their role in amyotrophic lateral sclerosis (ALS) is unclear. Objectives The aim of our study was to evaluate CSF and serum p-tau and t-tau in patients with ALS and to analyze the correlation and clinical parameters between them. Methods CSF and serum samples were obtained from 90 patients with ALS, 48 other neurological disease (OND), and 20 with AM (ALS mimic, AM) diseases. The levels of p-tau and t-tau in the CSF and serum were assessed with an enzyme-linked immunosorbent assay, and disease progression parameters, including the duration, the ALSFRS-R score, disease progression rate (DPR), the upper motor neuron (UMN) score, the Mini-mental State Examination (MMSE) score, the Montreal Cognitive Assessment (MoCA) score, and the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) results, were analyzed by registered neurologists. Statistical analyses were performed using Prism software. Results Compared with controls, patients with ALS displayed significantly lower levels of CSF p-tau and p-tau:t-tau ratio. The CSF p-tau level in patients with ALS and cognition impairment was higher than that in patients with ALS who did not have cognition impairment. CSF p-tau level was negatively correlated with MMSE, MoCA, and ECAS total score and the specific score of ECAS in patients with ALS and cognition impairment. Conclusions The CSF p-tau level and p-tau:t-tau ratio were lower in patients with ALS than patients with OND and AM. Results suggest that CSF p-tau may be used as an index of cognition impairment in patients with ALS.
Collapse
Affiliation(s)
- Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lina Gao
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yi Lu
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Li S, Lin J, Li C, Chen Y, Cao B, Yang T, Wei Q, Zhao B, Chen X, Shang H. Clinical and genetic study of a Chinese family affected by both amyotrophic lateral sclerosis and autosomal dominant polycystic kidney disease. Front Neurol 2022; 13:1004909. [PMID: 36341123 PMCID: PMC9630937 DOI: 10.3389/fneur.2022.1004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by loss of the upper and lower motor neurons from the motor cortex, brainstem, and spinal cord. Most ALS cases are sporadic, with 5–10% having a positive family history. Autosomal dominant polycystic kidney disease (ADPKD) is a heritable renal disease that eventually results in end-stage kidney disease. PKD1 is the most prevalent causative gene for ADPKD, accounting for ~85% of cases. Both diseases are currently considered untreatable. In this study, we report a large family that includes 10 patients with ALS phenotype, 3 asymptomatic SOD1-H47R carriers, and 6 with the ADPKD phenotype. Using whole exome sequencing, we found a novel likely pathogenic variant (p.R2787P) in PKD1 among patients with ADPKD, and a pathogenic variant (p.H47R) in SOD1 among patients with ALS. This study highlights the possibility that two different autosomal dominantly inherited diseases can co-exist independently within the same family. Phenotype—genotype correlations among these patients are also described. This research contributes novel phenotype and genotype characteristics of ALS with SOD1 mutations and ADPKD with PKD1 mutations.
Collapse
Affiliation(s)
- Shirong Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huifang Shang
| |
Collapse
|
17
|
Martínez-Payá J, Ríos-Díaz J, del Baño-Aledo M, Hervás D, Tembl-Ferrairó J, Sevilla-Mantecón T, Vázquez-Costa J. The cross-sectional area of the median nerve: An independent prognostic biomarker in amyotrophic lateral sclerosis. Neurologia 2022. [DOI: 10.1016/j.nrl.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Hußler W, Höhn L, Stolz C, Vielhaber S, Garz C, Schmitt FC, Gundelfinger ED, Schreiber S, Seidenbecher CI. Brevican and Neurocan Cleavage Products in the Cerebrospinal Fluid - Differential Occurrence in ALS, Epilepsy and Small Vessel Disease. Front Cell Neurosci 2022; 16:838432. [PMID: 35480959 PMCID: PMC9036369 DOI: 10.3389/fncel.2022.838432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The neural extracellular matrix (ECM) composition shapes the neuronal microenvironment and undergoes substantial changes upon development and aging, but also due to cerebral pathologies. In search for potential biomarkers, cerebrospinal fluid (CSF) and serum concentrations of brain ECM molecules have been determined recently to assess ECM changes during neurological conditions including Alzheimer’s disease or vascular dementia. Here, we measured the levels of two signature proteoglycans of brain ECM, neurocan and brevican, in the CSF and serum of 96 neurological patients currently understudied regarding ECM alterations: 16 cases with amyotrophic lateral sclerosis (ALS), 26 epilepsy cases, 23 cerebral small vessel disease (CSVD) patients and 31 controls. Analysis of total brevican and neurocan was performed via sandwich Enzyme-linked immunosorbent assays (ELISAs). Major brevican and neurocan cleavage products were measured in the CSF using semiquantitative immunoblotting. Total brevican and neurocan concentrations in serum and CSF did not differ between groups. The 60 kDa brevican fragment resulting from cleavage by the protease ADAMTS-4 was also found unchanged among groups. The presumably intracellularly generated 150 kDa C-terminal neurocan fragment, however, was significantly increased in ALS as compared to all other groups. This group also shows the highest correlation between cleaved and total neurocan in the CSF. Brevican and neurocan levels strongly correlated with each other across all groups, arguing for a joint but yet unknown transport mechanism from the brain parenchyma into CSF. Conclusively our findings suggest an ALS-specific pattern of brain ECM remodeling and may thus contribute to new diagnostic approaches for this disorder.
Collapse
Affiliation(s)
- Wilhelm Hußler
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lukas Höhn
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Cornelia Garz
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Friedhelm C. Schmitt
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D. Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Constanze I. Seidenbecher
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- *Correspondence: Constanze I. Seidenbecher,
| |
Collapse
|
19
|
Dreger M, Steinbach R, Otto M, Turner MR, Grosskreutz J. Cerebrospinal fluid biomarkers of disease activity and progression in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:422-435. [PMID: 35105727 PMCID: PMC8921583 DOI: 10.1136/jnnp-2021-327503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease, and only modest disease-modifying strategies have been established to date. Numerous clinical trials have been conducted in the past years, but have been severely hampered by the wide-ranging heterogeneity of both the biological origins and clinical characteristics of the disease. Thus, reliable biomarkers of disease activity are urgently needed to stratify patients into homogenous groups with aligned disease trajectories to allow a more effective design of clinical trial. In this review, the most promising candidate biomarkers in the cerebrospinal fluid (CSF) of patients with ALS will be summarised. Correlations between biomarker levels and clinical outcome parameters are discussed, while highlighting potential pitfalls and intercorrelations of these clinical parameters. Several CSF molecules have shown potential as biomarkers of progression and prognosis, but large, international, multicentric and longitudinal studies are crucial for validation. A more standardised choice of clinical endpoints in these studies, as well as the application of individualised models of clinical progression, would allow the quantification of disease trajectories, thereby allowing a more accurate analysis of the clinical implications of candidate biomarkers. Additionally, a comparative analysis of several biomarkers and ideally the application of a multivariate analysis including comprehensive genotypic, phenotypic and clinical characteristics collectively contributing to biomarker levels in the CSF, could promote their verification. Thus, reliable prognostic markers and markers of disease activity may improve clinical trial design and patient management in the direction of precision medicine.
Collapse
Affiliation(s)
- Marie Dreger
- Department of Neurology, Jena University Hospital, Jena, Thüringen, Germany
| | - Robert Steinbach
- Department of Neurology, Jena University Hospital, Jena, Thüringen, Germany
| | - Markus Otto
- Department of Neurology, University of Halle (Saale), Halle (Saale), Germany
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, Oxfordshire, UK
| | - Julian Grosskreutz
- Precision Neurology, Department of Neurology, University of Luebeck Human Medicine, Luebeck, Schleswig-Holstein, Germany
| |
Collapse
|
20
|
The Role of Tau beyond Alzheimer’s Disease: A Narrative Review. Biomedicines 2022; 10:biomedicines10040760. [PMID: 35453510 PMCID: PMC9026415 DOI: 10.3390/biomedicines10040760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, there is a need for reliable fluid biomarkers to improve differential diagnosis, prognosis, and the prediction of treatment response, particularly in the management of neurogenerative diseases that display an extreme variability in clinical phenotypes. In recent years, Tau protein has been progressively recognized as a valuable neuronal biomarker in several neurological conditions, not only Alzheimer’s disease (AD). Cerebrospinal fluid and serum Tau have been extensively investigated in several neurodegenerative disorders, from classically defined proteinopathy, e.g., amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson’s disease (PD), but also in inflammatory conditions such as multiple sclerosis (MS), as a marker of axonal damage. In MS, total Tau (t-Tau) may represent, along with other proteins, a marker with diagnostic and prognostic value. In ALS, t-Tau and, mainly, the phosphorylated-Tau/t-Tau ratio alone or integrated with transactive DNA binding protein of ~43 kDa (TDP-43), may represent a tool for both diagnosis and differential diagnosis of other motoneuron diseases or tauopathies. Evidence indicated the crucial role of the Tau protein in the pathogenesis of PD and other parkinsonian disorders. This narrative review summarizes current knowledge regarding non-AD neurodegenerative diseases and the Tau protein.
Collapse
|
21
|
Sferruzza G, Bosco L, Falzone YM, Russo T, Domi T, Quattrini A, Filippi M, Riva N. Neurofilament light chain as a biological marker for amyotrophic lateral sclerosis: a meta-analysis study. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:446-457. [PMID: 34874217 DOI: 10.1080/21678421.2021.2007952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: The aim of the present metanalysis is to evaluate blood and CSF Neurofilament light chain (NfL) concentrations in ALS patients, compared to healthy controls, ALS mimic disorders (ALSmd) and other neurological diseases (OND), and to evaluate their diagnostic yield against ALSmd. Methods: Search engines were systematically investigated for relevant studies. A random effect model was applied to estimate the pooled standard mean difference in NfL levels between ALS and controls and a bivariate mixed-effects model was applied to estimate their diagnostic accuracy on blood and CSF. Results and conclusions: NfL CSF levels were higher in ALS compared with all other control groups. On blood, NfL levels were significantly higher in ALS patients compared with healthy controls and ALSmd. In a subgroup analysis, the use of SIMOA yielded to a better differentiation between ALS and controls on blood, compared with ELISA. Studies performed on CSF (AUC = 0.90) yielded to better diagnostic performances compared with those conducted on blood (AUC = 0.78). Further prospective investigations are needed to determine a diagnostic cutoff, exploitable in clinical practice.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Bosco
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and
| | - Nilo Riva
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Su WM, Cheng YF, Jiang Z, Duan QQ, Yang TM, Shang HF, Chen YP. Predictors of survival in patients with amyotrophic lateral sclerosis: A large meta-analysis. EBioMedicine 2021; 74:103732. [PMID: 34864363 PMCID: PMC8646173 DOI: 10.1016/j.ebiom.2021.103732] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
Background The survival time of amyotrophic lateral sclerosis (ALS) is greatly variable and protective or risk effects of the potential survival predictors are controversial. Thus, we aim to undertake a comprehensive meta-analysis of studies investigating non-genetic prognostic and survival factors in patients with ALS. Methods A search of relevant literature from PubMed, Embase, Cochrane library and other citations from 1st January 1966 to 1st December 020 was conducted. Random-effects models were conducted to pool the multivariable or adjusted hazard ratios (HR) by Stata MP 16.0. PROSPERO registration number: CRD42021256923. Findings A total of 5717 reports were identified, with 115 studies meeting pre-designed inclusion criteria involving 55,169 ALS patients. Five dimensions, including demographic, environmental or lifestyle, clinical manifestations, biochemical index, therapeutic factors or comorbidities were investigated. Twenty-five prediction factors, including twenty non-intervenable and five intervenable factors, were associated with ALS survival. Among them, NFL (HR:3.70, 6.80, in serum and CSF, respectively), FTD (HR:2.98), ALSFRS-R change (HR:2.37), respiratory subtype (HR:2.20), executive dysfunction (HR:2.10) and age of onset (HR:1.03) were superior predictors for poor prognosis, but pLMN or pUMN (HR:0.32), baseline ALSFRS-R score (HR:0.95), duration (HR:0.96), diagnostic delay (HR:0.97) were superior predictors for a good prognosis. Our results did not support the involvement of gender, education level, diabetes, hypertension, NIV, gastrostomy, and statins in ALS survival. Interpretation Our study provided a comprehensive and quantitative index for assessing the prognosis for ALS patients, and the identified non-intervenable or intervenable factors will facilitate the development of treatment strategies for ALS. Funding This study was supported by the National Natural Science Fund of China (Grant No. 81971188), the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. 2019HXFH046), and the Science and Technology Bureau Fund of Sichuan Province (No. 2019YFS0216).
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang-Fan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian-Mi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Amyotrophic lateral sclerosis: Correlations between fluid biomarkers of NfL, TDP-43, and tau, and clinical characteristics. PLoS One 2021; 16:e0260323. [PMID: 34843548 PMCID: PMC8629269 DOI: 10.1371/journal.pone.0260323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We previously reported the diagnostic and prognostic performance of neurofilament light chain (NfL), TAR DNA-binding protein 43 (TDP-43), and total tau (t-tau) in cerebrospinal fluid (CSF) and plasma as amyotrophic lateral sclerosis (ALS) biomarkers. The present study aimed to elucidate associations between clinical characteristics and the markers as well as mutual associations of the markers in ALS patients using the same dataset. METHODS NfL, TDP-43, and t-tau levels in CSF and plasma in 75 ALS patients were analyzed. The associations between those markers and clinical details were investigated by uni- and multivariate analyses. Correlations between the markers were analyzed univariately. RESULTS In multivariate analysis of CSF proteins, the disease progression rate (DPR) was positively correlated with NfL (β: 0.51, p = 0.007) and t-tau (β: 0.37, p = 0.03). Plasma NfL was correlated with age (β: 0.53, p = 0.005) and diagnostic grade (β: -0.42, p = 0.02) in multivariate analysis. Plasma TDP-43 was correlated negatively with split hand index (β: -0.48, p = 0.04) and positively with % vital capacity (β: 0.64, p = 0.03) in multivariate analysis. Regarding mutual biomarker analysis, a negative correlation between CSF-NfL and TDP-43 was identified (r: -0.36, p = 0.002). CONCLUSIONS Elevated NfL and t-tau levels in CSF may be biomarkers to predict rapid DPR from onset to sample collection. The negative relationship between CSF NfL and TDP-43 suggests that elevation of CSF TDP-43 in ALS is not a simple consequence of its release into CSF during neurodegeneration. The negative correlation between plasma TDP-43 and split hand index may support the pathophysiological association between plasma TDP-43 and ALS.
Collapse
|
24
|
Petrozziello T, Amaral AC, Dujardin S, Farhan SMK, Chan J, Trombetta BA, Kivisäkk P, Mills AN, Bordt EA, Kim SE, Dooley PM, Commins C, Connors TR, Oakley DH, Ghosal A, Gomez-Isla T, Hyman BT, Arnold SE, Spires-Jones T, Cudkowicz ME, Berry JD, Sadri-Vakili G. Novel genetic variants in MAPT and alterations in tau phosphorylation in amyotrophic lateral sclerosis post-mortem motor cortex and cerebrospinal fluid. Brain Pathol 2021; 32:e13035. [PMID: 34779076 PMCID: PMC8877756 DOI: 10.1111/bpa.13035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, several studies report alterations in tau phosphorylation in both sporadic and familial ALS. Recently, we have demonstrated that phosphorylated tau at S396 (pTau‐S396) is mislocalized to synapses in ALS motor cortex (mCTX) and contributes to mitochondrial dysfunction. Here, we demonstrate that while there was no overall increase in total tau, pTau‐S396, and pTau‐S404 in ALS post‐mortem mCTX, total tau and pTau‐S396 were increased in C9ORF72‐ALS. Additionally, there was a significant decrease in pTau‐T181 in ALS mCTX compared controls. Furthermore, we leveraged the ALS Knowledge Portal and Project MinE data sets and identified ALS‐specific genetic variants across MAPT, the gene encoding tau. Lastly, assessment of cerebrospinal fluid (CSF) samples revealed a significant increase in total tau levels in bulbar‐onset ALS together with a decrease in CSF pTau‐T181:tau ratio in all ALS samples, as reported previously. While increases in CSF tau levels correlated with a faster disease progression as measured by the revised ALS functional rating scale (ALSFRS‐R), decreases in CSF pTau‐T181:tau ratio correlated with a slower disease progression, suggesting that CSF total tau and pTau‐T181 ratio may serve as biomarkers of disease in ALS. Our findings highlight the potential role of pTau‐T181 in ALS, as decreases in CSF pTau‐T181:tau ratio may reflect the significant decrease in pTau‐T181 in post‐mortem mCTX. Taken together, these results indicate that tau phosphorylation is altered in ALS post‐mortem mCTX as well as in CSF and, importantly, the newly described pathogenic or likely pathogenic variants identified in MAPT in this study are adjacent to T181 and S396 phosphorylation sites further highlighting the potential role of these tau functional domains in ALS. Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, recent studies report alterations in tau phosphorylation in ALS. Our study builds on these findings and demonstrates that tau phosphorylation is altered in post‐mortem ALS motor cortex and highlights new and ALS‐specific variants in MAPT, the gene encoding tau. Lastly, we report alterations in phosphorylated tau in ALS cerebrospinal fluid that may function as a predictive biomarker for ALS.![]()
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ana C Amaral
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - James Chan
- Biostatistics Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bianca A Trombetta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pia Kivisäkk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra N Mills
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Spencer E Kim
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick M Dooley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Theresa R Connors
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anubrata Ghosal
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Teresa Gomez-Isla
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, UK
| | - Merit E Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ghazaleh Sadri-Vakili
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Verde F, Otto M, Silani V. Neurofilament Light Chain as Biomarker for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2021; 15:679199. [PMID: 34234641 PMCID: PMC8255624 DOI: 10.3389/fnins.2021.679199] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related currently incurable neurodegenerative diseases. ALS is characterized by degeneration of upper and lower motor neurons causing relentless paralysis of voluntary muscles, whereas in FTD, progressive atrophy of the frontal and temporal lobes of the brain results in deterioration of cognitive functions, language, personality, and behavior. In contrast to Alzheimer's disease (AD), ALS and FTD still lack a specific neurochemical biomarker reflecting neuropathology ex vivo. However, in the past 10 years, considerable progress has been made in the characterization of neurofilament light chain (NFL) as cerebrospinal fluid (CSF) and blood biomarker for both diseases. NFL is a structural component of the axonal cytoskeleton and is released into the CSF as a consequence of axonal damage or degeneration, thus behaving in general as a relatively non-specific marker of neuroaxonal pathology. However, in ALS, the elevation of its CSF levels exceeds that observed in most other neurological diseases, making it useful for the discrimination from mimic conditions and potentially worthy of consideration for introduction into diagnostic criteria. Moreover, NFL correlates with disease progression rate and is negatively associated with survival, thus providing prognostic information. In FTD patients, CSF NFL is elevated compared with healthy individuals and, to a lesser extent, patients with other forms of dementia, but the latter difference is not sufficient to enable a satisfying diagnostic performance at individual patient level. However, also in FTD, CSF NFL correlates with several measures of disease severity. Due to technological progress, NFL can now be quantified also in peripheral blood, where it is present at much lower concentrations compared with CSF, thus allowing less invasive sampling, scalability, and longitudinal measurements. The latter has promoted innovative studies demonstrating longitudinal kinetics of NFL in presymptomatic individuals harboring gene mutations causing ALS and FTD. Especially in ALS, NFL levels are generally stable over time, which, together with their correlation with progression rate, makes NFL an ideal pharmacodynamic biomarker for therapeutic trials. In this review, we illustrate the significance of NFL as biomarker for ALS and FTD and discuss unsolved issues and potential for future developments.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Dreger M, Steinbach R, Gaur N, Metzner K, Stubendorff B, Witte OW, Grosskreutz J. Cerebrospinal Fluid Neurofilament Light Chain (NfL) Predicts Disease Aggressiveness in Amyotrophic Lateral Sclerosis: An Application of the D50 Disease Progression Model. Front Neurosci 2021; 15:651651. [PMID: 33889072 PMCID: PMC8056017 DOI: 10.3389/fnins.2021.651651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder. As previous therapeutic trials in ALS have been severely hampered by patients’ heterogeneity, the identification of biomarkers that reliably reflect disease progression represents a priority in ALS research. Here, we used the D50 disease progression model to investigate correlations between cerebrospinal fluid (CSF) neurofilament light chain (NfL) levels and disease aggressiveness. The D50 model quantifies individual disease trajectories for each ALS patient. The value D50 provides a unified measure of a patient’s overall disease aggressiveness (defined as time taken in months to lose 50% of functionality). The relative D50 (rD50) reflects the individual disease covered and can be calculated for any time point in the disease course. We analyzed clinical data from a well-defined cohort of 156 patients with ALS. The concentration of NfL in CSF samples was measured at two different laboratories using the same procedure. Based on patients’ individual D50 values, we defined subgroups with high (<20), intermediate (20–40), or low (>40) disease aggressiveness. NfL levels were compared between these subgroups via analysis of covariance, using an array of confounding factors: age, gender, clinical phenotype, frontotemporal dementia, rD50-derived disease phase, and analyzing laboratory. We found highly significant differences in NfL concentrations between all three D50 subgroups (p < 0.001), representing an increase of NfL levels with increasing disease aggressiveness. The conducted analysis of covariance showed that this correlation was independent of gender, disease phenotype, and phase; however, age, analyzing laboratory, and dementia significantly influenced NfL concentration. We could show that CSF NfL is independent of patients’ disease covered at the time of sampling. The present study provides strong evidence for the potential of NfL to reflect disease aggressiveness in ALS and in addition proofed to remain at stable levels throughout the disease course. Implementation of CSF NfL as a potential read-out for future therapeutic trials in ALS is currently constrained by its demonstrated susceptibility to (pre-)analytical variations. Here we show that the D50 model enables the discovery of correlations between clinical characteristics and CSF analytes and can be recommended for future studies evaluating potential biomarkers.
Collapse
Affiliation(s)
- Marie Dreger
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Robert Steinbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Klara Metzner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
27
|
Agnello L, Colletti T, Lo Sasso B, Vidali M, Spataro R, Gambino CM, Giglio RV, Piccoli T, Bivona G, La Bella V, Ciaccio M. Tau protein as a diagnostic and prognostic biomarker in amyotrophic lateral sclerosis. Eur J Neurol 2021; 28:1868-1875. [PMID: 33638255 DOI: 10.1111/ene.14789] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE To test the hypothesis that total tau (tTau), tau phosphorylated at threonine 181 (pTau) and pTau/tTau ratio in the cerebrospinal fluid (CSF) are diagnostic and prognostic biomarkers of amyotrophic lateral sclerosis (ALS), we performed a retrospective observational study in a large cohort of ALS patients and controls. METHODS We enrolled 196 ALS patients and 91 controls, who included patients with ALS-mimicking diseases and those with non-neurodegenerative diseases. All patients underwent lumbar puncture for CSF analysis at the time of the diagnostic evaluation or to first referral. We measured tTau and pTau levels in the CSF by chemiluminescence enzyme immunoassay. RESULTS Patients with ALS showed significantly higher levels of CSF tTau and a lower pTau/tTau ratio than controls (tTau: 245 vs. 146 pg/ml; p < 0.001; pTau/tTau ratio: 0.12 vs. 0.18; p < 0.001, respectively). No differences in pTau levels were detected. Receiver-operating characteristic curve analysis showed a good diagnostic accuracy of tTau and pTau/tTau ratio (tTau: area under the curve [AUC] 0.685, 95% confidence interval [CI] 0.616-0.754, p = 0.039; pTau/tTau ratio: AUC 0.777, 95% CI 0.707-0.848, p < 0.001). Among ALS patients, increased tTau levels were associated with advanced age of onset, increased revised amyotrophic lateral sclerosis functional rating scale (ALSFRS-R) score (ΔFS) rate of progression, and spinal onset. Multivariate analysis showed that in ALS patients, this biomarker was an independent negative predictor of overall survival. CONCLUSIONS Our findings suggest that tTau and pTau/tTau ratio can be diagnostic biomarkers of ALS. In addition, CSF tTau level at diagnosis might play a relevant prognostic role in the disease.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Tiziana Colletti
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy.,Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Matteo Vidali
- Unit of Clinical Chemistry, Maggiore della Carità Hospital, Novara, Italy
| | | | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Tommaso Piccoli
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy.,Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| |
Collapse
|
28
|
Ng Kee Kwong KC, Harbham PK, Selvaraj BT, Gregory JM, Pal S, Hardingham GE, Chandran S, Mehta AR. 40 Years of CSF Toxicity Studies in ALS: What Have We Learnt About ALS Pathophysiology? Front Mol Neurosci 2021; 14:647895. [PMID: 33815058 PMCID: PMC8012723 DOI: 10.3389/fnmol.2021.647895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Based on early evidence of in vitro neurotoxicity following exposure to serum derived from patients with amyotrophic lateral sclerosis (ALS), several studies have attempted to explore whether cerebrospinal fluid (CSF) obtained from people with ALS could possess similar properties. Although initial findings proved inconclusive, it is now increasingly recognized that ALS-CSF may exert toxicity both in vitro and in vivo. Nevertheless, the mechanism underlying CSF-induced neurodegeneration remains unclear. This review aims to summarize the 40-year long history of CSF toxicity studies in ALS, while discussing the various mechanisms that have been proposed, including glutamate excitotoxicity, proteotoxicity and oxidative stress. Furthermore, we consider the potential implications of a toxic CSF circulatory system in the pathophysiology of ALS, and also assess its significance in the context of current ALS research.
Collapse
Affiliation(s)
| | - Pratap K. Harbham
- West Midlands Academic Foundation Programme, University of Birmingham, Birmingham, United Kingdom
| | - Bhuvaneish T. Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jenna M. Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Pathology, University of Edinburgh, Edinburgh, United Kingdom
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E. Hardingham
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, InStem, Bengaluru, India
| | - Arpan R. Mehta
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
30
|
Momenzadeh N, Hafezalseheh H, Nayebpour M, Fathian M, Noorossana R. A hybrid machine learning approach for predicting survival of patients with prostate cancer: A SEER-based population study. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Falzone YM, Russo T, Domi T, Pozzi L, Quattrini A, Filippi M, Riva N. Current application of neurofilaments in amyotrophic lateral sclerosis and future perspectives. Neural Regen Res 2021; 16:1985-1991. [PMID: 33642372 PMCID: PMC8343335 DOI: 10.4103/1673-5374.308072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Motor neuron disease includes a heterogeneous group of relentless progressive neurological disorders defined and characterized by the degeneration of motor neurons. Amyotrophic lateral sclerosis is the most common and aggressive form of motor neuron disease with no effective treatment so far. Unfortunately, diagnostic and prognostic biomarkers are lacking in clinical practice. Neurofilaments are fundamental structural components of the axons and neurofilament light chain and phosphorylated neurofilament heavy chain can be measured in both cerebrospinal fluid and serum. Neurofilament light chain and phosphorylated neurofilament heavy chain levels are elevated in amyotrophic lateral sclerosis, reflecting the extensive damage of motor neurons and axons. Hence, neurofilaments are now increasingly recognized as the most promising candidate biomarker in amyotrophic lateral sclerosis. The potential usefulness of neurofilaments regards various aspects, including diagnosis, prognosis, patient stratification in clinical trials and evaluation of treatment response. In this review paper, we review the body of literature about neurofilaments measurement in amyotrophic lateral sclerosis. We also discuss the open issues concerning the use of neurofilaments clinical practice, as no overall guideline exists to date; finally, we address the most recent evidence and future perspectives.
Collapse
Affiliation(s)
- Yuri Matteo Falzone
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit; Neurophysiology Unit, IRCCS San Raffaele Scientific Institute; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Rafaele University, Milan, Italy
| | - Nilo Riva
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
32
|
Machts J, Keute M, Kaufmann J, Schreiber S, Kasper E, Petri S, Prudlo J, Vielhaber S, Schoenfeld MA. Longitudinal clinical and neuroanatomical correlates of memory impairment in motor neuron disease. Neuroimage Clin 2020; 29:102545. [PMID: 33387861 PMCID: PMC7786131 DOI: 10.1016/j.nicl.2020.102545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/21/2020] [Accepted: 12/20/2020] [Indexed: 12/31/2022]
Abstract
Memory impairment in motor neuron disease (MND) is still an underrecognized feature and has traditionally been attributed to executive dysfunction. Here, we investigate the rate of memory impairment in a longitudinal cohort of MND patients, its relationship to other cognitive functions and the underlying neuroanatomical correlates. 142 patients with MND and 99 healthy controls (HC) underwent comprehensive neuropsychological testing and structural MRI at 3T up to four times over a period of 18 months. Linear-mixed effects models were fitted to identify changes at baseline and over time in episodic memory function (learning, immediate and delayed recall, recognition), composed cognitive scores (memory, verbal fluency, executive function), and memory-related structural brain regions (hippocampus, entorhinal cortex, parahippocampal gyrus). Associations between episodic memory performance and volumetric or cortical thickness changes of these regions were computed using Pearson's r. Learning, immediate and delayed recall, as well as recognition performance were significantly reduced in MND when compared to controls at baseline. Performances in these subtests improved over time although MND showed less improvement than controls. This relationship did not change when only "classical" ALS patients were considered. Patients with MND showed thinning of the right parahippocampal gyrus (PhG) in comparison to controls that was progressing over time. Bilateral hippocampal atrophy was observed in MND patients with memory impairment after splitting the group according to their overall episodic memory performance, with the right hippocampus shrinking over time. In MND patients, the bilateral hippocampal atrophy was associated with impairment in learning, recall, and recognition at baseline. In contrast, left PhG thinning was associated with a poorer learning performance. These results show that episodic memory impairment in MND is a frequent cognitive dysfunction. Since deficits are not clearly declining with disease course, an early involvement of this cognitive domain in the disease seems probable. The memory performance-dependent atrophy of the hippocampus and PhG provide evidence for a widespread involvement of these non-motor cortical areas in disease pathology.
Collapse
Affiliation(s)
- Judith Machts
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), site Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg, Germany.
| | - Marius Keute
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany
| | - Joern Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), site Magdeburg, Germany
| | - Elisabeth Kasper
- German Center for Neurodegenerative Diseases (DZNE), site Rostock, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Germany
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases (DZNE), site Rostock, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), site Magdeburg, Germany
| | - Mircea Ariel Schoenfeld
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Kliniken Schmieder, Heidelberg, Germany
| |
Collapse
|
33
|
Andrés-Benito P, Povedano M, Domínguez R, Marco C, Colomina MJ, López-Pérez Ó, Santana I, Baldeiras I, Martínez-Yelámos S, Zerr I, Llorens F, Fernández-Irigoyen J, Santamaría E, Ferrer I. Increased C-X-C Motif Chemokine Ligand 12 Levels in Cerebrospinal Fluid as a Candidate Biomarker in Sporadic Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21228680. [PMID: 33213069 PMCID: PMC7698527 DOI: 10.3390/ijms21228680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) is a fatal progressive neurodegenerative disease affecting upper and lower motor neurons. Biomarkers are useful to facilitate the diagnosis and/or prognosis of patients and to reveal possible mechanistic clues about the disease. This study aimed to identify and validate selected putative biomarkers in the cerebrospinal fluid (CSF) of sALS patients at early disease stages compared with age-matched controls and with other neurodegenerative diseases including Alzheimer disease (AD), spinal muscular atrophy type III (SMA), frontotemporal dementia behavioral variant (FTD), and multiple sclerosis (MS). SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for protein quantitation, and ELISA for validation, were used in CSF samples of sALS cases at early stages of the disease. Analysis of mRNA and protein expression was carried out in the anterior horn of the lumbar spinal cord in post-mortem tissue of sALS cases (terminal stage) and controls using RTq-PCR, and Western blotting, and immunohistochemistry, respectively. SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 51 differentially expressed proteins in the CSF in sALS. Receiver operating characteristic (ROC) curves showed CXCL12 to be the most valuable candidate biomarker. We validated the values of CXCL12 in CSF with ELISA in two different cohorts. Besides sALS, increased CXCL12 levels were found in MS but were not altered in AD, SMA, and FTD. Therefore, increased CXCL12 levels in the CSF can be useful in the diagnoses of MS and sALS in the context of the clinical settings. CXCL12 immunoreactivity was localized in motor neurons in control and sALS, and in a few glial cells in sALS at the terminal stage; CXCR4 was in a subset of oligodendroglial-like cells and axonal ballooning of motor neurons in sALS; and CXCR7 in motor neurons in control and sALS, and reactive astrocytes in the pyramidal tracts in terminal sALS. CXCL12/CXCR4/CXCR7 axis in the spinal cord probably plays a complex role in inflammation, oligodendroglial and astrocyte signaling, and neuronal and axonal preservation in sALS.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Correspondence: (P.A.-B.); (I.F.); Tel./Fax: +34-94-403-5808 (P.A.-B. & I.F.)
| | - Mònica Povedano
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Raúl Domínguez
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
| | - Carla Marco
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
| | - Maria J. Colomina
- Anesthesia and Critical Care Department, Bellvitge University Hospital-University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Óscar López-Pérez
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Isabel Santana
- Neurology Department, CHUC—Centro Hospitalar e Universitário de Coimbra, CNC—Center for Neuroscience and Cell Biology; and Faculty of Medicine, University of Coimbra, 3000-456 Coimbra, Portugal; (I.S.); (I.B.)
| | - Inês Baldeiras
- Neurology Department, CHUC—Centro Hospitalar e Universitário de Coimbra, CNC—Center for Neuroscience and Cell Biology; and Faculty of Medicine, University of Coimbra, 3000-456 Coimbra, Portugal; (I.S.); (I.B.)
| | - Sergio Martínez-Yelámos
- Multiple Sclerosis Unit, Service of Neurology, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Franc Llorens
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- IDISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Enrique Santamaría
- IDISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Correspondence: (P.A.-B.); (I.F.); Tel./Fax: +34-94-403-5808 (P.A.-B. & I.F.)
| |
Collapse
|
34
|
Spotorno N, Lindberg O, Nilsson C, Landqvist Waldö M, van Westen D, Nilsson K, Vestberg S, Englund E, Zetterberg H, Blennow K, Lätt J, Markus N, Lars-Olof W, Alexander S. Plasma neurofilament light protein correlates with diffusion tensor imaging metrics in frontotemporal dementia. PLoS One 2020; 15:e0236384. [PMID: 33108404 PMCID: PMC7591030 DOI: 10.1371/journal.pone.0236384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022] Open
Abstract
Neurofilaments are structural components of neurons and are particularly abundant in highly myelinated axons. The levels of neurofilament light chain (NfL) in both cerebrospinal fluid (CSF) and plasma have been related to degeneration in several neurodegenerative conditions including frontotemporal dementia (FTD) and NfL is currently considered as the most promising diagnostic and prognostic fluid biomarker in FTD. Although the location and function of filaments in the healthy nervous system suggests a link between increased NfL and white matter degeneration, such a claim has not been fully elucidated in vivo, especially in the context of FTD. The present study provides evidence of an association between the plasma levels of NfL and white matter involvement in behavioral variant FTD (bvFTD) by relating plasma concentration of NfL to diffusion tensor imaging (DTI) metrics in a group of 20 bvFTD patients. The results of both voxel-wise and tract specific analysis showed that increased plasma NfL concentration is associated with a reduction in fractional anisotropy (FA) in a widespread set of white matter tracts including the superior longitudinal fasciculus, the fronto-occipital fasciculus the anterior thalamic radiation and the dorsal cingulum bundle. Plasma NfL concentration also correlated with cortical thinning in a portion of the right medial prefrontal cortex and of the right lateral orbitofrontal cortex. These results support the hypothesis that blood NfL levels reflect the global level of neurodegeneration in bvFTD and help to advance our understanding of the association between this blood biomarker for FTD and the disease process.
Collapse
Affiliation(s)
- Nicola Spotorno
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Christer Nilsson
- Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Landqvist Waldö
- Department of clinical Sciences, Clinical Sciences Helsingborg, Lund, Lund University, Lund, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Nilsson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | | | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Nilsson Markus
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Wahlund Lars-Olof
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Santillo Alexander
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| |
Collapse
|
35
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
36
|
Schreiber S, Vielhaber S, Schreiber F, Cartwright MS. Peripheral nerve imaging in amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 131:2315-2326. [DOI: 10.1016/j.clinph.2020.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
|
37
|
Ng Kee Kwong KC, Gregory JM, Pal S, Chandran S, Mehta AR. Cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis: a systematic review of in vitro studies. Brain Commun 2020; 2:fcaa121. [PMID: 33094283 PMCID: PMC7566327 DOI: 10.1093/braincomms/fcaa121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Various studies have suggested that a neurotoxic cerebrospinal fluid profile could be implicated in amyotrophic lateral sclerosis. Here, we systematically review the evidence for cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis and explore its clinical correlates. We searched the following databases with no restrictions on publication date: PubMed, Embase and Web of Science. All studies that investigated cytotoxicity in vitro following exposure to cerebrospinal fluid from amyotrophic lateral sclerosis patients were considered for inclusion. Meta-analysis could not be performed, and findings were instead narratively summarized. Twenty-eight studies were included in our analysis. Both participant characteristics and study conditions including cerebrospinal fluid concentration, exposure time and culture model varied considerably across studies. Of 22 studies assessing cell viability relative to controls, 19 studies reported a significant decrease following exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis, while three early studies failed to observe any difference. Seven of eight studies evaluating apoptosis observed significant increases in the levels of apoptotic markers following exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis, with the remaining study reporting a qualitative difference. Although five studies investigated the possible relationship between cerebrospinal fluid cytotoxicity and patient characteristics, such as age, gender and disease duration, none demonstrated an association with any of the factors. In conclusion, our analysis suggests that cerebrospinal fluid cytotoxicity is a feature of sporadic and possibly also of familial forms of amyotrophic lateral sclerosis. Further research is, however, required to better characterize its underlying mechanisms and to establish its possible contribution to amyotrophic lateral sclerosis pathophysiology.
Collapse
Affiliation(s)
| | - Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Centre for Brain Development and Repair, inStem, Bangalore, India
| | - Arpan R Mehta
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Dörner M, Schreiber F, Stephanik H, Tempelmann C, Winter N, Stahl JH, Wittlinger J, Willikens S, Kramer M, Heinze HJ, Vielhaber S, Schelle T, Grimm A, Schreiber S. Peripheral Nerve Imaging Aids in the Diagnosis of Immune-Mediated Neuropathies-A Case Series. Diagnostics (Basel) 2020; 10:E535. [PMID: 32751486 PMCID: PMC7459443 DOI: 10.3390/diagnostics10080535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diagnosis of immune-mediated neuropathies and their differentiation from amyotrophic lateral sclerosis (ALS) can be challenging, especially at early disease stages. Accurate diagnosis is, however, important due to the different prognosis and available treatment options. We present one patient with a left-sided dorsal flexor paresis and initial suspicion of ALS and another with multifocal sensory deficits. In both, peripheral nerve imaging was the key for diagnosis. METHODS We performed high-resolution nerve ultrasound (HRUS) and 7T or 3T magnetic resonance neurography (MRN). RESULTS In both patients, HRUS revealed mild to severe, segmental or inhomogeneous, nerve enlargement at multiple sites, as well as an area increase of isolated fascicles. MRN depicted T2 hyperintense nerves with additional contrast-enhancement. DISCUSSION Peripheral nerve imaging was compatible with the respective diagnosis of an immune-mediated neuropathy, i.e., multifocal motor neuropathy (MMN) in patient 1 and multifocal acquired demyelinating sensory and motor neuropathy (MADSAM) in patient 2. Peripheral nerve imaging, especially HRUS, should play an important role in the diagnostic work-up for immune-mediated neuropathies and their differentiation from ALS.
Collapse
Affiliation(s)
- Marc Dörner
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (N.W.); (J.-H.S.); (J.W.); (S.W.); (M.K.); (A.G.)
| | - Frank Schreiber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (F.S.); (H.S.); (C.T.); (H.-J.H.); (S.V.); (S.S.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Heike Stephanik
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (F.S.); (H.S.); (C.T.); (H.-J.H.); (S.V.); (S.S.)
| | - Claus Tempelmann
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (F.S.); (H.S.); (C.T.); (H.-J.H.); (S.V.); (S.S.)
| | - Natalie Winter
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (N.W.); (J.-H.S.); (J.W.); (S.W.); (M.K.); (A.G.)
| | - Jan-Hendrik Stahl
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (N.W.); (J.-H.S.); (J.W.); (S.W.); (M.K.); (A.G.)
| | - Julia Wittlinger
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (N.W.); (J.-H.S.); (J.W.); (S.W.); (M.K.); (A.G.)
| | - Sophia Willikens
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (N.W.); (J.-H.S.); (J.W.); (S.W.); (M.K.); (A.G.)
| | - Magdalena Kramer
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (N.W.); (J.-H.S.); (J.W.); (S.W.); (M.K.); (A.G.)
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (F.S.); (H.S.); (C.T.); (H.-J.H.); (S.V.); (S.S.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Leibniz Institue for Neurobiology (LIN), 39120 Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (F.S.); (H.S.); (C.T.); (H.-J.H.); (S.V.); (S.S.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Thomas Schelle
- Department of Neurology, Städtisches Klinikum Dessau, 06847 Dessau, Germany;
| | - Alexander Grimm
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (N.W.); (J.-H.S.); (J.W.); (S.W.); (M.K.); (A.G.)
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (F.S.); (H.S.); (C.T.); (H.-J.H.); (S.V.); (S.S.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), 39120 Magdeburg, Germany
| |
Collapse
|
39
|
Gordon BA. Neurofilaments in disease: what do we know? Curr Opin Neurobiol 2020; 61:105-115. [PMID: 32151970 PMCID: PMC7198337 DOI: 10.1016/j.conb.2020.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Neurofilaments are proteins selectively expressed in the cytoskeleton of neurons, and increased levels are a marker of damage. Elevated neurofilament levels can serve as a marker of ongoing disease activity as well as a tool to measure response to therapeutic intervention. The potential utility of neurofilaments has drastically increased as recent advances have made it possible to measure levels in both the cerebrospinal fluid and blood. There is mounting evidence that neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (NfH) are abnormal in a host of neurodegenerative diseases. In this review we examine how both of these proteins behave across diseases and what we know about how these biomarkers relate to in vivo white matter pathology and each other.
Collapse
Affiliation(s)
- Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA.
| |
Collapse
|
40
|
Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in amyotrophic lateral sclerosis. J Neurol 2020; 267:1699-1708. [DOI: 10.1007/s00415-020-09761-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
|
41
|
The upper cervical spinal cord in ALS assessed by cross-sectional and longitudinal 3T MRI. Sci Rep 2020; 10:1783. [PMID: 32020025 PMCID: PMC7000761 DOI: 10.1038/s41598-020-58687-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
The upper cervical spinal cord is measured in a large longitudinal amyotrophic lateral sclerosis (ALS) cohort to evaluate its role as a biomarker. Specifically, the cervical spinal cord´s cross-sectional area (CSA) in plane of the segments C1–C3 was measured semi-automatically with T1-weighted 3T MRI sequences in 158 ALS patients and 86 controls. Six-month longitudinal follow-up MRI scans were analyzed in 103 patients. Compared to controls, in ALS there was a significant mean spinal cord atrophy (63.8 mm² vs. 60.8 mm², p = 0.001) which showed a trend towards worsening over time (mean spinal cord CSA decrease from 61.4 mm² to 60.6 mm² after 6 months, p = 0.06). Findings were most pronounced in the caudal segments of the upper cervical spinal cord and in limb-onset ALS. Baseline CSA was related to the revised ALS functional rating scale, disease duration, precentral gyrus thickness and total brain gray matter volume. In conclusion, spinal cord atrophy as assessed in brain MRIs in ALS patients mirrors the extent of overall neurodegeneration and parallels disease severity.
Collapse
|
42
|
Kareem O, Bader GN, Pottoo FH, Amir M, Barkat MA, Pandey M. Beclin 1 Complex and Neurodegenerative Disorders. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Beclin1 is the mammalian orthologue of yeast Atg6/vacuolar protein sorting-30 (VPS30). Beclin1 interacts with various biological macromolecules like ATG14, BIF-1, NRBF2, RUBICON, UVRAG, AMBRA1, HMGB1, PINK1, and PARKIN. Such interactions promote Beclin1-PI3KC3 complex formation. Autophagy is blocked in apoptosis owing to the breakdown of Beclin1 by caspase whereas autophagy induction inhibits effector caspase degradation, therefore, blocks apoptosis. Thus, the Beclin1 is an essential biomolecular species for cross-regulation between autophagy and apoptosis. Various studies carried out in neurodegenerative animal models associated with aggregated proteins have confirmed that multifunctional Beclin1 protein is necessary for neuronal integrity. The role of Beclin1 protein has been investigated and was reported in various human neurodegeneration disorders. This chapter aims to provide an insight into the role of Beclin1 in the development of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ozaifa Kareem
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Mohd. Amir
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al-Batin, Saudi Arabia
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, India
| |
Collapse
|
43
|
Alirezaei Z, Pourhanifeh MH, Borran S, Nejati M, Mirzaei H, Hamblin MR. Neurofilament Light Chain as a Biomarker, and Correlation with Magnetic Resonance Imaging in Diagnosis of CNS-Related Disorders. Mol Neurobiol 2020; 57:469-491. [PMID: 31385229 PMCID: PMC6980520 DOI: 10.1007/s12035-019-01698-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
The search for diagnostic and prognostic biomarkers for neurodegenerative conditions is of high importance, since these disorders may present difficulties in differential diagnosis. Biomarkers with high sensitivity and specificity are required. Neurofilament light chain (NfL) is a unique biomarker related to axonal damage and neural cell death, which is elevated in a number of neurological disorders, and can be detected in cerebrospinal fluid (CSF), as well as blood, serum, or plasma samples. Although the NfL concentration in CSF is higher than that in blood, blood measurement may be easier in practice due to its lesser invasiveness, reproducibility, and convenience. Many studies have investigated NfL in both CSF and serum/plasma as a potential biomarker of neurodegenerative disorders. Neuroimaging biomarkers can also potentially improve detection of CNS-related disorders at an early stage. Magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) are sensitive techniques to visualize neuroaxonal loss. Therefore, investigating the combination of NfL levels with indices extracted from MRI and DTI scans could potentially improve diagnosis of CNS-related disorders. This review summarizes the evidence for NfL being a reliable biomarker in the early detection and disease management in several CNS-related disorders. Moreover, we highlight the correlation between MRI and NfL and ask whether they can be combined.
Collapse
Affiliation(s)
- Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
44
|
Kasai T, Kojima Y, Ohmichi T, Tatebe H, Tsuji Y, Noto YI, Kitani-Morii F, Shinomoto M, Allsop D, Mizuno T, Tokuda T. Combined use of CSF NfL and CSF TDP-43 improves diagnostic performance in ALS. Ann Clin Transl Neurol 2019; 6:2489-2502. [PMID: 31742901 PMCID: PMC6917342 DOI: 10.1002/acn3.50943] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To determine the diagnostic and prognostic significance of neurofilament light chain (NfL), TAR DNA-binding protein 43 (TDP-43), and total tau (t-tau) in cerebrospinal fluid (CSF) and plasma of patients with amyotrophic lateral sclerosis (ALS) and to investigate whether the combined use of those biomarker candidates can improve their diagnostic performance. METHODS This was a single-center, prospective, longitudinal study. CSF and plasma samples were collected at the time of enrollment from a discovery cohort of 29 patients with ALS and 29 age-matched controls without neurodegenerative disease. In a validation cohort, there were 46 patients with ALS, and 46 control (not age-matched) patients with motor weakness resulting from neuromuscular diseases. NfL, TDP-43, and t-tau levels in CSF and plasma were measured using ultrasensitive single molecule assay (Simoa) technology. RESULTS The following findings were reproducibly observed among the discovery and validation cohorts: increased levels of CSF NfL, plasma NfL, and CSF TDP-43 in ALS compared with control groups; shorter survival associated with higher levels of CSF and plasma NfL. When the CSF NfL and CSF TDP-43 levels were combined, the areas under the ROC curves (AUC) were slightly improved relative to AUCs for each biomarker alone. INTERPRETATION CSF and plasma NfL may not only serve as diagnostic biomarkers but also provide a measure of disease progression. CSF TDP-43 is also useful as a diagnostic biomarker of ALS, but has no prognostic value. The combined use of CSF NfL and CSF TDP-43 may be a useful biomarker for the diagnosis of ALS.
Collapse
Affiliation(s)
- Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Yuta Kojima
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Takuma Ohmichi
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Harutsugu Tatebe
- Department of Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Yukiko Tsuji
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Yu-Ichi Noto
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Fukiko Kitani-Morii
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Makiko Shinomoto
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan.,Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| |
Collapse
|
45
|
Theme 6 Tissue biomarkers. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:206-216. [DOI: 10.1080/21678421.2019.1646994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
|
47
|
Wang X, Zhang J, Zhou L, Xu B, Ren X, He K, Nie L, Li X, Liu J, Yang X, Yuan J. Long-term iron exposure causes widespread molecular alterations associated with memory impairment in mice. Food Chem Toxicol 2019; 130:242-252. [PMID: 31136779 DOI: 10.1016/j.fct.2019.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
Limited literature available indicates the neurotoxic effects of excessive iron, however, a deep understanding of iron neurotoxicity needs to be developed. In this study, we evaluated the toxic effects of excessive iron on learning and cognitive function in long-term iron exposure (oral, 10 mg/L, 6 months) of mice by behavioral tests including novel object recognition test, step-down passive avoidance test and Morris water maze test, and further analyzed differential expression of hippocampal proteins. The behavioral tests consistently showed that iron treatment caused cognitive defects of the mice. Proteomic analysis revealed 66 differentially expressed hippocampal proteins (30 increased and 36 decreased) in iron-treated mice as compared with the control ones. Bioinformatics analysis showed that the dysregulated proteins mainly included: synapse-associated proteins (i.e. synaptosomal-associated protein 25 (SNAP25), complexin-1 (CPLX1), vesicle-associated membrane protein 2 (VAMP2), neurochondrin (NCDN)); mitochondria-related proteins (i.e. ADP/ATP translocase 1 (SLC25A4), 14-3-3 protein zeta/delta (YWHAZ)); cytoskeleton proteins (i.e. neurofilament light polypeptide (NEFL), tubulin beta-2B chain (TUBB2B), tubulin alpha-4A chain (TUBA4A)). The findings suggest that the dysregulations of synaptic, mitochondrial, and cytoskeletal proteins may be involved in iron-triggered memory impairment. This study provides new insights into the molecular mechanisms of iron neurotoxicity.
Collapse
Affiliation(s)
- Xian Wang
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Jiafei Zhang
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xiao Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China.
| | - Jing Yuan
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
48
|
Proteomic analysis of protein homeostasis and aggregation. J Proteomics 2018; 198:98-112. [PMID: 30529741 DOI: 10.1016/j.jprot.2018.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) refers to the ability of cells to preserve the correct balance between protein synthesis, folding and degradation. Proteostasis is essential for optimal cell growth and survival under stressful conditions. Various extracellular and intracellular stresses including heat shock, oxidative stress, proteasome malfunction, mutations and aging-related modifications can result in disturbed proteostasis manifested by enhanced misfolding and aggregation of proteins. To limit protein misfolding and aggregation cells have evolved various strategies including molecular chaperones, proteasome system and autophagy. Molecular chaperones assist folding of proteins, protect them from denaturation and facilitate renaturation of the misfolded polypeptides, whereas proteasomes and autophagosomes remove the irreversibly damaged proteins. The impairment of proteostasis results in protein aggregation that is a major pathological hallmark of numerous age-related disorders, such as cataract, Alzheimer's, Parkinson's, Huntington's, and prion diseases. To discover protein markers and speed up diagnosis of neurodegenerative diseases accompanied by protein aggregation, proteomic tools have increasingly been used in recent years. Systematic and exhaustive analysis of the changes that occur in the proteomes of affected tissues and biofluids in humans or in model organisms is one of the most promising approaches to reveal mechanisms underlying protein aggregation diseases, improve their diagnosis and develop therapeutic strategies. Significance: In this review we outline the elements responsible for maintaining cellular proteostasis and present the overview of proteomic studies focused on protein-aggregation diseases. These studies provide insights into the mechanisms responsible for age-related disorders and reveal new potential biomarkers for Alzheimer's, Parkinson's, Huntigton's and prion diseases.
Collapse
|