1
|
Li W, Wang W, Zhang M, Chen Q, Li S. Associations of marrow fat fraction with MR imaging based trabecular bone microarchitecture in first-time diagnosed type 1 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1287591. [PMID: 38774224 PMCID: PMC11106440 DOI: 10.3389/fendo.2024.1287591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Purpose To determine whether there are alterations in marrow fat content in individuals first-time diagnosed with type 1 diabetes mellitus (T1DM) and to explore the associations between marrow fat fraction and MRI-based findings in trabecular bone microarchitecture. Method A case-control study was conducted, involving adults with first-time diagnosed T1DM (n=35) and age- and sex-matched healthy adults (n=46). Dual-energy X-ray absorptiometry and 3 Tesla-MRI of the proximal tibia were performed to assess trabecular microarchitecture and vertebral marrow fat fraction. Multiple linear regression analysis was used to test the associations of marrow fat fraction with trabecular microarchitecture and bone density while adjusting for potential confounding factors. Results In individuals first-time diagnosed with T1DM, the marrow fat fraction was significantly higher (p < 0.001) compared to healthy controls. T1DM patients also exhibited higher trabecular separation [median (IQR): 2.19 (1.70, 2.68) vs 1.81 (1.62, 2.10), p < 0.001], lower trabecular volume [0.45 (0.30, 0.56) vs 0.53 (0.38, 0.60), p = 0.013], and lower trabecular number [0.37 (0.26, 0.44) vs 0.41 (0.32, 0.47), p = 0.020] compared to controls. However, bone density was similar between the two groups (p = 0.815). In individuals with T1DM, there was an inverse association between marrow fat fraction and trabecular volume (r = -0.69, p < 0.001) as well as trabecular number (r = -0.55, p < 0.001), and a positive association with trabecular separation (r = 0.75, p < 0.001). Marrow fat fraction was independently associated with total trabecular volume (standardized β = -0.21), trabecular number (β = -0.12), and trabecular separation (β = 0.57) of the proximal tibia after adjusting for various factors including age, gender, body mass index, physical activity, smoking status, alcohol consumption, blood glucose, plasma glycated hemoglobin, lipid profile, and bone turnover biomarkers. Conclusions Individuals first-time diagnosed with T1DM experience expansion of marrow adiposity, and elevated marrow fat content is associated with MRI-based trabecular microstructure.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Wei Wang
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Minlan Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qi Chen
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Shaojun Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
2
|
Marinelli Busilacchi E, Morsia E, Poloni A. Bone Marrow Adipose Tissue. Cells 2024; 13:724. [PMID: 38727260 PMCID: PMC11083575 DOI: 10.3390/cells13090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Marinelli Busilacchi
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
| | - Erika Morsia
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| |
Collapse
|
3
|
Brazill JM, Shen IR, Craft CS, Magee KL, Park JS, Lorenz M, Strickland A, Wee NK, Zhang X, Beeve AT, Meyer GA, Milbrandt J, DiAntonio A, Scheller EL. Sarm1 knockout prevents type 1 diabetic bone disease in females independent of neuropathy. JCI Insight 2024; 9:e175159. [PMID: 38175722 PMCID: PMC11143934 DOI: 10.1172/jci.insight.175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
Patients with diabetes have a high risk of developing skeletal diseases accompanied by diabetic peripheral neuropathy (DPN). In this study, we isolated the role of DPN in skeletal disease with global and conditional knockout models of sterile-α and TIR-motif-containing protein-1 (Sarm1). SARM1, an NADase highly expressed in the nervous system, regulates axon degeneration upon a range of insults, including DPN. Global knockout of Sarm1 prevented DPN, but not skeletal disease, in male mice with type 1 diabetes (T1D). Female wild-type mice also developed diabetic bone disease but without DPN. Unexpectedly, global Sarm1 knockout completely protected female mice from T1D-associated bone suppression and skeletal fragility despite comparable muscle atrophy and hyperglycemia. Global Sarm1 knockout rescued bone health through sustained osteoblast function with abrogation of local oxidative stress responses. This was independent of the neural actions of SARM1, as beneficial effects on bone were lost with neural conditional Sarm1 knockout. This study demonstrates that the onset of skeletal disease occurs rapidly in both male and female mice with T1D completely independently of DPN. In addition, this reveals that clinical SARM1 inhibitors, currently being developed for treatment of neuropathy, may also have benefits for diabetic bone through actions outside of the nervous system.
Collapse
Affiliation(s)
| | - Ivana R. Shen
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | | | | | - Jay S. Park
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Madelyn Lorenz
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Natalie K. Wee
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
| | - Alec T. Beeve
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, and
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Dysregulated transforming growth factor-beta mediates early bone marrow dysfunction in diabetes. Commun Biol 2022; 5:1145. [DOI: 10.1038/s42003-022-04112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractDiabetes affects select organs such as the eyes, kidney, heart, and brain. Our recent studies show that diabetes also enhances adipogenesis in the bone marrow and reduces the number of marrow-resident vascular regenerative stem cells. In the current study, we have performed a detailed spatio-temporal examination to identify the early changes that are induced by diabetes in the bone marrow. Here we show that short-term diabetes causes structural and molecular changes in the marrow, including enhanced adipogenesis in tibiae of mice, prior to stem cell depletion. This enhanced adipogenesis was associated with suppressed transforming growth factor-beta (TGFB) signaling. Using human bone marrow-derived mesenchymal progenitor cells, we show that TGFB pathway suppresses adipogenic differentiation through TGFB-activated kinase 1 (TAK1). These findings may inform the development of novel therapeutic targets for patients with diabetes to restore regenerative stem cell function.
Collapse
|
5
|
Hu P, McKenzie JA, Buettmann EG, Migotsky N, Gardner MJ, Silva MJ. Type 1 diabetic Akita mice have low bone mass and impaired fracture healing. Bone 2021; 147:115906. [PMID: 33662611 PMCID: PMC8546917 DOI: 10.1016/j.bone.2021.115906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1DM) impairs bone formation and fracture healing in humans. Akita mice carry a mutation in one allele of the insulin-2 (Ins2) gene, which leads to pancreatic beta cell dysfunction and hyperglycemia by 5-6 weeks age. We hypothesized that T1DM in Akita mice is associated with decreased bone mass, weaker bones, and impaired fracture healing. Ins2 ± (Akita) and wildtype (WT) males were subjected to femur fracture at 18-weeks age and healing assessed 3-21 days post-fracture. Non-fractured left femurs were assessed for morphology (microCT) and strength (bending or torsion) at 19-21 weeks age. Fractured right femurs were assessed for callus mechanics (torsion), morphology and composition (microCT and histology) and gene expression (qPCR). Both Akita and WT mice gained weight from 3 to 18 weeks age, but Akita mice weighed less starting at 5 weeks (-5.2%, p < 0.05). At 18-20 weeks age Akita mice had reduced serum osteocalcin (-30%), cortical bone area (-16%), and thickness (-17%) compared to WT, as well as reduced cancellous BV/TV (-39%), trabecular thickness (-23%) and vBMD (-31%). Mechanical testing of non-fractured femurs showed decreased structural (stiffness, ultimate load) and material (ultimate stress) properties of Akita bones. At 14 and 21 days post fracture Akita mice had a significantly smaller callus than WT mice (~30%), with less cartilage and bone area. Assessment of torsional strength showed a weaker callus in Akita mice with lower stiffness (-42%), maximum torque (-44%) and work to fracture (-44%). In summary, cortical and cancellous bone mass were reduced in Akita mice, with lower bone mechanical properties. Fracture healing in Akita mice was impaired by T1DM, with a smaller, weaker fracture callus due to decreased cartilage and bone formation. In conclusion, the Akita mouse mimics some of the skeletal features of T1DM in humans, including osteopenia and impaired fracture healing, and may be useful to test interventions.
Collapse
Affiliation(s)
- Pei Hu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Evan G Buettmann
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States.
| |
Collapse
|
6
|
Piotrowska K, Tarnowski M. Bone Marrow Adipocytes-Role in Physiology and Various Nutritional Conditions in Human and Animal Models. Nutrients 2021; 13:nu13051412. [PMID: 33922353 PMCID: PMC8146898 DOI: 10.3390/nu13051412] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, adipose tissue has attracted a lot of attention. It is not only an energy reservoir but also plays important immune, paracrine and endocrine roles. BMAT (bone marrow adipose tissue) is a heterogeneous tissue, found mostly in the medullary canal of the long bones (tibia, femur and humerus), in the vertebrae and iliac crest. Adipogenesis in bone marrow cavities is a consequence of ageing or may accompany pathologies like diabetes mellitus type 1 (T1DM), T2DM, anorexia nervosa, oestrogen and growth hormone deficiencies or impaired haematopoiesis and osteoporosis. This paper focuses on studies concerning BMAT and its physiology in dietary interventions, like obesity in humans and high fat diet in rodent studies; and opposite: anorexia nervosa and calorie restriction in animal models.
Collapse
|
7
|
Beeve AT, Shen I, Zhang X, Magee K, Yan Y, MacEwan MR, Scheller EL. Neuroskeletal Effects of Chronic Bioelectric Nerve Stimulation in Health and Diabetes. Front Neurosci 2021; 15:632768. [PMID: 33935630 PMCID: PMC8080454 DOI: 10.3389/fnins.2021.632768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background/Aims Bioelectric nerve stimulation (eStim) is an emerging clinical paradigm that can promote nerve regeneration after trauma, including within the context of diabetes. However, its ability to prevent the onset of diabetic peripheral neuropathy (DPN) has not yet been evaluated. Beyond the nerve itself, DPN has emerged as a potential contributor to sarcopenia and bone disease; thus, we hypothesized that eStim could serve as a strategy to simultaneously promote neural and musculoskeletal health in diabetes. Methods To address this question, an eStim paradigm pre-optimized to promote nerve regeneration was applied to the sciatic nerve, which directly innervates the tibia and lower limb, for 8 weeks in control and streptozotocin-induced type 1 diabetic (T1D) rats. Metabolic, gait, nerve and bone assessments were used to evaluate the progression of diabetes and the effect of sciatic nerve eStim on neuropathy and musculoskeletal disease, while also considering the effects of cuff placement and chronic eStim in otherwise healthy animals. Results Rats with T1D exhibited increased mechanical allodynia in the hindpaw, reduced muscle mass, decreased cortical and cancellous bone volume fraction (BVF), reduced cortical bone tissue mineral density (TMD), and decreased bone marrow adiposity. Type 1 diabetes also had an independent effect on gait. Placement of the cuff electrode alone resulted in altered gait patterns and unilateral reductions in tibia length, cortical BVF, and bone marrow adiposity. Alterations in gait patterns were restored by eStim and tibial lengthening was favored unilaterally; however, eStim did not prevent T1D-induced changes in muscle, bone, marrow adiposity or mechanical sensitivity. Beyond this, chronic eStim resulted in an independent, bilateral reduction in cortical TMD. Conclusion Overall, these results provide new insight into the pathogenesis of diabetic neuroskeletal disease and its regulation by eStim. Though eStim did not prevent neural or musculoskeletal complications in T1D, our results demonstrate that clinical applications of peripheral neuromodulation ought to consider the impact of device placement and eStim on long-term skeletal health in both healthy individuals and those with metabolic disease. This includes monitoring for compounded bone loss to prevent unintended consequences including decreased bone mineral density and increased fracture risk.
Collapse
Affiliation(s)
- Alec T Beeve
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Ivana Shen
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Xiao Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Kristann Magee
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Erica L Scheller
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Bone regeneration in a mouse model of type 1 diabetes: Influence of sex, vitamin D3, and insulin. Life Sci 2020; 263:118593. [PMID: 33069738 DOI: 10.1016/j.lfs.2020.118593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
AIM This study set forth a question: are there any differences in bone responses to insulin and/or vitamin D3 treatment in female and male type 1 diabetic (T1D) mice? MAIN METHODS To address this issue, a non-critical sized femur defect was created in streptozotocin (STZ)-T1D mice. Control non-diabetic and T1D female and male mice received: saline; vitamin D3; insulin; or vitamin D3 plus insulin, for 21 days. KEY FINDINGS Female and male T1D mice showed impaired bone healing, as indicated by histological and micro-computed tomography (micro-CT) analysis. Vitamin D3 or insulin improved the bone regeneration in T1D mice, irrespective of sex. Vitamin D3 plus insulin did not exhibit any additional effects. There were no differences regarding the numbers of TRAP-stained osteoclasts in either evaluated groups. The osteoblast-related gene osterix was upregulated in vitamin D3-treated male T1D mice, as revealed by RT-qPCR. Female T1D mice treated with vitamin D3, insulin, or vitamin D3 plus insulin presented an increased expression of insulin growth factor-1 (IGF-1) mRNA. Conversely, IGF-1 mRNA levels were reduced by the same treatments in male TD1 mice. SIGNIFICANCE Altogether, the results suggested that T1D similarly delayed the osseous healing in female and male mice, with beneficial effects for either vitamin D3 or insulin in T1D mice of both sexes. However, data indicated marked sex differences regarding the expression of genes implicated in bone formation, in T1D mice treated with vitamin D3 and/or insulin.
Collapse
|
9
|
Martínez-Martínez A, Muñoz-Islas E, Ramírez-Rosas MB, Acosta-González RI, Torres-Rodríguez HF, Jiménez-Andrade JM. Blockade of the colony-stimulating factor-1 receptor reverses bone loss in osteoporosis mouse models. Pharmacol Rep 2020; 72:1614-1626. [PMID: 32222915 DOI: 10.1007/s43440-020-00091-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mice lacking either colony-stimulating factor-1 (CSF-1) or its receptor, CSF-1R, display osteopetrosis. Accordingly, genetic deletion or pharmacological blockade of CSF-1 prevents the bone loss associated with estrogen deficiency. However, the role of CSF-1R in osteoporosis models of type-1 diabetes (T1D) and ovariectomy (OVX) has not been examined. Thus, we evaluated whether CSF-1R blockade would relieve the bone loss in a model of primary osteoporosis (female mice with OVX) and a model of secondary osteoporosis (female with T1D) using micro-computed tomography. METHODS Female ICR mice at 10 weeks underwent OVX or received five daily administrations of streptozotocin (ip, 50 mg/kg) to induce T1D. Four weeks after OVX and 14 weeks after first injection of streptozotocin, mice received an anti-CSF-1R (2G2) antibody (10 mg/kg, ip; once/week for 6 weeks) or vehicle. At the last day of antibody administration, mice were sacrificed and femur and tibia were harvested for micro-computed tomography analysis. RESULTS Mice with OVX had a significant loss of trabecular bone at the distal femoral and proximal tibial metaphysis. Chronic treatment with anti-CSF-1R significantly reversed the trabecular bone loss at these anatomical sites. Streptozotocin-induced T1D resulted in significant loss of trabecular bone at the femoral neck and cortical bone at the femoral mid-diaphysis. Chronic treatment with anti-CSF-1R antibody significantly reversed the bone loss observed in mice with T1D. CONCLUSION Our results demonstrate that blockade of CSF-1R signaling reverses bone loss in two different mouse models of osteoporosis.
Collapse
Affiliation(s)
- Arisaí Martínez-Martínez
- Laboratorio de Farmacología, Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Col. Aztlán, 88740, Reynosa, TAMPS, México
| | - Enriqueta Muñoz-Islas
- Laboratorio de Farmacología, Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Col. Aztlán, 88740, Reynosa, TAMPS, México
| | - Martha B Ramírez-Rosas
- Laboratorio de Farmacología, Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Col. Aztlán, 88740, Reynosa, TAMPS, México
| | - Rosa I Acosta-González
- Laboratorio de Farmacología, Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Col. Aztlán, 88740, Reynosa, TAMPS, México
| | - Héctor F Torres-Rodríguez
- Laboratorio de Farmacología, Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Col. Aztlán, 88740, Reynosa, TAMPS, México
| | - Juan M Jiménez-Andrade
- Laboratorio de Farmacología, Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Col. Aztlán, 88740, Reynosa, TAMPS, México.
| |
Collapse
|
10
|
Rios-Arce ND, Dagenais A, Feenstra D, Coughlin B, Kang HJ, Mohr S, McCabe LR, Parameswaran N. Loss of interleukin-10 exacerbates early Type-1 diabetes-induced bone loss. J Cell Physiol 2020; 235:2350-2365. [PMID: 31538345 PMCID: PMC6899206 DOI: 10.1002/jcp.29141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
Type-1 diabetes (T1D) increases systemic inflammation, bone loss, and risk for bone fractures. Levels of the anti-inflammatory cytokine interleukin-10 (IL-10) are decreased in T1D, however their role in T1D-induced osteoporosis is unknown. To address this, diabetes was induced in male IL-10 knockout (KO) and wild-type (WT) mice. Analyses of femur and vertebral trabecular bone volume fraction identified bone loss in T1D-WT mice at 4 and 12 weeks, which in T1D-IL-10-KO mice was further reduced at 4 weeks but not 12 weeks. IL-10 deficiency also increased the negative effects of T1D on cortical bone. Osteoblast marker osterix was decreased, while osteoclast markers were unchanged, suggesting that IL-10 promotes anabolic processes. MC3T3-E1 osteoblasts cultured under high glucose conditions displayed a decrease in osterix which was prevented by addition of IL-10. Taken together, our results suggest that IL-10 is important for promoting osteoblast maturation and reducing bone loss during early stages of T1D.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Andrew Dagenais
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Derrick Feenstra
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Brandon Coughlin
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Susanne Mohr
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| |
Collapse
|
11
|
Wang JF, Lee M, Tsai T, Leiferman EM, Trask DJ, Squire MW, Li W. Bone Morphogenetic Protein-6 Attenuates Type 1 Diabetes Mellitus-Associated Bone Loss. Stem Cells Transl Med 2019; 8:522-534. [PMID: 30784225 PMCID: PMC6525561 DOI: 10.1002/sctm.18-0150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 01/03/2023] Open
Abstract
Patients with type 1 diabetes mellitus (T1DM) often suffer from osteopenia or osteoporosis. Although most agree that T1DM-induced hyperglycemia is a risk factor for progressive bone loss, the mechanisms for the link between T1DM and bone loss still remain elusive. In this study, we found that bone marrow-derived mesenchymal stem cells (BMSCs) isolated from T1DM donors were less inducible for osteogenesis than those from non-T1DM donors and further identified a mechanism involving bone morphogenetic protein-6 (BMP6) that was produced significantly less in BMSCs derived from T1DM donors than that in control cells. With addition of exogenous BMP6 in culture, osteogenesis of BMSCs from T1DM donors was restored whereas the treatment of BMP6 seemed not to affect non-T1DM control cells. We also demonstrated that bone mineral density (BMD) was reduced in streptozotocin-induced diabetic mice compared with that in control animals, and intraperitoneal injection of BMP6 mitigated bone loss and increased BMD in diabetic mice. Our results suggest that bone formation in T1DM patients is impaired by reduction of endogenous BMP6, and supplementation of BMP6 enhances osteogenesis of BMSCs to restore BMD in a mouse model of T1DM, which provides insight into the development of clinical treatments for T1DM-assocaited bone loss. Stem Cells Translational Medicine 2019;8:522-534.
Collapse
Affiliation(s)
- Jesse F. Wang
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Ming‐Song Lee
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tsung‐Lin Tsai
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Ellen M. Leiferman
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Darrin J. Trask
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Matthew W. Squire
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wan‐Ju Li
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
12
|
Carvalho FR, Calado SM, Silva GA, Diogo GS, Moreira da Silva J, Reis RL, Cancela ML, Gavaia PJ. Altered bone microarchitecture in a type 1 diabetes mouse model
Ins2
Akita. J Cell Physiol 2018; 234:9338-9350. [DOI: 10.1002/jcp.27617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Filipe R. Carvalho
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- PhD Program in Biomedical Sciences, Universidade do Algarve Faro Portugal
| | - Sofia M. Calado
- PhD Program in Biomedical Sciences, Universidade do Algarve Faro Portugal
- Centre for Biomedical Research (CBMR), University of Algarve Faro Portugal
| | - Gabriela A. Silva
- Centre for Biomedical Research (CBMR), University of Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| | | | | | - Rui L. Reis
- ICVS/3B’s – PT Government Associate Laboratory Guimarães Portugal
- 3B’s Research Group‐Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Guimarães Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| |
Collapse
|
13
|
Lee YS, Gupta R, Kwon JT, Cho DC, Seo YJ, Seu SY, Park EK, Han I, Kim CH, Sung JK, Kim KT. Effect of a bisphosphonate and selective estrogen receptor modulator on bone remodeling in streptozotocin-induced diabetes and ovariectomized rat model. Spine J 2018; 18:1877-1887. [PMID: 29793000 DOI: 10.1016/j.spinee.2018.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/26/2018] [Accepted: 05/16/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Diabetes and menopause can cause severe osteoporosis. In general, menopause and diabetes can lead to an imbalance in bone turnover, which results in secondary osteoporosis. However, the efficacy of antiresorptive drugs against this form of osteoporosis has not been extensively evaluated. OBJECTIVE The aim of this study was to determine the changes in vertebral bone remodeling when postmenopausal osteoporosis is accompanied by diabetes and to compare the efficacy of bisphosphonates and selective estrogen-receptor modulators (SERMs) against these outcomes. STUDY DESIGN Streptozotocin-induced diabetic, ovariectomized Sprague-Dawley rats were used as the disease model. Alendronate and raloxifene were used as the bisphosphonate and SERM, respectively. METHODS We divided 62 female rats into five groups: (1) control (n=14), (2) DM (diabetes) (n=12), (3) DM+OVX (diabetes+ovariectomy) (n=12), (4) DM+OVX+A (diabetes+ovariectomy+alendronate) (n=12), and (5) DM+OVX+R (diabetes+ovariectomy+raloxifene) (n=12). Serum biochemical markers of bone turnover, including osteocalcin and the C-telopeptide of type I collagen (CTX-1), were analyzed. We measured histomorphometric parameters of the fourth lumbar vertebrae using microcomputed tomography. Mechanical strength was evaluated by a compression test. RESULTS In the DM and DM+OVX group, only the levels of osteocalcin significantly decreased compared with those of the control group at 8 weeks after OVX. At 12 weeks, the serum CTX-1 levels in the DM+OVX+A and DM+OVX+R groups were significantly lower than those of the DM+OVX group, but there were no changes in the levels of osteocalcin. Bone mineral density and mechanical strength were higher in the DM+OVX+A and DM+OVX+R groups than in the DM and DM+OVX groups (p<.05). CONCLUSIONS Even if postmenopausal osteoporosis is accompanied by diabetes in this animal model, both alendronate and raloxifene seem to show antiresorptive effects, decreased bone turnover rates, and improved bone mechanical strength. Therefore, alendronate and raloxifene are effective in the treatment of osteoporosis even for bone loss caused by DM and postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Young-Seok Lee
- Department of Neurosurgery, Gyeongsang National University, Gyeongsang National University Hospital, 79, Gangnam-ro, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Rishab Gupta
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, 818 W 10th Ave, Vancouver, British Columbia V5Z1M9 Canada
| | - Jeong-Taik Kwon
- Department of Neurosurgery, Chung-Ang University College of Medicine, 102, Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea
| | - Dae-Chul Cho
- Department of Neurosurgery, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 700-721, Republic of Korea
| | - Ye Jin Seo
- Department of Neurosurgery, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 700-721, Republic of Korea
| | - Sung Young Seu
- Department of Neurosurgery, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 700-721, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2175, Dalgubeol-daero, Jung-gu, Daegu, 41950, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 3496, Republic of Korea
| | - Chi-Heon Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Joo-Kyung Sung
- Department of Neurosurgery, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 700-721, Republic of Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 700-721, Republic of Korea.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) reside in the bone marrow and are important in replenishing all cells in the blood through a process termed hematopoiesis. One of the defining characteristics of HSCs is that they must be able to balance their self-renewal capacity with their differentiation into committed blood cells in various blood lineages. For these events to occur, HSCs must be tightly regulated in the bone marrow by intrinsic and extrinsic factors to maintain steady hematopoiesis. RECENT FINDINGS Recently, the effect on how metabolism regulates HSC function has received a great amount of attention. In particular, lipids have been found to participate in mitochondrial activity to maintain HSCs, a role previously overlooked due to HSCs being thought of as mostly glycolytic. Moreover, there has been a re-emergence of how adipocytes in the bone marrow can regulate HSCs. SUMMARY As these areas evolve, more studies are required to determine the exact contribution of lipids toward HSC maintenance. These studies will allow newer therapeutic targets to help reduce abnormal hematopoiesis such as myelopoiesis, which contributes to many metabolic diseases.
Collapse
Affiliation(s)
- Man K S Lee
- Baker Heart & Diabetes Institute
- Department of Immunology, Monash University, Melbourne, Australia
| | - Annas Al-Sharea
- Baker Heart & Diabetes Institute
- Department of Immunology, Monash University, Melbourne, Australia
| | - Dragana Dragoljevic
- Baker Heart & Diabetes Institute
- Department of Immunology, Monash University, Melbourne, Australia
| | - Andrew J Murphy
- Baker Heart & Diabetes Institute
- Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
15
|
Hu L, Zha YF, Wang L, Li L, Xing D, Gong W, Wang J, Lin Y, Zeng FF, Lu XS. Quantitative Evaluation of Vertebral Microvascular Permeability and Fat Fraction in Alloxan-induced Diabetic Rabbits. Radiology 2017; 287:128-136. [PMID: 29156149 DOI: 10.1148/radiol.2017170760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Purpose To determine longitudinal relationships between lumbar vertebral bone marrow permeability and marrow adipose tissue in a rabbit diabetes model by using quantitative dynamic contrast agent-enhanced (DCE) magnetic resonance (MR) imaging and iterative decomposition of water and fat with the echo asymmetry and least-squares estimation quantitation (IDEAL IQ) sequence. Materials and Methods Twenty rabbits were randomly assigned to the diabetic (n = 10) or control (n = 10) group. All rabbits underwent sagittal MR imaging of the lumbar region at fixed time points (0, 4, 8, 12, and 16 weeks after alloxan injection). A linear mixed-effects model was used to analyze fat fraction (FF) and permeability parameter changes for 16 months after baseline. These parameters were compared between the two groups by using an independent-samples t test. Correlation of DCE MR imaging parameters with FF and with microvessel density (MVD) was analyzed by using the Spearman correlation coefficient. All statistical analyses were performed with software. Results Twelve weeks after injection, transfer constant (Ktrans) and rate constant (Kep) were markedly and significantly increased, while fractional plasma volume (Vp) significantly decreased. The volume of extravascular extracellular space (Ve) decreased significantly after 16 weeks in the diabetic group. MVD was negatively correlated with Ktrans and Kep and positively correlated with Ve and Vp, while FF was positively correlated with Ktrans and Kep and negatively correlated with Ve and Vp (P < .05 for all). Conclusion DCE MR imaging and the IDEAL IQ sequence can be used for quantitative evaluation of changes in vertebral microvascular permeability and vertebral fat deposition in alloxan-induced diabetic rabbits. This variation is highly associated with increased vertebral fat deposition. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Lei Hu
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Yun Fei Zha
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Li Wang
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Liang Li
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Dong Xing
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Wei Gong
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Jiao Wang
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Yuan Lin
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Fei Fei Zeng
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| | - Xue Song Lu
- From the Department of Radiology, Renmin Hospital, Wuhan University, Hubei Zhang Road, Wuchang District, 99 Jiefang Rd 238, Wuhan, Hubei 430060, China (L.H., Y.F.Z., L.W., L.L., D.X., W.G., J.W., Y.L., F.F.Z.); and Department of Biological Engineering, School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (X.S.L.)
| |
Collapse
|
16
|
Verroken C, Pieters W, Beddeleem L, Goemaere S, Zmierczak HG, Shadid S, Kaufman JM, Lapauw B. Cortical Bone Size Deficit in Adult Patients With Type 1 Diabetes Mellitus. J Clin Endocrinol Metab 2017; 102:2887-2895. [PMID: 28531321 DOI: 10.1210/jc.2017-00620] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
CONTEXT The increased fracture risk associated with type 1 diabetes mellitus (T1DM) remains unexplained by traditional risk factors such as low areal bone mineral density (aBMD). Nonetheless, few data exist on other determinants of bone strength in T1DM, including volumetric bone mineral density (vBMD) and bone geometry. OBJECTIVE We compared areal and volumetric bone parameters and cortical bone geometry in adult T1DM patients and sex- and age-matched controls. DESIGN Cross-sectional study including 64 adult T1DM patients (38 men; mean age, 41.1 ± 8.1 years) and 63 sex- and age-matched controls. MAIN OUTCOME MEASURES Areal bone parameters using dual-energy X-ray absorptiometry; volumetric bone parameters and cortical bone geometry using peripheral quantitative computed tomography. RESULTS T1DM was associated with lower aBMD at the total body, femoral neck, and total hip; lower trabecular vBMD at the distal radius; and higher cortical but lower total vBMD at the radial shaft. In addition, subjects with T1DM had a similar periosteal but larger endosteal circumference, smaller cortical thickness, and lower cortical over total bone area ratio. Differences in bone parameters could not be explained by differences in bone turnover markers or body composition, but cortical area was inversely associated with glycemic variability and long-term glycemic control. CONCLUSIONS Besides decreased aBMD and trabecular vBMD, adult T1DM patients present with a cortical bone size deficit, which may contribute to their increased fracture risk. This deficit is mainly situated at the endosteal envelope, suggesting imbalanced remodeling rather than compromised modeling processes as the underlying mechanism.
Collapse
Affiliation(s)
- Charlotte Verroken
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Wout Pieters
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Loïc Beddeleem
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Stefan Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - Hans-Georg Zmierczak
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - Samyah Shadid
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jean-Marc Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bruno Lapauw
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Ferreira ECS, Bortolin RH, Freire-Neto FP, Souza KSC, Bezerra JF, Ururahy MAG, Ramos AMO, Himelfarb ST, Abreu BJ, Didone TVN, Pedrosa LFC, Medeiros AC, Doi SQ, Brandão-Neto J, Hirata RDC, Rezende LA, Almeida MG, Hirata MH, Rezende AA. Zinc supplementation reduces RANKL/OPG ratio and prevents bone architecture alterations in ovariectomized and type 1 diabetic rats. Nutr Res 2017; 40:48-56. [PMID: 28473060 DOI: 10.1016/j.nutres.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/16/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes mellitus (T1DM) and estrogen deficiency are associated with several alterations in bone turnover. Zinc (Zn) is required for growth, development, and overall health. Zinc has been used in complementary therapy against bone loss in several diseases. We hypothesized that Zn supplementation represents a potential therapy against severe bone loss induced by the combined effect of estrogen deficiency and T1DM. We evaluated the protective effect of Zn against bone alterations in a chronic model of these disorders. Female Wistar rats were ramdomized into 3 groups (5 rats each): control, OVX/T1DM (ovariectomized rats with streptozotocin-induced T1DM), and OVX/T1DM+Zn (OVX/T1DM plus daily Zn supplementation). Serum biochemical, bone histomorphometric, and molecular analyses were performed. Histomorphometric parameters were similar between the control and OVX/T1DM+Zn groups, suggesting that Zn prevents bone architecture alterations. In contrast, the OVX/T1DM group showed significantly lower trabecular width and bone area as well as greater trabecular separation than the control. The OVX/T1DM and OVX/T1DM+Zn groups had significantly higher serum alkaline phosphatase activity than the control. The supplemented group had higher levels of serum-ionized calcium and phosphorus than the nonsupplemented group. The RANKL/OPG ratio was similar between the control and OVX/T1DM+Zn groups, whereas it was higher in the OVX/T1DM group. In conclusion, Zn supplementation prevents bone alteration in chronic OVX/T1DM rats, as demonstrated by the reduced RANKL/OPG ratio and preservation of bone architecture. The findings may represent a novel therapeutic approach to preventing OVX/T1DM-induced bone alterations.
Collapse
Affiliation(s)
- Elaine C S Ferreira
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raul H Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Francisco P Freire-Neto
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla S C Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João F Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Marcela A G Ururahy
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ana M O Ramos
- Department of Clinical Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Silvia T Himelfarb
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Bento J Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Thiago V N Didone
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Lucia F C Pedrosa
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Aldo C Medeiros
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sonia Q Doi
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - José Brandão-Neto
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rosário D C Hirata
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Luciana A Rezende
- Department of Chemistry, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Maria G Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Mario H Hirata
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Adriana A Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This study aims to describe bone marrow fat changes in diabetes and to discuss the potential role of marrow fat in skeletal fragility. RECENT FINDINGS Advances in non-invasive imaging have facilitated marrow fat research in humans. In contrast to animal studies which clearly demonstrate higher levels of marrow fat in diabetes, human studies have shown smaller and less certain differences. Marrow fat has been reported to correlate with A1c, and there may be a distinct marrow lipid saturation profile in diabetes. Greater marrow fat is associated with impaired skeletal health. Marrow fat may be a mediator of skeletal fragility in diabetes. Circulating lipids, growth hormone alterations, visceral adiposity, and hypoleptinemia have been associated with greater marrow fat and may represent potential mechanisms for the putative effects of diabetes on marrow fat, although other factors likely contribute. Additional research is needed to further define the role of marrow fat in diabetic skeletal fragility and to determine whether marrow fat is a therapeutic target.
Collapse
Affiliation(s)
- Tiffany Y Kim
- University of California, San Francisco, 1700 Owens St, Room 349, San Francisco, CA, 94158, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| | - Anne L Schafer
- University of California, San Francisco, 1700 Owens St, Room 349, San Francisco, CA, 94158, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
19
|
Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA. Marrow Adipose Tissue: Trimming the Fat. Trends Endocrinol Metab 2016; 27:392-403. [PMID: 27094502 PMCID: PMC4875855 DOI: 10.1016/j.tem.2016.03.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Marrow adipose tissue (MAT) is a unique fat depot, located in the skeleton, that has the potential to contribute to both local and systemic metabolic processes. In this review we highlight several recent conceptual developments pertaining to the origin and function of MAT adipocytes; consider the relationship of MAT to beige, brown, and white adipose depots; explore MAT expansion and turnover in humans and rodents; and discuss future directions for MAT research in the context of endocrine function and metabolic disease. MAT has the potential to exert both local and systemic effects on metabolic homeostasis, skeletal remodeling, hematopoiesis, and the development of bone metastases. The diversity of these functions highlights the breadth of the potential impact of MAT on health and disease.
Collapse
Affiliation(s)
- Erica L Scheller
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO 63110, USA.
| | - William P Cawthorn
- University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Aaron A Burr
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. Loss of Bone and Wnt10b Expression in Male Type 1 Diabetic Mice Is Blocked by the Probiotic Lactobacillus reuteri. Endocrinology 2015; 156:3169-82. [PMID: 26135835 PMCID: PMC4541610 DOI: 10.1210/en.2015-1308] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes (T1D)-induced osteoporosis is characterized by a predominant suppression of osteoblast number and activity, as well as increased bone marrow adiposity but no change in osteoclast activity. The fundamental mechanisms and alternative anabolic treatments (with few side effects) for T1D bone loss remain undetermined. Recent studies by our laboratory and others indicate that probiotics can benefit bone health. Here, we demonstrate that Lactobacillus reuteri, a probiotic with anti-inflammatory and bone health properties, prevents T1D-induced bone loss and marrow adiposity in mice. We further found that L. reuteri treatment prevented the suppression of Wnt10b in T1D bone. Consistent with a role for attenuated bone Wnt10b expression in T1D osteoporosis, we observed that bone-specific Wnt10b transgenic mice are protected from T1D bone loss. To examine the mechanisms of this protection, we focused on TNF-α, a cytokine up-regulated in T1D that causes suppression of osteoblast Wnt10b expression in vitro. Addition of L. reuteri prevented TNF-α-mediated suppression of Wnt10b and osteoblast maturation markers. Taken together, our findings reveal a mechanism by which T1D causes bone loss and open new avenues for use of probiotics to benefit the bone.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Katherine J Motyl
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Regina Irwin
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Ormond A MacDougald
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Robert A Britton
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| | - Laura R McCabe
- Department of Physiology (J.Z., K.J.M., R.I., L.R.M.), Department of Molecular and Integrative Physiology (O.A.M.), Department of Microbiology and Molecular Genetics (R.A.B.), Department of Radiology (L.R.M.), and Biomedical Imaging Research Center (L.R.M.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
21
|
Abdalrahaman N, McComb C, Foster JE, McLean J, Lindsay RS, McClure J, McMillan M, Drummond R, Gordon D, McKay GA, Shaikh MG, Perry CG, Ahmed SF. Deficits in Trabecular Bone Microarchitecture in Young Women With Type 1 Diabetes Mellitus. J Bone Miner Res 2015; 30:1386-93. [PMID: 25627460 DOI: 10.1002/jbmr.2465] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/27/2023]
Abstract
The pathophysiological mechanism of increased fractures in young adults with type 1 diabetes mellitus (T1DM) is unclear. We conducted a case-control study of trabecular bone microarchitecture and vertebral marrow adiposity in young women with T1DM. Thirty women with T1DM with a median age (range) age of 22.0 years (16.9, 36.1) attending one outpatient clinic with a median age at diagnosis of 9.7 years (0.46, 14.8) were compared with 28 age-matched healthy women who acted as controls. Measurements included MRI-based assessment of proximal tibial bone volume/total volume (appBV/TV), trabecular separation (appTb.Sp), vertebral bone marrow adiposity (BMA), and abdominal adipose tissue and biochemical markers of GH/IGF-1 axis (IGF-1, IGFBP3, ALS) and bone turnover. Median appBV/TV in cases and controls was 0.3 (0.22, 0.37) and 0.33 (0.26, 0.4), respectively (p = 0.018) and median appTb.Sp in T1DM was 2.59 (2.24, 3.38) and 2.32 (2.03, 2.97), respectively (p = 0.012). The median appBV/TV was 0.28 (0.22, 0.33) in those cases with retinopathy (n = 15) compared with 0.33 (0.25, 0.37) in those without retinopathy (p = 0.02). Although median visceral adipose tissue in cases was higher than in controls at 5733 mm(3) (2030, 11,144) and 3460 mm(3) (1808, 6832), respectively (p = 0.012), there was no difference in median BMA, which was 31.1% (9.9, 59.9) and 26.3% (8.5, 49.8) in cases and controls, respectively (p = 0.2). Serum IGF-1 and ALS were also lower in cases, and the latter showed an inverse association to appTbSp (r = -0.30, p = 0.04). Detailed MRI studies in young women with childhood-onset T1DM have shown clear deficits in trabecular microarchitecture of the tibia. Underlying pathophysiological mechanisms may include a microvasculopathy.
Collapse
Affiliation(s)
- Naiemh Abdalrahaman
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, UK
| | - Christie McComb
- Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK.,BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - John E Foster
- Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK.,BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - John McLean
- Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK.,Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Robert S Lindsay
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,Stobhill Diabetes Centre, Stobhill Hospital, Glasgow, UK
| | - John McClure
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Martin McMillan
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, UK
| | | | - Derek Gordon
- Stobhill Diabetes Centre, Stobhill Hospital, Glasgow, UK
| | - Gerard A McKay
- Stobhill Diabetes Centre, Stobhill Hospital, Glasgow, UK
| | - M Guftar Shaikh
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, UK
| | - Colin G Perry
- Stobhill Diabetes Centre, Stobhill Hospital, Glasgow, UK
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Coe LM, Tekalur SA, Shu Y, Baumann MJ, McCabe LR. Bisphosphonate treatment of type I diabetic mice prevents early bone loss but accentuates suppression of bone formation. J Cell Physiol 2015; 230:1944-53. [PMID: 25641511 DOI: 10.1002/jcp.24929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Previous studies demonstrate that T1-diabetes decreases osteoblast activity and viability. Bisphosphonate therapy, commonly used to treat osteoporosis, is demonstrated to inhibit osteoclast activity as well as osteoblast apoptosis. Therefore, we examined the effect of weekly alendronate treatments on T1-diabetes induced osteoblast apoptosis and bone loss. Bone TUNEL assays identified that alendronate therapy prevents the diabetes-induced osteoblast death observed during early stages of diabetes development. Consistent with this, alendronate treatment for 40 days was able to prevent diabetes-induced trabecular bone loss. Alendronate was also able to reduce marrow adiposity in both control diabetic mice compared to untreated mice. Mechanical testing indicated that 40 days of alendronate treatment increased bone stiffness but decreased the work required for fracture in T1-diabetic and alendronate treated mice. Of concern at this later time point, bone formation rate and osteoblast markers, which were already decreased in diabetic mice, were further suppressed in alendronate-treated diabetic mice. Taken together, our results suggest that short-term alendronate treatment can prevent T1-diabetes-induced bone loss in mice, possibly in part by inhibiting diabetes onset associated osteoblast death, while longer treatment enhanced bone density but at the cost of further suppressing bone formation in diabetic mice.
Collapse
Affiliation(s)
- Lindsay M Coe
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
| | | | | | | | | |
Collapse
|
23
|
Bortolin RH, da Graça Azevedo Abreu BJ, Abbott Galvão Ururahy M, Costa de Souza KS, Bezerra JF, Bezerra Loureiro M, da Silva FS, Marques DEDS, Batista AADS, Oliveira G, Luchessi AD, Lima VMGDM, Miranda CES, Lia Fook MV, Almeida MDG, de Rezende LA, de Rezende AA. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats. PLoS One 2015; 10:e0125349. [PMID: 25933189 PMCID: PMC4416905 DOI: 10.1371/journal.pone.0125349] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/16/2015] [Indexed: 02/01/2023] Open
Abstract
Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days) type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM), and T1DM plus zinc supplementation (T1DMS). Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus), and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic and protective effect of zinc under chronic diabetic conditions. Furthermore, these results indicate that zinc supplementation could act as a complementary therapy in chronic T1DM.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Bone Density/drug effects
- Bone Resorption/prevention & control
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/diet therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Dietary Supplements
- Elastic Modulus
- Femur/drug effects
- Femur/metabolism
- Femur/pathology
- Gene Expression Regulation
- Humans
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Osteocalcin/genetics
- Osteocalcin/metabolism
- Osteoprotegerin/genetics
- Osteoprotegerin/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin
- Tibia/drug effects
- Tibia/metabolism
- Tibia/pathology
- Zinc/administration & dosage
Collapse
Affiliation(s)
- Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Marcela Abbott Galvão Ururahy
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla Simone Costa de Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Felipe Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Melina Bezerra Loureiro
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Flávio Santos da Silva
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Gisele Oliveira
- Department of Chemistry, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Marcus Vinicius Lia Fook
- Laboratory of Evaluation and Development of Biomaterials, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- * E-mail:
| |
Collapse
|
24
|
Kim JH, Lee DE, Gunawardhana KSND, Choi SH, Woo GH, Cha JH, Bak EJ, Yoo YJ. Effect of the interaction between periodontitis and type 1 diabetes mellitus on alveolar bone, mandibular condyle and tibia. Acta Odontol Scand 2014; 72:265-73. [PMID: 23931568 DOI: 10.3109/00016357.2013.822551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study examined the effect of the interaction between periodontitis and type 1 diabetes mellitus on alveolar bone, mandibular condyle and tibia in animal models. MATERIALS AND METHODS Rats were divided into normal, periodontitis, diabetic and diabetic with periodontitis groups. After injection of streptozotocin to induce diabetes, periodontitis was induced by ligation of both lower-side first molars for 30 days. Alveolar bone loss and trabecular bone volume fraction (BVF) of the mandibular condyle and tibia were estimated via hematoxylin and eosin staining and micro-computed tomography, respectively. Osteoclastogenesis of bone marrow cells isolated from tibia and femur was assayed using tartrate-resistant acid phosphatase staining. RESULTS The cemento-enamel junction to the alveolar bone crest distance and ratio of periodontal ligament area in the diabetic with periodontitis group were significantly increased compared to those of the periodontitis group. Mandibular condyle BVF did not differ among groups. The BVF of tibia in the diabetic and diabetic with periodontitis groups was lower than that of the normal and periodontitis groups. Osteoclastogenesis of bone marrow cells in the diabetic groups was higher than that in the non-diabetic groups. However, the BVF of tibia and osteoclastogenesis in the diabetic with periodontitis group were not significantly different than those in the diabetic group. CONCLUSIONS Type 1 diabetes mellitus aggravates alveolar bone loss induced by periodontitis, but periodontitis does not alter the mandibular condyle and tibia bone loss induced by diabetes. Alveolar bone, mandibular condyle and tibia may have different responses to bone loss stimuli in the diabetic environment.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Applied Life Science, The Graduate School, Yonsei University , Seoul , Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Canigur Bavbek N, Dincer M. Dimensions and morphologic variations of sella turcica in type 1 diabetic patients. Am J Orthod Dentofacial Orthop 2014; 145:179-87. [PMID: 24485732 DOI: 10.1016/j.ajodo.2013.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Some chronic diseases are associated with changes in the morphology of sella turcica, and type 1 diabetes is the most common chronic disease in children and adolescents. Therefore, the aim of this study was to evaluate the size and morphology of sella turcica in patients with type 1 diabetes compared with a healthy control group. METHODS The study included 76 type 1 diabetic patients (38 boys, 38 girls; ages, 14.16 ± 2.46 years) and 76 controls (38 boys, 38 girls; ages, 14 ± 2.08 years). The groups were categorized as pubertal and postpubertal according to bone age. The length, height, and diameter of sella turcica were measured. Then the morphology of sella turcica was analyzed and categorized as normal, oblique anterior wall, bridging, double contour of the floor, irregularity in the posterior part of dorsum sellae, or pyramidal shape of the dorsum sellae. All measurements were made on tracings of cephalometric radiographs. Differences between the groups were tested with the Mann-Whitney U test. Categorical data were evaluated with the Fisher exact test, and the Bonferroni correction was made. The significance level was assigned as P <0.05. RESULTS There was no statistically significant difference in the dimensions of sella between the diabetic patients (diameter, 12.20 ± 1.49 mm; length, 10.49 ± 1.55 mm; height, 8.07 ± 1.25 mm) and the controls (diameter, 12.45 ± 1.43 mm; length, 10.90 ± 1.73 mm; height, 8.29 ± 1.66 mm). However, diameter and length increased with age in the overall assessment. Length was greater in the postpubertal controls (11.39 ± 1.69 mm) compared with the pubertal controls (10.41 ± 1.64 mm). Diameter was greater in the postpubertal diabetic patients (1.283 ± 1.55 mm) than in the pubertal diabetic patients (11.56 ± 1.12 mm) and was specifically higher in postpubertal boys. Normal sella morphology was less common in general in the diabetic patients, particularly in the diabetic boys and diabetic pubertal boys (P <0.05). CONCLUSIONS The measurements concerning sella were similar in the type 1 diabetic and control subjects, but dysmorphologic types were more common in diabetic patients.
Collapse
Affiliation(s)
- Nehir Canigur Bavbek
- Research assistant, Department of Orthodontics, Faculty of Dentistry, Gazi University, Ankara, Turkey.
| | - Mufide Dincer
- Professor, Department of Orthodontics, Faculty of Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
26
|
Huovinen V, Saunavaara V, Kiviranta R, Tarkia M, Honka H, Stark C, Laine J, Linderborg K, Tuomikoski P, Badeau RM, Knuuti J, Nuutila P, Parkkola R. Vertebral bone marrow glucose uptake is inversely associated with bone marrow fat in diabetic and healthy pigs: [(18)F]FDG-PET and MRI study. Bone 2014; 61:33-8. [PMID: 24389418 DOI: 10.1016/j.bone.2013.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Diabetes induces osteoporosis and during osteoporosis, vertebral bone marrow (VBM) adipose tissue amount increases. The association between this adiposity and bone marrow metabolism is unclear. Here, we compared VBM glucose metabolism and fat content in healthy and diabetic pigs, in vivo, using positron emission tomography (PET), in-phase and out-of-phase magnetic resonance imaging and magnetic resonance proton spectroscopy ((1)H MR spectroscopy). MATERIALS/METHODS Eleven pigs (n=11) were used. The intervention group had five diabetic and the control group had six healthy pigs. To measure metabolism, PET-imaging with [(18)F]fluoro-deoxy-glucose ([(18)F]FDG) intravenous tracer was used. 1.5-T MRI with (1)H spectroscopy, in-phase and out-of-phase imaging and chemical TAG analysis of the VBM were performed. RESULTS We found a significant inverse correlation between VBM glucose uptake (GU) and VBM fat content (R=-0.800, p<0.01) and TAG concentration assay (R=-0.846, p<0.05). There was a trend, although non-significant, of a linear correlation between VBM (1)H MR spectroscopy and TAG concentration (R=0.661) and (1)H MR spectroscopy and in-phase and out-of-phase MR imaging (R=0.635). CONCLUSIONS VBM glucose metabolism coupled with VBM fat content may impact diabetic induced osteoporosis.
Collapse
Affiliation(s)
- Ville Huovinen
- Turku PET Centre, University of Turku, PO Box 52, FI-20521 Turku, Finland; Department of Radiology, University of Turku, Medical Imaging Centre of Southwest Finland and Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, University of Turku, PO Box 52, FI-20521 Turku, Finland
| | - Riku Kiviranta
- Turku PET Centre, University of Turku, PO Box 52, FI-20521 Turku, Finland; Department of Endocrinology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Miikka Tarkia
- Turku PET Centre, University of Turku, PO Box 52, FI-20521 Turku, Finland
| | - Henri Honka
- Turku PET Centre, University of Turku, PO Box 52, FI-20521 Turku, Finland
| | - Christoffer Stark
- Department of Surgery, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Julius Laine
- Department of Surgery, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Kaisa Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Pasi Tuomikoski
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | | | - Juhani Knuuti
- Turku PET Centre, University of Turku, PO Box 52, FI-20521 Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, PO Box 52, FI-20521 Turku, Finland; Department of Endocrinology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Tampere University and Tampere University Hospital, PL 2000, 33521 Tampere, Finland; Department of Radiology, University of Turku, Medical Imaging Centre of Southwest Finland and Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland.
| |
Collapse
|
27
|
Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A. Marrow fat and bone--new perspectives. J Clin Endocrinol Metab 2013; 98:935-45. [PMID: 23393168 PMCID: PMC3590487 DOI: 10.1210/jc.2012-3634] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT There is growing interest in the relationship between bone mineral density, bone strength, and fat depots. Marrow adipose tissue, a well-established component of the marrow environment, is metabolically distinct from peripheral fat depots, but its functional significance is unknown. OBJECTIVE In this review, we discuss animal and human data linking the marrow adipose tissue depot to parameters of bone density and integrity as well as the potential significance of marrow adipose tissue in metabolic diseases associated with bone loss, including type 1 diabetes mellitus and anorexia nervosa. Potential hormonal determinants of marrow adipose tissue are also discussed. CONCLUSIONS We conclude that whereas most animal and human data demonstrate an inverse association between marrow adipose tissue and measures of bone density and strength, understanding the functional significance of marrow adipose tissue and its hormonal determinants will be critical to better understanding its role in skeletal integrity and the role of marrow adipose tissue in the pathophysiology of bone loss.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Coe LM, Zhang J, McCabe LR. Both spontaneousIns2+/−and streptozotocin-induced type I diabetes cause bone loss in young mice. J Cell Physiol 2012; 228:689-95. [DOI: 10.1002/jcp.24177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/02/2012] [Indexed: 01/25/2023]
|
29
|
Motyl KJ, McCauley LK, McCabe LR. Amelioration of type I diabetes-induced osteoporosis by parathyroid hormone is associated with improved osteoblast survival. J Cell Physiol 2012; 227:1326-34. [PMID: 21604269 PMCID: PMC4100799 DOI: 10.1002/jcp.22844] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetic osteoporosis results from impaired osteoblast activity and death. Therefore, anti-resorptive treatments may not effectively treat bone loss in this patient population. Intermittent parathyroid hormone (PTH) treatment stimulates bone remodeling and increases bone density in healthy subjects. However, PTH effects may be limited in patients with diseases that interfere with its signaling. Here, we examined the ability of 8 and 40 µg/kg intermittent PTH to counteract diabetic bone loss. PTH treatment reduced fat pad mass and blood glucose levels in non-diabetic PTH-treated mice, consistent with PTH-affecting glucose homeostasis. However, PTH treatment did not significantly affect general body parameters, including the blood glucose levels, of type 1 diabetic mice. We found that the high dose of PTH significantly increased tibial trabecular bone density parameters in control and diabetic mice, and the lower dose elevated trabecular bone parameters in diabetic mice. The increased bone density was due to increased mineral apposition and osteoblast surface, all of which are defective in type 1 diabetes. PTH treatment suppressed osteoblast apoptosis in diabetic bone, which could further contribute to the bone-enhancing effects. In addition, PTH treatment (40 µg/kg) reversed preexisting bone loss from diabetes. We conclude that intermittent PTH may increase type 1 diabetic trabecular bone volume through its anabolic effects on osteoblasts.
Collapse
Affiliation(s)
- Katherine J Motyl
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
30
|
Slade JM, Coe LM, Meyer RA, McCabe LR. Human bone marrow adiposity is linked with serum lipid levels not T1-diabetes. J Diabetes Complications 2012; 26:1-9. [PMID: 22257906 DOI: 10.1016/j.jdiacomp.2011.11.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/08/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023]
Abstract
Increased marrow adiposity is often associated with bone loss. Little is known about the regulation of marrow adiposity in humans. Marrow adiposity is increased in several mouse models including type I (T1)-diabetic mice, which also display bone loss. However, the impact of metabolic disease on marrow adiposity in humans has yet to be examined. This study measured bone marrow adiposity levels with iterative decomposition of water and fat with echo asymmetry and least-squares estimation magnetic resonance imaging and determined their relationship with T1-diabetes, bone mineral density (BMD), and serum lipid levels. Participants were adult T1-diabetic patients (glycosylated hemoglobin averaging 7.70%±0.4%) and age- and body-mass-index-matched nondiabetic subjects. Consistent with previous reports, serum osteocalcin levels were lower in subjects with T1-diabetes compared to controls (reaching statistical significance in females) and negatively correlated with disease duration (r=-0.50, P<.01). Furthermore, femur neck BMD inversely correlated with diabetes severity (r=-0.417, P<.05). While marrow adiposity was not altered by T1-diabetes, there was a striking positive correlation between vertebral, femur, and tibia marrow adiposity and serum lipid levels (low-density lipoprotein, total cholesterol, cholesterol:high-density lipoprotein ratio, and triglyceride; r≥0.383), reaching a significance of P<.001 in some comparisons. Marrow adiposity also displayed strong intrasubject correlations at multiple bone sites (r≥0.411, P<.05), increased with age (r=0.410, P<.05 at vertebral sites), and was reciprocally related to bone density (r≥-0.378, P<.05). Taken together, our data suggest that marrow adiposity may be an indicator of elevated serum lipid levels and decreased bone density.
Collapse
Affiliation(s)
- Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
31
|
Coe LM, Denison JD, McCabe LR. Low dose aspirin therapy decreases blood glucose levels but does not prevent type i diabetes-induced bone loss. Cell Physiol Biochem 2011; 28:923-32. [PMID: 22178944 DOI: 10.1159/000335806] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes is strongly associated with increased fracture risk. During T1-diabetes onset, levels of blood glucose and pro-inflammatory cytokines (including TNFα) are increased. At the same time, levels of osteoblast markers are rapidly decreased and stay decreased 40 days later at which point bone loss is clearly evident. Inflammation is known to suppress bone formation and induce bone loss. Previous co-culture studies indicate that diabetic bone is inflamed and diabetic bone marrow is capable of enhancing osteoblast death in vitro. Here we investigate a commonly used non-steroidal anti-inflammatory drug, aspirin, to prevent T1-diabetic bone loss in vivo. METHODS We induced diabetes in 16-week-old male C57BL/6 mice and administered aspirin in the drinking water. RESULTS Our results demonstrate that aspirin therapy reduced diabetic mouse non-fasting blood glucose levels to less than 400 mg/dl, but did not prevent trabecular and cortical bone loss. In control mice, aspirin treatment increased bone formation markers but did not affect markers of bone resorption or bone density/volume. In diabetic mice, bone formation markers and bone density/volume are decreased and unaltered by aspirin treatment. Bone resorption markers, however, are increased and 2-way ANOVA analysis demonstrates an interaction between aspirin treatment and diabetes (p<0.007). Aspirin treatment did not prevent the previously reported diabetes-induced marrow adiposity. CONCLUSION Taken together, our results suggest that low dose aspirin therapy does not negatively impact bone density in control and diabetic mice, but could potentially increase bone resorption in T1-diabetic mice.
Collapse
Affiliation(s)
- Lindsay M Coe
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
32
|
Coe LM, Lippner D, Perez GI, McCabe LR. Caspase-2 deficiency protects mice from diabetes-induced marrow adiposity. J Cell Biochem 2011; 112:2403-11. [PMID: 21538476 DOI: 10.1002/jcb.23163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Bone formation and density are decreased in T1-diabetic mice. Correspondingly, the number of TUNEL positive, dying osteoblasts increases in bones of T1-diabetic mice. Moreover, two known mediators of osteoblast death, TNFα and ROS, are increased in T1-diabetic bone. TNFα and oxidative stress are known to activate caspase-2, a factor involved in the extrinsic apoptotic pathway. Therefore, we investigated the requirement of caspase-2 for diabetes-induced osteoblast death and bone loss. Diabetes was induced in 16-week old C57BL/6 caspase-2 deficient mice and their wild type littermates and markers of osteoblast death, bone formation and resorption, and marrow adiposity were examined. Despite its involvement in extrinsic cell death, deficiency of caspase-2 did not prevent or reduce diabetes-induced osteoblast death as evidenced by a twofold increase in TUNEL positive osteoblasts in both mouse genotypes. Similarly, deficiency of caspase-2 did not prevent T1-diabetes induced bone loss in trabecular bone (BV/TV decreased by 30 and 50%, respectively) and cortical bone (decreased cortical thickness and area with increased marrow area). Interestingly, at this age, differences in bone parameters were not seen between genotypes. However, caspase-2 deficiency attenuated diabetes-induced bone marrow adiposity and adipocyte gene expression. Taken together, our data suggest that caspase-2 deficiency may play a role in promoting marrow adiposity under stress or disease conditions, but it is not required for T1-diabetes induced bone loss.
Collapse
Affiliation(s)
- Lindsay M Coe
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Complex interactions occur among adipose tissue, the central nervous system, bone and pancreas to integrate bone remodelling, glucose, lipid and energy metabolism. Data obtained largely from the judicious use of gain-of-function and loss-of-function genetic mouse models show that leptin, an adipocyte-secreted product, indirectly inhibits bone accrual through a central pathway comprising the hypothalamus and central nervous system. Increased sympathetic output acting via β2-adrenergic receptors present in osteoblasts decreases bone formation and causes increased bone resorption. Insulin is a key molecular link between bone remodelling and energy metabolism. Insulin signalling in the osteoblasts increases bone formation and resorption as well as the release of undercarboxylated osteocalcin. An increase in the release of bone-derived undercarboxylated osteocalcin into the systemic circulation enables it to act as a circulating hormone to stimulate insulin production and secretion by pancreatic β-cells and adiponectin by adipocytes. Insulin sensitivity increases, lipolysis and fat accumulation decreases while energy expenditure increases. Whether this model of integrative physiology involving the skeleton, pancreas and adipose tissue, so elegantly demonstrated in rodents, is applicable to humans is controversial. The mouse Esp gene, encoding an intracellular tyrosine phosphatase that negatively regulates insulin signalling in osteoblasts, is a pseudogene in humans, and a homolog for the Esp gene has so far not been identified in humans. A close homologue of Esp, PTP1B, is expressed in human osteoblasts and could take the role of Esp in humans. Data available from the limited number of clinical studies do not provide a sufficient body of evidence to determine whether osteocalcin or undercarboxylated osteocalcin affects glucose metabolism in humans.
Collapse
Affiliation(s)
- Kong Wah Ng
- Department of Endocrinology and Diabetes, St. Vincent's Hospital, Fitzroy, Vic., Australia.
| |
Collapse
|
34
|
Zhang Y, Papasian CJ, Deng HW. Alteration of vitamin D metabolic enzyme expression and calcium transporter abundance in kidney involved in type 1 diabetes-induced bone loss. Osteoporos Int 2011; 22:1781-8. [PMID: 20878391 PMCID: PMC4537183 DOI: 10.1007/s00198-010-1404-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 08/17/2010] [Indexed: 12/24/2022]
Abstract
UNLABELLED This study aimed to delineate the mechanism involved in type 1 diabetes-induced bone loss. The results revealed the alteration of vitamin D metabolic enzyme expression and the downregulation of renal calcium transporter abundance in type 1 diabetic mice. INTRODUCTION The purpose of this study was to investigate the changes of the expression of vitamin D metabolic enzymes and transcellular calcium-transporting proteins in kidneys from mice with experimentally induced diabetes. METHODS Male DBA/2J mice were injected with either vehicle (control) or streptozotocin (STZ) daily for five consecutive days. Bone mineral density was measured by peripheral quantitative computerized tomography, and bone histomorphology was analyzed by Safranin O staining. Real-time PCR and Western blotting were applied to determine the expression of target genes and proteins. RESULTS Type 1 diabetes produced high urinary calcium excretion and loss of trabecular bone measured at the proximal metaphysis of the tibia and the distal femur. Bone loss was associated with deterioration of trabecular bone microstructure. Quantified PCR results showed that mRNA expression level in the kidney of diabetic mice for 25-hydroxyvitamin D-24-hydroxylase was downregulated at week 10, while those for 25-hydroxyvitamin D-1α-hydroxylase were upregulated at week 20. In addition, mRNA expression levels for renal transient receptor potential V6, plasma membrane Ca-ATPase (PMCA)1b, and vitamin D receptor (VDR) genes were decreased in STZ-treated mice. Western blot analysis showed that protein expression of PMCA1b and VDR was significantly decreased in kidneys from STZ-treated mice compared to that of controls. CONCLUSIONS The limitation in this study is the lack of vitamin D, parathyroid hormone, and phosphorus levels in serum. However, the present study supports the conclusion that the underlying mechanism contributing to type 1 diabetes-associated bone loss may be alterations of vitamin D metabolic enzyme expression and associated decreases in expression of renal calcium transporters.
Collapse
Affiliation(s)
- Y Zhang
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| | | | | |
Collapse
|
35
|
Motyl KJ, Raetz M, Tekalur SA, Schwartz RC, McCabe LR. CCAAT/enhancer binding protein β-deficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1250-60. [PMID: 21346244 DOI: 10.1152/ajpregu.00764.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone loss in type 1 diabetes is accompanied by increased marrow fat, which could directly reduce osteoblast activity or result from altered bone marrow mesenchymal cell lineage selection (adipocyte vs. osteoblast). CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of both adipocyte and osteoblast differentiation. C/EBPβ-null mice have delayed bone formation and defective lipid accumulation in brown adipose tissue. To examine the balance of C/EBPβ functions in the diabetic context, we induced type 1 diabetes in C/EBPβ-null (knockout, KO) mice. We found that C/EBPβ deficiency actually enhanced the diabetic bone phenotype. While KO mice had reduced peripheral fat mass compared with wild-type mice, they had 5-fold more marrow adipocytes than diabetic wild-type mice. The enhanced marrow adiposity may be attributed to compensation by C/EBPδ, peroxisome proliferator-activated receptor-γ2, and C/EBPα. Concurrently, we observed reduced bone density. Relative to genotype controls, trabecular bone volume fraction loss was escalated in diabetic KO mice (-48%) compared with changes in diabetic wild-type mice (-22%). Despite greater bone loss, osteoblast markers were not further suppressed in diabetic KO mice. Instead, osteoclast markers were increased in the KO diabetic mice. Thus, C/EBPβ deficiency increases diabetes-induced bone marrow (not peripheral) adipose depot mass, and promotes additional bone loss through stimulating bone resorption. C/EBPβ-deficiency also reduced bone stiffness and diabetes exacerbated this (two-way ANOVA P < 0.02). We conclude that C/EBPβ alone is not responsible for the bone vs. fat phenotype switch observed in T1 diabetes and that suppression of CEBPβ levels may further bone loss and decrease bone stiffness by increasing bone resorption.
Collapse
Affiliation(s)
- Katherine J Motyl
- Department of Biomedical and Integrative Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
36
|
Coe LM, Irwin R, Lippner D, McCabe LR. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J Cell Physiol 2011; 226:477-83. [PMID: 20677222 DOI: 10.1002/jcp.22357] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I diabetes increases an individual's risk for bone loss and fracture, predominantly through suppression of osteoblast activity (bone formation). During diabetes onset, levels of blood glucose and pro-inflammatory cytokines (including tumor necrosis factor α (TNFα)) increased. At the same time, levels of osteoblast markers are rapidly decreased and stay decreased chronically (i.e., 40 days later) at which point bone loss is clearly evident. We hypothesized that early bone marrow inflammation can promote osteoblast death and hence reduced osteoblast markers. Indeed, examination of type I diabetic mouse bones demonstrates a greater than twofold increase in osteoblast TUNEL staining and increased expression of pro-apoptotic factors. Osteoblast death was amplified in both pharmacologic and spontaneous diabetic mouse models. Given the known signaling and inter-relationships between marrow cells and osteoblasts, we examined the role of diabetic marrow in causing the osteoblast death. Co-culture studies demonstrate that compared to control marrow cells, diabetic bone marrow cells increase osteoblast (MC3T3 and bone marrow derived) caspase 3 activity and the ratio of Bax/Bcl-2 expression. Mouse blood glucose levels positively correlated with bone marrow induced osteoblast death and negatively correlated with osteocalcin expression in bone, suggesting a relationship between type I diabetes, bone marrow and osteoblast death. TNF expression was elevated in diabetic marrow (but not co-cultured osteoblasts); therefore, we treated co-cultures with TNFα neutralizing antibodies. The antibody protected osteoblasts from bone marrow induced death. Taken together, our findings implicate the bone marrow microenvironment and TNFα in mediating osteoblast death and contributing to type I diabetic bone loss.
Collapse
Affiliation(s)
- Lindsay M Coe
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
37
|
Al-Hariri M, Eldin TG, Abu-Hozaifa B, Elnour A. Glycemic control and anti-osteopathic effect of propolis in diabetic rats. Diabetes Metab Syndr Obes 2011; 4:377-84. [PMID: 22253535 PMCID: PMC3257965 DOI: 10.2147/dmso.s24159] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to explore the possibility that propolis can control diabetes mellitus and prevent diabetic osteopathy in rats. The study compared 60 streptozotocin (STZ)-induced diabetic rats, with ten nondiabetic rats used as a negative control. The experimental design comprised seven groups (n = 10 rats per group): (1) nondiabetic, used as a negative control; (2) nontreated, used as a positive control; (3) treated with insulin alone; (4) treated with a single dose of propolis alone; (5) treated with a double dose of propolis; (6) treated with insulin and a single dose of propolis; and (7) treated with insulin and a double dose of propolis. After 6 weeks of treatment, the rats were sacrificed. Ratios of femur ash to femur weight and of femur weight to body weight (FW/BW) were calculated and calcium (Ca), phosphorus (P), and magnesium (Mg) concentrations in femur ash were estimated and analyzed. Fasting blood glucose (FBG), plasma insulin and glucagon, serum thiobarbituric acid reactive substances (TBARS), plasma parathyroid hormone (PTH), and calcitonin levels were also estimated and analyzed. There was significant reduction in FBG in all diabetic treated rats. Similarly, higher plasma insulin levels were observed in diabetic rats treated with propolis and insulin than in nontreated diabetic rats, although plasma insulin was not comparatively higher in diabetic rats treated with insulin alone. Serum TBARS was significantly lower in the propolis treated rats than the diabetic nontreated rats. No differences in PTH and calcitonin levels were observed among treatment groups. The FW/BW ratio was significantly higher in diabetic treated groups than in control groups. Furthermore, diabetic rats treated with propolis and insulin had significantly higher Ca, P, and Mg concentrations in femoral ash than nontreated diabetic rats and diabetic rats treated with insulin alone. In conclusion, propolis has a remarkable effect on glucose homeostasis and bone mineralization.
Collapse
Affiliation(s)
- M Al-Hariri
- Correspondence: Mohammed Taha Al-Hariri, College of Medicine, University of Dammam, PO Box 2114, Dammam 31451, Saudi Arabia, Tel +966 50 727 5028, Fax +966 38 580 771, Email
| | | | | | | |
Collapse
|
38
|
Abstract
Inflammation perturbs normal bone homeostasis and is known to induce bone loss, as it promotes both local cartilage degradation and local and systemic bone destruction by osteoclasts, as well as inhibits bone formation by osteoblasts. Thus, not surprisingly, inflammatory autoimmune diseases often lead to local and/or general bone loss. However, the mechanisms that target the bone in autoimmune disease are complex and diverse, as they range from a direct attack on the bone and cartilage by the immune cells to indirect consequences of disturbances of the systemic control of bone remodeling. This Review discusses current understanding of the mechanisms of autoimmune-mediated bone loss in view of new insight from two new fields of research: osteoimmunology, which analyzes the direct effect of immune cells on bone, and the integrative metabolism approach, which established the existence of neuroendocrine loops that regulate bone remodeling.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Krankenhausstraβe 12, D-91054 Erlangen, Germany
| | | |
Collapse
|
39
|
Marrow Fat and Bone: New Insights from Mice and Humans. Clin Rev Bone Miner Metab 2009. [DOI: 10.1007/s12018-009-9050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
McCabe LR. Switching fat from the periphery to bone marrow: why in Type I diabetes? Expert Rev Endocrinol Metab 2009; 4:203-207. [PMID: 30743793 DOI: 10.1586/eem.09.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Laura R McCabe
- a Professor, Department of Physiology, Biomedical Imaging Research Center, 2201 Michigan State University East Lansing, MI 48824, USA.
| |
Collapse
|
41
|
Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1020-9. [PMID: 19299577 PMCID: PMC4059386 DOI: 10.1152/ajpgi.90696.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Decreased bone density and stature can occur in pediatric patients with inflammatory bowel disease (IBD). Little is known about how IBD broadly impacts the skeleton. To evaluate the influence of an acute episode of IBD on growing bone, 4-wk-old mice were administered 5% dextran sodium sulfate (DSS) for 5 days to induce colitis and their recovery was monitored. During active disease and early recovery, trabecular bone mineral density, bone volume, and thickness were decreased. Cortical bone thickness, outer perimeter, and density were also decreased, whereas inner perimeter and marrow area were increased. These changes appear to maintain bone strength since measures of moments of inertia were similar between DSS-treated and control mice. Histological (static and dynamic), serum, and RNA analyses indicate that a decrease in osteoblast maturation and function account for changes in bone density. Unlike some conditions of bone loss, marrow adiposity did not increase. Similar to reports in humans, bone length decreased and correlated with decreases in growth plate thickness and chondrocyte marker expression. During disease recovery, mice experienced a growth spurt that led to their achieving final body weights and bone length, density, and gene expression similar to healthy controls. Increased TNF-alpha and decreased IGF-I serum levels were observed with active disease and returned to normal with recovery. Changes in serum TNF-alpha (increased) and IGF-I (decreased) paralleled changes in bone parameters and returned to normal values with recovery, suggesting a potential role in the skeletal response.
Collapse
|
42
|
Streptozotocin, type I diabetes severity and bone. Biol Proced Online 2009; 11:296-315. [PMID: 19495918 PMCID: PMC3055251 DOI: 10.1007/s12575-009-9000-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 01/30/2009] [Indexed: 12/15/2022] Open
Abstract
As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.
Collapse
|
43
|
Motyl KJ, McCabe LR. Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice. J Cell Physiol 2008; 218:376-84. [PMID: 18932203 DOI: 10.1002/jcp.21608] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leptin is a hormone secreted by adipocytes that is implicated in the regulation of bone density. Serum leptin levels are decreased in rodent models of type 1 (T1-) diabetes and in diabetic patients. Whether leptin mediates diabetic bone changes is unclear. Therefore, we treated control and T1-diabetic mice with chronic (28 days) subcutaneous infusion of leptin or saline to elucidate the therapeutic potential of leptin for diabetic osteoporosis. Leptin prevented the increase of marrow adipocytes and the increased aP2 expression that we observed in vehicle-treated diabetic mice. However, leptin did not prevent T1-diabetic decreases in trabecular bone volume fraction or bone mineral density in tibia or vertebrae. Consistent with this finding, markers of bone formation (osteocalcin RNA and serum levels) in diabetic mice were not restored to normal levels with leptin treatment. Interestingly, markers of bone resorption (TRAP5 RNA and serum levels) were decreased in diabetic mice by leptin treatment. In summary, we have demonstrated a link between low leptin levels in T1-diabetes and marrow adiposity. However, leptin treatment alone was not successful in preventing bone loss.
Collapse
Affiliation(s)
- Katherine J Motyl
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
44
|
|
45
|
McCabe LR. Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem 2008; 102:1343-57. [PMID: 17975793 DOI: 10.1002/jcb.21573] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type I (T1) diabetes, also called insulin dependent diabetes mellitus (IDDM), is characterized by little or no insulin production and hyperglycemia. One of the less well known complications of T1-diabetes is bone loss which occurs in humans and animal models. This complication is receiving increased attention because T1-diabetics are living longer due to better therapeutics, and are faced with their existing health concerns being compounded by complications associated with aging, such as osteoporosis. Both male and female, endochondrial and intra-membranous, and axial and appendicular bones are susceptible to T1-diabetic bone loss. Exact mechanisms accounting for T1-diabetic bone loss are not known. Existing data indicate that the bone defect in T1-diabetes is anabolic rather than catabolic, suggesting that anabolic therapeutics may be more effective in preventing bone loss. Potential contributors to T1-diabetic suppression of bone formation are discussed in this review and include: increased marrow adiposity, hyperlipidemia, reduced insulin signaling, hyperglycemia, inflammation, altered adipokine and endocrine factors, increased cell death, and altered metabolism. Differences between T1-diabetic- and age-associated bone loss underlie the importance of condition specific, individualized treatments for osteoporosis. Optimizing therapies that prevent bone loss or restore bone density will allow T1-diabetic patients to live longer with strong healthy bones.
Collapse
Affiliation(s)
- Laura R McCabe
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, 2201 Biomedical Physical Science Building, East Lansing, Michigan 48824, USA.
| |
Collapse
|
46
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|