1
|
Yuan X, Piao L, Wang L, Han X, Zhuang M, Liu Z. Pivotal roles of protein 4.1B/DAL‑1, a FERM‑domain containing protein, in tumor progression (Review). Int J Oncol 2019; 55:979-987. [PMID: 31545421 DOI: 10.3892/ijo.2019.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1B/DAL‑1, encoded by erythrocyte membrane protein band 4.1‑like 3 (EPB41L3), belongs to the protein 4.1 superfamily, a group of proteins that share a conserved four.one‑ezrin‑radixin‑moesin (FERM) domain. Protein 4.1B/DAL‑1 serves a crucial role in cytoskeletal organization and a number of processes through multiple interactions with membrane proteins via its FERM, spectrin‑actin‑binding and C‑terminal domains. A number of studies have indicated that a loss of EPB41L3 expression is commonly observed in lung cancer, breast cancer, esophageal squamous cell carcinoma and meningiomas. DNA methylation and a loss of heterozygosity have been reported to contribute to the downregulation of EPB41L3. To date, the biological functions of protein 4.1B/DAL‑1 in carcinogenesis remain unknown. The present review summarizes the current understanding of the role of protein 4.1B/DAL‑1 in cancer and highlights its potential as a cancer diagnostic and prognostic biomarker in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Yuan
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, P.R. China
| | - Luhui Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xu Han
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ming Zhuang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhiwei Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
2
|
O’Beirne SL, Salit J, Rodriguez-Flores JL, Staudt MR, Abi Khalil C, Fakhro KA, Robay A, Ramstetter MD, Malek JA, Zirie M, Jayyousi A, Badii R, Al-Nabet Al-Marri A, Bener A, Mahmoud M, Chiuchiolo MJ, Al-Shakaki A, Chidiac O, Stadler D, Mezey JG, Crystal RG. Exome sequencing-based identification of novel type 2 diabetes risk allele loci in the Qatari population. PLoS One 2018; 13:e0199837. [PMID: 30212457 PMCID: PMC6136697 DOI: 10.1371/journal.pone.0199837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) susceptibility is influenced by genetic and lifestyle factors. To date, the majority of genetic studies of T2D have been in populations of European and Asian descent. The focus of this study is on genetic variations underlying T2D in Qataris, a population with one of the highest incidences of T2D worldwide. RESULTS Illumina HiSeq exome sequencing was performed on 864 Qatari subjects (574 T2D cases, 290 controls). Sequence kernel association test (SKAT) gene-based analysis identified an association for low frequency potentially deleterious variants in 6 genes. However, these findings were not replicated by SKAT analysis in an independent cohort of 12,699 exomes, primarly due to the absence of low frequency potentially deleterious variants in 5 of the 6 genes. Interestingly one of the genes identified, catenin beta 1 (CTNNB1, β-catenin), is the key effector of the Wnt pathway and interacts with the nuclear receptor transcription factor 7-like 2 (TCF7L2), variants which are the most strongly associated with risk of developing T2D worldwide. Single variant analysis did not identify any associated variants, suggesting the SKAT association signal was not driven by individual variants. None of the 6 associated genes were among 634 previously described T2D genes. CONCLUSIONS The observation that genes not previously linked to T2D in prior studies of European and Asian populations are associated with T2D in Qatar provides new insights into the complexity of T2D pathogenesis and emphasizes the importance of understudied populations when assessing genetic variation in the pathogenesis of common disorders.
Collapse
Affiliation(s)
- Sarah L. O’Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Juan L. Rodriguez-Flores
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Michelle R. Staudt
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Charbel Abi Khalil
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Khalid A. Fakhro
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
- Division of Translational Medicine, Sidra Medical Research Centre, Doha, Qatar
| | - Amal Robay
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Monica D. Ramstetter
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
| | - Joel A. Malek
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Mahmoud Zirie
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Amin Jayyousi
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Ramin Badii
- Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | | | - Abdulbari Bener
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Mai Mahmoud
- Department of Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Maria J. Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Alya Al-Shakaki
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Omar Chidiac
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Dora Stadler
- Department of Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
3
|
4.1N is involved in a flotillin-1/β-catenin/Wnt pathway and suppresses cell proliferation and migration in non-small cell lung cancer cell lines. Tumour Biol 2016; 37:12713-12723. [DOI: 10.1007/s13277-016-5146-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/14/2023] Open
|
4
|
Wang Z, Zhang J, Zeng Y, Sun S, Zhang J, Zhang B, Zhu M, Ouyang R, Ma B, Ye M, An X, Liu J. Knockout of 4.1B triggers malignant transformation in SV40T-immortalized mouse embryo fibroblast cells. Mol Carcinog 2016; 56:538-549. [DOI: 10.1002/mc.22515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/30/2016] [Accepted: 06/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Zi Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences; Central South University; Changsha China
| | - Jingxin Zhang
- College of Life Sciences; Zhengzhou University; Zhengzhou China
| | - Yayue Zeng
- The State Key Laboratory of Medical Genetics and School of Life Sciences; Central South University; Changsha China
| | - Shuming Sun
- The State Key Laboratory of Medical Genetics and School of Life Sciences; Central South University; Changsha China
| | - Ji Zhang
- The State Key Laboratory of Medical Genetics and School of Life Sciences; Central South University; Changsha China
| | - Bin Zhang
- Department of Histology and Embryology; Xiangya School of Medicine, Central South University; Changsha China
| | - Min Zhu
- The State Key Laboratory of Medical Genetics and School of Life Sciences; Central South University; Changsha China
| | - Ruoyun Ouyang
- Department of Respiratory Medicine, Respiratory Disease Research Institute; Second XiangYa Hospital of Central South University; Changsha China
| | - Bianyin Ma
- The State Key Laboratory of Medical Genetics and School of Life Sciences; Central South University; Changsha China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology; College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University; Changsha China
| | - Xiuli An
- College of Life Sciences; Zhengzhou University; Zhengzhou China
- Laboratory of Membrane Biology; New York Blood Center; New York New York
| | - Jing Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences; Central South University; Changsha China
| |
Collapse
|
5
|
Wang Z, Zhang J, Ye M, Zhu M, Zhang B, Roy M, Liu J, An X. Tumor suppressor role of protein 4.1B/DAL-1. Cell Mol Life Sci 2014; 71:4815-30. [PMID: 25183197 PMCID: PMC11113756 DOI: 10.1007/s00018-014-1707-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/21/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
Abstract
Protein 4.1B/DAL-1 is a membrane skeletal protein that belongs to the protein 4.1 family. Protein 4.1B/DAL-1 is localized to sites of cell-cell contact and functions as an adapter protein, linking the plasma membrane to the cytoskeleton or associated cytoplasmic signaling effectors and facilitating their activities in various pathways. Protein 4.1B/DAL-1 is involved in various cytoskeleton-associated processes, such as cell motility and adhesion. Moreover, protein 4.1B/DAL-1 also plays a regulatory role in cell growth, differentiation, and the establishment of epithelial-like cell structures. Protein 4.1B/DAL-1 is normally expressed in multiple human tissues, but loss of its expression or prominent down-regulation of its expression is frequently observed in corresponding tumor tissues and tumor cell lines, suggesting that protein 4.1B/DAL-1 is involved in the molecular pathogenesis of these tumors and acts as a potential tumor suppressor. This review will focus on the structure of protein 4.1B/DAL-1, 4.1B/DAL-1-interacting molecules, 4.1B/DAL-1 inactivation and tumor progression, and anti-tumor activity of the 4.1B/DAL-1.
Collapse
Affiliation(s)
- Zi Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang, 421001 China
| | - Mao Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082 China
| | - Min Zhu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School Medicine, Central South University, Changsha, 410083 China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 E 67th Street, New York, 10065 USA
| |
Collapse
|
6
|
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:605-19. [PMID: 23747363 DOI: 10.1016/j.bbamem.2013.05.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| |
Collapse
|
7
|
Ji Z, Shi X, Liu X, Shi Y, Zhou Q, Liu X, Li L, Ji X, Gao Y, Qi Y, Kang Q. The membrane-cytoskeletal protein 4.1N is involved in the process of cell adhesion, migration and invasion of breast cancer cells. Exp Ther Med 2012; 4:736-740. [PMID: 23170136 PMCID: PMC3501401 DOI: 10.3892/etm.2012.653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/11/2012] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1N belongs to the protein 4.1 superfamily that links transmembrane proteins to the actin cytoskeleton. Recent evidence has shown that protein 4.1 is important in tumor suppression. However, the functions of 4.1N in the metastasis of breast cancer are largely unknown. In the present study, MCF-7, T-47D and MDA-MB-231 breast cancer cell lines with various metastatic abilities were employed. Protein 4.1N was found to be expressed in poorly metastatic MCF-7 and middle metastatic T-47D cell lines, and was predominantly associated with cell-cell junctions. However, no 4.1N expression was detected in the highly metastatic MDA-MB-231 cells. Moreover, re-expression of 4.1N in MDA-MB-231 cells inhibited cell adhesion, migration and invasion. The results suggest that protein 4.1N is a negative regulator of cell metastasis in breast cancer.
Collapse
Affiliation(s)
- Zhenyu Ji
- Department of Bioengineering, Zhengzhou University, Zhengzhou 450001; ; Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ohno N, Terada N, Komada M, Saitoh S, Costantini F, Pace V, Germann PG, Weber K, Yamakawa H, Ohara O, Ohno S. Dispensable role of protein 4.1B/DAL-1 in rodent adrenal medulla regarding generation of pheochromocytoma and plasmalemmal localization of TSLC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:506-15. [PMID: 19321127 DOI: 10.1016/j.bbamcr.2009.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/06/2008] [Accepted: 01/06/2009] [Indexed: 02/07/2023]
Abstract
Protein 4.1B is a membrane skeletal protein expressed in various organs, and is associated with tumor suppressor in lung cancer-1 (TSLC1) in vitro. Although involvement of 4.1B in the intercellular junctions and tumor-suppression was suggested, some controversial results posed questions to the general tumor-suppressive function of 4.1B and its relation to TSLC1 in vivo. In this study, the expression of 4.1B and its interaction with TSLC1 were examined in rodent adrenal gland, and the involvement of 4.1B in tumorigenesis and the effect of 4.1B deficiency on TSLC1 distribution were also investigated using rodent pheochromocytoma and 4.1B-knockout mice. Although plasmalemmal immunolocalization of 4.1B was shown in chromaffin cells of rodent adrenal medulla, expression of 4.1B was maintained in developed pheochromocytoma, and morphological abnormality or pheochromocytoma generation could not be found in 4.1B-deficient mice. Furthermore, molecular interaction and colocalization of 4.1B and TSLC1 were observed in mouse adrenal gland, but the immunolocalization of TSLC1 along chromaffin cell membranes was not affected in the 4.1B-deficient mice. These results suggest that the function of 4.1B as tumor suppressor might significantly differ among organs and species, and that plasmalemmal retention of TSLC1 would be maintained by molecules other than 4.1B interacting in rodent chromaffin cells.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bernkopf DB, Williams ED. Potential role of EPB41L3 (protein 4.1B/Dal-1) as a target for treatment of advanced prostate cancer. Expert Opin Ther Targets 2008; 12:845-53. [PMID: 18554153 DOI: 10.1517/14728222.12.7.845] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Loss of erythrocyte membrane protein band 4.1-like 3 (EPB41L3; aliases: protein 4.1B, differentially expressed in adenocarcinoma of the lung-1 (Dal-1)) expression has been implicated in tumor progression. OBJECTIVE To evaluate literature describing the role of EPB41L3 in tumorigenesis and metastasis, and to consider whether targeting this gene would be useful in the treatment of prostate cancer. METHODS A literature review of studies describing EPB41L3 and its aliases was conducted. Online databases (NCBI, SwissProt) were also interrogated to collect further data. RESULTS/CONCLUSION A growing body of evidence supports a role for loss of EPB41L3 in tumor progression, including in prostate cancer. Therapeutic strategies that could be harnessed to upregulate EPB41L3 gene expression in prostate cancer cells are currently being developed.
Collapse
Affiliation(s)
- Dominic B Bernkopf
- Monash University, Centre for Cancer Research, Monash Institute of Medical Research, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia
| | | |
Collapse
|
10
|
Wong SY, Haack H, Kissil JL, Barry M, Bronson RT, Shen SS, Whittaker CA, Crowley D, Hynes RO. Protein 4.1B suppresses prostate cancer progression and metastasis. Proc Natl Acad Sci U S A 2007; 104:12784-9. [PMID: 17640904 PMCID: PMC1924789 DOI: 10.1073/pnas.0705499104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Indexed: 11/18/2022] Open
Abstract
Protein 4.1B is a 4.1/ezrin/radixin/moesin domain-containing protein whose expression is frequently lost in a variety of human tumors, including meningiomas, non-small-cell lung cancers, and breast carcinomas. However, its potential tumor-suppressive function under in vivo conditions remains to be validated. In a screen for genes involved with prostate cancer metastasis, we found that 4.1B expression is reduced in highly metastatic tumors. Down-regulation of 4.1B increased the metastatic propensity of poorly metastatic cells in an orthotopic model of prostate cancer. Furthermore, 4.1B-deficient mice displayed increased susceptibility for developing aggressive, spontaneous prostate carcinomas. In both cases, enhanced tumor malignancy was associated with reduced apoptosis. Because expression of Protein 4.1B is frequently down-regulated in human clinical prostate cancer, as well as in a spectrum of other tumor types, these results suggest a more general role for Protein 4.1B as a negative regulator of cancer progression to metastatic disease.
Collapse
Affiliation(s)
- Sunny Y. Wong
- *Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Herbert Haack
- *Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge, MA 02139
| | - Joseph L. Kissil
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104; and
| | - Marc Barry
- *Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge, MA 02139
| | - Roderick T. Bronson
- **Department of Biomedical Sciences, Tufts School of Veterinary Medicine, North Grafton, MA 01536
| | - Steven S. Shen
- *Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge, MA 02139
| | - Charles A. Whittaker
- *Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge, MA 02139
| | - Denise Crowley
- *Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge, MA 02139
| | - Richard O. Hynes
- *Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
11
|
Ohno N, Terada N, Yamakawa H, Komada M, Ohara O, Trapp BD, Ohno S. Expression of protein 4.1G in Schwann cells of the peripheral nervous system. J Neurosci Res 2006; 84:568-77. [PMID: 16752423 DOI: 10.1002/jnr.20949] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane-associated cytoskeletal proteins, including protein 4.1 family, play important roles in membrane integrity, protein targeting, and signal transduction. Although protein 4.1G (4.1G) is expressed ubiquitously in mammalian tissues, it can have very discrete distributions within cells. The present study investigated the expression and distributions of 4.1G in rodent sciatic nerve. Northern and Western blot analysis detected abundant 4.1G mRNA and protein in rat sciatic nerve extracts. Immunohistochemical staining with a 4.1G-specific antibody and double immunolabeling with E-cadherin, betaIV spectrin, and connexin 32 detected 4.1G in paranodal loops, Schmidt-Lanterman incisures, and periaxonal, mesaxonal, and abaxonal membranes of rodent sciatic nerve. Immunoelectron microscopy confirmed the immunodistribution of 4.1G in Schwann cells. In developing mouse sciatic nerves, 4.1G was diffusely distributed in immature Schwann cells and gradually localized at paranodes, incisures, and periaxonal and mesaxonal membranes during their maturation. These data support the concept that 4.1G plays an important role in the membrane expansion and specialization that occurs during formation and maintenance of myelin internodes in the peripheral nervous system.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-City, Yamanashi, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Nakahara T, Norberg SM, Shalinsky DR, Hu-Lowe DD, McDonald DM. Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Cancer Res 2006; 66:1434-45. [PMID: 16452199 DOI: 10.1158/0008-5472.can-05-0923] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antibodies and other macromolecular therapeutics can gain access to tumor cells via leaky tumor vessels. Inhibition of vascular endothelial growth factor (VEGF) signaling can reduce the vascularity of tumors and leakiness of surviving vessels, but little is known about how these changes affect the distribution of antibodies within tumors. We addressed this issue by examining the distribution of extravasated antibodies in islet cell tumors of RIP-Tag2 transgenic mice and implanted Lewis lung carcinomas using fluorescence and confocal microscopic imaging. Extravasated nonspecific immunoglobulin G (IgG) and antibodies to fibrin or E-cadherin accumulated in irregular patchy regions of stroma. Fibrin also accumulated in these regions. Anti-E-cadherin antibody, which targets epitopes on tumor cells of RIP-Tag2 adenomas, was the only antibody to achieve detectable levels within tumor cell clusters at 6 hours after i.v. injection. Treatment for 7 days with AG-013736, a potent inhibitor of VEGF signaling, reduced the tumor vascularity by 86%. The overall area density of extravasated IgG/antibodies decreased after treatment but the change was less than the reduction in vascularity and actually increased when expressed per surviving tumor vessel. Accumulation of anti-E-cadherin antibody in tumor cell clusters was similarly affected. The patchy pattern of antibodies in stroma after treatment qualitatively resembled untreated tumors and surprisingly coincided with sleeves of basement membrane left behind after pruning of tumor vessels. Together, the findings suggest that antibody transport increases from surviving tumor vessels after normalization by inhibition of VEGF signaling. Basement membrane sleeves may facilitate this transport. Antibodies preferentially distribute to tumor stroma but also accumulate on tumor cells if binding sites are accessible.
Collapse
MESH Headings
- Adenoma, Islet Cell/blood
- Adenoma, Islet Cell/blood supply
- Adenoma, Islet Cell/immunology
- Animals
- Antibodies, Neoplasm/blood
- Antibodies, Neoplasm/immunology
- Antibodies, Neoplasm/metabolism
- Axitinib
- Cadherins/immunology
- Carcinoma, Lewis Lung/blood
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/immunology
- Fibrin/immunology
- Fibrin/metabolism
- Imidazoles/pharmacology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Indazoles/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microspheres
- Neovascularization, Pathologic/blood
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- Signal Transduction
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Tsutomu Nakahara
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0130, USA
| | | | | | | | | |
Collapse
|
13
|
Terada N, Ohno N, Yamakawa H, Ohara O, Liao X, Baba T, Ohno S. Immunohistochemical study of a membrane skeletal molecule, protein 4.1G, in mouse seminiferous tubules. Histochem Cell Biol 2005; 124:303-11. [PMID: 16041627 DOI: 10.1007/s00418-005-0031-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2005] [Indexed: 11/30/2022]
Abstract
Protein 4.1 families have recently been established as potential organizers of an adherens system. In the adult mouse testis, protein 4.1G (4.1G) localized as a line pattern in both basal and adluminal compartments of the seminiferous tubules, attaching regions of germ cells and Sertoli cells. By double staining for 4.1G and F-actin, their localizations were shown to be different, indicating that 4.1G was localized in a region other than the basal and apical ectoplasmic specializations, which formed the Sertoli-Sertoli cell junction and Sertoli-spermatid junction, respectively. By electron microscopy, immunoreactive products were seen exclusively on the cell membranes of Sertoli cells, attaching to the various differentiating germ cells. The immunolocalization of cadherin was identical to that of 4.1G, supporting the idea that 4.1G may be functionally interconnected with adhesion molecules. In an experimental mouse model of cadmium treatment, in which tight and adherens junctions of seminiferous tubules were disrupted, the 4.1G immunostaining in the seminiferous tubules was dramatically decreased. These results indicate that 4.1G may have a basic adhesive function between Sertoli cells and germ cells from the side of Sertoli cells.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Tamaho, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ohno N, Terada N, Tanaka J, Yokoyama A, Yamakawa H, Fujii Y, Baba T, Ohara O, Ohno S. Protein 4.1 G localizes in rodent microglia. Histochem Cell Biol 2005; 124:477-86. [PMID: 16184385 DOI: 10.1007/s00418-005-0058-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2005] [Indexed: 02/02/2023]
Abstract
Although it was reported that protein 4.1 G, a cytoskeletal protein characterized by its general expression in the body, interacts with some signal transduction molecules in the central nervous system (CNS), its distribution and significance in vivo remained to be elucidated. In the present study, we have identified 4.1 G-positive cells in the rodent CNS, and demonstrated its immunolocalization in the developing mouse CNS. In the rodent CNS, 4.1 G was colocalized with markers for microglia, such as CD45, OX-42 and ionized calcium-binding adapter molecule 1 (Iba1), but not with markers for neuronal or other glial cells. Additionally, colocalization of 4.1 G and A1 adenosine receptor was observed in the mouse cerebrum. In a mixed glial culture, most OX-42-positive microglia were positive for 4.1 G, and 4.1 G isoforms of the same molecular weight as in the rat brain were expressed in cultured microglia, where 4.1 G mRNA was detected by RT-PCR. In the developing mouse cerebral cortex, 4.1 G was detected in immature microglia, which were positive for Iba1. These results indicate that 4.1 G in the CNS is mainly distributed in microglia in vivo. Considering the interactions between 4.1 G and the signal transduction molecules, putative roles have been proposed for 4.1 G in microglial functions in the CNS.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Tamaho, Yamanashi, 409-3898, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Terada N, Ohno N, Yamakawa H, Ohara O, Ohno S. Topographical significance of membrane skeletal component protein 4.1 B in mammalian organs. Anat Sci Int 2005; 80:61-70. [PMID: 15960311 DOI: 10.1111/j.1447-073x.2005.00094.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The polarized architecture of epithelial cells is a fundamental determinant of cell structures and functions. Both formation and orientation of proper epithelial polarity are needed for cell-cell or cell-matrix adhesion, signal transduction and cytoskeletal interactions of multimolecular complexes at apical, lateral and basal cell membranes. These cell membrane domains are usually segregated by some junctional complexes. Recent molecular genetic studies on the anchor structure between myelin sheaths and axons have indicated the specific molecular organization for polarization of axolemma and the myelin sheaths at paranodes, termed 'septate-like junctions'. It was also speculated that other mammalian organs may use a similar junctional system. The protein 4.1 B was originally found to be localized in paranodes and juxtaparanodes of myelinated nerve fibers. Our recent immunohistochemical studies on protein 4.1B have indicated its significance for the cell-cell and/or cell-matrix adhesion in various rodent organs. The protein 4.1 family of proteins have been supposed to possess variable molecular domains relating to cell adhesion, ion balance, receptor responses and signal transduction. Therefore, more precise studies on the molecular structure and the functional domains of protein 4.1B, as well as on its changes under physiological and pathological conditions, may provide a clue for organogenesis in various mammalian organs.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Japan.
| | | | | | | | | |
Collapse
|
16
|
Asan E, Drenckhahn D. News and views in Histochemistry and Cell Biology. Histochem Cell Biol 2004; 122:593-621. [PMID: 15614519 DOI: 10.1007/s00418-004-0735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2004] [Indexed: 11/29/2022]
Abstract
Advances in histochemical methodology and ingenious applications of novel and improved methods continue to confirm the standing of morphological means and approaches in research efforts, and contribute significantly to increasing our knowledge about structures and functions in all areas of the life sciences from cell biology to pathology. Reports published during recent months documenting this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| | | |
Collapse
|
17
|
Gascard P, Parra MK, Zhao Z, Calinisan VR, Nunomura W, Rivkees SA, Mohandas N, Conboy JG. Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and 5' alternative splicing. ACTA ACUST UNITED AC 2004; 1680:71-82. [PMID: 15488987 DOI: 10.1016/j.bbaexp.2004.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/03/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Protein 4.1B has been reported as a tumor suppressor in brain, but not in kidney, despite high expression in both tissues. Here we demonstrate that N-terminal variability in kidney and brain 4.1B isoforms arises through an unusual coupling of RNA processing events in the 5' region of the gene. We describe two transcriptional promoters at far upstream alternative exons 1A and 1B, and show that their respective transcripts splice differentially to exon 2'/2 in a manner that determines mRNA coding capacity. The consequence of this unique processing is that exon 1B transcripts initiate translation at AUG1 (in exon 2') and encode larger 4.1B isoforms with an N-terminal extension; exon 1A transcripts initiate translation at AUG2 (in exon 4) and encode smaller 4.1B isoforms. Tissue-specific differences in promoter utilization may thus explain the abundance of larger 4.1B isoforms in brain but not in kidney. In cell studies, differentiation of PC12 cells was accompanied by translocation of large protein 4.1B isoforms into the nucleus. We propose that first exon specification is coupled to downstream splicing events, generating 4.1B isoforms with diverse roles in kidney and brain physiology, and potentially unique functions in cell proliferation and tumor suppression.
Collapse
Affiliation(s)
- Philippe Gascard
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail stop 74-157, Berkeley CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ohno N, Terada N, Murata SI, Yamakawa H, Newsham IF, Katoh R, Ohara O, Ohno S. Immunolocalization of protein 4.1B/DAL-1 during neoplastic transformation of mouse and human intestinal epithelium. Histochem Cell Biol 2004; 122:579-86. [PMID: 15517334 DOI: 10.1007/s00418-004-0716-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2004] [Indexed: 01/27/2023]
Abstract
Recently, we have reported that the protein 4.1B immunolocalization occurred only in matured columnar epithelial cells of normal rat intestines. This finding suggested that protein 4.1B expression could be examined for a possible change during neoplastic transformation of the intestinal mucosa. In the present study, we first present the distribution of mouse protein 4.1B in normal intestinal epithelial cells and tumor cells using the adenomatous polyposis coli (Apc) mutant mouse model. A low level of protein 4.1B expression coincided with the phenotypic transition to carcinoma. To examine the protein 4.1B expression in human intestinal mucosa, we used another antibody against an isoform of the human protein 4.1B, DAL-1 (differentially expressed adenocarcinoma of the lung). Human DAL-1 was also expressed in matured epithelial cells in human colons, with a definite expression gradient along the crypt axis. In human colorectal cancer cells, however, DAL-1 expression was not detected. These results suggest that mouse protein 4.1B and human DAL-1 might have a striking analogy of functions, which may be integrally involved in epithelial proliferation. We propose that loss of protein 4.1B/DAL-1 expression might be a marker of intestinal tumors, indicative of a tumor suppressor function in the intestinal mucosa.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Tamaho, 409-3898 Yamanashi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Ohara O, Ohno S. Protein 4.1B localizes on unmyelinated axonal membranes in the mouse enteric nervous system. Neurosci Lett 2004; 366:15-7. [PMID: 15265581 DOI: 10.1016/j.neulet.2004.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 04/30/2004] [Accepted: 05/01/2004] [Indexed: 11/16/2022]
Abstract
Recent molecular studies on anchoring structures between myelin sheaths by glial cells (oligodendrocytes and Schwann cells (Sc) in the central (CNS) and peripheral nervous system (PNS), respectively) and axons indicated protein-protein interaction for the polarization of paranodes in the axons. The protein 4.1 (4.1) family was originally found in erythrocytes as a component of membrane skeletons, and genetic approaches revealed the precise family members. One of them, 4.1B, has been reported to be localized in paranodes and juxtaparanodes of myelinated axons. In this study, in addition to the myelinated axons, we also present the localization of 4.1B in nerve fibers in the adult mouse enteric nervous system, a subpopulation of mature unmyelinated nerve fibers in PNS. Ultrastructurally, 4.1B localized along the membranes of unmyelinated axons. Such unmyelinated axons were surrounded only by Sc, suggesting that the 4.1B may also have a role in direct Sc-axon interactions and maturation of the axons, as well as myelinating glial cell-axon interactions.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Tamaho, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Zea Z, Ohara O, Ohno S. Immunohistochemical study of protein 4.1B in the normal and W/W(v) mouse seminiferous epithelium. J Histochem Cytochem 2004; 52:769-77. [PMID: 15150285 DOI: 10.1369/jhc.3a6192.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cell-cell adhesion is crucial not only for mechanical adhesion but also for tissue morphogenesis. Protein 4.1B, a member of the protein 4.1 family named from an erythrocyte membrane protein, is a potential organizer of an adherens system. In adult mouse seminiferous tubules, protein 4.1B localized in the basal compartment, especially in the attaching region of spermatogonia and Sertoli cells. Protein 4.1B localization and appearance were not different in each spermatogenic stage. Developmentally, protein 4.1B was not detected at postnatal day 3 (P3), was diffusely localized at P15, and was found in the basal compartment during the third week. By double staining for protein 4.1B and F-actin, their localizations were shown to be different, indicating that protein 4.1B was localized in a region lower than the basal ectoplasmic specialization that formed the Sertoli-Sertoli junction. By electron microscopy, immunoreactive products were seen mainly on the membranes of Sertoli cells. In the W/W(v) mutant mouse, the seminiferous epithelium had few germ cells. Protein 4.1B and beta-catenin were not detected, although the basal ectoplasmic specialization was retained. These results indicate that protein 4.1B may be related to the adhesion between Sertoli cells and germ cells, especially the spermatogonium.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Terada N, Ohno S. Immunohistochemical Application of Cryotechniques to Native Morphology of Cells and Tissues. Acta Histochem Cytochem 2004. [DOI: 10.1267/ahc.37.339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Shinichi Ohno
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
22
|
Asan E. Innovative techniques and applications in histochemistry and cell biology. Histochem Cell Biol 2003; 120:523-48. [PMID: 14648132 DOI: 10.1007/s00418-003-0604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
Recent studies documenting novel histochemical methods and applications in cell biology and in other areas of the life sciences have again rendered insights into structure and functions of tissues, cells, and cellular components to the level of proteins and genes. Particularly, sophisticated microscopic techniques have proved to be able to significantly advance our knowledge. Findings of recent investigations representing this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| |
Collapse
|