1
|
Amaya-Rodriguez CA, Carvajal-Zamorano K, Bustos D, Alegría-Arcos M, Castillo K. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Front Pharmacol 2024; 14:1251061. [PMID: 38328578 PMCID: PMC10847257 DOI: 10.3389/fphar.2023.1251061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
The heat and capsaicin receptor TRPV1 channel is widely expressed in nerve terminals of dorsal root ganglia (DRGs) and trigeminal ganglia innervating the body and face, respectively, as well as in other tissues and organs including central nervous system. The TRPV1 channel is a versatile receptor that detects harmful heat, pain, and various internal and external ligands. Hence, it operates as a polymodal sensory channel. Many pathological conditions including neuroinflammation, cancer, psychiatric disorders, and pathological pain, are linked to the abnormal functioning of the TRPV1 in peripheral tissues. Intense biomedical research is underway to discover compounds that can modulate the channel and provide pain relief. The molecular mechanisms underlying temperature sensing remain largely unknown, although they are closely linked to pain transduction. Prolonged exposure to capsaicin generates analgesia, hence numerous capsaicin analogs have been developed to discover efficient analgesics for pain relief. The emergence of in silico tools offered significant techniques for molecular modeling and machine learning algorithms to indentify druggable sites in the channel and for repositioning of current drugs aimed at TRPV1. Here we recapitulate the physiological and pathophysiological functions of the TRPV1 channel, including structural models obtained through cryo-EM, pharmacological compounds tested on TRPV1, and the in silico tools for drug discovery and repositioning.
Collapse
Affiliation(s)
- Cesar A. Amaya-Rodriguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
2
|
Evans C, Howells K, Suzuki R, Brown AJH, Cox HM. Regional characterisation of TRPV1 and TRPA1 signalling in the mouse colon mucosa. Eur J Pharmacol 2023; 954:175897. [PMID: 37394028 PMCID: PMC10847397 DOI: 10.1016/j.ejphar.2023.175897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Capsaicin and allyl isothiocyanate (AITC) activate transient receptor potential (TRP) vanilloid-1 (TRPV1) and TRP ankyrin-1 (TRPA1), respectively. TRPV1 and TRPA1 expression have been identified in the gastrointestinal (GI) tract. GI mucosal functions remain largely undefined for TRPV1 and TRPA1 with side-dependence and regional differences in signalling unclear. Here we investigated TRPV1- and TRPA1-induced vectorial ion transport as changes in short-circuit current (ΔIsc), in defined segments of mouse colon mucosa (ascending, transverse and descending) under voltage-clamp conditions in Ussing chambers. Drugs were applied basolaterally (bl) or apically (ap). Capsaicin responses were biphasic, with primary secretory and secondary anti-secretory phases, observed with bl application only, which predominated in descending colon. AITC responses were monophasic and secretory, with ΔIsc dependent on colonic region (ascending vs. descending) and sidedness (bl vs. ap). Aprepitant (neurokinin-1 (NK1) antagonist, bl) and tetrodotoxin (Na+ channel blocker, bl) significantly inhibited capsaicin primary responses in descending colon, while GW627368 (EP4 receptor antagonist, bl) and piroxicam (cyclooxygenase inhibitor, bl) inhibited AITC responses in ascending and descending colonic mucosae. Antagonism of the calcitonin gene-related peptide (CGRP) receptor had no effect on mucosal TRPV1 signalling, while tetrodotoxin and antagonists of the 5-hydroxytryptamine-3 and 4 receptors, CGRP receptor, and EP1/2/3 receptors had no effect on mucosal TRPA1 signalling. Our data demonstrates the regional-specificity and side-dependence of colonic TRPV1 and TRPA1 signalling, with involvement of submucosal neurons and mediation by epithelial NK1 receptor activation for TRPV1, and endogenous prostaglandins and EP4 receptor activation for TRPA1 mucosal responses.
Collapse
Affiliation(s)
- Caryl Evans
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry and Neuroscience, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
| | - Kathryn Howells
- Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Rie Suzuki
- Heptares Therapeutics Ltd, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Alastair J H Brown
- Heptares Therapeutics Ltd, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry and Neuroscience, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
3
|
Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids. Molecules 2022; 27:molecules27082501. [PMID: 35458699 PMCID: PMC9031474 DOI: 10.3390/molecules27082501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids.
Collapse
|
4
|
Atas U, Erin N, Tazegul G, Elpek GO, Yıldırım B. Distribution of transient receptor potential vanilloid-1 channels in gastrointestinal tract of patients with morbid obesity. World J Clin Cases 2022; 10:79-90. [PMID: 35071508 PMCID: PMC8727248 DOI: 10.12998/wjcc.v10.i1.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transient receptor potential vanilloid-1 (TRPV1), a nonselective cation channel, is activated by capsaicin, a pungent ingredient of hot pepper. Previous studies have suggested a link between obesity and capsaicin-associated pathways, and activation of TRPV1 may provide an alternative approach for obesity treatment. However, data on the TRPV1 distribution in human gastric mucosa are limited, and the degree of TRPV1 distribution in the gastric and duodenal mucosal cells of obese people in comparison with normal-weight individuals is unknown.
AIM To clarify gastric and duodenal mucosal expression of TRPV1 in humans and compare TRPV1 expression in obese and healthy individuals.
METHODS Forty-six patients with a body mass index (BMI) of > 40 kg/m2 and 20 patients with a BMI between 18-25 kg/m2 were included. Simultaneous biopsies from the fundus, antrum, and duodenum tissues were obtained from subjects between the ages of 18 and 65 who underwent esophagogastroduodenoscopy. Age, sex, history of alcohol and cigarette consumption, and past medical history regarding chronic diseases and medications were accessed from patient charts and were analyzed accordingly. Evaluation with anti-TRPV1 antibody was performed separately according to cell types in the fundus, antrum, and duodenum tissues using an immunoreactivity score. Data were analyzed using SPSS 17.0.
RESULTS TRPV1 expression was higher in the stomach than in the duodenum and was predominantly found in parietal and chief cells of the fundus and mucous and foveolar cells of the antrum. Unlike foveolar cells in the antrum, TRPV1 was relatively low in foveolar cells in the fundus (4.92 ± 0.49 vs 0.48 ± 0.16, P < 0.01, Mann-Whitney U test). Additionally, the mucous cells in the duodenum also had low levels of TRPV1 compared to mucous cells in the antrum (1.33 ± 0.31 vs 2.95 ± 0.46, P < 0.01, Mann-Whitney U test). TRPV1 expression levels of different cell types in the fundus, antrum, and duodenum tissues of the morbidly obese group were similar to those of the control group. Staining with TRPV1 in fundus chief cells and antrum and duodenum mucous cells was higher in patients aged ≥ 45 years than in patients < 45 years (3.03 ± 0.42, 4.37 ± 0.76, 2.28 ± 0.55 vs 1.9 ± 0.46, 1.58 ± 0.44, 0.37 ± 0.18, P = 0.03, P < 0.01, P < 0.01, respectively, Mann-Whitney U test). The mean staining levels of TRPV1 in duodenal mucous cells in patients with diabetes and hypertension were higher than those in patients without diabetes and hypertension (diabetes: 2.11 ± 0.67 vs 1.02 ± 0.34, P = 0.04; hypertension: 2.42 ± 0.75 vs 1.02 ± 0.33, P < 0.01 Mann-Whitney U test).
CONCLUSION The expression of TRPV1 is unchanged in the gastroduodenal mucosa of morbidly obese patients demonstrating that drugs targeting TRPV1 may be effective in these patients.
Collapse
Affiliation(s)
- Unal Atas
- Department of Internal Medicine, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Nuray Erin
- Department of Pharmacology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gokhan Tazegul
- Department of Internal Medicine, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Bülent Yıldırım
- Department of Gastroenterology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
5
|
Mazzoni M, Lattanzio G, Bonaldo A, Tagliavia C, Parma L, Busti S, Gatta PP, Bernardi N, Clavenzani P. Effect of Essential Oils on the Oxyntopeptic Cells and Somatostatin and Ghrelin Immunoreactive Cells in the European Sea Bass ( Dicentrarchus labrax) Gastric Mucosa. Animals (Basel) 2021; 11:3401. [PMID: 34944178 PMCID: PMC8697999 DOI: 10.3390/ani11123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The current work was designed to assess the effect of feed supplemented with essential oils (EOs) on the histological features in sea bass's gastric mucosa. Fish were fed three diets: control diet (CTR), HERBAL MIX® made with natural EOs (N-EOs), or HERBAL MIX® made with artificial EOs obtained by synthesis (S-EOs) during a 117-day feeding trial. Thereafter, the oxyntopeptic cells (OPs) and the ghrelin (GHR) and somatostatin (SOM) enteroendocrine cells (EECs) in the gastric mucosa were evaluated. The Na+K+-ATPase antibody was used to label OPs, while, for the EECs, anti-SOM and anti-GHR antibody were used. The highest density of OP immunoreactive (IR) area was in the CTR group (0.66 mm2 ± 0.1). The OP-IR area was reduced in the N-EO diet group (0.22 mm2 ± 1; CTR vs. N-EOs, p < 0.005), while in the S-EO diet group (0.39 mm2 ± 1) a trend was observed. We observed an increase of the number of SOM-IR cells in the N-EO diet (15.6 ± 4.2) compared to that in the CTR (11.8 ± 3.7) (N-EOs vs. CTR; p < 0.05), but not in the S-EOs diet. These observations will provide a basis to advance current knowledge on the anatomy and digestive physiology of this species in relation to pro-heath feeds.
Collapse
Affiliation(s)
- Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Serena Busti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| | | | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.L.); (A.B.); (C.T.); (L.P.); (S.B.); (P.P.G.); (P.C.)
| |
Collapse
|
6
|
Kelava L, Nemeth D, Hegyi P, Keringer P, Kovacs DK, Balasko M, Solymar M, Pakai E, Rumbus Z, Garami A. Dietary supplementation of transient receptor potential vanilloid-1 channel agonists reduces serum total cholesterol level: a meta-analysis of controlled human trials. Crit Rev Food Sci Nutr 2021; 62:7025-7035. [PMID: 33840333 DOI: 10.1080/10408398.2021.1910138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abnormal cholesterol level is a major risk factor in the development of atherosclerosis, which is a fundamental derangement in cardiovascular diseases. Any efforts should be undertaken to lower blood cholesterol levels. Among dietary interventions, capsaicinoid supplementation is also considered as a novel cholesterol-lowering approach, but human studies concluded contradictory results about its effectiveness. The present meta-analysis aimed at determining the effects of capsaicinoids on serum lipid profile in humans. We searched the PubMed, EMBASE, and CENTRAL databases from inception to February 2021. We included 10 controlled studies, which involved 398 participants. We found that dietary capsaicinoid supplementation alone or in combination with other substances significantly (p = 0.004 and 0.001, respectively) reduced serum total cholesterol level compared to controls with an overall standardized mean difference of -0.52 (95% confidence interval: -0.83, -0.21). Capsaicinoids also decreased low-density lipoprotein level significantly (p = 0.035), whereas no effect was observed on serum levels of high-density lipoprotein and triglycerides. Our findings provide novel quantitative evidence for the efficacy of dietary capsaicin supplementation in lowering serum total cholesterol and low-density lipoprotein levels in humans. To validate our conclusion, further randomized controlled trials in a diverse population of adult humans receiving dietary capsaicinoid supplementation are warranted.
Collapse
Affiliation(s)
- Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - David Nemeth
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,Department of Translational Medicine, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Dora K Kovacs
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Marta Balasko
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
7
|
Toschi A, Galiazzo G, Piva A, Tagliavia C, Mazzuoli-Weber G, Chiocchetti R, Grilli E. Cannabinoid and Cannabinoid-Related Receptors in the Myenteric Plexus of the Porcine Ileum. Animals (Basel) 2021; 11:263. [PMID: 33494452 PMCID: PMC7912003 DOI: 10.3390/ani11020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
An important piece of evidence has shown that molecules acting on cannabinoid receptors influence gastrointestinal motility and induce beneficial effects on gastrointestinal inflammation and visceral pain. The aim of this investigation was to immunohistochemically localize the distribution of canonical cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) and the cannabinoid-related receptors transient potential vanilloid receptor 1 (TRPV1), transient potential ankyrin receptor 1 (TRPA1), and serotonin receptor 5-HT1a (5-HT1aR) in the myenteric plexus (MP) of pig ileum. CB1R, TRPV1, TRPA1, and 5-HT1aR were expressed, with different intensities in the cytoplasm of MP neurons. For each receptor, the proportions of the immunoreactive neurons were evaluated using the anti-HuC/HuD antibody. These receptors were also localized on nerve fibers (CB1R, TRPA1), smooth muscle cells of tunica muscularis (CB1R, 5-HT1aR), and endothelial cells of blood vessels (TRPV1, TRPA1, 5-HT1aR). The nerve varicosities were also found to be immunoreactive for both TRPV1 and 5-HT1aR. No immunoreactivity was documented for CB2R. Cannabinoid and cannabinoid-related receptors herein investigated showed a wide distribution in the enteric neurons and nerve fibers of the pig MP. These results could provide an anatomical basis for additional research, supporting the therapeutic use of cannabinoid receptor agonists in relieving motility disorders in porcine enteropathies.
Collapse
Affiliation(s)
- Andrea Toschi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Andrea Piva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
- R&D Division, Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Ester Grilli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
- R&D Division, Vetagro, Inc., 116 W. Jackson Blvd., Suite #320, Chicago, IL 60604, USA
| |
Collapse
|
8
|
Van Liefferinge E, Van Noten N, Degroote J, Vrolix G, Van Poucke M, Peelman L, Van Ginneken C, Roura E, Michiels J. Expression of Transient Receptor Potential Ankyrin 1 and Transient Receptor Potential Vanilloid 1 in the Gut of the Peri-Weaning Pig Is Strongly Dependent on Age and Intestinal Site. Animals (Basel) 2020; 10:ani10122417. [PMID: 33348615 PMCID: PMC7766004 DOI: 10.3390/ani10122417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Weaning is a critical event for the piglet, contributing to aberrant gut function and resulting in reduced barrier function and retarded protein digestion. The gut is able to “sense” nutrients and release gut hormones to regulate digestive processes. To that end, various gastrointestinal cell types possess transient receptor potential channels that are involved in regulating gastric motility and secretion. Herbal compounds, currently used in pig nutrition as antibiotic alternatives, are able to activate these channels and could potentially aid digestion. However, these channels have not been characterized in the gut of the pig and their ability to release gut hormones has never been explored. This study’s objective was to characterize TRPA1 and TRPV1 in the pig’s gut and explore their potential to modulate gastric function. A gene expression study was performed on tissues obtained from different locations in the guts of piglets of varying age. Moreover, the ability to secrete peptide hormones was investigated by characterizing them on enteroendocrine cells. Both channels were found to be expressed in the mucosa of the porcine gut, strongly dependent on age and location. Moreover, the endocrine nature of both channels was confirmed, indicating their possible role in gut hormone release and the regulation of gastric emptying. Abstract Transient receptor potential (TRP) channels contribute to sensory transduction in the body, agonized by a variety of stimuli, such as phytochemicals, and they are predominantly distributed in afferent neurons. Evidence indicates their expression in non-neuronal cells, demonstrating their ability to modulate gastrointestinal function. Targeting TRP channels could potentially be used to regulate gastrointestinal secretion and motility, yet their expression in the pig is unknown. This study investigated TRPA1 and TRPV1 expression in different gut locations of piglets of varying age. Colocalization with enteroendocrine cells was established by immunohistochemistry. Both channels were expressed in the gut mucosa. TRPV1 mRNA abundance increased gradually in the stomach and small intestine with age, most notably in the distal small intestine. In contrast, TRPA1 exhibited sustained expression across ages and locations, with the exception of higher expression in the pylorus at weaning. Immunohistochemistry confirmed the endocrine nature of both channels, showing the highest frequency of colocalization in enteroendocrine cells for TRPA1. Specific co-localization on GLP-1 immunoreactive cells indicated their possible role in GLP-1 release and the concomitant intestinal feedback mechanism. Our results indicate that TRPA1 and TRPV1 could play a role in gut enteroendocrine activity. Moreover, age and location in the gut significantly affected gene expression.
Collapse
Affiliation(s)
- Elout Van Liefferinge
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
- Correspondence: ; Tel.: +32-0498-604-126
| | - Noémie Van Noten
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Jeroen Degroote
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Gunther Vrolix
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2000 Antwerp, Belgium; (G.V.); (C.V.G.)
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium; (M.V.P.); (L.P.)
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium; (M.V.P.); (L.P.)
| | - Chris Van Ginneken
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2000 Antwerp, Belgium; (G.V.); (C.V.G.)
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia 4072, Australia;
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| |
Collapse
|
9
|
Juárez-Contreras R, Méndez-Reséndiz KA, Rosenbaum T, González-Ramírez R, Morales-Lázaro SL. TRPV1 Channel: A Noxious Signal Transducer That Affects Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21238882. [PMID: 33255148 PMCID: PMC7734572 DOI: 10.3390/ijms21238882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1′s actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.
Collapse
Affiliation(s)
- Rebeca Juárez-Contreras
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Karina Angélica Méndez-Reséndiz
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City 14080, Mexico;
| | - Sara Luz Morales-Lázaro
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
- Correspondence:
| |
Collapse
|
10
|
Nagpal R, Mishra SK, Deep G, Yadav H. Role of TRP Channels in Shaping the Gut Microbiome. Pathogens 2020; 9:pathogens9090753. [PMID: 32947778 PMCID: PMC7559121 DOI: 10.3390/pathogens9090753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential (TRP) channel family proteins are sensors for pain, which sense a variety of thermal and noxious chemicals. Sensory neurons innervating the gut abundantly express TRPA1 and TRPV1 channels and are in close proximity of gut microbes. Emerging evidence indicates a bi-directional gut–brain cross-talk in several entero-neuronal pathologies; however, the direct evidence of TRP channels interacting with gut microbial populations is lacking. Herein, we examine whether and how the knockout (KO) of TRPA1 and TRPV1 channels individually or combined TRPA1/V1 double-knockout (dKO) impacts the gut microbiome in mice. We detect distinct microbiome clusters among the three KO mouse models versus wild-type (WT) mice. All three TRP-KO models have reduced microbial diversity, harbor higher abundance of Bacteroidetes, and a reduced proportion of Firmicutes. Specifically distinct arrays in the KO models are determined mainly by S24-7, Bacteroidaceae, Clostridiales, Prevotellaceae, Helicobacteriaceae, Rikenellaceae, and Ruminococcaceae. A1KO mice have lower Prevotella, Desulfovibrio, Bacteroides, Helicobacter and higher Rikenellaceae and Tenericutes; V1KO mice demonstrate higher Ruminococcaceae, Lachnospiraceae, Ruminococcus, Desulfovibrio and Mucispirillum; and A1V1dKO mice exhibit higher Bacteroidetes, Bacteroides and S24-7 and lower Firmicutes, Ruminococcaceae, Oscillospira, Lactobacillus and Sutterella abundance. Furthermore, the abundance of taxa involved in biosynthesis of lipids and primary and secondary bile acids is higher while that of fatty acid biosynthesis-associated taxa is lower in all KO groups. To our knowledge, this is the first study demonstrating distinct gut microbiome signatures in TRPA1, V1 and dKO models and should facilitate prospective studies exploring novel diagnostic/ therapeutic modalities regarding the pathophysiology of TRP channel proteins.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Santosh Kumar Mishra
- Department of Molecular Biomedical Sciences, NC State Veterinary Medicine, Raleigh, NC 27606, USA;
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-713-5049
| |
Collapse
|
11
|
Upregulation of the TRPA1 Ion Channel in the Gastric Mucosa after Iodoacetamide-Induced Gastritis in Rats: A Potential New Therapeutic Target. Int J Mol Sci 2020; 21:ijms21165591. [PMID: 32764237 PMCID: PMC7460663 DOI: 10.3390/ijms21165591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Acute gastritis is often untreatable by acid secretion-inhibiting drugs. Understanding the protective mechanisms including the role of Transient Receptor Potential Ankyrin1 (TRPA1) and Vanilloid1 (TRPV1) channels localized on capsaicin-sensitive afferents and non-neuronal structures might identify novel therapeutic approaches. Therefore, we characterized a translational gastritis model using iodoacetamide (IAA) and investigated TRPA1/V1 expressions. Wistar rats and CD1, C57Bl/6J mice were exposed to IAA-containing (0.05, 0.1, 0.2, 0.3, 0.5%) drinking water for 7 or 14 days. Body weight and water consumption were recorded daily. Macroscopic lesions were scored, qualitative histopathologic investigation was performed, TRPA1/V1 immunopositivity and mRNA expressions were measured. IAA induced a concentration-dependent weight loss and reduced water intake in both species. Hyperemia, submucosal edema, inflammatory infiltration and hemorrhagic erosions developed after 7 days, while ulcers after 14 days in rats. Trpa1 mRNA/protein expressions were upregulated at both timepoints. Meanwhile, TRPV1 immunopositivity was upregulated in the gastric corpus after 0.05% IAA ingestion, but downregulated after 0.2%, whereas Trpv1 mRNA did not change. Interestingly, no macroscopic/microscopic changes were observed in mice. These are the first data for the concentration- and duration-dependent changes in the IAA-induced gastritis in rats accompanied by TRPA1 upregulation, therefore, its therapeutic potential in gastritis should further be investigated.
Collapse
|
12
|
Identification, Characterization and Expression Analysis of TRP Channel Genes in the Vegetable Pest, Pieris rapae. INSECTS 2020; 11:insects11030192. [PMID: 32197450 PMCID: PMC7143563 DOI: 10.3390/insects11030192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/03/2022]
Abstract
Transient receptor potential (TRP) channels are critical for insects to detect environmental stimuli and regulate homeostasis. Moreover, this superfamily has become potential molecular targets for insecticides or repellents. Pieris rapae is one of the most common and widely spread pests of Brassicaceae plants. Therefore, it is necessary to study TRP channels (TRPs) in P. rapae. In this study, we identified 14 TRPs in P. rapae, including two Water witch (Wtrw) genes. By contrast, only one Wtrw gene exists in Drosophila and functions in hygrosensation. We also found splice isoforms of Pyrexia (Pyx), TRPgamma (TRPγ) and TRP-Melastatin (TRPM). These three genes are related to temperature and gravity sensation, fine motor control, homeostasis regulation of Mg2+ and Zn2+ in Drosophila, respectively. Evolutionary analysis showed that the TRPs of P. rapae were well clustered into their own subfamilies. Real-time quantitative PCR (qPCR) showed that PrTRPs were widely distributed in the external sensory organs, including antennae, mouthparts, legs, wings and in the internal physiological organs, including brains, fat bodies, guts, Malpighian tubules, ovaries, as well as testis. Our study established a solid foundation for functional studies of TRP channels in P. rapae, and would be benefit to developing new approaches to control P. rapae targeting these important ion channels.
Collapse
|
13
|
Alaimo A, Rubert J. The Pivotal Role of TRP Channels in Homeostasis and Diseases throughout the Gastrointestinal Tract. Int J Mol Sci 2019; 20:ijms20215277. [PMID: 31652951 PMCID: PMC6862298 DOI: 10.3390/ijms20215277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential (TRP) channels superfamily are a large group of proteins that play crucial roles in cellular processes. For example, these cation channels act as sensors in the detection and transduction of stimuli of temperature, small molecules, voltage, pH, and mechanical constrains. Over the past decades, different members of the TRP channels have been identified in the human gastrointestinal (GI) tract playing multiple modulatory roles. Noteworthy, TRPs support critical functions related to the taste perception, mechanosensation, and pain. They also participate in the modulation of motility and secretions of the human gut. Last but not least, altered expression or activity and mutations in the TRP genes are often related to a wide range of disorders of the gut epithelium, including inflammatory bowel disease, fibrosis, visceral hyperalgesia, irritable bowel syndrome, and colorectal cancer. TRP channels could therefore be promising drug targets for the treatment of GI malignancies. This review aims at providing a comprehensive picture of the most recent advances highlighting the expression and function of TRP channels in the GI tract, and secondly, the description of the potential roles of TRPs in relevant disorders is discussed reporting our standpoint on GI tract–TRP channels interactions.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| |
Collapse
|
14
|
Karwad MA, Couch DG, Wright KL, Tufarelli C, Larvin M, Lund J, O'Sullivan SE. Endocannabinoids and endocannabinoid-like compounds modulate hypoxia-induced permeability in CaCo-2 cells via CB 1, TRPV1, and PPARα. Biochem Pharmacol 2019; 168:465-472. [PMID: 31325449 DOI: 10.1016/j.bcp.2019.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE We have previously reported that endocannabinoids modulate permeability in Caco-2 cells under inflammatory conditions and hypothesised in the present study that endocannabinoids could also modulate permeability in ischemia/reperfusion. EXPERIMENTAL APPROACH Caco-2 cells were grown on cell culture inserts to confluence. Trans-epithelial electrical resistance (TEER) was used to measure permeability. To generate hypoxia (0% O2), a GasPak™ EZ anaerobe pouch system was used. Endocannabinoids were applied to the apical or basolateral membrane in the presence or absence of receptor antagonists. KEY RESULTS Complete hypoxia decreased TEER (increased permeability) by ~35% after 4 h (recoverable) and ~50% after 6 h (non-recoverable). When applied either pre- or post-hypoxia, apical application of N-arachidonoyl-dopamine (NADA, via TRPV1), oleamide (OA, via TRPV1) and oleoylethanolamine (OEA, via TRPV1) inhibited the increase in permeability. Apical administration of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) worsened the permeability effect of hypoxia (both via CB1). Basolateral application of NADA (via TRPV1), OA (via CB1 and TRPV1), noladin ether (NE, via PPARα), and palmitoylethanolamine (PEA, via PPARα) restored permeability after 4 h hypoxia, whereas OEA increased permeability (via PPARα). After 6 h hypoxia, where permeability does not recover, only basolateral application PEA sustainably decreased permeability, and NE decreased permeability. CONCLUSIONS AND IMPLICATIONS A variety of endocannabinoids and endocannabinoid-like compounds modulate Caco-2 permeability in hypoxia/reoxygenation, which involves multiple targets, depending on whether the compounds are applied to the basolateral or apical membrane. CB1 antagonism and TRPV1 or PPARα agonism may represent novel therapeutic targets against several intestinal disorders associated with increased permeability.
Collapse
Affiliation(s)
- M A Karwad
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, UK
| | - D G Couch
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, UK
| | - K L Wright
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, UK
| | - C Tufarelli
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - M Larvin
- Graduate Entry Medical School and Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Lund
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, UK
| | - S E O'Sullivan
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, UK.
| |
Collapse
|
15
|
Assas MB, Wakid MH, Zakai HA, Miyan JA, Pennock JL. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 2016; 147:292-304. [PMID: 26643862 DOI: 10.1111/imm.12562] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
Neuro-immune interactions, particularly those driven by neuropeptides, are increasingly implicated in immune responses. For instance, triggering calcium-channel transient receptor potential vanilloid 1 (TRPV1) on sensory nerves induces the release of calcitonin-gene-related peptide (CGRP), a neuropeptide known to moderate dendritic cell activation and T helper cell type 1 polarization. Despite observations that CGRP is not confined to the nervous system, few studies have addressed the possibility that immune cells can respond to well-documented 'neural' ligands independently of peripheral nerves. Here we have identified functionally relevant TRPV1 on primary antigen-presenting cells of the spleen and have demonstrated both calcium influx and CGRP release in three separate strains of mice using natural agonists. Furthermore, we have shown down-regulation of activation markers CD80/86 on dendritic cells, and up-regulation of interleukin-6 and interleukin-10 in response to CGRP treatment. We suggest that dendritic cell responses to neural ligands can amplify neuropeptide release, but more importantly that variability in CGRP release across individuals may have important implications for immune cell homeostasis.
Collapse
Affiliation(s)
- Mushref Bakri Assas
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Visiting Scientist, Faculty of Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - Majed H Wakid
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haytham A Zakai
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaleel A Miyan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Joanne L Pennock
- Institute of Inflammation & Repair, Faculty of Medicine and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Allais L, De Smet R, Verschuere S, Talavera K, Cuvelier CA, Maes T. Transient Receptor Potential Channels in Intestinal Inflammation: What Is the Impact of Cigarette Smoking? Pathobiology 2016; 84:1-15. [DOI: 10.1159/000446568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
|
17
|
Capsaicin, Nociception and Pain. Molecules 2016; 21:molecules21060797. [PMID: 27322240 PMCID: PMC6273518 DOI: 10.3390/molecules21060797] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.
Collapse
|
18
|
Choi YJ, Kim N, Kim J, Lee DH, Park JH, Jung HC. Upregulation of Vanilloid Receptor-1 in Functional Dyspepsia With or Without Helicobacter pylori Infection. Medicine (Baltimore) 2016; 95:e3410. [PMID: 27175641 PMCID: PMC4902483 DOI: 10.1097/md.0000000000003410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The etiological basis of functional dyspepsia (FD) is incompletely understood. The aim of this study was to evaluate the involvement of nociceptor-related genes and Helicobacter pylori (HP) in the pathogenesis of FD. The expression of nociceptor-related genes was measured in gastric cell lines that were co-cultured with HP. FD patients (n = 117) and controls (n = 55) were enrolled from a tertiary hospital gastroenterology clinic. Expression of the genes nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), and transient receptor potential cation channel subfamily V member 1 (TRPV1) in the gastric mucosa were detected by reverse transcription polymerase chain reaction (RT-PCR), and immunohistochemical staining of TRPV1 was analyzed. These measurements were repeated after 1 year. TRPV1, GDNF, and NGF expression was elevated in gastric cell lines co-cultured with HP. TRPV1 immunostaining was stronger in HP-positive than HP-negative subjects. The FD group showed higher expression levels of TRPV1, GDNF, and NGF and increased TRPV1 immunostaining compared with those of the control group (all P < 0.05). Among 61 subjects who were followed up at 1 year, controls with successful HP eradication and patients whose symptoms had improved both showed significant reductions in the expression of TRPV1 and NGF (all P < 0.05) compared with controls without HP eradication and patients whose symptoms had not improved, respectively. The expression of NGF, GDNF, and TRPV1 may be associated with the pathogenesis of FD. Since HP infection may induce the increased expression of these genes, anti-HP therapy could be beneficial for HP-positive patients with FD.
Collapse
Affiliation(s)
- Yoon Jin Choi
- From the Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do (YJC, NK, DHL); and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul (NK, JK, DHL, JHP, HCJ), South Korea
| | | | | | | | | | | |
Collapse
|
19
|
Yu X, Yu M, Liu Y, Yu S. TRP channel functions in the gastrointestinal tract. Semin Immunopathol 2015; 38:385-96. [PMID: 26459157 DOI: 10.1007/s00281-015-0528-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Mingran Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Yingzhe Liu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Shaoyong Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Kentish SJ, Frisby CL, Kritas S, Li H, Hatzinikolas G, O'Donnell TA, Wittert GA, Page AJ. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice. PLoS One 2015; 10:e0135892. [PMID: 26285043 PMCID: PMC4540489 DOI: 10.1371/journal.pone.0135892] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022] Open
Abstract
Aim Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1) are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice. Methods TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined. Results Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet. Conclusion TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.
Collapse
Affiliation(s)
- Stephen J Kentish
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Claudine L Frisby
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Stamatiki Kritas
- Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Hui Li
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - George Hatzinikolas
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Tracey A O'Donnell
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Gary A Wittert
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Amanda J Page
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Flegel C, Schöbel N, Altmüller J, Becker C, Tannapfel A, Hatt H, Gisselmann G. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors. PLoS One 2015; 10:e0128951. [PMID: 26070209 PMCID: PMC4466559 DOI: 10.1371/journal.pone.0128951] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022] Open
Abstract
The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues.
Collapse
Affiliation(s)
- Caroline Flegel
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Nicole Schöbel
- Department of Animal Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Nagy I, Friston D, Valente JS, Torres Perez JV, Andreou AP. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:39-76. [PMID: 24941664 DOI: 10.1007/978-3-0348-0828-6_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (> -42 degrees C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure-function relationship of TRPV1.
Collapse
|
23
|
Capsaicin receptor as target of calcitonin gene-related peptide in the gut. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:259-76. [PMID: 24941672 DOI: 10.1007/978-3-0348-0828-6_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcitonin gene-related peptide (CGRP), a 37 aminoacid-residue peptide, is a marker of afferent fibers in the upper gastrointestinal tract, being almost completely depleted following treatment with the selective neurotoxin capsaicin that targets these fibers via transient receptor potential vanilloid type-1 (TRPV-1). It is widely distributed in the peripheral nervous system of mammals where it is present as alpha isoform, while intrinsic neurons of the enteric nervous systems express predominantly CGRP-beta. Many gastrointestinal functions involve CGRP-containing afferent fibers of the enteric nervous system such as defense against irritants, intestinal nociception, modulation of gastrointestinal motility and secretion, and healing of gastric ulcers. The main effects on stomach homeostasis rely on local vasodilator actions during increased acid-back diffusion. In humans, release of CGRP through the activation of TRPV-1 has been shown to protect from gastric damage induced by several stimuli and to be involved in gastritis. In both dyspepsia and irritable bowel syndrome the repeated stimulation of TRPV-1 induced an improvement in epigastric pain of these patients. The TRPV-1/CGRP pathway might be a novel target for therapeutics in gastric mucosal injury and visceral sensitivity.
Collapse
|
24
|
Buckinx R, Van Nassauw L, Avula LR, Alpaerts K, Adriaensen D, Timmermans JP. Transient receptor potential vanilloid type 1 channel (TRPV1) immunolocalization in the murine enteric nervous system is affected by the targeted C-terminal epitope of the applied antibody. J Histochem Cytochem 2013; 61:421-32. [PMID: 23482327 DOI: 10.1369/0022155413484764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The expression of transient receptor potential vanilloid type 1 channel (TRPV1) in the enteric nervous system is still the subject of debate. Although a number of studies have reported that TRPV1 is limited to extrinsic afferent fibers, other studies argue for an intrinsic expression of TRPV1. In the present study, reverse transcriptase PCR was employed to establish the expression of TRPV1 mRNA throughout the gastrointestinal tract. Using two antibodies directed against different epitopes of TRPV1, we were able to show at the protein level that the observed distribution pattern of TRPV1 is dependent on the antibody used in the immunohistochemical staining. A first antibody indeed mainly stained neuronal fibers, whereas a second antibody exclusively stained perikarya of enteric neurons throughout the mouse gastrointestinal tract. We argue that these different distribution patterns are due to the antibodies discriminating between different modulated forms of TRPV1 that influence the recognition of the targeted immunogen and as such distinguish intracellular from plasmalemmal forms of TRPV1. Our study is the first to directly compare these two antibodies within the same species and in identical conditions. Our observations underline that detailed knowledge of the epitope that is recognized by the antibodies employed in immunohistochemical procedures is a prerequisite for correctly interpreting experimental results.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Holzer P. TRP channels in the digestive system. Curr Pharm Biotechnol 2011; 12:24-34. [PMID: 20932260 DOI: 10.2174/138920111793937862] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/09/2010] [Indexed: 12/26/2022]
Abstract
Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca(2+) and Mg(2+), respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitátsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
26
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
27
|
Boesmans W, Owsianik G, Tack J, Voets T, Vanden Berghe P. TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br J Pharmacol 2011; 162:18-37. [PMID: 20804496 PMCID: PMC3012403 DOI: 10.1111/j.1476-5381.2010.01009.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 12/14/2022] Open
Abstract
The members of the superfamily of transient receptor potential (TRP) cation channels are involved in a plethora of cellular functions. During the last decade, a vast amount of evidence is accumulating that attributes an important role to these cation channels in different regulatory aspects of the alimentary tract. In this review we discuss the expression patterns and roles of TRP channels in the regulation of gastrointestinal motility, enteric nervous system signalling and visceral sensation, and provide our perspectives on pharmacological targeting of TRPs as a strategy to treat various gastrointestinal disorders. We found that the current knowledge about the role of some members of the TRP superfamily in neurogastroenterology is rather limited, whereas the function of other TRP channels, especially of those implicated in smooth muscle cell contractility (TRPC4, TRPC6), visceral sensitivity and hypersensitivity (TRPV1, TRPV4, TRPA1), tends to be well established. Compared with expression data, mechanistic information about TRP channels in intestinal pacemaking (TRPC4, TRPC6, TRPM7), enteric nervous system signalling (TRPCs) and enteroendocrine cells (TRPM5) is lacking. It is clear that several different TRP channels play important roles in the cellular apparatus that controls gastrointestinal function. They are involved in the regulation of gastrointestinal motility and absorption, visceral sensation and visceral hypersensitivity. TRP channels can be considered as interesting targets to tackle digestive diseases, motility disorders and visceral pain. At present, TRPV1 antagonists are under development for the treatment of heartburn and visceral hypersensitivity, but interference with other TRP channels is also tempting. However, their role in gastrointestinal pathophysiology first needs to be further elucidated.
Collapse
Affiliation(s)
- Werend Boesmans
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| | | | - Jan Tack
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel ResearchKULeuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| |
Collapse
|
28
|
The protective effect of capsaicin receptor-mediated genistein postconditioning on gastric ischemia-reperfusion injury in rats. Dig Dis Sci 2010; 55:3070-7. [PMID: 20198432 DOI: 10.1007/s10620-010-1151-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 02/03/2010] [Indexed: 12/09/2022]
Abstract
BACKGROUND No published study has addressed the effect of genistein postconditioning on gastric ischemia-reperfusion (GI-R) injury in rats. AIM To examine whether capsaicin receptor-mediated genistein postconditioning protects against gastric ischemia-reperfusion injury via the PI3K/Akt signal pathway. METHODS AND RESULTS Chloraldurat-anesthetized rats underwent occlusion of the celiac artery for 30 min, followed by 60 min of reperfusion. Based on this animal model of gastric ischemia-reperfusion injury, genistein at doses of 100, 500 or 1,000 μg/kg was administered via peripheral vein 5 min before reperfusion. The dose of 500 μg/kg was optimal for postconditioning, at which the severity of I-R-induced gastric injury significantly decreased. Immunohistochemistry also showed that gastric mucosal cell apoptosis decreased. Capsazepine (CPZ), a specific antagonist for the capsaicin receptor, was administered (1,000 μg/kg, i.v.) just before ischemia. Capsaicin (50 mg/kg, s.c.) once a day for 4 days reversed the protective effects of genistein. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting showed increased calcitonin gene-related peptide (CGRP) expression in genistein group but not in capsazepine or capsaicin group. CGRP inhibitor CGRP8-37 also prevented the effects of genistein in decreasing gastric mucosal injury index. In addition, PI3K inhibitor LY294002 (1.5 mg/kg) reversed the protective effect of genistein. Compared with genistein group, Western blots also demonstrated decreased Akt phosphorylation in LY294002 group. CONCLUSION Our data suggest that capsaicin receptors mediated the protective effects of genistein postconditioning. CGRP secreted by activated capsaicin-sensitive neurons played an important role in the protective effects of genistein. PI3K/Akt pathway was also involved in the protective effects of genistein.
Collapse
|
29
|
Gonlachanvit S. Are rice and spicy diet good for functional gastrointestinal disorders? J Neurogastroenterol Motil 2010; 16:131-8. [PMID: 20535343 PMCID: PMC2879848 DOI: 10.5056/jnm.2010.16.2.131] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/25/2010] [Indexed: 12/13/2022] Open
Abstract
Rice- and chili-containing foods are common in Asia. Studies suggest that rice is completely absorbed in the small bowel, produces little intestinal gas and has a low allergenicity. Several clinical studies have demonstrated that rice-based meals are well tolerated and may improve gastrointestinal symptoms in functional gastrointestinal disorders (FGID). Chili is a spicy ingredient commonly use throughout Asia. The active component of chili is capsaicin. Capsaicin can mediate a painful, burning sensation in the human gut via the transient receptor potential vanilloid-1 (TRPV1). Recently, the TRPV1 expressing sensory fibers have been reported to increase in the gastrointestinal tract of patients with FGID and visceral hypersensitivity. Acute exposure to capsaicin or chili can aggravate abdominal pain and burning in dyspepsia and IBS patients. Whereas, chronic ingestion of natural capsaicin agonist or chili has been shown to decrease dyspeptic and gastroesophageal reflux disease (GERD) symptoms. The high prevalence of spicy food in Asia may modify gastrointestinal burning symptoms in patients with FGID. Studies in Asia demonstrated a low prevalence of heartburn symptoms in GERD patients in several Asian countries. In conclusion rice is well tolerated and should be advocated as the carbohydrate source of choice for patients with FGID. Although, acute chili ingestion can aggravate abdominal pain and burning symptoms in FGID, chronic ingestion of chili was found to improve functional dyspepsia and GERD symptoms in small randomized, controlled studies.
Collapse
Affiliation(s)
- Sutep Gonlachanvit
- Gastrointestinal Motility Research Unit, Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
30
|
Tan TT, Zhang Q, Peng Y. Effects of capsaicin on gastric acid secretion and mechanisms involved. Shijie Huaren Xiaohua Zazhi 2009; 17:3699-3703. [DOI: 10.11569/wcjd.v17.i36.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although capsaicin has multiple pharmacological actions, its effects on gastric acid secretion attract the most attention. Most studies show that low-dose capsaicin can inhibit gastric acid secretion while high-dose may accelerate gastric acid secretion. However, some other studies show that capsaicin does not affect gastric acid secretion at all. The difference in the effects of capsaicin on gastric acid secretion may be related with the location of vanilloid receptor subtype 1, dose of capsaicin, route of administration, and the release of some substances such as calcitonin gene-related peptide, neurokinin A, vasoactive intestinal peptide and substance P. Capsaicin is a potentially promising drug used for modulation of gastric acid secretion.
Collapse
|
31
|
Abstract
The alimentary canal includes the mouth, stomach, and intestines, and is connected to the brain by thousands of chemosensory neurons. In contrast to the understanding of the lingual taste system, there is little insight into the chemosensory function of other regions of the alimentary canal. The presence of known taste receptors in the gastrointestinal tract suggests a similarity to taste mechanisms present in the oral cavity. Afferent fibers of the vagus play a prominent role in signaling the chemical contents of the gastrointestinal tract to the hindbrain and this information can be used to elicit defensive responses, such as vomiting or nutritional responses. A host of amino acids are likely detected by vagal afferent fibers, but the initial sensory transduction of these stimuli and functional significance remains a mystery. Several problems with recording the electrophysiological signals of vagal afferents are discussed, with particular reference to sampling the afferent signals from the duodenum and liver region.
Collapse
Affiliation(s)
- Charles C Horn
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
32
|
Abstract
The mature enteric nervous system (ENS) is composed of many different neuron subtypes and enteric glia, which all arise from the neural crest. How this diversity is generated from neural crest-derived cells is a central question in neurogastroenterology, as defects in these processes are likely to underlie some paediatric motility disorders. Here we review the developmental appearance (the earliest age at which expression of specific markers can be localized) and birthdates (the age at which precursors exit the cell cycle) of different enteric neuron subtypes, and their projections to some targets. We then focus on what is known about the mechanisms underlying the generation of enteric neuron diversity and axon pathfinding. Finally, we review the development of the ENS in humans and the etiologies of a number of paediatric motility disorders.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy & Cell Biology, University of MelbourneParkville, Victoria, Australia
| | - Heather M Young
- Department of Anatomy & Cell Biology, University of MelbourneParkville, Victoria, Australia
| |
Collapse
|
33
|
Marincsák R, Tóth BI, Czifra G, Márton I, Rédl P, Tar I, Tóth L, Kovács L, Bíró T. Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis 2009; 15:328-35. [PMID: 19320840 DOI: 10.1111/j.1601-0825.2009.01526.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Recent reports have unambiguously identified the presence and the growth-modulatory role of transient receptor potential vanilloid-1 (TRPV1), a central integrator of pain sensation, on numerous non-neuronal cell types and, of great importance, in certain malignancies. In this study, we have investigated the molecular expression of TRPV1 in the human tongue and its high-incidence malignant (squamous cell carcinoma, SCC) and premalignant (leukoplakia) conditions. METHODS Immunohistochemistry, Western blotting and quantitative 'real-time' Q-PCR were performed to define the expression of TRPV1. RESULTS A weak and sparse TRPV1-specific immunoreactivity was identified in the basal layers of the healthy human tongue epithelium. By contrast, we observed a dramatically elevated TRPV1-immunoreactivity in all layers of the epithelium both in precancerous and malignant samples. Furthermore, statistical analysis revealed that the marked overexpression of TRPV1 found in all grades of SCC showed no correlation with the degree of malignancy of the tumours. Finally, the molecular expression of TRPV1 was also identified in an SCC-derived cell line and was shown to be increased in parallel with the accelerated growth of the cells. CONCLUSION Collectively, our findings identify TRPV1 as a novel, promising target molecule in the supportive treatment and diagnosis of human tongue SCC.
Collapse
Affiliation(s)
- R Marincsák
- Department of Physiology, University of Debrecen, Medical and Health Science Centre, Research Centre for Molecular Medicine, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ericson A, Nur EM, Petersson F, Kechagias S. The effects of capsaicin on gastrin secretion in isolated human antral glands: before and after ingestion of red chilli. Dig Dis Sci 2009; 54:491-8. [PMID: 18668366 DOI: 10.1007/s10620-008-0400-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 06/18/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND Capsaicin is known to have regulatory effects on gastrointestinal functions via the vanilloid receptor (VR1). We reported previously that endocrine-like cells in the human antrum express VR1. AIM To identify VR1-expressing endocrine-like cells in human antral glands and to examine whether stimulation with capsaicin causes release of gastrin, somatostatin, and serotonin. Further, to investigate the effects of a chilli-rich diet. METHODS Gastroscopic biopsies were received from 11 volunteers. Seven of the 11 subjects agreed to donor gastric biopsies a second time after a 3-week chilli-rich diet containing 1.4-4.2 mg capsaicin/day. VR1-immunoreactive cells were identified by double-staining immunohistochemistry against gastrin, somatostatin, and serotonin. For the stimulation studies, we used an in vitro method where antral glands in suspension were stimulated with 0.01 mM capsaicin and physiological buffer was added to the control vials. The concentrations of secreted hormones were detected and calculated with radioimmunoassay (RIA). Results The light microscopic examination revealed that VR1 was localized in gastrin cells. The secretory studies showed an increase in release of gastrin and somatostatin compared to the control vials (P = 0.003; P = 0.013). Capsaicin-stimulation caused a consistent raise of the gastrin concentrations in the gland preparations from all subjects. A chilli-rich diet had an inhibitory effect on gastrin release upon stimulation compared to the results that were obtained before the start of the diet. CONCLUSION This study shows that capsaicin stimulates gastrin secretion from isolated human antral glands, and that a chilli-rich diet decreases this secretion.
Collapse
Affiliation(s)
- A Ericson
- Department of Experimental and Clinical Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
35
|
Gonlachanvit S, Mahayosnond A, Kullavanijaya P. Effects of chili on postprandial gastrointestinal symptoms in diarrhoea predominant irritable bowel syndrome: evidence for capsaicin-sensitive visceral nociception hypersensitivity. Neurogastroenterol Motil 2009; 21:23-32. [PMID: 18647268 DOI: 10.1111/j.1365-2982.2008.01167.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Irritable bowel syndrome (IBS) patients often complain of gastrointestinal symptoms after eating chili. However, the effect of chili ingestion on gastrointestinal symptoms in IBS patients has not been characterized. To study the effect of chili-containing foods on postprandial gastrointestinal symptoms in diarrhoea-predominant IBS (IBS-D), 20 IBS-D patients underwent gastrointestinal symptoms and postprandial colonic transit evaluations after ingesting three different meals: (i) a standard meal, (ii) a spicy meal (a standard meal mixed with 2 g chili), and (iii) a standard meal with 2 g chili in capsules, in a randomized crossover fashion. Postprandial gastrointestinal symptoms were scored every 15 min for 2 h using visual analogue scales. Thirty-eight healthy volunteers were used as controls. In healthy volunteers, the spicy meals and meals with chili capsules induced only mild abdominal burning relative to the standard meals (P < 0.05), whereas it induced significant levels of abdominal pain and burning in IBS-D patients (P < 0.05). Other gastrointestinal symptoms and postprandial colonic transit after spicy meals and meals with chili capsules did not differ from standard meals in IBS-D and controls (P > 0.05). Diarrhoea-predominant IBS patients and controls reported similar oral burning symptoms when eating spicy meals (P > 0.05). Both the spicy meal and the standard meal with chili capsules led to similar severity of gastrointestinal symptoms (P > 0.05). Diarrhoea-predominant IBS patients exhibit gut hypersensitivity to chili. Chili ingestion produced more abdominal pain and burning in IBS-D patients than in healthy volunteers, but was associated with similar oral burning symptoms.
Collapse
Affiliation(s)
- S Gonlachanvit
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | | |
Collapse
|
36
|
Holzer P. Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol 2007; 7:563-9. [PMID: 18029228 DOI: 10.1016/j.coph.2007.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 12/17/2022]
Abstract
The maintenance of gastrointestinal (GI) mucosal integrity depends on the rapid alarm of protective mechanisms in the face of pending injury. Two populations of extrinsic primary afferent neurons, vagal and spinal, subserve this goal through different mechanisms. These sensory neurons react to GI insults by triggering protective autonomic reflexes including the so-called cholinergic anti-inflammatory reflex. Spinal afferents, in addition, can initiate protective tissue reactions at the site of assault through release of calcitonin gene-related peptide (CGRP) from their peripheral endings. The protective responses triggered by sensory neurons comprise alterations in GI blood flow, secretion, and motility as well as modifications of immune function. This article focuses on significant advances that during the past couple of years have been made in identifying molecular nocisensors on afferent neurons and in dissecting the signaling mechanisms whereby afferent neurons govern inflammatory processes in the gut.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
37
|
Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis JC, Treanor JJS, Gavva NR, Romanovsky AA. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci 2007; 27:7459-68. [PMID: 17626206 PMCID: PMC6672610 DOI: 10.1523/jneurosci.1483-07.2007] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T(b) of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T(b) nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T(b) response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T(b).
Collapse
Affiliation(s)
- Alexandre A. Steiner
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Victoria F. Turek
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Maria C. Almeida
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Jeffrey J. Burmeister
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Daniela L. Oliveira
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Jennifer L. Roberts
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | | | - Mark H. Norman
- Chemistry Research and Discovery, Amgen, Thousand Oaks, California 91320
| | | | | | | | - Andrej A. Romanovsky
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| |
Collapse
|
38
|
Chow J, Norng M, Zhang J, Chai J. TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells--Mechanisms behind a possible new "hot" cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:565-76. [PMID: 17292493 DOI: 10.1016/j.bbamcr.2007.01.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/20/2006] [Accepted: 01/02/2007] [Indexed: 02/06/2023]
Abstract
UNLABELLED Capsaicin is an organic compound in chili peppers which are consumed by over one quarter of the world's population daily. Studies have shown that capsaicin can induce apoptosis in some cancer cells by unknown mechanisms. In this study, both gastric cancer and normal epithelial cells were treated with capsaicin and examined for apoptosis by Annexin V binding. Our results showed that capsaicin induces apoptosis in both cells, although cancer cells are more susceptible. This susceptibility is dependent on the availability of TRPV6, a calcium-selective channel protein, as overexpression of TRPV6 in normal cells increased capsaicin-induced apoptosis and knockdown of TRPV6 in cancer cells suppressed this action. Our results further demonstrated that capsaicin increases mitochondrial permeability through activation of Bax and p53 in a JNK-dependent manner. CONCLUSIONS (1) TRPV6, rather than TRPV1 (the well-known capsaicin receptor), mediates capsaicin-induced apoptosis in gastric cells; (2) abundance of TRPV6 in gastric cells determines their live or death under capsaicin treatment; and (3) capsaicin induces apoptosis by stabilization of p53 through JNK activation. Together, our data suggest that capsaicin may be a promising dietary candidate for cancer chemoprevention.
Collapse
Affiliation(s)
- Justine Chow
- VA Long Beach Healthcare System, 5901 E. Seventh Street, Long Beach, CA 90822, USA
| | | | | | | |
Collapse
|
39
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The duodenum absorbs nearly all secreted gastric acid. Carbonic anhydrases facilitate transmucosal acid movement. The upper gastrointestinal tract must resist a variety of injuries, including those caused by ingested noxious substances, acid, ischemia/reperfusion, and infections such as Helicobacter pylori. The results are similar, however, regardless of insult: inflammation, ulceration, or metaplasia/dysplasia. In the past year, there have been prominent findings suggesting that oxidative stress and the formation of reactive oxygen species may play a pivotal role in all forms of injury, and that antioxidants may be the key to injury prevention and healing. RECENT FINDINGS Oxidative injury may be a common mechanism by which the upper gastrointestinal mucosa responds to noxious insults. Endogenous antioxidants, such as ghrelin, L-carnitine, and annexin-1 attenuate the oxidative-stress response. Similarly, exogenous antioxidants have also been shown to decrease inflammation, upregulate free radical scavengers, and prevent the formation of reactive oxygen species. SUMMARY Many studies published in the past year have linked oxidative stress to a variety of upper gastrointestinal insults. Exogenous and endogenous antioxidant compounds prevent the oxidative stress response. The future holds great promise for the development of pharmaceuticals with antioxidant properties that are safe, efficacious, and inexpensive.
Collapse
Affiliation(s)
- Mamie H Dong
- Department of Internal Medicine, UCLA Medical Center, USA
| | | |
Collapse
|
41
|
Taatjes DJ, Roth J. Recent progress in histochemistry and cell biology: the state of the art 2005. Histochem Cell Biol 2005; 124:547-74. [PMID: 16283358 DOI: 10.1007/s00418-005-0110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Advances in the field of histochemistry, a multidisciplinary area including the detection, localization and functional characterization of molecules in single cells and complex tissues, often drives the attainment of new knowledge in the broadly defined discipline of cell biology. These two disciplines, histochemistry and cell biology, have been joined in this journal to facilitate the flow of information with celerity from technical advancement in histochemical procedures, to their utilization in experimental models. This review summarizes advancements in these fields during the past year.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Microscopy Imaging Center, Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|