1
|
Li K, Zhang C, Wang LX, Wang X, Wang R. KLF4's role in regulating nitric oxide production and promoting microvascular formation following ischemic stroke. Nitric Oxide 2025; 154:86-104. [PMID: 39557151 DOI: 10.1016/j.niox.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
This study examines KLF4's role in endothelial cells (ECs), emphasizing its effects on nitric oxide (NO) production, microvascular formation, and oxidative stress regulation following ischemic stroke. Through high-throughput sequencing, we identified eight cell subpopulations in carotid artery tissues post-stroke, with KLF4 notably elevated in ECs. KLF4 overexpression in ECs promoted NO synthesis, enhanced endothelial tube formation, mitigated oxidative stress, and improved smooth muscle cells (SMCs) function, collectively boosting blood flow in ischemic regions. These findings highlight KLF4 as pivotal in vascular regeneration and oxidative stress reduction, positioning it as a promising target for cardiovascular and cerebrovascular therapies.
Collapse
Affiliation(s)
- Kuo Li
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China.
| | - Chuansuo Zhang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Li Xuan Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Xiaoxuan Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Ruyue Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| |
Collapse
|
2
|
Santos AB, Carona A, Ettcheto M, Camins A, Falcão A, Fortuna A, Bicker J. Krüppel-like factors: potential roles in blood-brain barrier dysfunction and epileptogenesis. Acta Pharmacol Sin 2024; 45:1765-1776. [PMID: 38684799 PMCID: PMC11335766 DOI: 10.1038/s41401-024-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
Epilepsy is a chronic and debilitating neurological disorder, known for the occurrence of spontaneous and recurrent seizures. Despite the availability of antiseizure drugs, 30% of people with epilepsy experience uncontrolled seizures and drug resistance, evidencing that new therapeutic options are required. The process of epileptogenesis involves the development and expansion of tissue capable of generating spontaneous recurrent seizures, during which numerous events take place, namely blood-brain barrier (BBB) dysfunction, and neuroinflammation. The consequent cerebrovascular dysfunction results in a lower seizure threshold, seizure recurrence, and chronic epilepsy. This suggests that improving cerebrovascular health may interrupt the pathological cycle responsible for disease development and progression. Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors, encountered in brain endothelial cells, glial cells, and neurons. KLFs are known to regulate vascular function and changes in their expression are associated with neuroinflammation and human diseases, including epilepsy. Hence, KLFs have demonstrated various roles in cerebrovascular dysfunction and epileptogenesis. This review critically discusses the purpose of KLFs in epileptogenic mechanisms and BBB dysfunction, as well as the potential of their pharmacological modulation as therapeutic approach for epilepsy treatment.
Collapse
Affiliation(s)
| | - Andreia Carona
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Miren Ettcheto
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Antoni Camins
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| |
Collapse
|
3
|
Huang T, Yin J, Ren S, Zhang X. Protective effects of KLF4 on blood-brain barrier and oxidative stress after cerebral ischemia-reperfusion in rats through the Nrf2/Trx1 pathway. Cytokine 2023; 169:156288. [PMID: 37441941 DOI: 10.1016/j.cyto.2023.156288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE To investigate the role of KLF4 in CI/R injury and whether Nrf2/Trx1 axis acted as a downstream pathway of KLF4 to exert the protective role in blood-brain barrier destruction after CI/R. METHODS The tMCAO rat model in vivo was constructed and received the intracerebroventricular injection of 5 μg/kg and 10 μg/kg rhKLF4 before operation. TTC, brain water content, neurological function, ELISA, behavioral tests, HE, TUNEL, and qRT-PCR were performed to detect the protective role of KLF4 on CIR. Double-fluorescence staining and western blot were performed to determine the localization and spatiotemporal expression in brain tissues. Furthermore, we also analyzed the effect of KLF4 on the blood-brain barrier (BBB) and related mechanisms in vivo and in vitro. Nrf2 inhibitor tretinoin was applied, which was intraperitoneally injected into CIR rat. Evans blue staining was conducted. In vitro OGD/R models of bEnd.3 cells were also established, and received KLF4 overexpressed transfection and 12.5 µM tretinoin incubation. The permeability of bEnd.3 cells was evaluated by TEER and FITC-dextran leakage. BBB-related factors and oxidative stress were also analyzed, respectively. The tubular ability of KLF4 on OGD/R bEnd3 cells was also evaluated. RESULTS In vivo study confirmed that KLF4 was expressed in astrocyte, and its content increased with time. KLF4 protected against brain injury caused by cerebral ischemia-reperfusion, reduced cerebral infarction area and oxidative stress levels, and promoted the recovery of behavioral ability in rats. Simultaneously, mechanism experiments confirmed that the repair effect of KLF4 on cerebral ischemia-reperfusion injury was closely related to the Nrf2/Trx1 pathway. KLF4 exerted the neuroprotective effect through upregulating Nrf2/Trx1 pathway. Consistent with in vivo animal study, in vitro study also confirmed the effect of KLF4 on the permeability of bEnd.3 cells after OGD/R injury through Nrf2/Trx1 pathway. CONCLUSION Collectively, KLF4 played neuroprotective role in CIR induced MCAO and OGD/R, and the beneficial effects of KLF4 was partly linked to Nrf2/Trx1 pathway.
Collapse
Affiliation(s)
- Tao Huang
- Neurology Department, Laizhou City People's Hospital, Laizhou, Shandong 261400, China
| | - Junping Yin
- Neurology Department, Laizhou City People's Hospital, Laizhou, Shandong 261400, China
| | - Song'e Ren
- Neurology Department, Laizhou City People's Hospital, Laizhou, Shandong 261400, China
| | - Xuling Zhang
- Neurology Department, Laizhou City People's Hospital, Laizhou, Shandong 261400, China.
| |
Collapse
|
4
|
Wang C, Li L. The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke. J Neuroinflammation 2023; 20:44. [PMID: 36823628 PMCID: PMC9948409 DOI: 10.1186/s12974-023-02742-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND We have previously demonstrated that the expression of kruppel-like transcription factor-4 (KLF-4) is upregulated in astrocytes following acute ischemic stroke (AIS) and found that KLF4 confers vascular protection against cerebral ischemic injury. However, the functional role of KLF4 in astrocyte after AIS is far from clear. METHODS The intrinsic relationship between KLF4 and A1/A2 reactive astrocytes and the impact of astrocytic KLF4 on the activation of A1/A2 subtype astrocytes were evaluated in middle cerebral artery occlusion (MCAO) mice and oxygen-glucose deprivation and restoration (OGD/R) astrocytes. RESULTS Our results demonstrated that astrocytic KLF4 expression and complement C3-positive A1 and S100 calcium binding protein A10 (S100A10)-positive A2 astrocytes were induced in the ischemic penumbra following focal cerebral ischemia, and the time course of upregulation of astrocytic KLF4 correlated closely with the activation of A2 astrocytes. The dual immunofluorescent studies displayed that in the ischemic hemisphere, where the high levels of KLF4 were expressed, there were relatively low levels of C3 expressed in the reactive astrocytes and vice versa, but KLF4 was always co-stained well with S100A10. Mechanistic analyses revealed that astrocytic KLF4 inhibited the activation of A1 astrocyte but promoted A2 astrocyte polarization after OGD/R by modulating expressions of nuclear factor-kB. CONCLUSIONS Astrocyte-derived KLF4 has a critical role in regulating the activation of A1/A2 reactive astrocytes following AIS.
Collapse
Affiliation(s)
- Cong Wang
- grid.412277.50000 0004 1760 6738Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China ,grid.412194.b0000 0004 1761 9803The Graduate School, Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Longxuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
5
|
Zhou C, Sun P, Hamblin MH, Yin KJ. Genetic deletion of Krüppel-like factor 11 aggravates traumatic brain injury. J Neuroinflammation 2022; 19:281. [PMID: 36403074 PMCID: PMC9675068 DOI: 10.1186/s12974-022-02638-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The long-term functional recovery of traumatic brain injury (TBI) is hampered by pathological events, such as parenchymal neuroinflammation, neuronal death, and white matter injury. Krüppel-like transcription factor 11 (KLF 11) belongs to the zinc finger family of transcription factors and actively participates in various pathophysiological processes in neurological disorders. Up to now, the role and molecular mechanisms of KLF11 in regulating the pathogenesis of brain trauma is poorly understood. METHODS KLF11 knockout (KO) and wild-type (WT) mice were subjected to experimental TBI, and sensorimotor and cognitive functions were evaluated by rotarod, adhesive tape removal, foot fault, water maze, and passive avoidance tests. Brain tissue loss/neuronal death was examined by MAP2 and NeuN immunostaining, and Cresyl violet staining. White matter injury was assessed by Luxol fast blue staining, and also MBP/SMI32 and Caspr/Nav1.6 immunostaining. Activation of cerebral glial cells and infiltration of blood-borne immune cells were detected by GFAP, Iba-1/CD16/32, Iba-1/CD206, Ly-6B, and F4/80 immunostaining. Brian parenchymal inflammatory cytokines were measured with inflammatory array kits. RESULTS Genetic deletion of KLF11 worsened brain trauma-induced sensorimotor and cognitive deficits, brain tissue loss and neuronal death, and white matter injury in mice. KLF11 genetic deficiency in mice also accelerated post-trauma astrocytic activation, promoted microglial polarization to a pro-inflammatory phenotype, and increased the infiltration of peripheral neutrophils and macrophages into the brain parenchyma. Mechanistically, loss-of-KLF11 function was found to directly increase the expression of pro-inflammatory cytokines in the brains of TBI mice. CONCLUSION KLF11 acts as a novel protective factor in TBI. KLF11 genetic deficiency in mice aggravated the neuroinflammatory responses, grey and white matter injury, and impaired long-term sensorimotor and cognitive recovery. Elucidating the functional importance of KLF11 in TBI may lead us to discover novel pharmacological targets for the development of effective therapies against brain trauma.
Collapse
Affiliation(s)
- Chao Zhou
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ping Sun
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA, 70112, USA
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Ke-Jie Yin
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Burda JE, O'Shea TM, Ao Y, Suresh KB, Wang S, Bernstein AM, Chandra A, Deverasetty S, Kawaguchi R, Kim JH, McCallum S, Rogers A, Wahane S, Sofroniew MV. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 2022; 606:557-564. [PMID: 35614216 PMCID: PMC10027402 DOI: 10.1038/s41586-022-04739-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes respond to injury and disease in the central nervous system with reactive changes that influence the outcome of the disorder1-4. These changes include differentially expressed genes (DEGs) whose contextual diversity and regulation are poorly understood. Here we combined biological and informatic analyses, including RNA sequencing, protein detection, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and conditional gene deletion, to predict transcriptional regulators that differentially control more than 12,000 DEGs that are potentially associated with astrocyte reactivity across diverse central nervous system disorders in mice and humans. DEGs associated with astrocyte reactivity exhibited pronounced heterogeneity across disorders. Transcriptional regulators also exhibited disorder-specific differences, but a core group of 61 transcriptional regulators was identified as common across multiple disorders in both species. We show experimentally that DEG diversity is determined by combinatorial, context-specific interactions between transcriptional regulators. Notably, the same reactivity transcriptional regulators can regulate markedly different DEG cohorts in different disorders; changes in the access of transcriptional regulators to DNA-binding motifs differ markedly across disorders; and DEG changes can crucially require multiple reactivity transcriptional regulators. We show that, by modulating reactivity, transcriptional regulators can substantially alter disorder outcome, implicating them as therapeutic targets. We provide searchable resources of disorder-related reactive astrocyte DEGs and their predicted transcriptional regulators. Our findings show that transcriptional changes associated with astrocyte reactivity are highly heterogeneous and are customized from vast numbers of potential DEGs through context-specific combinatorial transcriptional-regulator interactions.
Collapse
Affiliation(s)
- Joshua E Burda
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Timothy M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Keshav B Suresh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alexander M Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ashu Chandra
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Sandeep Deverasetty
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jae H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sarah McCallum
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexandra Rogers
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shalaka Wahane
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
KLF4 Affects Acute Renal Allograft Injury via Binding to MicroRNA-155-5p Promoter to Regulate ERRFI1. DISEASE MARKERS 2022; 2022:5845627. [PMID: 35340414 PMCID: PMC8947908 DOI: 10.1155/2022/5845627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Kruppel-like factor 4 (KLF4) owns the promising potential in treating kidney injury, which inevitably occurs during renal allograft. Given that, this research targets to unveil KLF4-oriented mechanism from microRNA-155-5p/ERBB receptor feedback inhibitor 1 (miR-155-5p/ERRFI1) axis in acute renal allograft injury. Mice were injected with miR-155-5p-related sequences before acute renal allograft modeling. Afterwards, serum inflammation, along with oxidative stress, renal tubular injury, and apoptosis in renal tissues were detected. HK-2 cells were processed by hypoxia/reoxygenation (H/R) and transfected with miR-155-5p- or ERRFI1-related sequences, after which cell proliferation and apoptosis were measured. KLF4, miR-155-5p, and ERRFI1 expressions and their interaction were tested. KLF4 and miR-155-5p levels were enhanced, and ERRFI1 level was repressed in mice after acute renal allograft and in H/R-treated HK-2 cells. KLF4 bound to the promoter of miR-155-5p. Depleting miR-155-5p reduced serum inflammation and attenuated oxidative stress, renal tubular injury, and apoptosis in mice with acute renal allograft injury. Downregulating miR-155-5p facilitated proliferation and repressed apoptosis of H/R-treated HK-2 cells. miR-155-5p targeted ERRFI1. Knocking down ERRFI1 antagonized the effects of downregulated miR-155-5p on acute renal allograft injury, as well as on H/R-treated HK-2 cell proliferation and apoptosis. A summary displays that silencing KLF4 suppresses miR-155-5p to attenuate acute renal allograft injury by upregulating ERRFI1, which provides a way to control acute renal allograft injury.
Collapse
|
8
|
Fujii C, Zorumski CF, Izumi Y. Ethanol, neurosteroids and cellular stress responses: Impact on central nervous system toxicity, inflammation and autophagy. Neurosci Biobehav Rev 2021; 124:168-178. [PMID: 33561510 DOI: 10.1016/j.neubiorev.2021.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/19/2021] [Indexed: 01/21/2023]
Abstract
Alcohol intake can impair brain function, in addition to other organs such as the liver and kidney. In the brain ethanol can be detrimental to memory formation, through inducing the integrated stress response/endoplasmic reticulum stress/unfolded protein response and the molecular mechanisms linking stress to other events such as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammation and autophagy. This literature review aims to provide an overview of our current understanding of the molecular mechanisms involved in ethanol-induced damage with endoplasmic reticulum stress, integrated stress response, NLRP3 inflammation and autophagy, while discussing the impact of neurosteroids and oxysterols, including allopregnanolone, 25-hydroxycholesterol and 24S-hydroxycholesterol, on the central nervous system.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
9
|
Zhang X, Wang L, Han Z, Dong J, Pang D, Fu Y, Li L. KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation 2020; 17:107. [PMID: 32264912 PMCID: PMC7140364 DOI: 10.1186/s12974-020-01780-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Background Although inflammatory cell adhesion molecules (CAMs) and anti-inflammation factor Kruppel-like transcription factor (KLF) 4 have all been reported to be induced after cerebral ischemic stroke (CIS), the close temporal and spatial relationship between expressions of CAMs and KLF4 following CIS and whether and how CAMs and KLF-4 contribute to the development of CIS-induced vascular injury are still unclear. Methods Here, we first examined the correlation between serum levels of CAMs/KLF4 and infarct volume in acute CIS patients. Then, we determined the relationship between CAMs and KLF4 in mice after focal cerebral ischemia. Finally, we investigated the mechanism of KLF4 in protecting against oxygen-glucose deprivation-induced brain endothelial cell injury. Results Our results demonstrated that patients with moderate to severe CIS had higher serum levels of three CAMs including E-selectin, inter-cellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) but lower levels of KLF4 at 48 h after an acute event as compared to patients with minor CIS. The expression levels of three CAMs as well as KLF4 all correlated well with the infarct volume in all the CIS subjects at that time. Although the expressions of three CAMs and KLF4 were all induced in the ischemic hemisphere following focal cerebral ischemia, the peak timing and distribution patterns of their expression were different: the induction of KLF4 lagged behind that of the CAMs in the ischemic penumbra; furthermore, the dual immunofluorescent studies displayed that high expression of KLF4 was always associated with relatively less cerebral vascular endothelial inflammation response in the ischemic hemisphere and vice versa. Mechanistic analyses revealed that KLF4 alleviated CIS-induced cerebral vascular injury by regulating endothelial expressions of CAMs, nuclear factor-kB, and tight junction proteins. Conclusions These data indicate that KLF4 confers vascular protection against cerebral ischemic injury, suggesting that circulating CAMs and KLF4 might be used as potential biomarkers for predicting the prognosis of acute ischemic stroke and also providing a new proof of concept and potential targets for future prevention and treatment of CIS.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Neurology, Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China.,The Graduate School, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Lu Wang
- Department of Neurology, Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, People's Republic of China
| | - Jing Dong
- Department of Pharmacy, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Defang Pang
- Department of Special Outpatient Service, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Yuan Fu
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Longxuan Li
- Department of Neurology, Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
10
|
Rickert U, Cossais F, Heimke M, Arnold P, Preuße-Prange A, Wilms H, Lucius R. Anti-inflammatory properties of Honokiol in activated primary microglia and astrocytes. J Neuroimmunol 2018; 323:78-86. [DOI: 10.1016/j.jneuroim.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 01/24/2023]
|
11
|
Cheng Z, Zou X, Jin Y, Gao S, Lv J, Li B, Cui R. The Role of KLF 4 in Alzheimer's Disease. Front Cell Neurosci 2018; 12:325. [PMID: 30297986 PMCID: PMC6160590 DOI: 10.3389/fncel.2018.00325] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/07/2018] [Indexed: 01/30/2023] Open
Abstract
Krüppel-like factor 4 (KLF4), a member of the family of zinc-finger transcription factors, is widely expressed in range of tissues that play multiple functions. Emerging evidence suggest KLF4’s critical regulatory effect on the neurophysiological and neuropathological processes of Alzheimer’s disease (AD), indicating that KLF4 might be a potential therapeutic target of neurodegenerative diseases. In this review, we will summarize relevant studies and illuminate the regulatory role of KLF4 in the neuroinflammation, neuronal apoptosis, axon regeneration and iron accumulation to clarify KLF4’s status in the pathogenesis of AD.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiayin Lv
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Jiang ZS, Zhang JR. LncRNA SNHG5 enhances astrocytes and microglia viability via upregulating KLF4 in spinal cord injury. Int J Biol Macromol 2018; 120:66-72. [PMID: 30076931 DOI: 10.1016/j.ijbiomac.2018.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
This study aims to explore the role and mechanism of lncRNA SNHG5 in spinal cord injury (SCI). The interaction between SNHG5 and Krüppel-like factor 4 (KLF4) was verified by RNA pull-down and RNA immunoprecipitation (RIP) assay. Rat neural function was evaluated by BBB and BMS scores. Results showed that GFAP and Iba-1 (specific proteins for astrocytes and microglia respectively) were upregulated in spinal cord of SCI rats. Simultaneously, spinal cord also expressed substantially higher levels of SNHG5, KLF4 and eNOS (endothelial Nitric Oxide Synthase) than sham group. In traumatically injured astrocytes and microglia, SNHG5 overexpression increased cells viability, which was significantly inhibited by SNHG5 knockdown. KLF4 is a directly target for SNHG5 and is positively regulated by SNHG5. The knockdown of KLF4 effectively decreased astrocytes and microglia viability induced by SHNG5 overexpression and attenuated the pcDNA-SNHG5-mediated repression of the apoptosis. In SCI rats, the injection of Lenti-SNHG5 reduced BBB and BMS scores and also enhanced the protein expression of KLF4, eNOS, GFAP and Iba-1. In summary, our data suggested that SNHG5 promotes SCI via increasing the viability of astrocytes and microglia. The mechanism by which SNHG5 works is its directive interaction to KLF4 and contribution to eNOS upregulation.
Collapse
Affiliation(s)
- Zhen-Song Jiang
- Department of Spinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250014, PR China.
| | - Jian-Ru Zhang
- Department of Health Examination, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, PR China
| |
Collapse
|
13
|
Li H, Zhang C, Shen H, Shen Z, Wu L, Mo F, Li M. Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci Rep 2017; 7:5745. [PMID: 28720846 PMCID: PMC5515979 DOI: 10.1038/s41598-017-06058-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 11/10/2022] Open
Abstract
Iron overload has attracted much attention because of its adverse effect in increasing the risk of developing several neurodegenerative disorders. Under various pathologic conditions, a lot of heme are released. The aggregation of heme is more neurotoxic than that of iron released from the heme breakdown. Our previous studies demonstrated that psychological stress (PS) is a risk factor of cerebral iron metabolism disorders, thus causing iron accumulation in rat brains. In the present study, we found PS could increase heme uptake via heme carrier protein 1 (HCP1) in rat brains. We demonstrated that Glucocorticoid (GC), which is largely secreted under stress, could up-regulate HCP1 expression, thus promoting heme uptake in neurons. We also ascertained that HCP1 expression can be induced by GC through a transcription factor, Krüppel-like factor 4 (KLF4). These results may gain new insights into the etiology of heme uptake and iron accumulation in PS rats, and find new therapeutic targets of iron accumulation in Parkinson’s disease or Alzheimer’s disease.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Caixia Zhang
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.,Department of Nursing, People's Libration Army of 266 Hospital, Chengde City, Hubei, 067000, China
| | - Hui Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhilei Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Lusha Wu
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Min Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Kaikkonen MU, Halonen P, Liu OHF, Turunen TA, Pajula J, Moreau P, Selvarajan I, Tuomainen T, Aavik E, Tavi P, Ylä-Herttuala S. Genome-Wide Dynamics of Nascent Noncoding RNA Transcription in Porcine Heart After Myocardial Infarction. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001702. [DOI: 10.1161/circgenetics.117.001702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022]
Abstract
Background—
Microarrays and RNA sequencing are widely used to profile transcriptome remodeling during myocardial ischemia. However, the steady-state RNA analysis lacks in sensitivity to detect all noncoding RNA species and does not provide separation between transcriptional and post-transcriptional regulations. Here, we provide the first comprehensive analysis of nascent RNA profiles of mRNAs, primary micro-RNAs, long noncoding RNAs, and enhancer RNAs in a large animal model of acute infarction.
Methods and Results—
Acute infarction was induced by cardiac catheterization of domestic swine. Nuclei isolated from healthy, border zone, and ischemic regions of the affected heart were subjected to global run-on sequencing. Global run-on sequencing analysis indicated that half of affected genes are regulated at the level of transcriptional pausing. A gradient of induction of inflammatory mediators and repression of peroxisome proliferator-activated receptor signaling and oxidative phosphorylation was detected when moving from healthy toward infarcted area. In addition, we interrogated the transcriptional regulation of primary micro-RNAs and provide evidence that several arrhythmia-related target genes exhibit repression at post-transcriptional level. We identified 450 long noncoding RNAs differently regulated by ischemia, including novel conserved long noncoding RNAs expressed in antisense orientation to myocardial transcription factors GATA-binding protein 4, GATA-binding protein 6, and Krüppel-like factor 6. Finally, characterization of enhancers exhibiting differential expression of enhancer RNAs pointed a central role for Krüppel-like factor, MEF2C, ETS, NFY, ATF, E2F2, and NRF1 transcription factors in determining transcriptional responses to ischemia.
Conclusions—
Global run-on sequencing allowed us to follow the gradient of gene expression occurring in the ischemic heart and identify novel noncoding RNAs regulated by oxygen deprivation. These findings highlight potential new targets for diagnosis and treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Minna U. Kaikkonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Paavo Halonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Oscar Hsin-Fu Liu
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Tiia A. Turunen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Juho Pajula
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Pierre Moreau
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Ilakya Selvarajan
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Tomi Tuomainen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Einari Aavik
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Pasi Tavi
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
15
|
Ahn M, Kim J, Park C, Jung K, Moon C, Shin T. Immunohistochemical study of Krüppel-like factor 4 in the spinal cords of rats with experimental autoimmune encephalomyelitis. Acta Histochem 2015; 117:521-7. [PMID: 25944743 DOI: 10.1016/j.acthis.2015.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 12/16/2022]
Abstract
The expression and localization of Krüppel-like factor (KLF) 4, a class of zinc-finger transcription factors, was investigated in the spinal cords of rats with experimental autoimmune encephalomyelitis (EAE) using western blotting and immunohistochemistry. KLF4 expression was increased significantly in EAE-affected spinal cords compared with normal rat spinal cords. The elevated levels of KLF4 in the spinal cords of rats with EAE remained significant, even during the recovery stage of EAE. The cellular phenotype of KLF4 in EAE lesions consisted of some T cells, macrophages, and reactive astrocytes, whereas it was expressed constitutively in resting astrocytes and neurons, but not in ramified microglial cells in normal spinal cords. Collectively, we postulate that autoimmune T cells and macrophages activate KLF4 and subsequently do not proliferate or exhibit phenotypic switching from M1 to M2 macrophages, respectively. In addition, we hypothesize that the increased and sustained expression of KLF4 in reactive astrocytes during EAE was associated with suppressed CNS inflammation, as well as reduced numbers of pro-inflammatory T cells and M1 macrophages.
Collapse
|
16
|
Sialyltransferase7A, a Klf4-responsive gene, promotes cardiomyocyte apoptosis during myocardial infarction. Basic Res Cardiol 2015; 110:28. [PMID: 25860962 DOI: 10.1007/s00395-015-0484-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023]
Abstract
Myocardial infarction (MI) is one major cause of heart failure through its induction of cardiomyocyte death. However, the molecular mechanisms associated with MI-induced cardiomyocyte apoptosis in the context of sialylation of heart are not yet understood. In this study, we found that sialyltransferase7A (Siat7A), one of the members of sialyltransferase family, was significantly increased in the ischemic myocardium, as well as in the human cardiomyocyte cell line AC16 under hypoxic condition. The Sialyl-Tn antigen (Neu5Acα2-6GalNAc-O-Ser/Thr) synthesized by Siat7A also increased in the AC16 cardiomyocytes following hypoxic stimulus. Increased Siat7A promoted cardiomyocyte apoptosis. The knockdown of Siat7A expression reduced cardiomyocyte apoptosis in both of vivo and vitro. Furthermore, the decreased extracellular signal-regulated kinase ERK1 and ERK2 (ERK1/2) activity was involved in the Siat7A-induced cardiomyocyte apoptosis. Notably, we showed that Krüppel-like factor 4 (Klf4), one of the transcription factors, specifically bound to the Siat7A promoter by ChIP assays. Deletion and mutagenesis analysis identified that Klf4 could transactivate the Siat7A promoter region (nt -655 to -636 bp). The upregulated Siat7A expression, which was paralleled by the increased Klf4 in the ischemic myocardium, contributed to cardiomyocyte apoptosis. Our study suggests Siat7A could be a valuable target for developing treatments for MI patients.
Collapse
|
17
|
Yin KJ, Hamblin M, Fan Y, Zhang J, Chen YE. Krüpple-like factors in the central nervous system: novel mediators in stroke. Metab Brain Dis 2015; 30:401-10. [PMID: 24338065 PMCID: PMC4113556 DOI: 10.1007/s11011-013-9468-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023]
Abstract
Transcription factors play an important role in the pathophysiology of many neurological disorders, including stroke. In the past three decades, an increasing number of transcription factors and their related gene signaling networks have been identified, and have become a research focus in the stroke field. Krüppel-like factors (KLFs) are members of the zinc finger family of transcription factors with diverse regulatory functions in cell growth, differentiation, proliferation, migration, apoptosis, metabolism, and inflammation. KLFs are also abundantly expressed in the brain where they serve as critical regulators of neuronal development and regeneration to maintain normal brain function. Dysregulation of KLFs has been linked to various neurological disorders. Recently, there is emerging evidence that suggests KLFs have an important role in the pathogenesis of stroke and provide endogenous vaso-or neuro-protection in the brain's response to ischemic stimuli. In this review, we summarize the basic knowledge and advancement of these transcriptional mediators in the central nervous system, highlighting the novel roles of KLFs in stroke.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Correspondence addressed to: Ke-Jie Yin, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-647-8975, Fax: 734-936-2641, , Y. Eugene Chen, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-763-7838, Fax: 734-936-2641,
| | | | | | | | - Y. Eugene Chen
- Correspondence addressed to: Ke-Jie Yin, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-647-8975, Fax: 734-936-2641, , Y. Eugene Chen, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-763-7838, Fax: 734-936-2641,
| |
Collapse
|
18
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|