1
|
Dubový P, Hradilová-Svíženská I, Brázda V, Jambrichová A, Svobodová V, Joukal M. The Intrinsic Neuronal Activation of the CXCR4 Signaling Axis Is Associated with a Pro-Regenerative State in Cervical Primary Sensory Neurons Conditioned by a Sciatic Nerve Lesion. Int J Mol Sci 2024; 26:193. [PMID: 39796050 PMCID: PMC11720091 DOI: 10.3390/ijms26010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion. Intrathecal application of the CXCR4 inhibitor AMD3100 following CSNT reduced CXCL12 and CXCR4 protein levels in cervical DRG neurons, as well as the length of afferent axons regenerated distal to the ulnar nerve crush. Furthermore, treatment with the CXCR4 inhibitor decreased levels of activated Signal Transducer and Activator of Transcription 3 (STAT3), a critical transforming factor in the neuronal regeneration program. Administration of IL-6 increased CXCR4 levels, whereas the JAK2-dependent STAT3 phosphorylation inhibitor (AG490) conversely decreased CXCR4 levels. This indicates a link between the CXCL12/CXCR4 signaling axis and IL-6-induced activation of STAT3 in the sciatic nerve injury-induced pro-regenerative state of cervical DRG neurons. The role of CXCR4 signaling in the axon-promoting state of DRG neurons was confirmed through in vitro cultivation of primary sensory neurons in a medium supplemented with CXCL12, with or without AMD3100. The potential involvement of conditioned cervical DRG neurons in the induction of neuropathic pain is discussed.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Václav Brázda
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Anna Jambrichová
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Viktorie Svobodová
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
3
|
Drinovac Vlah V, Bach-Rojecky L. Mirror-Image Pain Update: Complex Interactions Between Central and Peripheral Mechanisms. Mol Neurobiol 2024; 61:1-18. [PMID: 38602655 DOI: 10.1007/s12035-024-04102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The appearance of contralateral effects after unilateral injury has been shown in various experimental pain models, as well as in clinics. They consist of a diversity of phenomena in contralateral peripheral nerves, sensory ganglia, or spinal cord: from structural changes and altered gene or protein expression to functional consequences such as the development of mirror-image pain (MP). Although MP is a well-documented phenomenon, the exact molecular mechanism underlying the induction and maintenance of mirror-like spread of pain is still an unresolved challenge. MP has generally been explained by central sensitization mechanisms leading to facilitation of pain impulse transfer through neural connections between the two sides of the central nervous system. On the contrary, the peripheral nervous system (PNS) was usually regarded unlikely to evoke such a symmetrical phenomenon. However, recent findings provided evidence that events in the PNS could play a significant role in MP induction. This manuscript provides an updated and comprehensive synthesis of the MP phenomenon and summarizes the available data on the mechanisms. A more detailed focus is placed on reported evidence for peripheral mechanisms behind the MP phenomenon, which were not reviewed up to now.
Collapse
Affiliation(s)
- Višnja Drinovac Vlah
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|
5
|
Smith PA. BDNF in Neuropathic Pain; the Culprit that Cannot be Apprehended. Neuroscience 2024; 543:49-64. [PMID: 38417539 DOI: 10.1016/j.neuroscience.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
6
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Mazzone GL, Coronel MF, Mladinic M, Sámano C. An update to pain management after spinal cord injury: from pharmacology to circRNAs. Rev Neurosci 2023; 34:599-611. [PMID: 36351309 DOI: 10.1515/revneuro-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 08/04/2023]
Abstract
Neuropathic pain (NP) following a spinal cord injury (SCI) is often hard to control and therapies should be focused on the physical, psychological, behavioral, social, and environmental factors that may contribute to chronic sensory symptoms. Novel therapeutic treatments for NP management should be based on the combination of pharmacological and nonpharmacological options. Some of them are addressed in this review with a focus on mechanisms and novel treatments. Several reports demonstrated an aberrant expression of non-coding RNAs (ncRNAs) that may represent key regulatory factors with a crucial role in the pathophysiology of NP and as potential diagnostic biomarkers. This review analyses the latest evidence for cellular and molecular mechanisms associated with the role of circular RNAs (circRNAs) in the management of pain after SCI. Advantages in the use of circRNA are their stability (up to 48 h), and specificity as sponges of different miRNAs related to SCI and nerve injury. The present review discusses novel data about deregulated circRNAs (up or downregulated) that sponge miRNAs, and promote cellular and molecular interactions with mRNAs and proteins. This data support the concept that circRNAs could be considered as novel potential therapeutic targets for NP management especially after spinal cord injuries.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - María F Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Alcaldía Cuajimalpa de Morelos, C.P. 05348, Ciudad de México, México
| |
Collapse
|
8
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
9
|
Xie L, Cen LP, Li Y, Gilbert HY, Strelko O, Berlinicke C, Stavarache MA, Ma M, Wang Y, Cui Q, Kaplitt MG, Zack DJ, Benowitz LI, Yin Y. Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells' response to Pten deletion. Proc Natl Acad Sci U S A 2022; 119:e2113751119. [PMID: 35394873 PMCID: PMC9169637 DOI: 10.1073/pnas.2113751119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell–derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.
Collapse
Affiliation(s)
- Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Ling-Ping Cen
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Yiqing Li
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510085, China
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Oleksandr Strelko
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mihaela A. Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Madeline Ma
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Yongting Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Cui
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
10
|
Behrendt M. TRPM3 in the eye and in the nervous system - from new findings to novel mechanisms. Biol Chem 2022; 403:859-868. [PMID: 35240732 DOI: 10.1515/hsz-2021-0403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
The calcium-permeable cation channel TRPM3 can be activated by heat and the endogenous steroid pregnenolone sulfate. TRPM3's best understood function is its role as a peripheral noxious heat sensor in mice. However, the channel is expressed in various tissues and cell types including neurons as well as glial and epithelial cells. TRPM3 expression patterns differ between species and change during development. Furthermore, a plethora of TRPM3 variants that result from alternative splicing have been identified and the majority of these isoforms are yet to be characterized. Moreover, the mechanisms underlying regulation of TRPM3 are largely unexplored. In addition, a micro-RNA gene (miR-204) is located within the TRPM3 gene. This complexity makes it difficult to obtain a clear picture of TRPM3 characteristics. However, a clear picture is needed to unravel TRPM3's full potential as experimental tool, diagnostic marker and therapeutic target. Therefore, the newest data related to TRPM3 have to be discussed and to be put in context as soon as possible to be up-to-date and to accelerate the translation from bench to bedside. The aim of this review is to highlight recent results and developments with particular focus on findings from studies involving ocular tissues and cells or peripheral neurons of rodents and humans.
Collapse
Affiliation(s)
- Marc Behrendt
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
11
|
Wang Y, Liu Y, Liu J, Wang M, Wang Y. Coadministration of Curcumin and Hydromorphone Hydrochloride Alleviates Postoperative Pain in Rats. Biol Pharm Bull 2022; 45:27-33. [PMID: 34980778 DOI: 10.1248/bpb.b21-00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to explore the effect of curcumin and hydromorphone hydrochloride (HH) cotreatment on postoperative pain in rats. An incision + formaldehyde-induced pain rat model was established. Rats were treated with vehicle, curcumin, HH, or curcumin + HH. Paw mechanical withdrawal threshold and thermal withdrawal latency were measured at 1 d before surgery as well as 1 , 2 h, 1 , 3 , and 7 d after surgery to assess pain sensitivity. The L4-6 region of the spinal cord was collected from each rat at 2 h, 1 , 3 , and 7 d after surgery. Western blot analysis and immunohistochemical staining were carried out to detect the protein expression of pain-related genes. Quantitative real-time PCR and enzyme-linked immunosorbent assay were conducted to measure the expression and production of proinflammatory mediators. Compared with other groups, Curcumin + HH significantly reduced pain sensitivity in the model rats. Mechanistically, curcumin + HH suppressed protein expression of stromal cell-derived factor-1 (SDF-1), CXC chemokine receptor 4 (CXCR4), p-Akt, and c-fos while enhancing protein expression of nerve growth factor (NGF) in the dorsal root ganglia (DRG) of model rats. Curcumin + HH inhibited the expression and production of interleukin 1β (IL-1β), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), and p65 nuclear factor kappa B (NF-κB) in the DRG. Coadministration of curcumin and HH alleviates incision + formaldehyde-induced pain in rats, possibly by suppressing the SDF-1/CXCR4 pathway and the production of proinflammatory mediators. Our results provide curcumin and HH cotreatment as a promising therapeutic strategy in the management of postoperative pain.
Collapse
Affiliation(s)
- Yihan Wang
- Department of anesthesiology, Lanzhou University Second Hospital
| | - Yang Liu
- Department of anesthesiology, Lanzhou University Second Hospital
| | - Jieting Liu
- Department of anesthesiology, Lanzhou University Second Hospital
| | - Min Wang
- Department of anesthesiology, Lanzhou University Second Hospital
| | - Yingbin Wang
- Department of anesthesiology, Lanzhou University Second Hospital
| |
Collapse
|
12
|
Cheng KI, Chen SL, Hsu JH, Cheng YC, Chang YC, Lee CH, Yeh JL, Dai ZK, Wu BN. Loganin prevents CXCL12/CXCR4-regulated neuropathic pain via the NLRP3 inflammasome axis in nerve-injured rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153734. [PMID: 34536822 DOI: 10.1016/j.phymed.2021.153734] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/23/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuropathic pain has been shown to be modulated by the activation of the chemokine C-X-C motif ligand 12 (CXCL12)/chemokine CXC receptor 4 (CXCR4) dependent nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. Loganin, an iridoid glycoside, was proven to prevent neuropathic pain, but its underlying mechanisms related to NLRP3 activation are still unknown. PURPOSE This study investigated the underlying mechanisms of loganin's effect on chronic constriction injury (CCI)-induced NLRP3 inflammasome activation in the spinal cord. METHODS Sprague-Dawley rats were randomly divided into four groups: sham, CCI, sham + loganin, and CCI + loganin. Loganin (5 mg/kg/day) was administered intraperitoneally starting the day after surgery. Paw withdrawal threshold (PWT) and latency (PWL) were assessed before CCI and on days 1, 3, 7 and 14 after CCI. Spinal cords were collected for western blots and immunofluorescence studies. RESULTS Loganin prevented CCI-attenuated PWT and PWL, suggesting improved mechanical allodynia and thermal hyperalgesia. The expression of CXCL12, CXCR4, thioredoxin-interacting protein (TXNIP), NLRP3 inflammasome (NLRP3, ASC, and caspase-1), IL-1β, and IL-18 were enhanced on day 7 after CCI, and all were reduced after loganin treatment. Dual immunofluorescence also showed that increased CXCL12, CXCR4, and NLRP3 were colocalized with NeuN (neuronal marker), GFAP (astrocyte marker), and Iba1 (microglial marker) on day 7 in the ipsilateral spinal dorsal horn (SDH). These immunoreactivities were attenuated in loganin-treated rats. Moreover, loganin decreased the assembly of NLRP3/ASC inflammasome after CCI in the ipsilateral SDH. Loganin appears to attenuate CCI-induced neuropathic pain by suppressing CXCL12/CXCR4-mediated NLRP3 inflammasome. CONCLUSION Our findings suggest that loganin might be a suitable candidate for managing CCI-provoked neuropathic pain.
Collapse
Affiliation(s)
- Kuang-I Cheng
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sin-Lan Chen
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chi Cheng
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chin Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Yang F, Zou YQ, Li M, Luo WJ, Chen GZ, Wu XZ. Intervertebral foramen injection of plerixafor attenuates neuropathic pain after chronic compression of the dorsal root ganglion: Possible involvement of the down-regulation of Nav1.8 and Nav1.9. Eur J Pharmacol 2021; 908:174322. [PMID: 34256084 DOI: 10.1016/j.ejphar.2021.174322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Neuropathic pain is a common chronic pain condition with major impact on quality of life. However, its physiopathologic mechanism remains unknown and pain management is still a challenge. Accumulating evidence indicated that C-X-C chemokine receptor type 4 (CXCR4) played a critical role in the process of pain. Thus, the present study aimed to investigate whether intervertebral foramen injection of CXCR4 antagonist, plerixafor, was able to relieve neuropathic pain and explore the possible underlying mechanism. Chronic compression of the dorsal root ganglion (CCD) was established as a typical model of neuropathic pain. The results indicated that CCD induced multiple pain-related behaviors and the expression of CXCR4, Nav1.8 and Nav1.9 was significantly increased in compressed dorsal root ganglion (DRG) neurons. Knocking down CXCR4 expression could significantly reduce neuropathic pain and intervertebral foramen plerixafor injection (IVFP) dramatically decreased the up-regulation of Nav1.8 and Nav1.9 and attenuated neuropathic pain. The analgesic duration of IVFP was maintained at least for 24 h which was much longer than intervertebral foramen injection of Nav1.8 blocker and local anesthetics. Therefore, our study provided evidence that IVFP could reduce the expression of Nav1.8 and Nav1.9 in DRG neurons which might contribute to, at least in part, the analgesic effect of plerixafor on CCD-induced neuropathic pain. It is concluded that IVFP was an effective and applicable treatment approach for neuropathic pain.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China; Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, PR China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China
| | - Min Li
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China
| | - Wen-Jun Luo
- Department of Anesthesiology, Chinese PLA General Hospital of Central Theater Command, Wuhan 430070, Hubei, PR China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China.
| |
Collapse
|
14
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Dubový P, Hradilová-Svíženská I, Brázda V, Joukal M. Toll-Like Receptor 9-Mediated Neuronal Innate Immune Reaction Is Associated with Initiating a Pro-Regenerative State in Neurons of the Dorsal Root Ganglia Non-Associated with Sciatic Nerve Lesion. Int J Mol Sci 2021; 22:ijms22147446. [PMID: 34299065 PMCID: PMC8304752 DOI: 10.3390/ijms22147446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
One of the changes brought about by Wallerian degeneration distal to nerve injury is disintegration of axonal mitochondria and consequent leakage of mitochondrial DNA (mtDNA)—the natural ligand for the toll-like receptor 9 (TLR9). RT-PCR and immunohistochemical or Western blot analyses were used to detect TLR9 mRNA and protein respectively in the lumbar (L4-L5) and cervical (C7-C8) dorsal root ganglia (DRG) ipsilateral and contralateral to a sterile unilateral sciatic nerve compression or transection. The unilateral sciatic nerve lesions led to bilateral increases in levels of both TLR9 mRNA and protein not only in the lumbar but also in the remote cervical DRG compared with naive or sham-operated controls. This upregulation of TLR9 was linked to activation of the Nuclear Factor kappa B (NFκB) and nuclear translocation of the Signal Transducer and Activator of Transcription 3 (STAT3), implying innate neuronal immune reaction and a pro-regenerative state in uninjured primary sensory neurons of the cervical DRG. The relationship of TLR9 to the induction of a pro-regenerative state in the cervical DRG neurons was confirmed by the shorter lengths of regenerated axons distal to ulnar nerve crush following a previous sciatic nerve lesion and intrathecal chloroquine injection compared with control rats. The results suggest that a systemic innate immune reaction not only triggers the regenerative state of axotomized DRG neurons but also induces a pro-regenerative state further along the neural axis after unilateral nerve injury.
Collapse
|
16
|
Fundamental changes in endogenous bone marrow mesenchymal stromal cells during Type I Diabetes is a pre-neuropathy event. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166187. [PMID: 34102256 DOI: 10.1016/j.bbadis.2021.166187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Deficiency of angiogenic and neurotrophic factors under long term diabetes is known to lead to Schwann cell degeneration, clinically manifested as Diabetic Neuropathy (DN). While the transplantation of exogenous allogenic Mesenchymal Stromal Cells (MSCs) has shown amelioration of DN through paracrine action, it is not known what functional changes occur in endogenous bone-marrow MSCs under chronic diabetes in terms of homing, migration and/or paracrine signalling with reference to the end-point clinical manifestation of Diabetic Neuropathy. We thus aimed at determining the changes in BM-MSCs under Type 1 Diabetes with respect to survival, self-renewal, oxidative status, paracrine activity, intracellular Ca2+ response and migration in response to pathological cytokine/chemokine, in reference to the time-point of decline in Nerve Conduction Velocity (NCV) in a rat model. Within one week of diabetes induction, BM-MSCs underwent apoptosis, and compromised their self-renewal capacity, antioxidant defence mechanism and migration toward cytokine/chemokine; whereas epineurial blood vessel thickening and demyelination resulting in NCV decline were observed only after three weeks. By two- and three-weeks post diabetes induction, BM-MSC apoptosis reduced and proliferative ability was restored; however, their self-renewal, migration and intracellular Ca2+ response toward pathological cytokine/chemokine remained impaired. These results indicate that T1D induced intrinsic functional impairments in endogenous BM-MSCs occur before neuropathy onset. This timeline of functional alterations in BM-MSCs also suggest that treatment strategies that target the bone marrow niche early on may help to modulate BM-MSC functional impairments and thus slow down the progression of neuropathy.
Collapse
|
17
|
Xie MX, Cao XY, Zeng WA, Lai RC, Guo L, Wang JC, Xiao YB, Zhang X, Chen D, Liu XG, Zhang XL. ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat Commun 2021; 12:1401. [PMID: 33658516 PMCID: PMC7930092 DOI: 10.1038/s41467-021-21731-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
- State Key Laboratory of Marine Resources Utilization of South China Sea, 58 Renmin Avenue, Haikou, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lan Guo
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Jun-Chao Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yi-Bin Xiao
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Xi Zhang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Di Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China.
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
18
|
Er ZJ, Yin CF, Wang WJ, Chen XJ. Serum CXCL12/SDF-1 level is positively related with lumbar intervertebral disc degeneration and clinical severity. Innate Immun 2019; 26:341-350. [PMID: 31852328 PMCID: PMC7903533 DOI: 10.1177/1753425919895086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to examine whether stromal cell-derived factor-1 (SDF-1) or
C-X-C chemokine ligand 12 (CXCL12) participates in the development of lumbar
disc degeneration, as implicated earlier by the level of CXCL12 correlating with
this disease. It enrolled 145 patients with symptomatic lumbar intervertebral
disc degeneration (IDD) and 130 asymptomatic healthy controls with no indication
of IDD. Radiological assessment of the IDD patients was targeted at the lumbar
vertebra region, based on Pfirrmann grade. Degeneration of the multifidus and
psoas major muscles was evaluated using Goutallier classification. Visual
Analogue Scale (VAS) and Oswestry Disability Index (ODI) scores were obtained
for assessing the severity of manifestation. The levels of serum CXCL12, IL-6
and TNF-α were determined by ROC curve analysis, resulting in their prognostic
value for Pfirrmann grading. Higher levels of serum CXCL12 were found in
patients with IDD than in asymptomatic individuals, and were positively related
to the Pfirrmann grade as well as multifidus muscle degeneration. Furthermore,
serum CXCL12 concentration showed a significant correlation with the VAS and ODI
scores. In addition, elevated serum CXCL12 levels were related to serum levels
of TNF-α and IL-6. The ROC curve analysis implicated that CXCL12 could function
as a biomarker of the early-mediate phase of IDD development. In summary, the
serum CXCL12/SDF-1 level is positively related with lumbar IDD and its clinical
severity.
Collapse
Affiliation(s)
- Zhao-Juan Er
- Department of Rehabilitation, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Chun-Fang Yin
- Department of Orthopedics, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Wen-Jing Wang
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Xue-Jun Chen
- Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Annexin 1 inhibits remifentanil-induced hyperalgesia and NMDA receptor phosphorylation via regulating spinal CXCL12/CXCR4 in rats. Neurosci Res 2019; 144:48-55. [DOI: 10.1016/j.neures.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/01/2023]
|
20
|
Liu ZY, Song ZW, Guo SW, He JS, Wang SY, Zhu JG, Yang HL, Liu JB. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci Ther 2019; 25:922-936. [PMID: 30955244 PMCID: PMC6698967 DOI: 10.1111/cns.13128] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Previous studies have demonstrated that the CXCL12/CXCR4 signaling axis is involved in the regulation of neuropathic pain (NP). Here, we performed experiments to test whether the CXCL12/CXCR4 signaling pathway contributes to the pathogenesis of neuropathic pain after spinal nerve ligation (SNL) via central sensitization mechanisms. Methods Neuropathic pain was induced and assessed in a SNL rat model. The expression and distribution of CXCL12 or CXCR4 were examined by immunofluorescence staining and western blot. The effects of CXCL12 rat peptide, CXCL12 neutralizing antibody, CXCR4 antagonist, and astrocyte metabolic inhibitor on pain hypersensitivity were explored by behavioral tests in naive or SNL rats. We measured the expression level of c‐Fos and CGRP to evaluate the sensitization of neurons by RT‐PCR. The activation of astrocyte and microglia was analyzed by measuring the level of GFAP and iba‐1. The mRNA levels of the pro‐inflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 and Connexin 30, Connexin 43, EAAT 1, EAAT 2 were also detected by RT‐PCR. Results First, we found that the expression of CXCL12 and CXCR4 was upregulated after SNL. CXCL12 was mainly expressed in the neurons while CXCR4 was expressed both in astrocytes and neurons in the spinal dorsal horn after SNL. Moreover, intrathecal administration of rat peptide, CXCL12, induced hypersensitivity in naive rats, which was partly reversed by fluorocitrate. In addition, the CXCL12 rat peptide increased mRNA levels of c‐Fos, GFAP, and iba‐1. A single intrathecal injection of CXCL12 neutralizing antibody transiently reversed neuropathic pain in the SNL rat model. Consecutive use of CXCL12 neutralizing antibody led to significant delay in the induction of neuropathic pain, and reduced the expression of GFAP and iba‐1 in the spinal dorsal horn. Finally, repeated intrathecal administration of the CXCR4 antagonist, AMD3100, significantly suppressed the initiation and duration of neuropathic pain. The mRNA levels of c‐Fos, CGRP, GFAP, iba‐1, and pro‐inflammatory cytokines, also including Connexin 30 and Connexin 43 were decreased after injection of AMD3100, while EAAT 1 and EAAT 2 mRNAs were increased. Conclusion We demonstrate that the CXCL12/CXCR4 signaling pathway contributes to the development and maintenance of neuropathic pain via central sensitization mechanisms. Importantly, intervening with CXCL12/CXCR4 presents an effective therapeutic approach to treat the neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Yuan Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
| | - Zhi-Wen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shi-Wu Guo
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun-Sheng He
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shen-Yu Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Guo Zhu
- Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
| | - Hui-Lin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Bo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
21
|
Progressive Increase of Inflammatory CXCR4 and TNF-Alpha in the Dorsal Root Ganglia and Spinal Cord Maintains Peripheral and Central Sensitization to Diabetic Neuropathic Pain in Rats. Mediators Inflamm 2019; 2019:4856156. [PMID: 31001066 PMCID: PMC6437743 DOI: 10.1155/2019/4856156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is a common and serious complication of diabetic patients. The pathogenesis of DNP is largely unclear. The proinflammation proteins, CXCR4, and TNF-α play critical roles in the development of pain, while their relative roles in the development of DNP and especially its progression is unknown. We proposed that establishment of diabetic pain models in rodents and evaluating the stability of behavioral tests are necessary approaches to better understand the mechanism of DNP. In this study, Von Frey and Hargreaves Apparatus was used to analyze the behavioral changes of mechanical allodynia and heat hyperalgesia in streptozotocin-induced diabetic rats at different phases of diabetes. Moreover, CXCR4 and TNF-α of spinal cord dorsal and dorsal root ganglia (DRG) were detected by western blotting and immunostaining over time. The values of paw withdrawal threshold (PWT) and paw withdrawal latencies (PWL) were reduced as early as 1 week in diabetic rats and persistently maintained at lower levels during the progression of diabetes as compared to control rats that were concomitant with significant increases of both CXCR4 and TNF-α protein expressions in the DRG at 2 weeks and 5 weeks (the end of the experiments) of diabetes. By contrast, CXCR4 and TNF-α in the spinal cord dorsal horn did not significantly increase at 2 weeks of diabetes while both were significantly upregulated at 5 weeks of diabetes. The results indicate that central sensitization of spinal cord dorsal may result from persistent peripheral sensitization and suggest a potential reference for further treatment of DNP.
Collapse
|
22
|
Li F, Xue Z, Yuan Y, Huang S, Fan Y, Zhu X, Wei L. Upregulation of CXCR4 through promoter demethylation contributes to inflammatory hyperalgesia in rats. CNS Neurosci Ther 2018; 24:947-956. [PMID: 29577638 PMCID: PMC6489799 DOI: 10.1111/cns.12845] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 01/27/2023] Open
Abstract
AIM AND METHODS Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms yet are incompletely defined. DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under inflammatory pain condition remain largely unknown. Here, we investigated how chemokine receptor CXCR4 expression is regulated by DNA methylation and how it contributes to inflammatory pain induced by complete Freund's adjuvant (CFA) in rats. RESULTS Intraplantar injection of CFA could not only induce significant hyperalgesia in rats, but also significantly increase the expression of CXCR4 mRNA and protein in the dorsal root ganglion (DRG). Intrathecal injection of CXCR4 antagonist AMD3100 significantly relieved hyperalgesia in inflammatory rats in a time- and dose-dependent manner. Bisulfite sequencing and methylation-specific PCR demonstrate that CFA injection led to a significant demethylation of CpG island at CXCR4 gene promoter. Consistently, the expression of DNMT3b was significantly downregulated after CFA injection. Online software prediction reveals three binding sites of p65 in the CpG island of CXCR4 gene promoter, which has confirmed by the chromatin immunoprecipitation assay, CFA treatment significantly increases the recruitment of p65 to CXCR4 gene promoter. Inhibition of NF-kB signaling using p65 inhibitor pyrrolidine dithiocarbamate significantly prevented the increases of the CXCR4 expression. CONCLUSION Upregulation of CXCR4 expression due to promoter demethylation followed by increased recruitment of p65 to promoter of CXCR4 gene contributes to inflammatory hyperalgesia. These findings provide a theoretical basis for the treatment of chronic pain from an epigenetic perspective.
Collapse
Affiliation(s)
- Feng Li
- Department of AnesthesiologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Zhou‐Ya Xue
- Department of AnesthesiologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Yuan Yuan
- Department of OtolaryngologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Sai‐Sai Huang
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantonChina
| | - Yi‐Hui Fan
- Department of ImmunologySchool of MedicineNantong UniversityNantongChina
| | - Xiang Zhu
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantonChina
| | - Lei Wei
- Department of AnesthesiologySuzhou Municipal Hospital Affiliated to Nanjing Medical UniversitySuzhouJiangsuChina
| |
Collapse
|
23
|
Xing F, Kong C, Bai L, Qian J, Yuan J, Li Z, Zhang W, Xu JT. CXCL12/CXCR4 signaling mediated ERK1/2 activation in spinal cord contributes to the pathogenesis of postsurgical pain in rats. Mol Pain 2018. [PMID: 28633557 PMCID: PMC5502942 DOI: 10.1177/1744806917718753] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background It has been demonstrated that upregulation of CXCL12 and CXCR4 in spinal cord involves in the pathogenesis of neuropathic, inflammatory, and cancer pain. However, whether CXCL12/CXCR4 signaling contributes to postsurgical pain remains unknown. The aim of the present study is to investigate the role of CXCL12/CXCR4 signaling in the genesis of postsurgical pain and the underlying mechanism. Results Plantar incision in rat hind paw resulted in increased expressions of CXCL12 and CXCR4 in spinal dorsal horn. Double immunofluorescence staining revealed that CXCL12 expressed in neurons and astrocytes, and CXCR4 exclusively co-localized with neuronal cells. Prior administration of AMD3100, a specific antagonist of CXCR4, or CXCL12 neutralizing antibody, intrathecally attenuated plantar incision-induced mechanical allodynia and thermal hyperalgesia. Plantar incision also augmented the phosphorylation of NF-κB p65 in spinal cord. Pre intrathecal (i.t.) injection of PDTC, a specific NF-κB activation inhibitor, alleviated plantar incision-induced postsurgical pain and reduced the expression of CXCL12 in spinal cord. Correlated with the upregulation of CXCL12 and CXCR4, plantar incision also resulted in an increased phosphorylation of extracellular signal-regulated kinase 1/2 and Akt in spinal cord. Prior i.t. administration of AMD3100 prevented extracellular signal-regulated kinase, but not Akt, activation in spinal cord. Rats when given a repetitive i.t. PD98059, a specific extracellular signal-regulated kinase inhibitor, started 30 min before surgery also ameliorate plantar incision-induced mechanical and thermal pain hypersensitivity. Conclusion Our results suggests that plantar incision-induced activation of NF-κB signaling may mediate upregulation of CXCL12 in spinal cord, and CXCL12/CXCR4 signaling via extracellular signal-regulated kinase activation contributes to the genesis of postsurgical pain.
Collapse
Affiliation(s)
- Fei Xing
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, China
| | - Cunlong Kong
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, China
| | - Liying Bai
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, China
| | - Junliang Qian
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, China
| | - Jingjing Yuan
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, China
| | - Zhisong Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, China
| | | |
Collapse
|
24
|
Zhan LY, Lei SQ, Zhang BH, Li WL, Wang HX, Zhao B, Cui SS, Ding H, Huang QM. Overexpression of miR-381 relieves neuropathic pain development via targeting HMGB1 and CXCR4. Biomed Pharmacother 2018; 107:818-823. [PMID: 30142543 DOI: 10.1016/j.biopha.2018.08.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNA are significant regulators of neuropathic pain development. Neuroinflammation contributes a lot to the progression of neuropathic pain. miR-381 is involved in various pathological processes. However, the role of miR-381 in neuropathic pain development remains barely understood. Therefore, in our study, we aimed to investigate the effects of miR-381 on the process of neuropathic pain progression by establishing a rat model using chronic sciatic nerve injury (CCI). Here, we observed that miR-381 was dramatically decreased in CCI rats. Up-regulation of miR-381 strongly reduced neuropathic pain behaviors including mechanical and thermal hyperalgesia. In addition, inflammatory cytokine expression, including IL-6, IL-10 and TNF-α were significantly repressed by overexpression of miR-381. High mobility group box 1 protein (HMGB1) and Chemokine CXC receptor 4 (CXCR4) participate in neuropathic pain development. In our present study, HMGB1 and CXCR4 were predicted as direct targets of miR-381 by employing bioinformatics analysis. Overexpression of miR-381 was able to restrain the expression of HMGB1 and CXCR4 greatly. The direct correlation between HMGB1 and CXCR4 and miR-381 was confirmed in our research. Furthermore, we found that HMGB1 and CXCR4 were increased in CCI rats time-dependently. Moreover, it was demonstrated that silence of HMGB1 and CXCR4 in CCI rats depressed neuropathic pain progression greatly. In conclusion, it was indicated that miR-381could inhibit neuropathic pain development through targeting HMGB1 and CXCR4.
Collapse
Affiliation(s)
- Li-Ying Zhan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Bin-Hong Zhang
- Department of Paediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Lan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hua-Xin Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shan-Shan Cui
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huang Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiang-Min Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
25
|
Bird EV, Iannitti T, Christmas CR, Obara I, Andreev VI, King AE, Boissonade FM. A Novel Role for Lymphotactin (XCL1) Signaling in the Nervous System: XCL1 Acts via its Receptor XCR1 to Increase Trigeminal Neuronal Excitability. Neuroscience 2018; 379:334-349. [PMID: 29588250 PMCID: PMC5953414 DOI: 10.1016/j.neuroscience.2018.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023]
Abstract
We identified XCR1 in the peripheral and central nervous systems and demonstrated its upregulation following nerve injury. In injured nerve, XCR1 is present in nerve fibers, CD45-positive leucocytes and Schwann cells. In Vc, XCR1 labeling is consistent with expression in terminals of Aδ- and C-fiber afferents and excitatory interneurons. XCL1 increases neuronal excitability and activates intracellular signaling in Vc, a pain-processing region of the CNS. These data provide the first evidence that the XCL1-XCR1 axis may play a role in trigeminal pain pathways.
Chemokines are known to have a role in the nervous system, influencing a range of processes including the development of chronic pain. To date there are very few studies describing the functions of the chemokine lymphotactin (XCL1) or its receptor (XCR1) in the nervous system. We investigated the role of the XCL1-XCR1 axis in nociceptive processing, using a combination of immunohistochemical, pharmacological and electrophysiological techniques. Expression of XCR1 in the rat mental nerve was elevated 3 days following chronic constriction injury (CCI), compared with 11 days post-CCI and sham controls. XCR1 co-existed with neuronal marker PGP9.5, leukocyte common antigen CD45 and Schwann cell marker S-100. In the trigeminal root and white matter of the brainstem, XCR1-positive cells co-expressed the oligodendrocyte marker Olig2. In trigeminal subnucleus caudalis (Vc), XCR1 immunoreactivity was present in the outer laminae and was colocalized with vesicular glutamate transporter 2 (VGlut2), but not calcitonin gene-related peptide (CGRP) or isolectin B4 (IB4). Incubation of brainstem slices with XCL1 induced activation of c-Fos, ERK and p38 in the superficial layers of Vc, and enhanced levels of intrinsic excitability. These effects were blocked by the XCR1 antagonist viral CC chemokine macrophage inhibitory protein-II (vMIP-II). This study has identified for the first time a role for XCL1-XCR1 in nociceptive processing, demonstrating upregulation of XCR1 at nerve injury sites and identifying XCL1 as a modulator of central excitability and signaling via XCR1 in Vc, a key area for modulation of orofacial pain, thus indicating XCR1 as a potential target for novel analgesics.
Collapse
Affiliation(s)
- Emma V Bird
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Tommaso Iannitti
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Claire R Christmas
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Ilona Obara
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Veselin I Andreev
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Anne E King
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Fiona M Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK.
| |
Collapse
|
26
|
Zhang M, Zhu ZL, Gao XL, Wu JS, Liang XH, Tang YL. Functions of chemokines in the perineural invasion of tumors (Review). Int J Oncol 2018. [PMID: 29532850 DOI: 10.3892/ijo.2018.4311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The perineural invasion (PNI) of malignant tumors is a form of tumor progression in which cancer cells encroach along nerves. PNI hinders curative resection. Residual tumor cells in or around nerves can bring about local recurrence, infiltration and metastasis. This behavior is usually associated with a poor clinical prognosis. Therefore, it is necessary to investigate novel ligand-receptor crosstalk between nerves and tumor cells that promote the process of PNI. Chemokines are regarded as one of pivotal factors involved in the process of PNI. The present review collates information provided by previous studies with regard to the role of chemokines in PNI. The study presents a definition of PNI in cancer, generalizes the biological characteristics and the expression of chemokines and their receptors in cancer types associated with PNI, and discusses the underlying molecular mechanisms of chemokines, the reciprocal interactions between chemokines and other factors in PNI, and the interconnectivity of the microenvironment and chemokines. The aim of the review is to thoroughly illustrate the molecular cues of chemokines in cancer with PNI and to identify novel antitumor targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo-Li Zhu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Lei Gao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
27
|
Kwiatkowski K, Mika J. The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep 2018; 70:821-830. [PMID: 30122168 DOI: 10.1016/j.pharep.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
The treatment of neuropathic pain resulting from nervous system malfunction remains a challenging problem for doctors and scientists. The lower effectiveness of conventionally used analgesics in neuropathic pain is associated with complex and not fully understood mechanisms of its development. Undoubtedly, interactions between immune and nervous system are crucial for maintenance of painful neuropathy. Nerve injury induces glial cell activation and thus enhances the production of numerous pronociceptive factors by these cells, including interleukins and chemokines. Increased release of those factors reduces the analgesic efficacy of opioids, which is significantly lower in neuropathic pain than in other painful conditions. This review discusses the role of chemokines from all four subfamilies as essential mediators of neuron-glia interactions occurring under neuropathic pain conditions. Based on available data, we analyse the influence of chemokines on opioid properties. Finally, we identify new direct and indirect pharmacological targets whose modulation may result in effective therapy of neuropathic pain, possibly in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| |
Collapse
|
28
|
Cohrs G, Goerden S, Lucius R, Synowitz M, Mehdorn HM, Held-Feindt J, Knerlich-Lukoschus F. Spatial and Cellular Expression Patterns of Erythropoietin-Receptor and Erythropoietin during a 42-Day Post-Lesional Time Course after Graded Thoracic Spinal Cord Impact Lesions in the Rat. J Neurotrauma 2018; 35:593-607. [PMID: 28895456 DOI: 10.1089/neu.2017.4981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (Epo) exhibits promising neuroregenerative potential for spinal cord injury (SCI), and might be involved in other long-term sequelae, such as neuropathic pain development. The current studies investigated the time courses and spatial and cellular patterns of Epo and erythropoietin receptor (EpoR) expression along the spinal axis after graded SCI. Male Long Evans rats received 100 kdyn, 150 kdyn, and 200 kdyn thoracic (T9) contusions from an Infinite Horizon impactor. Sham controls received laminectomies. Anatomical and quantitative immunohistochemical analyses of the EpoR/Epo expression along the whole spinal axis were performed 7, 15, and 42 postoperative days (DPO) after the lesioning. Cellular expression was investigated by double- and triple-labeling for EpoR/Epo with cellular markers and proliferating cells in subgroups of 5-bromo-2-deoxyuridine pre-treated animals. Prolonged EpoR/Epo-expression was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Quantified EpoR/Epo immunoreactivities in pain-related spinal cord regions and ventrolateral white matter (VLWM) were correlated with the mechanical sensitivity thresholds and locomotor function of the respective animals. EpoR and Epo were constitutively expressed in the ventral horn neurons and vascular and glial cells in the dorsal columns (DC) and the VLWM. After SCI, in addition to expression in the lesion core, EpoR/Epo immunoreactivities exhibited significant time- and lesion grade-dependent induction in the DC and VLWM along the spinal axis. EpoR and Epo immunoreactive cells were co-stained with markers for astroglial, neural precursor cell and vascular markers. In the VLWM, EpoR- and Epo-positive proliferating cells were co-stained with glial fibrillary acidic protein (GFAP) and nestin. The DC EpoR/Epo immunoreactivities exhibited linear relationships with the behavioral correlates of post-lesional chronic pain development at DPO 42. SCI leads to long-lasting multicellular EpoR/Epo induction beyond the lesion core in the spinal cord regions that are involved in central pain development and regenerative processes. Our studies provide a time frame to investigate the effects of Epo application on motor function or pain development, especially in the later time course after lesioning.
Collapse
Affiliation(s)
- Gesa Cohrs
- 1 Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel , Kiel, Germany
| | - Stephan Goerden
- 1 Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel , Kiel, Germany
| | - Ralph Lucius
- 2 Anatomical Institute, Christian-Albrechts University Kiel , Kiel, Germany
| | - Michael Synowitz
- 1 Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel , Kiel, Germany
| | | | - Janka Held-Feindt
- 1 Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel , Kiel, Germany
| | | |
Collapse
|
29
|
Pan Z, Shan Q, Gu P, Wang XM, Tai LW, Sun M, Luo X, Sun L, Cheung CW. miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis. J Neuroinflammation 2018; 15:29. [PMID: 29386025 PMCID: PMC5791181 DOI: 10.1186/s12974-018-1073-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chemokine CXC receptor 4 (CXCR4) in spinal glial cells has been implicated in neuropathic pain. However, the regulatory cascades of CXCR4 in neuropathic pain remain elusive. Here, we investigated the functional regulatory role of miRNAs in the pain process and its interplay with CXCR4 and its downstream signaling. METHODS miRNAs and CXCR4 and its downstream signaling molecules were measured in the spinal cords of mice with sciatic nerve injury via partial sciatic nerve ligation (pSNL). Immunoblotting, immunofluorescence, immunoprecipitation, and mammal two-hybrid and behavioral tests were used to explore the downstream CXCR4-dependent signaling pathway. RESULTS CXCR4 expression increased in spinal glial cells of mice with pSNL-induced neuropathic pain. Blocking CXCR4 alleviated the pain behavior; contrarily, overexpressing CXCR4 induced pain hypersensitivity. MicroRNA-23a-3p (miR-23a) directly bounds to 3' UTR of CXCR4 mRNA. pSNL-induced neuropathic pain significantly reduced mRNA expression of miR-23a. Overexpression of miR-23a by intrathecal injection of miR-23a mimics or lentivirus reduced spinal CXCR4 and prevented pSNL-induced neuropathic pain. In contrast, knockdown of miR-23a by intrathecal injection of miR-23a inhibitor or lentivirus induced pain-like behavior, which was reduced by CXCR4 inhibition. Additionally, miR-23a knockdown or CXCR4 overexpression in naïve mice could increase the thioredoxin-interacting protein (TXNIP), which was associated with induction of NOD-like receptor protein 3 (NLRP3) inflammasome. Indeed, CXCR4 and TXNIP were co-expressed. The mammal two-hybrid assay revealed the direct interaction between CXCR4 and TXNIP, which was increased in the spinal cord of pSNL mice. In particular, inhibition of TXNIP reversed pain behavior elicited by pSNL, miR-23a knockdown, or CXCR4 overexpression. Moreover, miR-23a overexpression or CXCR4 knockdown inhibited the increase of TXNIP and NLRP3 inflammasome in pSNL mice. CONCLUSIONS miR-23a, by directly targeting CXCR4, regulates neuropathic pain via TXNIP/NLRP3 inflammasome axis in spinal glial cells. Epigenetic interventions against miR-23a, CXCR4, or TXNIP may potentially serve as novel therapeutic avenues in treating peripheral nerve injury-induced nociceptive hypersensitivity.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China. .,Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China. .,Department of Anaesthesiology, Queen Mary Hospital, The University of Hong Kong, Rm 424, 4/F, Block K, 102 Pokfulam, Hong Kong, China.
| | - Qun Shan
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China.,School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao Min Wang
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Lydia Wai Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Menglan Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Xin Luo
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Liting Sun
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China. .,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China. .,Department of Anaesthesiology, Queen Mary Hospital, The University of Hong Kong, Rm 424, 4/F, Block K, 102 Pokfulam, Hong Kong, China.
| |
Collapse
|
30
|
Lin CP, Lu DH. Role of Neuroinflammation in Opioid Tolerance: Translational Evidence from Human-to-Rodent Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:125-139. [DOI: 10.1007/978-981-13-1756-9_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Epigenetic upregulation of CXCL12 expression mediates antitubulin chemotherapeutics-induced neuropathic pain. Pain 2017; 158:637-648. [PMID: 28072604 DOI: 10.1097/j.pain.0000000000000805] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clinically, Microtubule-targeted agents-induced neuropathic pain hampers chemotherapeutics for patients with cancer. Here, we found that application of paclitaxel or vincristine increased the protein and mRNA expression of CXCL12 and frequency and amplitude of miniature excitatory post synaptic currents (mEPSCs) in spinal dorsal horn neurons. Spinal local application of CXCL12 induced the long-term potentiation of nociceptive synaptic transmission and increased the amplitude of mEPSCs. Inhibition of CXCL12 using the transgenic mice (CXCL12) or neutralizing antibody or siRNA ameliorated the mEPSC's enhancement and mechanical allodynia. In addition, paclitaxel and vincristine both could increase the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the acetylation of histone H4 in the CXCL12-expressing neurons. Immunoprecipitation and chromatin immunoprecipitation assays demonstrated that antitubulin chemotherapeutics increased the binding of STAT3 to the CXCL12 gene promoter and the interaction between STAT3 and p300, and contributed to the enhanced transcription of CXCL12 by increasing the acetylation of histone H4 in CXCL12 gene promoter. Inhibition of STAT3 by intrathecal injection of adeno-associated virus encoding Cre and green fluorescent protein into STAT3 mice or inhibitor S3I-201 into rats suppressed the CXCL12 upsurge by decreasing the acetylation of histone H4. Finally, blockade of CXCR4 but not CXCR7 ameliorated the paclitaxel- or vincristine-induced mechanical allodynia. Together, these results suggested that enhanced interaction between STAT3 and p300 mediated the epigenetic upregulation of CXCL12 in dorsal horn neurons, which contributed to the antitubulin chemotherapeutics-induced persistent pain.
Collapse
|
32
|
Zhu HY, Liu X, Miao X, Li D, Wang S, Xu GY. Up-regulation of CXCR4 expression contributes to persistent abdominal pain in rats with chronic pancreatitis. Mol Pain 2017; 13:1744806917697979. [PMID: 28337946 PMCID: PMC5407662 DOI: 10.1177/1744806917697979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Pain in patients with chronic pancreatitis is critical hallmark that accompanied inflammation, fibrosis, and destruction of glandular pancreas. Many researchers have demonstrated that stromal cell-derived factor 1 (also named as CXCL12) and its cognate receptor C-X-C chemokine receptor type 4 (CXCR4) involved in mediating neuropathic and bone cancer pain. However, their roles in chronic pancreatic pain remain largely unclear. Methods Chronic pancreatitis was induced by intraductal injection of trinitrobenzene sulfonic acid to the pancreas. Von Frey filament tests were conducted to evaluate pancreas hypersensitivity of rat. Expression of CXCL12, CXCR4, NaV1.8, and pERK in rat dorsal root ganglion was detected by Western blot analyses. Dorsal root ganglion neuronal excitability was assessed by electrophysiological recordings. Results We showed that both CXCL12 and CXCR4 were dramatically up-regulated in the dorsal root ganglion in trinitrobenzene sulfonic acid-induced chronic pancreatitis pain model. Intrathecal application with AMD3100, a potent and selective CXCR4 inhibitor, reversed the hyperexcitability of dorsal root ganglion neurons innervating the pancreas of rats following trinitrobenzene sulfonic acid injection. Furthermore, trinitrobenzene sulfonic acid-induced extracellular signal-regulated kinase activation and Nav1.8 up-regulation in dorsal root ganglias were reversed by intrathecal application with AMD3100 as well as by blockade of extracellular signal-regulated kinase activation by intrathecal U0126. More importantly, the trinitrobenzene sulfonic acid-induced persistent pain was significantly suppressed by CXCR4 and extracellular signal-regulated kinase inhibitors. Conclusions The present results suggest that the activation of CXCL12–CXCR4 signaling might contribute to pancreatic pain and that extracellular signal-regulated kinase-dependent Nav1.8 up-regulation might lead to hyperexcitability of the primary nociceptor neurons in rats with chronic pancreatitis.
Collapse
Affiliation(s)
- Hong-Yan Zhu
- 1 Center for Translation Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Xuelian Liu
- 2 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Xiuhua Miao
- 1 Center for Translation Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Di Li
- 1 Center for Translation Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Shusheng Wang
- 1 Center for Translation Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Guang-Yin Xu
- 1 Center for Translation Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China.,2 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| |
Collapse
|
33
|
Yang F, Luo WJ, Sun W, Wang Y, Wang JL, Yang F, Li CL, Wei N, Wang XL, Guan SM, Chen J. SDF1-CXCR4 Signaling Maintains Central Post-Stroke Pain through Mediation of Glial-Neuronal Interactions. Front Mol Neurosci 2017; 10:226. [PMID: 28785202 PMCID: PMC5519565 DOI: 10.3389/fnmol.2017.00226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022] Open
Abstract
Central post-stroke pain (CPSP) is an intractable central neuropathic pain that has been poorly studied mechanistically. Here we showed that stromal cell-derived factor 1 (SDF1 or CXCL12), a member of the CXC chemokine family, and its receptor CXCR4 played a key role in the development and maintenance of thalamic hemorrhagic CPSP through hypoxia inducible factor 1α (HIF-1α) mediated microglial-astrocytic-neuronal interactions. First, both intra-thalamic collagenase (ITC) and SDF1 injections could induce CPSP that was blockable and reversible by intra-thalamic administration of both AMD3100 (a selective CXCR4 antagonist) and inhibitors of microglial or astrocytic activation. Second, long-term increased-expression of SDF1 and CXCR4 that was accompanied by activations of both microglia and astrocytes following ITC could be blocked by both AMD-3100 and YC-1, a selective inhibitor of HIF-1α. AMD-3100 could also inhibit release of proinflammatory mediators (TNFα, IL1β and IL-6). Increased-expression of HIF-1α, SDF1, CXCR4, Iba1 and GFAP proteins could be induced by both ITC and intra-thalamic CoCl2, an inducer of HIF-1α that was blockable by both HIF-1α inhibition and CXCR4 antagonism. Finally, inhibition of HIF-1α was only effective in prevention, but not in treatment of ITC-induced CPSP. Taken together, the present study demonstrated that in the initial process of thalamic hemorrhagic state HIF-1α up-regulated SDF1-CXCR4 signaling, while in the late process SDF1-CXCR4 signaling-mediated positive feedback plays more important role in glial-glial and glial-neuronal interactions and might be a novel promising molecular target for treatment of CPSP in clinic.
Collapse
Affiliation(s)
- Fei Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical UniversityXi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China.,Beijing Institute for Brain DisordersBeijing, China
| |
Collapse
|
34
|
Yu Y, Huang X, Di Y, Qu L, Fan N. Effect of CXCL12/CXCR4 signaling on neuropathic pain after chronic compression of dorsal root ganglion. Sci Rep 2017; 7:5707. [PMID: 28720830 PMCID: PMC5515923 DOI: 10.1038/s41598-017-05954-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/07/2017] [Indexed: 01/16/2023] Open
Abstract
Neuropathic pain is a complex, chronic pain state that often accompanies tissue damage, inflammation or injury of the nervous system. However the underlying molecular mechanisms still remain unclear. Here, we showed that CXCL12 and CXCR4 were upregulated in the dorsal root ganglion (DRG) after chronic compression of DRG (CCD), and some CXCR4 immunopositive neurons were also immunopositive for the nociceptive neuronal markers IB4, TRPV1, CGRP, and substance P. The incidence and amplitude of CXCL12-induced Ca2+ response in primary sensory neurons from CCD mice was significantly increased compared to those from control animals. CXCL12 depolarized the resting membrane potential, decreased the rheobase, and increased the number of action potentials evoked by a depolarizing current at 2X rheobase in neurons from CCD mice. The mechanical and thermal hypernociception after CCD was attenuated by administration of a CXCR4 antagonist AMD3100. These findings suggest that CXCL12/CXCR4 signaling contributes to hypernociception after CCD, and targeting CXCL12/CXCR4 signaling pathway may alleviate neuropathic pain.
Collapse
Affiliation(s)
- Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Xini Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Yuwei Di
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, 725N. Wolfe St., Baltimore, MD, 21205, USA
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China.
| |
Collapse
|
35
|
Lin CP, Kang KH, Tu HJ, Wu MY, Lin TH, Liou HC, Sun WZ, Fu WM. CXCL12/CXCR4 Signaling Contributes to the Pathogenesis of Opioid Tolerance: A Translational Study. Anesth Analg 2017; 124:972-979. [PMID: 28212183 DOI: 10.1213/ane.0000000000001480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Long-term opioid therapy for chronic pain may lead to analgesic tolerance, especially when administered intrathecally, thus preventing adequate pain relief. Discovering drug targets to treat opioid tolerance using a mechanism-based approach targeting opioid-induced neuroinflammation provides new therapeutic opportunities. In this study, we provide translational evidence that CXCL12/CXCR4 signaling contributes to the pathogenesis of opioid tolerance. METHODS The CXCL12 levels in the cerebrospinal fluid of opioid-tolerant patients were compared with those of opioid-naive subjects. For further investigation, a rodent translational study was designed using 2 clinically relevant opioid delivery paradigms: daily intraperitoneal morphine injections and continuous intrathecal morphine infusion. We measured rats' tail flick responses and calculated the percentage of maximum possible effects (%MPE) to demonstrate opioid acute antinociception and the development of analgesic tolerance. The effects of exogenous CXCL12, CXCL12 neutralizing antibody, and receptor antagonist AMD3100 were investigated by intrathecal administration. Data were presented as mean ± SEM. RESULTS CXCL12 was significantly upregulated in the cerebrospinal fluid of opioid-tolerant patients for 892 ± 34 pg/mL (n = 27) versus 755 ± 33 pg/mL (n = 10) in naive control subjects (P = .03). Furthermore, after 2 and 5 days of intrathecal morphine infusion, rat lumbar spinal cord dorsal horn CXCL12 messenger RNA levels were significantly upregulated by 3.2 ± 0.7 (P = .016) and 3.4 ± 0.3 (P = .003) fold, respectively. Results from the daily intraperitoneal morphine injection experiments revealed that administering an intrathecal infusion of CXCL12 for 24 hours before the first morphine injection did not decrease antinociception efficacy on day 1 but accelerated tolerance after day 2 (%MPE 49.5% vs 88.1%, P = .0003). In the intrathecal morphine coinfusion experiments, CXCL12 accelerated tolerance development (%MPE 9.4% vs 43.4% on day 1, P < .0001), whereas coadministration with CXCL12 neutralizing antibody attenuated tolerance (72.5% vs 43.4% on day 1, P < .0001; 47.6% vs 17.5% on day 2, P < .0001). Coadministration of receptor antagonist AMD 3100 can persistently preserve morphine analgesic effects throughout the study period (27.9% ± 4.1% vs 0.9% ± 1.6% on day 5, P = .03). CONCLUSIONS The CXCL12/CXCR4 pathway contributes to the pathogenesis of opioid tolerance. Our study indicates that intervening with CXCL12/CXCR4 signaling has therapeutic potential for opioid tolerance.
Collapse
Affiliation(s)
- Chih-Peng Lin
- From the *Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan; †Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; ‡Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan; and §Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
We previously demonstrated that the chemokine receptor CXCR4 plays an important role in cancer-induced bone pain by activating spinal neurons and glial cells. However, the specific neuronal mechanism of CXCR4 signaling is not clear. We further report that CXCR4 contributes to the activation of the neuronal CaMKII/CREB pathway in cancer-induced bone pain. We used a tumor cell implantation (TCI) model and observed that CXCR4, p-CaMKII and p-CREB were persistently up-regulated in spinal neurons. CXCR4 also co-expressed with p-CaMKII and p-CREB, and mediated p-CaMKII and p-CREB expression after TCI. Intrathecal delivery of CXCR4 siRNA or CaMKII inhibitor AIP2 abrogated TCI-induced pain hypersensitivity and TCI-induced increase in p-CaMKII and p-CREB expression. Intrathecal injection of the principal ligand for CXCR4, SDF-1, promoted p-CaMKII and p-CREB expression in naive rats, which was prevented by post-administration of CXCR4 inhibitor Plerixafor or PLC inhibitor U73122. Plerixafor, U73122, or AIP2 also alleviated SDF-1-elicited pain behaviors. Intrathecal injection of CXCR4 siRNA significantly suppressed TCI-induced up-regulation of NMDAR1 mRNA and protein, which is a known gene target of CREB. Collectively, these results suggest that the CaMKII/CREB pathway in spinal neurons mediates CXCR4-facilitated pain hypersensitivity in cancer rats.
Collapse
|
37
|
Li H, Wang R, Lu Y, Xu X, Ni J. Targeting G protein-coupled receptor for pain management. Brain Circ 2017; 3:109-113. [PMID: 30276310 PMCID: PMC6126263 DOI: 10.4103/bc.bc_3_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/09/2017] [Accepted: 04/24/2017] [Indexed: 11/04/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage. Great progress has been made in understanding the important roles of various G protein-coupled receptors in the regulation of pain transmission. However, many important questions remain uncertain about the precise signal transduction mechanisms. This review focuses opioid receptor and CXC receptor 4 on the effects and mechanisms of pain. Taken together, chemokines and their receptors are potential targets for the development of novel pain management and therapy.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Pain Management, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Department of Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Department of Liver Cancer Center, The 302 Hospital, Beijing 100039, China
| | - Rong Wang
- Department of Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yinying Lu
- Department of Liver Cancer Center, The 302 Hospital, Beijing 100039, China
| | - Xuehua Xu
- Department of Immunogenetics Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jiaxiang Ni
- Department of Pain Management, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| |
Collapse
|
38
|
Hamed EA, Mohamed Farghaly HS, Abdel Mola AF, Fahmi MK, Makhlouf MM, Balfas MA. Role of monocyte chemoattractant protein-1, stromal derived factor-1 and retinoic acid in pathophysiology of neuropathic pain in rats. J Basic Clin Physiol Pharmacol 2016; 27:411-24. [PMID: 26974138 DOI: 10.1515/jbcpp-2015-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chemokines have been recently recognized to play a role in chronic pain syndromes' pathophysiology. This study investigated the role of monocyte chemoattractant protein-1 (MCP-1), stromal cell derived factor-1 (SDF-1), and retinoic acid (RA) as targets for the therapeutic approach of neuropathic pain. METHODS A chronic constriction injury (CCI) model of neuropathic pain by unilateral ligation of left sciatic nerve was performed in adult female Wistar rats. The effects of doxycycline (Dox, 50 mg/kg/day i.p. for 7 days), single dose of bicyclam (5 mg/kg i.p.), RA (15 mg/kg/day i.p. for 7 days), and their combination(s) on behavioral tests of nociception (Von Frey filaments; paw pressure test) on days 0, 1, 3, 5, and 7 of operation were studied. Serum concentrations of MCP-1 and SDF-1 were measured by ELISA. Histological examination of the sciatic nerve was investigated. RESULTS CCI of sciatic nerve significantly induced mechanical allodynia and hyperalgesia and an increase of MCP-1 and SDF-1 serum levels. Dox-treated groups (Dox, Dox+bicyclam, Dox+RA, Dox+bicyclam+RA) and bicyclam-treated groups (bicyclam, Dox+bicyclam, bicyclam+RA, Dox+bicyclam+RA) attenuated CCI-induced behavioral and biochemical changes. RA inhibited CCI-induced mechanical hyperalgesia but produced a time-dependent reversal of allodynia. Histological findings showed degenerative changes of sciatic nerve after CCI that were partially recovered in Dox-treated groups. CONCLUSIONS These findings demonstrate an association between serum MCP-1 and SDF-1 concentrations and behavioral manifestations of neuropathic pain. RA administration decreased neuropathic pain (antihyperalgesic effect) but did not cause any improvement in sciatic nerve tissues, either alone or in combination with chemokine antagonists. Thus, chemokines may serve as potential targets for drug development in neuropathic pain treatment.
Collapse
|
39
|
Xie F, Wang Y, Li X, Chao YC, Yue Y. Early Repeated Administration of CXCR4 Antagonist AMD3100 Dose-Dependently Improves Neuropathic Pain in Rats After L5 Spinal Nerve Ligation. Neurochem Res 2016; 41:2289-99. [PMID: 27168326 DOI: 10.1007/s11064-016-1943-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 01/10/2023]
Abstract
AMD3100 is a specific C-X-C chemokine receptor type 4 (CXCR4) antagonist which blocks the interaction between CXCR4 and CXCL12. Multiple lines of evidence suggest that AMD3100 has analgesic effects on many pathological pain states, including peripheral neuropathic pain. However, little is known about the underlying mechanisms. In the current study, we investigated the effect of different doses of AMD3100 on neuropathic pain in rats after L5 spinal nerve ligation. We used naloxone methiodide (NLXM) to further determine whether AMD3100-mediated analgesic effect was opioid-dependent. Behavioral study showed that early repeated administration of AMD3100 (2 and 5 mg/kg, i.p.) dose-dependently alleviates peripheral neuropathic pain. Flow cytometry, immunofluorescence and NLXM experiments showed that AMD3100 alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. Furthermore, we found that pro-inflammatory cytokines were down-regulated by AMD3100 using Enzyme-linked Immunosorbent Assay. Our data indicate that AMD3100 dose-dependently alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. This finding suggests that AMD3100 may be a viable pharmacotherapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Fang Xie
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, 102218, China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
40
|
Joukal M, Klusáková I, Dubový P. Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia. Ann Anat 2016; 205:9-15. [DOI: 10.1016/j.aanat.2016.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 01/27/2023]
|
41
|
Qiu F, Li Y, Fu Q, Fan YY, Zhu C, Liu YH, Mi WD. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms. Neurochem Res 2016; 41:1587-603. [DOI: 10.1007/s11064-016-1873-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
|
42
|
SDF1-CXCR4 Signaling Contributes to the Transition from Acute to Chronic Pain State. Mol Neurobiol 2016; 54:2763-2775. [PMID: 27011380 DOI: 10.1007/s12035-016-9875-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
Emerging evidence has demonstrated the involvement of stromal cell-derived factor 1 (SDF1, also known as CXCL12)-CXCR4 signaling in a variety of pain state. However, the underlying mechanisms of SDF1-CXCR4 signaling leading to the maintenance of chronic pain states are poorly understood. In the present study, we sought to explore the role of SDF1-CXCR4 signaling in the forming of neuroplasticity by applying a model of the transition from acute to chronic pain state, named as hyperalgesic priming. Utilizing intraplantar bee venom (BV) injection, we successfully established hyperalgesic priming state and found that peripheral treating with AMD3100, a CXCR4 antagonist, or knocking down CXCR4 by intraganglionar CXCR4 small interfering RNA (siRNA) injection could prevent BV-induced primary mechanical hyperalgesia and hyperalgesic priming. Moreover, we showed that single intraplantar active SDF1 protein injection is sufficient to induce acute mechanical hyperalgesia and hyperalgesic priming through CXC4. Intraplantar coinjection of ERK inhibitor, U0126, and PI3K inhibitor, LY294002, as well as two protein translation inhibitors, temsirolimus and cordycepin, prevented the development of SDF1-induced acute mechanical hyperalgesia and hyperalgesic priming. Finally, on the models of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain and spared nerve injury (SNI)-induced chronic neuropathic pain, we observed that knock-down of CXCR4 could both prevent the development and reverse the maintenance of chronic pain state. In conclusion, our present data suggested that through regulating ERK and PI3K-AKT pathways-mediated protein translation SDF1-CXCR4 signaling mediates the transition from acute pain to chronic pain state and finally contributes to the development and maintenance of chronic pain.
Collapse
|
43
|
Luo X, Tai WL, Sun L, Pan Z, Xia Z, Chung SK, Cheung CW. Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain. Mol Pain 2016; 12:12/0/1744806916636385. [PMID: 27030717 PMCID: PMC4956184 DOI: 10.1177/1744806916636385] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Chemokine axis chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) is an emerging pain modulator, but mechanisms for its involvement in neuropathic pain remain unclear. Here, we aimed to study whether CXCL12/CXCR4 axis modulated the development of neuropathic pain via glial mechanisms. In this study, two mouse models of neuropathic pain, namely partial sciatic nerve ligation (pSNL) model and chronic post-ischemia pain (CPIP) model, were used. RESULTS In the dorsal horn of L3-L5 segment of spinal cord, CXCL12 and CXCR4 were expressed in both astrocyte and microglia in normal mice. In the pSNL or CPIP model, the expression level of CXCL12 in the ipsilateral L3-L5 segment of mice spinal cord was increased in an astrocyte-dependent manner on post-operative day (POD) 3. Intrathecal administration of CXCL12 with AMD3100 (CXCR4 antagonist) or minocycline (microglia activation inhibitor), but not fluorocitrate (astrocyte activation inhibitor), reversed CXCL12-indued mechanical allodynia in naïve mice. In these models, AMD3100 and AMD3465 (CXCR4 antagonist), administered daily from 1 h before surgery and up to POD 3, attenuated the development of mechanical allodynia. Moreover, AMD3100 administered daily from 1 h before surgery and up to POD 3 downregulated mRNA levels of tumor necrosis factor alpha, interleukin 1β, and interleukin 6 in the ipsilateral L3-L5 segment of spinal cord in the pSNL and CPIP models on POD 3. CONCLUSION This study demonstrates the crosstalk between astrocytic CXCL12 and microglial CXCR4 in the pathogenesis of neuropathic pain using pSNL and CPIP models. Our results offer insights for the future research on CXCL12/CXCR4 axis and neuropathic pain therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Wai L Tai
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Liting Sun
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Zhiqiang Pan
- Department of Anesthesiology, Xuzhou Medical University, Jiangsu Province, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China
| | - Sookja K Chung
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China Department of Anatomy, The University of Hong Kong, HKSAR, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China Department of Anatomy, The University of Hong Kong, HKSAR, China
| |
Collapse
|
44
|
Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats. Neurosci Bull 2016; 32:27-40. [PMID: 26781879 DOI: 10.1007/s12264-015-0007-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that CXCL12/CXCR4 signaling is involved in chronic pain. However, few studies have systemically assessed its role in direct nerve injury-induced neuropathic pain and the underlying mechanism. Here, we determined that spared nerve injury (SNI) increased the expression of CXCL12 and its cognate receptor CXCR4 in lumbar 5 dorsal root ganglia (DRG) neurons and satellite glial cells. SNI also induced long-lasting upregulation of CXCL12 and CXCR4 in the ipsilateral L4-5 spinal cord dorsal horn, characterized by CXCL12 expression in neurons and microglia, and CXCR4 expression in neurons and astrocytes. Moreover, SNI-induced a sustained increase in TNF-α expression in the DRG and spinal cord. Intraperitoneal injection (i.p.) of the TNF-α synthesis inhibitor thalidomide reduced the SNI-induced mechanical hypersensitivity and inhibited the expression of CXCL12 in the DRG and spinal cord. Intrathecal injection (i.t.) of the CXCR4 antagonist AMD3100, both 30 min before and 7 days after SNI, reduced the behavioral signs of allodynia. Rats given an i.t. or i.p. bolus of AMD3100 on day 8 of SNI exhibited attenuated abnormal pain behaviors. The neuropathic pain established following SNI was also impaired by i.t. administration of a CXCL12-neutralizing antibody. Moreover, repetitive i.t. AMD3100 administration prevented the activation of ERK in the spinal cord. The mechanical hypersensitivity induced in naïve rats by i.t. CXCL12 was alleviated by pretreatment with the MEK inhibitor PD98059. Collectively, our results revealed that TNF-α might mediate the upregulation of CXCL12 in the DRG and spinal cord following SNI, and that CXCL12/CXCR4 signaling via ERK activation contributes to the development and maintenance of neuropathic pain.
Collapse
|
45
|
Liang D, Shi S, Xu J, Zhang B, Qin Y, Ji S, Xu W, Liu J, Liu L, Liu C, Long J, Ni Q, Yu X. New insights into perineural invasion of pancreatic cancer: More than pain. Biochim Biophys Acta Rev Cancer 2016; 1865:111-22. [PMID: 26794395 DOI: 10.1016/j.bbcan.2016.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/26/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is one of the most malignant human tumors. Perineural invasion, whereby a cancer cell invades the perineural spaces surrounding nerves, is acknowledged as a gradual contributor to cancer aggressiveness. Furthermore, perineural invasion is considered one of the root causes of the recurrence and metastasis observed after pancreatic resection, and it is also an independent predictor of prognosis. Advanced research has demonstrated that the neural microenvironment is closely associated with perineural invasion in pancreatic cancer. Therapy targeting the molecular mechanism of perineural invasion may enable the durable clinical treatment of this formidable disease. This review provides an overview of the present status of perineural invasion, the relevant molecular mechanisms of perineural invasion, pain and hyperglycemia associated with perineural invasion in pancreatic cancer, and the targeted therapeutics based on these studies.
Collapse
Affiliation(s)
- Dingkong Liang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
Connexin 43 Mediates CXCL12 Production from Spinal Dorsal Horn to Maintain Bone Cancer Pain in Rats. Neurochem Res 2015; 41:1200-8. [DOI: 10.1007/s11064-015-1815-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023]
|
47
|
Yang F, Sun W, Yang Y, Wang Y, Li CL, Fu H, Wang XL, Yang F, He T, Chen J. SDF1-CXCR4 signaling contributes to persistent pain and hypersensitivity via regulating excitability of primary nociceptive neurons: involvement of ERK-dependent Nav1.8 up-regulation. J Neuroinflammation 2015; 12:219. [PMID: 26597700 PMCID: PMC4657286 DOI: 10.1186/s12974-015-0441-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pain is one critical hallmark of inflammatory responses. A large number of studies have demonstrated that stromal cell-derived factor 1 (SDF1, also named as CXCL12) and its cognate receptor C-X-C chemokine receptor type 4 (CXCR4) play an important role in immune reaction and inflammatory processes. However, whether and how SDF1-CXCR4 signaling is involved in inflammatory pain remains unclear. METHODS Under the intraplantar (i.pl.) bee venom (BV) injection-induced persistent inflammatory pain state, the changes of SDF1 and CXCR4 expression and cellular localization in the rat dorsal root ganglion (DRG) were detected by immunofluorescent staining. The role of SDF1 and CXCR4 in the hyperexcitability of primary nociceptor neurons was assessed by electrophysiological recording. Western blot analysis was used to quantify the DRG Nav1.8 and phosphorylation of ERK (pERK) expression. Behavioral tests were conducted to evaluate the roles of CXCR4 as well as extracellular signal-regulated kinase (ERK) and Nav1.8 in the BV-induced persistent pain and hypersensitivity. RESULTS We showed that both SDF1 and CXCR4 were dramatically up-regulated in the DRG in i.pl. BV-induced inflammatory pain model. Double immunofluorescent staining showed that CXCR4 was localized in all sizes (large, medium, and small) of DRG neuronal soma, while SDF1 was exclusively expressed in satellite glial cells (SGCs). Electrophysiological recording showed that bath application with AMD3100, a potent and selective CXCR4 inhibitor, could reverse the hyperexcitability of medium- and small-sized DRG neurons harvested from rats following i.pl. BV injection. Furthermore, we demonstrated that the BV-induced ERK activation and Nav1.8 up-regulation in the DRG could be blocked by pre-antagonism against CXCR4 in the periphery with AMD3100 as well as by blockade of ERK activation by intrathecal (i.t.) or intraplantar (i.pl.) U0126. At behavioral level, the BV-induced persistent spontaneous pain as well as primary mechanical and thermal hypersensitivity could also be significantly suppressed by blocking CXCR4 and Nav1.8 in the periphery as well as by inhibition of ERK activation at the DRG level. CONCLUSIONS The present results suggest that peripheral inflammatory pain state can trigger over release of SDF1 from the activated SGCs in the DRG by which SGC-neuronal cross-talk is mediated by SDF1-CXCR4 coupling that result in subsequent ERK-dependent Nav1.8 up-regulation, leading to hyperexcitability of tonic type of the primary nociceptor cells and development and maintenance of persistent spontaneous pain and hypersensitivity.
Collapse
Affiliation(s)
- Fei Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Yan Yang
- Beijing Institute for Brain Disorders, Beijing, 100069, People's Republic of China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Fan Yang
- Beijing Institute for Brain Disorders, Beijing, 100069, People's Republic of China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China. .,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China. .,Beijing Institute for Brain Disorders, Beijing, 100069, People's Republic of China.
| |
Collapse
|
48
|
Xu Q, Wang Z, Chen X, Duan W, Lei J, Zong L, Li X, Sheng L, Ma J, Han L, Li W, Zhang L, Guo K, Ma Z, Wu Z, Wu E, Ma Q. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget 2015; 6:4717-32. [PMID: 25605248 PMCID: PMC4467110 DOI: 10.18632/oncotarget.3069] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/17/2014] [Indexed: 12/22/2022] Open
Abstract
Perineural invasion (PNI) is considered as an alternative route for the metastatic spread of pancreatic cancer cells; however, the molecular changes leading to PNI are still poorly understood. In this study, we show that the CXCL12/CXCR4 axis plays a pivotal role in the neurotropism of pancreatic cancer cells to local peripheral nerves. Immunohistochemical staining results revealed that CXCR4 elevation correlated with PNI in 78 pancreatic cancer samples. Both in vitro and in vivo PNI models were applied to investigate the function of the CXCL12/CXCR4 signaling in PNI progression and pathogenesis. The results showed that the activation of the CXCL12/CXCR4 axis significantly increased pancreatic cancer cells invasion and promoted the outgrowth of the dorsal root ganglia. CXCL12 derived from the peripheral nerves stimulated the invasion and chemotactic migration of CXCR4-positive cancer cells in a paracrine manner, eventually leading to PNI. In vivo analyses revealed that the abrogation of the activated signaling inhibited tumor growth and invasion of the sciatic nerve toward the spinal cord. These data indicate that the CXCL12/CXCR4 axis may be a novel therapeutic target to prevent the perineural dissemination of pancreatic cancer.
Collapse
Affiliation(s)
- Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Liang Zong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Liang Sheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jiguang Ma
- Department of Oncology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Wei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lun Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kun Guo
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
49
|
Hu XM, Liu YN, Zhang HL, Cao SB, Zhang T, Chen LP, Shen W. Retracted: CXCL12/CXCR4 chemokine signaling in spinal glia induces pain hypersensitivity through MAPKs-mediated neuroinflammation in bone cancer rats. J Neurochem 2015; 132:452-63. [DOI: 10.1111/jnc.12985] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/28/2014] [Accepted: 10/23/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Xue-Ming Hu
- Department of Pain Medicine; The Affiliated Hospital of Xuzhou Medical College; Xuzhou China
| | - Yan-Nan Liu
- Jiangsu Province Key Laboratory of Anesthesiology; Xuzhou Medical College; Xuzhou China
| | - Hai-Long Zhang
- Jiangsu Province Key Laboratory of Anesthesiology; Xuzhou Medical College; Xuzhou China
| | - Shou-Bin Cao
- Jiangsu Province Key Laboratory of Anesthesiology; Xuzhou Medical College; Xuzhou China
| | - Ting Zhang
- Jiangsu Province Key Laboratory of Anesthesiology; Xuzhou Medical College; Xuzhou China
| | - Li-Ping Chen
- Department of Pain Medicine; The Affiliated Hospital of Xuzhou Medical College; Xuzhou China
| | - Wen Shen
- Department of Pain Medicine; The Affiliated Hospital of Xuzhou Medical College; Xuzhou China
- Jiangsu Province Key Laboratory of Anesthesiology; Xuzhou Medical College; Xuzhou China
| |
Collapse
|
50
|
Xue C, Xie L, Li X, Cai J, Gu Z, Wang K. Analgesic mechanism of electroacupuncture in a rat L5 spinal nerve ligation model. Exp Ther Med 2015; 9:987-991. [PMID: 25667665 PMCID: PMC4316988 DOI: 10.3892/etm.2015.2165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to investigate the analgesic mechanism of electroacupuncture (EA) in the treatment of neuropathological pain. A total of 60 Sprague-Dawley rats were randomly divided into three groups, namely the spinal nerve ligation (SNL), electroacupuncture (SNL + EA) and normal control groups, with 20 rats in each group. The up-down method was used to determine the bipedal 50% mechanical paw withdrawal threshold (PWT). The ultrastructure of the injured-side L5 nerve root (n=6) was observed by electron microscopy. The mRNA levels of brain-derived neurotrophic factor (BDNF) and purinergic receptor P2X, ligand-gated ion channel 4 (P2X4) in the spinal cord (n=14) were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The postoperative PWT of the injured-side hindpaw in the SNL group at each time point was lower than that in the control group (P<0.01); there were differences of statistical significance between the PWT values of the SNL + EA and SNL groups on postoperative days 14 and 21 (P<0.05). Postoperatively, the PWT of the hindpaw on the uninjured-side was significantly lower in the SNL group when compared with that of the control group on days 10, 14 and 21 (P<0.05). Following the EA treatment, axonal demyelination was reduced and vascular proliferation was observed within the visual field. In addition, following the EA treatment, BDNF expression levels in the spinal dorsal horn increased (P<0.05), while the expression of P2X4 was not different from that in the SNL group. EA exerted an analgesic effect on the SNL model in a time-dependent manner, and improved the blood supply to the nerve root. Following the EA treatment, the expression of P2X4 did not change significantly compared with that in the SNL group, whereas the spinal secretion of BDNF increased. However, the exact mechanism requires further study.
Collapse
Affiliation(s)
- Chunchun Xue
- Pain Management Center, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Lei Xie
- Pain Management Center, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Xia Li
- Pain Management Center, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jianfeng Cai
- Department of Orthopaedics and Traumatology, Jiashan Hospital of Traditional Chinese Medicine, Jiashan, Zhejiang 314100, P.R. China
| | - Zhen Gu
- Pain Management Center, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Kaiqiang Wang
- Pain Management Center, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|