1
|
Uzelac T, Takić M, Stevanović V, Vidović N, Pantović A, Jovanović P, Jovanović V. The Potential Benefits of Acute Aronia Juice Supplementation on Physical Activity Induced Alterations of the Serum Protein Profiles in Recreational Runners: A Pilot Study. Healthcare (Basel) 2024; 12:1276. [PMID: 38998811 PMCID: PMC11240927 DOI: 10.3390/healthcare12131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Intensive physical activity (PA) can lead to proteinuria and, consequently, serum protein profiles in athletes. Therefore, the aim of this study was to investigate the effects of acute aronia juice consumption before a simulated half-marathon race on serum protein profiles in recreational runners. The pilot study was designed as a single-blind, placebo-controlled, crossover study, with 10 male participants who consumed aronia juice (containing 1.3 g polyphenols) or placebo before the race. The blood levels of total proteins, albumin, the non-albumin fractions gamma, beta, alpha2 and alpha1, as well as renal function parameters, were determined before and 15 min, 1 h and 24 h after the race. The significant changes in urea, creatinine and uric acid levels were noticed at selected time points in both groups. In the placebo group, a significant decrease in total proteins (p < 0.05) was observed 24 h after the race, along with an increase in gamma fraction abundance (p < 0.05). In addition, urea and uric acid levels returned to baseline only in the aronia group 24 h after the race. Thus, according to the results obtained, acute aronia juice supplementation before intensive PA could influence the transient change in renal function and PA-induced protein loss in recreational runners.
Collapse
Affiliation(s)
- Tamara Uzelac
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marija Takić
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Vuk Stevanović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Nevena Vidović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Ana Pantović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Petar Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Five Days of Tart Cherry Supplementation Improves Exercise Performance in Normobaric Hypoxia. Nutrients 2023; 15:nu15020388. [PMID: 36678258 PMCID: PMC9864878 DOI: 10.3390/nu15020388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown tart cherry (TC) to improve exercise performance in normoxia. The effect of TC on hypoxic exercise performance is unknown. This study investigated the effects of 5 days of tart cherry (TC) or placebo (PL) supplementation on hypoxic exercise performance. Thirteen healthy participants completed an incremental cycle exercise test to exhaustion (TTE) under two conditions: (i) hypoxia (13% O2) with PL and (ii) hypoxia with TC (200 mg anthocyanin per day for 4 days and 100 mg on day 5). Pulmonary gas exchange variables, peripheral arterial oxygen saturation (SpO2), deoxygenated hemoglobin (HHb), and tissue oxygen saturation (StO2) assessed by near-infrared spectroscopy in the vastus lateralis muscle were measured at rest and during exercise. Urinary 8-hydro-2′ deoxyguanosine (8-OHdG) excretion was evaluated pre-exercise and 1 and 5 h post-exercise. The TTE after TC (940 ± 84 s, mean ± standard deviation) was longer than after PL (912 ± 63 s, p < 0.05). During submaximal hypoxic exercise, HHb was lower and StO2 and SpO2 were higher after TC than PL. Moreover, a significant interaction (supplements × time) in urinary 8-OHdG excretion was found (p < 0.05), whereby 1 h post-exercise increases in urinary 8-OHdG excretion tended to be attenuated after TC. These findings indicate that short-term dietary TC supplementation improved hypoxic exercise tolerance, perhaps due to lower HHb and higher StO2 in the working muscles during submaximal exercise.
Collapse
|
3
|
Roberts JD, Lillis J, Pinto JM, Willmott AGB, Gautam L, Davies C, López-Samanes Á, Del Coso J, Chichger H. The Impact of a Natural Olive-Derived Phytocomplex (OliPhenolia ®) on Exercise-Induced Oxidative Stress in Healthy Adults. Nutrients 2022; 14:5156. [PMID: 36501186 PMCID: PMC9737690 DOI: 10.3390/nu14235156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
The role of natural polyphenols in reducing oxidative stress and/or supporting antioxidant mechanisms, particularly relating to exercise, is of high interest. The aim of this study was to investigate OliPhenolia® (OliP), a biodynamic and organic olive fruit water phytocomplex, rich in hydroxytyrosol (HT), for the first time within an exercise domain. HT bioavailability from OliP was assessed in fifteen healthy volunteers in a randomized, double-blind, placebo controlled cross-over design (age: 30 ± 2 yrs; body mass: 76.7 ± 3.9 kg; height: 1.77 ± 0.02 m), followed by a separate randomized, double-blinded, cohort trial investigating the short-term impact of OliP consumption (2 × 28 mL∙d−1 of OliP or placebo (PL) for 16-days) on markers of oxidative stress in twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m). In response to a single 28 mL OliP bolus, plasma HT peaked at 1 h (38.31 ± 4.76 ng∙mL−1), remaining significantly elevated (p < 0.001) until 4 h. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and HT were assessed at rest and immediately following exercise (50 min at ~75% V˙O2max then 10 min intermittent efforts) and at 1 and 24 h post-exercise, before and after the 16-day supplementation protocol. Plasma HT under resting conditions was not detected pre-intervention, but increased to 6.3 ± 1.6 ng·mL−1 following OliP only (p < 0.001). OliP demonstrated modest antioxidant effects based on reduced SOD activity post-exercise (p = 0.016) and at 24 h (p ≤ 0.046), and increased GSH immediately post-exercise (p = 0.009) compared with PL. No differences were reported for MDA and CAT activity in response to the exercise protocol between conditions. The phenolic compounds within OliP, including HT, may have specific antioxidant benefits supporting acute exercise recovery. Further research is warranted to explore the impact of OliP following longer-term exercise training, and clinical domains pertinent to reduced oxidative stress.
Collapse
Affiliation(s)
- Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Joseph Lillis
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Jorge Marques Pinto
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Ashley G. B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Lata Gautam
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Christopher Davies
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Álvaro López-Samanes
- Exercise Physiology Group, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| | - Havovi Chichger
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
4
|
Ovchinnikov AN, Paoli A, Seleznev VV, Deryugina AV. Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers: a randomized, double-blind, placebo-controlled pilot trial. J Int Soc Sports Nutr 2022; 19:239-257. [PMID: 35813842 PMCID: PMC9261740 DOI: 10.1080/15502783.2022.2086015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Excessive production of free radicals caused by many types of exercise results in oxidative stress, which leads to muscle damage, fatigue, and impaired performance. Supplementation with royal jelly (RJ) or coenzyme Q10 (CoQ10) has been shown to attenuate exercise-induced oxidant stress in damaged muscle and improve various aspects of exercise performance in many but not all studies. Nevertheless, the effects of treatments based on RJ plus CoQ10 supplementation, which may be potentially beneficial for reducing oxidative stress and enhancing athletic performance, remain unexplored. This study aimed to examine whether oral RJ and CoQ10 co-supplementation could improve high-intensity interval exercise (HIIE) performance in swimmers, inhibiting exercise-induced oxidative stress and muscle damage. Methods Twenty high-level swimmers were randomly allocated to receive either 400 mg of RJ and 60 mg of CoQ10 (RJQ) or matching placebo (PLA) once daily for 10 days. Exercise performance was evaluated at baseline, and then reassessed at day 10 of intervention, using a HIIE protocol. Diene conjugates (DC), Schiff bases (SB), and creatine kinase (CK) were also measured in blood plasma and saliva before and immediately after HIIE in both groups. Results HIIE performance expressed as number of points according to a single assessment system developed and approved by the International Swimming Federation (FINA points) significantly improved in RJQ group (p = 0.013) compared to PLA group. Exercise-induced increase in DC, SB, and CK levels in plasma and saliva significantly diminished only in RJQ group (p < 0.05). Regression analysis showed that oral RJQ administration for 10 days was significantly associated with reductions in HIIE-induced increases in plasmatic and salivary DC, SB, and CK levels compared to PLA. Principal component analysis revealed that swimmers treated with RJQ are grouped by both plasmatic and salivary principal components (PC) into a separate cluster compared to PLA. Strong negative correlation between the number of FINA points and plasmatic and salivary PC1 values was observed in both intervention groups. Conclusion The improvements in swimmers’ HIIE performance were due in significant part to RJQ-induced reducing in lipid peroxidation and muscle damage in response to exercise. These findings suggest that RJQ supplementation for 10 days is potentially effective for enhancing HIIE performance and alleviating oxidant stress. Abbreviations RJ, royal jelly; CoQ10, coenzyme Q10; HIIE, high-intensity interval exercise; DC, diene conjugates; SB, Schiff bases; CK, creatine kinase; RJQ, royal jelly plus coenzyme Q10; PLA, placebo; FINA points, points according to a single assessment system developed and approved by the International Swimming Federation; ROS, reactive oxygen species; 10H2DA, 10-hydroxy-2-decenoic acid; AMPK, 5′-AMP-activated protein kinase; FoxO3, forkhead box O3; MnSOD, manganese-superoxide dismutase; CAT, catalase; E, optical densities; PCA, principal component analysis; PC, principal component; MCFAs, medium-chain fatty acids; CaMKKβ, Ca2+/calmodulin-dependent protein kinase β; TBARS, thiobarbituric acid reactive substances; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Aleksandr N. Ovchinnikov
- Department of Sports Medicine and Psychology, Lobachevsky University, Nizhny Novgorod, Russia
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
| | - Antonio Paoli
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vladislav V. Seleznev
- Department of Theory and Methodology of Sport Training, Lobachevsky University, Nizhny Novgorod, Russia
| | - Anna V. Deryugina
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Physiology and Anatomy, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Anti-Genotoxicity Evaluation of Ellagic Acid and Curcumin—An In Vitro Study on Zebrafish Blood Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genotoxicity is the ability of specific substances to cause DNA damage, affecting development, physiology, and reproduction. This is often mediated by induction of oxidative stress. This in vitro study aims to test the ability of two antioxidants, ellagic acid (EA, 100 µM) and curcumin (Cur, 40 µM) to protect zebrafish blood cells from the genotoxic action of benzene (10 µL/mL). Cells were treated for 30, 60, and 90 min with EA or Cur alone and in combination with benzene. The antigenotoxic role of antioxidants was evaluated in terms of cytotoxicity by trypan blue dye, genome stability by RAPD-PCR technique, DNA fragmentation and percentage of apoptotic cells using Comet and Diffusion assay, respectively. The results did not show statistical differences in terms of cell viability, genome stability, DNA damage and apoptosis between cells treated with antioxidants. When zebrafish blood cells were co-incubated with individual antioxidants and benzene, a significant improvement of these parameters was observed in comparison with cells incubated in benzene. Our results suggested that EA and Cur are able to protect zebrafish blood cells against DNA damage and apoptosis caused by mutagenic substance, and laid the foundation for future studies investigating their antigenotoxic potential in DNA oxidative damage therapy.
Collapse
|
6
|
Elejalde E, Villarán MC, Alonso RM. Grape polyphenols supplementation for exercise-induced oxidative stress. J Int Soc Sports Nutr 2021; 18:3. [PMID: 33413451 PMCID: PMC7789302 DOI: 10.1186/s12970-020-00395-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Exercise induces free radicals’ overproduction and therefore, an enhancement of oxidative stress, defined as an imbalance between the production of reactive species and the intrinsic antioxidant defense. Redox activity of reactive species plays an important and a positive role on exercise adaptation, but these species at very high concentrations have detrimental effects. As a result, the use of antioxidant supplements for reducing oxidative stress can be an effective health strategy to maintain an optimal antioxidant status. In this sense, grapes are an important source of natural antioxidants due to their high content in polyphenols. They have shown antioxidant potential benefits for the reduction of intense exercise effect in athletes of different sport disciplines. Consequently, it is plausible to hypothesize that a strategic supplementation with grape based products may be a good approach to mitigate the exercise induced oxidative stress. The goal of this review is to present the state of the art of supplementation effects with grape beverages and grape extracts on the oxidative stress markers in athletes. The data of polyphenolic dosages, participant characteristics and exercise protocols are reported.
Collapse
Affiliation(s)
- Edurne Elejalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava c/ Leonardo Da Vinci, 11, 01510 Miñano (Álava), Spain.
| | - Mari Carmen Villarán
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava c/ Leonardo Da Vinci, 11, 01510 Miñano (Álava), Spain
| | - Rosa María Alonso
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| |
Collapse
|
7
|
Brancaccio M, Mennitti C, Cesaro A, Fimiani F, Moscarella E, Caiazza M, Gragnano F, Ranieri A, D’Alicandro G, Tinto N, Mazzaccara C, Lombardo B, Pero R, Limongelli G, Frisso G, Calabrò P, Scudiero O. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9424. [PMID: 33339141 PMCID: PMC7765667 DOI: 10.3390/ijerph17249424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Moderate exercise combined with proper nutrition are considered protective factors against cardiovascular disease and musculoskeletal disorders. However, physical activity is known not only to have positive effects. In fact, the achievement of a good performance requires a very high oxygen consumption, which leads to the formation of oxygen free radicals, responsible for premature cell aging and diseases such as heart failure and muscle injury. In this scenario, a primary role is played by antioxidants, in particular by natural antioxidants that can be taken through the diet. Natural antioxidants are molecules capable of counteracting oxygen free radicals without causing cellular cytotoxicity. In recent years, therefore, research has conducted numerous studies on the identification of natural micronutrients, in order to prevent or mitigate oxidative stress induced by physical activity by helping to support conventional drug therapies against heart failure and muscle damage. The aim of this review is to have an overview of how controlled physical activity and a diet rich in antioxidants can represent a "natural cure" to prevent imbalances caused by free oxygen radicals in diseases such as heart failure and muscle damage. In particular, we will focus on sulfur-containing compounds that have the ability to protect the body from oxidative stress. We will mainly focus on six natural antioxidants: glutathione, taurine, lipoic acid, sulforaphane, garlic and methylsulfonylmethane.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Fabio Fimiani
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | | | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
8
|
Costa MS, Toscano LT, Toscano LDLT, Luna VR, Torres RA, Silva JA, Silva AS. Ergogenic potential of foods for performance and recovery: a new alternative in sports supplementation? A systematic review. Crit Rev Food Sci Nutr 2020; 62:1480-1501. [PMID: 33226268 DOI: 10.1080/10408398.2020.1844137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In recent years, there have been studies in the literature reporting the ergogenic effect of some different foods on sports performance. Given the reasonable number of studies in which some food has shown improvement in some physiological variables related to physical performance, a review is pertinent in order to produce a compilation of these studies, providing new elements for athletes and coaches which aim to optimize their performance. Thus, the objective of this work was to present a systematic review of the findings regarding the potential ergogenic effect of food for athletes. Researchers performed a double-blind research in Medline/PubMed considering articles published until January 2019 which resulted in 71 articles. Increased time until exhaustion, improved aerobic capacity and strength recovery were the most commonly reported physical effects. In general, food showed equal or superior ergogenic activity over supplements. Although the number of foods investigated is reasonable, there is still no body of evidence for each studied food, except beets. The current data support the possibility of certain foods being able to enhance athletic performance, as well as serving as an energy source. However, a larger volume of studies is needed to form a body of evidence on each of these foods.
Collapse
Affiliation(s)
- Matheus S Costa
- Postgraduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Luciana T Toscano
- Postgraduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Lydiane de Lima Tavares Toscano
- Postgraduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Vanessa R Luna
- Postgraduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rayanne A Torres
- Postgraduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Janilson A Silva
- Postgraduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Alexandre S Silva
- Department of Physical Education, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
9
|
Qin L, Lu T, Qin Y, He Y, Cui N, Du A, Sun J. In Vivo Effect of Resveratrol-Loaded Solid Lipid Nanoparticles to Relieve Physical Fatigue for Sports Nutrition Supplements. Molecules 2020; 25:E5302. [PMID: 33202918 PMCID: PMC7696174 DOI: 10.3390/molecules25225302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
Resveratrol (RSV) is a natural flavonoid polyphenol compound extracted from the plants which shows various biological activities. However, the clinical application of RSV is limited by its poor aqueous solubility, rapid metabolism and poor bioavailability. In this study, resveratrol-loaded solid lipid nanoparticles (RSV- SLNs) was design as a nano-antioxidant against the physical fatigue. The resultant RSV-SLNs were characterized by photon correlation spectroscopy (PCS), transmission electron micrographs (TEM), zeta potential, differential scanning calorimetry (DSC) and Raman spectroscopy pattern. Furthermore, the in vivo anti-fatigue effect assays showed that RSV-SLNs prolonged the mice exhausted time and running distance. The biochemical parameters of blood related to fatigue suggested that RSV-SLNs have potential applications to improve the antioxidant defense of the mice after extensive exercise and confer anti-fatigue capability. Furthermore, the molecular mechanisms of antioxidant by RSV-SLNs supplementation was investigated through the analysis of silent information regulator 2 homolog 1 (SIRT1) protein expression, which demonstrated that it could downregulate the expression of SIRT1 and increase autophagy markers, microtubule-associated protein 1 light chain 3-II (LC3-II) and sequestosome-1 (SQSTM1/p62). These results reveal that the RSV-SLNs may have great potential used as a novel anti-fatigue sports nutritional supplement.
Collapse
Affiliation(s)
- Lili Qin
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Tianfeng Lu
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Yao Qin
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Yiwei He
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Ningxin Cui
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Ai Du
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Jingyu Sun
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| |
Collapse
|
10
|
de Lima Tavares Toscano L, Silva AS, de França ACL, de Sousa BRV, de Almeida Filho EJB, da Silveira Costa M, Marques ATB, da Silva DF, de Farias Sena K, Cerqueira GS, da Conceição Rodrigues Gonçalves M. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. Eur J Nutr 2020; 59:2997-3007. [PMID: 31732851 PMCID: PMC7755635 DOI: 10.1007/s00394-019-02139-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the effects of a single dose of juice on physical performance, oxidative stress, inflammation and muscle damage in runners. METHODS Fourteen recreational male runners (39 ± 9 years, VO2peak = 55.9 ± 6.5 ml/kg/min) performed two running tests to exhaustion at 80% of VO2max after ingesting grape juice or a placebo drink (10 ml/kg/day) randomly. Blood samples were taken before and 2 h after supplementation and immediately after running to analyze total antioxidant capacity (TAC), malondialdehyde (MDA), alpha-1 acid glycoprotein (A1GPA), high-sensitivity C-reactive protein (hs-CRP), creatine kinase (CK) and lactate dehydrogenase (LDH). RESULTS The participants ran for an average of 59.2 ± 27.8 min until exhaustion in the placebo group and for 68.4 ± 29.7 min until exhaustion in the grape juice intake group, which was a significantly longer time (p = 0.008). This improvement in physical performance was accompanied by a 43.6% increase in TAC (p = 0.000) at the post-exercise timepoint compared to the level at baseline. MDA, A1GPA, hs-CRP, CK, and LDH did not exhibit changes. In contrast, no significant change in any variable was observed after consuming the placebo drink. CONCLUSION The single-dose intake of purple grape juice demonstrated an ergogenic effect in recreational runners by increasing run time to exhaustion and increasing antioxidant activity.
Collapse
Affiliation(s)
- Lydiane de Lima Tavares Toscano
- Programa de Pós-graduação em Ciências da Nutrição, Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil
- Laboratório de Estudos do Treinamento Físico Aplicado ao Desempenho e a Saúde, Departamento de Educação Física, Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Campus I, Cidade Universitária, João Pessoa, Paraíba, CEP 58059-900, Brazil
| | - Alexandre Sérgio Silva
- Programa de Pós-graduação em Ciências da Nutrição, Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil.
- Laboratório de Estudos do Treinamento Físico Aplicado ao Desempenho e a Saúde, Departamento de Educação Física, Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Campus I, Cidade Universitária, João Pessoa, Paraíba, CEP 58059-900, Brazil.
| | - Ana Carla Lima de França
- Programa de Pós-graduação em Ciências da Nutrição, Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil
- Laboratório de Estudos do Treinamento Físico Aplicado ao Desempenho e a Saúde, Departamento de Educação Física, Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Campus I, Cidade Universitária, João Pessoa, Paraíba, CEP 58059-900, Brazil
| | - Bruno Rafael Virgínio de Sousa
- Programa de Pós-graduação em Ciências da Nutrição, Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil
- Laboratório de Estudos do Treinamento Físico Aplicado ao Desempenho e a Saúde, Departamento de Educação Física, Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Campus I, Cidade Universitária, João Pessoa, Paraíba, CEP 58059-900, Brazil
| | - Eder Jackson Bezerra de Almeida Filho
- Laboratório de Estudos do Treinamento Físico Aplicado ao Desempenho e a Saúde, Departamento de Educação Física, Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Campus I, Cidade Universitária, João Pessoa, Paraíba, CEP 58059-900, Brazil
| | - Matheus da Silveira Costa
- Programa de Pós-graduação em Ciências da Nutrição, Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil
- Laboratório de Estudos do Treinamento Físico Aplicado ao Desempenho e a Saúde, Departamento de Educação Física, Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Campus I, Cidade Universitária, João Pessoa, Paraíba, CEP 58059-900, Brazil
| | | | | | - Klécia de Farias Sena
- Laboratório de Estudos do Treinamento Físico Aplicado ao Desempenho e a Saúde, Departamento de Educação Física, Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Campus I, Cidade Universitária, João Pessoa, Paraíba, CEP 58059-900, Brazil
| | | | | |
Collapse
|
11
|
Nasiri M, Ahmadizad S, Hedayati M, Zarekar T, Seydyousefi M, Faghfoori Z. Trans-resveratrol supplement lowers lipid peroxidation responses of exercise in male Wistar rats. INT J VITAM NUTR RES 2020; 91:507-512. [PMID: 32400317 DOI: 10.1024/0300-9831/a000654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Physical exercise increases free radicals production; antioxidant supplementation may improve the muscle fiber's ability to scavenge ROS and protect muscles against exercise-induced oxidative damage. This study was designed to examine the effects of all-trans resveratrol supplementation as an antioxidant to mediate anti-oxidation and lipid per-oxidation responses to exercise in male Wistar rats. Sixty-four male Wistar rats were randomly divided into four equal number (n = 16) including training + supplement (TS), training (T), supplement (S) and control (C) group. The rats in TS and S groups received a dose of 10 mg/kg resveratrol per day via gavage. The training groups ran on a rodent treadmill 5 times per week at the speed of 10 m/min for 10 min; the speed gradually increased to 30 m/min for 60 minutes at the end of 12th week. The acute phase of exercise protocol included a speed of 25 m/min set to an inclination of 10° to the exhaustion point. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activity, non-enzymatic antioxidants bilirubin, uric acid, lipid peroxidation levels (MDA) and the total antioxidant capacity (TAC) were measured after the exercise termination. The data were analyzed by using one-way ANOVA. The result showed that endurance training caused a significant increase in MDA level [4.5 ± 0.75 (C group) vs. 5.9 ± 0.41 nmol/l (T group)] whereas it decreased the total antioxidant capacity [8.5 ± 1.35 (C group) vs. 7.1 ± 0.55 mmol/l (T group)] (p = 0.001). In addition, GPx and CAT decreased but not significantly (p > 0.05). The training and t-resveratrol supplementation had no significant effect on the acute response of all variables except MDA [4.3 ± 1.4 (C group) vs. 4.0 ± 0.90 nmol/l (TS group)] (p = 0.001) and TAC [8.5 ± 0.90 (C group) vs. 6.6 ± 0.80 mmol/l (TS group)] (p = 0.004). It was concluded that resveratrol supplementation may prevent exercise-induced oxidative stress by preventing lipid peroxidation.
Collapse
Affiliation(s)
- Masoud Nasiri
- Faculty of Sport Sciences, Razi University of Kermanshah, Iran
| | - Saja Ahmadizad
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University G.C., Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebe Zarekar
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University G.C., Tehran, Iran
| | - Mehdi Seydyousefi
- Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Zeinab Faghfoori
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran.,Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Pastor R, Tur JA. Antioxidant Supplementation and Adaptive Response to Training: A Systematic Review. Curr Pharm Des 2020; 25:1889-1912. [PMID: 31267859 DOI: 10.2174/1381612825666190701164923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Antioxidant supplementation has become a common practice among athletes to theoretically achieve a reduction in oxidative stress, promote recovery and improve performance. OBJECTIVE To assess the effect of antioxidant supplements on exercise. METHODS A systematic literature search was performed up to January 2019 in MEDLINE via EBSCO and Pubmed, and in Web of Sciences based on the following terms: "antioxidants" [Major] AND "exercise" AND "adaptation"; "antioxidant supplement" AND "(exercise or physical activity)" AND "(adaptation or adjustment)" [MesH]. Thirty-six articles were finally included. RESULTS Exhaustive exercise induces an antioxidant response in neutrophils through an increase in antioxidant enzymes, and antioxidant low-level supplementation does not block this adaptive cellular response. Supplementation with antioxidants appears to decrease oxidative damage blocking cell-signaling pathways associated with muscle hypertrophy. However, upregulation of endogenous antioxidant enzymes after resistance training is blocked by exogenous antioxidant supplementation. Supplementation with antioxidants does not affect the performance improvement induced by resistance exercise. The effects of antioxidant supplementation on physical performance and redox status may vary depending on baseline levels. CONCLUSION The antioxidant response to exercise has two components: At the time of stress and adaptation through genetic modulation processes in front of persistent pro-oxidant situation. Acute administration of antioxidants immediately before or during an exercise session can have beneficial effects, such as a delay in the onset of fatigue and a reduction in the recovery period. Chronic administration of antioxidant supplements may impair exercise adaptations, and is only beneficial in subjects with low basal levels of antioxidants.
Collapse
Affiliation(s)
- Rosario Pastor
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.,Faculty of Health Sciences, Catholic University of Avila, 05005 Avila, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Hurst RD, Lyall KA, Wells RW, Sawyer GM, Lomiwes D, Ngametua N, Hurst SM. Daily Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants for 5 Weeks Supports Exercise Recovery Through the Management of Oxidative Stress and Inflammation: A Randomized Placebo Controlled Pilot Study. Front Nutr 2020; 7:16. [PMID: 32175326 PMCID: PMC7056812 DOI: 10.3389/fnut.2020.00016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Regular exercise is essential to a healthy lifestyle but evokes an oxidative and inflammatory stress. Depending upon its intensity and duration this can result in either beneficial adaptive changes or underlying tissue damage that impacts upon long-term health and individual sporting training schedules. Functional foods containing plant bioactives have potential to support exercise through management of the detrimental aspects of exercise and complement ergonomic adaptive benefits. Aim: Previously we reported that a single consumption of a 3.2 mg/kg New Zealand blackcurrant anthocyanin-rich extract (BAE) 1 h before a 30 min rowing exercise attenuated moderate exercise-mediated oxidative stress and supported innate immunity. Here we evaluate whether the efficacy of a single consumption of BAE 1 h prior to exercise is changed after extended daily BAE consumption for 5 weeks. Results: On week 1, a single consumption of BAE 1 h before a 30 min row mediated a significant (p < 0.05) 46% reduction in post-exercise-induced malondialdehyde (MDA) by 2 h compared to a 30% reduction in the placebo group. Similar efficacy was observed 5 weeks later after daily consumption of BAE. In addition, daily BAE consumption for 5 weeks improved the efficacy to (a) resolve acute inflammation, and (b) increased plasma IL-10, salivary beta-defensin 2 (BD2) and secretory IgA. Although no change in plasma antioxidant capacity was detected, a significant (p < 0.009) positive correlation between plasma IL-10 and plasma antioxidant capacity (R 2 = 0.35) was observed on week 6 after 5 week BAE consumption suggesting IL-10 influences antioxidant properties. Using a differentiated myotubule cell-line revealed that whilst IL-10 had no direct antioxidant neutralizing action, longer-term exposure (24 h) attenuated 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced myotubule oxidative stress, supporting a putative role for IL-10 in the modulation of cellular antioxidant systems. Conclusions: Daily consumption of BAE for 5 weeks serves to enhance the exercise recovery effectiveness of a single consumption of BAE and promotes beneficial/protective antioxidant/anti-inflammatory cellular events that facilitate exercise recovery.
Collapse
Affiliation(s)
- Roger D. Hurst
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Kirsty A. Lyall
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Hamilton, New Zealand
| | - Robyn W. Wells
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Hamilton, New Zealand
| | - Gregory M. Sawyer
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Dominic Lomiwes
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Nayer Ngametua
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Suzanne M. Hurst
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| |
Collapse
|
14
|
Brønden A, Larsen EL, Karstoft K, Henriksen T, Vilsbøll T, Poulsen HE, Knop FK. Changes in oxidative nucleic acid modifications and inflammation following one-week treatment with the bile acid sequestrant sevelamer: Two randomised, placebo-controlled trials. J Diabetes Complications 2020; 34:107446. [PMID: 31672458 DOI: 10.1016/j.jdiacomp.2019.107446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/09/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
AIMS Sevelamer has been reported to have anti-oxidative and anti-inflammatory effects as well as effects on glycaemic control and plasma lipids. The aim of this study was to determine the effects of one-week treatment with sevelamer on oxidative nucleic acid modifications and inflammation markers. METHODS Two double-blinded studies including 30 patients with type 2 diabetes (T2D) and 20 healthy individuals were conducted. Participants were randomised to one week of treatment with sevelamer (1600 mg three times daily) or placebo. RNA and DNA oxidation, measured by urinary excretion of 8-oxo-7,8-dihydroguanosine(8-oxoGuo) and (8-oxo-7,8-dihydro-2'-deoxyguanosine(8-oxodG), and markers of inflammation were determined before and after the intervention. RESULTS In patients with T2D there was no significant placebo-corrected reduction in 8-oxoGuo or 8-oxodG. However, a reduction in 8-oxoGuo was observed within the group treated with sevelamer (∆8-oxoGuo/creatinine (median[IQR]): -0.04 [-0.24; 0.01] nmol/mmol, p = 0.02). A sevelamer-mediated reduction in interleukin-2 (p = 0.04) and a trend towards reduction in interleukin-6 (p = 0.053) were found in patients with T2D. CONCLUSIONS This study reveals a potential effect of sevelamer treatment on inflammation and possible oxidative RNA modifications. The potential protective effects of sevelamer in terms of cardiovascular disease in patients with T2D need further investigation.
Collapse
Affiliation(s)
- Andreas Brønden
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Emil List Larsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Kristian Karstoft
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
15
|
Larsen EL, Weimann A, Poulsen HE. Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic Biol Med 2019; 145:256-283. [PMID: 31563634 DOI: 10.1016/j.freeradbiomed.2019.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Oxidative stress is associated with the development and progression of numerous diseases. However, targeting oxidative stress has not been established in the clinical management of any disease. Several methods and markers are available to measure oxidative stress, including direct measurement of free radicals, antioxidants, redox balance, and oxidative modifications of cellular macromolecules. Oxidatively generated nucleic acid modifications have attracted much interest due to the pre-mutagenic oxidative modification of DNA into 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), associated with cancer development. During the last decade, the perception of RNA has changed from that of a 'silent messenger' to an 'active contributor', and, parallelly oxidatively generated RNA modifications measured as 8-oxo-7,8-dihydro-guanosine (8-oxoGuo), has been demonstrated as a prognostic factor for all-caused and cardiovascular related mortality in patients with type 2 diabetes. Several attempts have been made to modify the amount of oxidative nucleic acid modifications. Thus, this review aims to introduce researchers to the measurement of oxidatively generated nucleic acid modifications as well as critically review previous attempts and provide future directions for targeting oxidatively generated nucleic acid modifications.
Collapse
Affiliation(s)
- Emil List Larsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark.
| | - Allan Weimann
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Kawamura A, Aoi W, Abe R, Kobayashi Y, Wada S, Kuwahata M, Higashi A. Combined intake of astaxanthin, β-carotene, and resveratrol elevates protein synthesis during muscle hypertrophy in mice. Nutrition 2019; 69:110561. [PMID: 31539816 DOI: 10.1016/j.nut.2019.110561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The antioxidant factors, astaxanthin, β-carotene, and resveratrol, have a potential effect on protein synthesis in skeletal muscle and a combined intake may have a greater cumulative effect than individual intake. The aim of this study was to investigate the combined effects on skeletal muscle mass and protein metabolic signaling during the hypertrophic process from atrophy in mice. METHODS Male ICR mice were divided into five dietary groups consisting of seven animals each: normal, astaxanthin, β-carotene, resveratrol, and all three antioxidants. Equal concentrations (0.06% [w/w]) of the respective antioxidants were included in the diet of each group. In the mixed group, three antioxidants were added in equal proportion. One leg of each mouse was casted for 3 wk to induce muscle atrophy. After removal of the cast, the mice were fed each diet for 2 wk. The muscle tissues were collected, weighed, and examined for protein metabolism signaling and oxidative damage. RESULTS The weight of the soleus muscle was increased in the astaxanthin, β-carotene, and resveratrol groups to a greater extent than in the normal group; this was accelerated by intake of the mixed antioxidants (P = 0.007). Phosphorylation levels of mammalian target of rapamycin and p70 S6 K in the muscle were higher in the mixed antioxidant group than in the normal group (P = 0.025; P = 0.020). The carbonylated protein concentration was lower in the mixed antioxidant group than in the normal group (P = 0.021). CONCLUSIONS These results suggested that a combination of astaxanthin, β-carotene, and resveratrol, even in small amounts, promoted protein synthesis during the muscle hypertrophic process following atrophy.
Collapse
Affiliation(s)
- Aki Kawamura
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Sports Science Research Promotion Center, Nippon Sport Science University, Tokyo, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Ryo Abe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Wakayama Medical University Hospital, Wakayama, Japan
| | - Yukiko Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
17
|
Hurst RD, Lyall KA, Roberts JM, Perthaner A, Wells RW, Cooney JM, Jensen DJ, Burr NS, Hurst SM. Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants Prior to Exercise May Assist Recovery From Oxidative Stress and Maintains Circulating Neutrophil Function: A Pilot Study. Front Nutr 2019; 6:73. [PMID: 31192216 PMCID: PMC6548855 DOI: 10.3389/fnut.2019.00073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
Aim: To evaluate blackcurrant anthocyanin-rich extract (BAE) consumption on time- and dose-dependent plasma anthocyanin bioavailability and conduct a pilot study to explore the potential effect of BAE in promoting recovery from exercise-induced oxidative stress, and maintenance of circulating neutrophil function. Methods: Time- and dose-dependent blackcurrant anthocyanin bioavailability was assessed using LC-MS in 12 participants over 6 h after the ingestion of a placebo or BAE containing 0.8, 1.6, or 3.2 mg/kg total anthocyanins. In a separate pilot intervention exercise trial, 32 participants consumed either a placebo or 0.8, 1.6, or 3.2 mg/kg BAE (8 individuals per group), and then 1 h later performed a 30 min row at 70% VO2max. Blood was collected during the trial for oxidative, antioxidant, inflammatory, and circulating neutrophil status. Results: Consumption of BAE caused a time- and dose-dependent increase in plasma anthocyanins, peaking at 2 h after ingestion of 3.2 mg/kg BAE (217 ± 69 nM). BAE consumed 1 h prior to a 30 min row had no effect on plasma antioxidant status but hastened the recovery from exercise-induced oxidative stress: By 2 h recovery, consumption of 1.6 mg/kg BAE prior to exercise caused a significant (P < 0.05) 34 and 32% decrease in post-exercise plasma oxidative capacity and protein carbonyl levels, respectively, compared to placebo. BAE consumption prior to exercise dose-dependently attenuated a small, yet significant (P < 0.01) transient 13 ± 2% decline in circulating neutrophils observed in the placebo group immediately post-exercise. Furthermore, the timed consumption of either 1.6 or 3.2 mg/kg BAE attenuated a 17 ± 2.4% (P < 0.05) decline in neutrophil phagocytic capability of opsonised FITC-Escherichia coli observed 6 h post-exercise in the placebo group. Similarly, a dose-dependent increase in neutrophil surface expression of complement receptor-3 complex (CR3, critical for effective phagocytosis of opsonised microbes), was observed 6 h post-exercise in both 1.6 and 3.2 mg/kg BAE intervention groups. Conclusions: Consumption of BAE (>1.6 mg/kg) 1 h prior to exercise facilitated recovery from exercise-induced oxidative stress and preserved circulating neutrophil function. This study provides data to underpin a larger study designed to evaluate the efficacy of timed BAE consumption on post-exercise recovery and innate immunity.
Collapse
Affiliation(s)
- Roger D Hurst
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| | - Kirsty A Lyall
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Joanna M Roberts
- AgResearch Ltd., The Hopkirk Research Institute, Palmerston North, New Zealand
| | - Anton Perthaner
- AgResearch Ltd., The Hopkirk Research Institute, Palmerston North, New Zealand
| | - Robyn W Wells
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Janine M Cooney
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Dwayne J Jensen
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Natalie S Burr
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| | - Suzanne M Hurst
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| |
Collapse
|
18
|
Pomegranate Extract Improves Maximal Performance of Trained Cyclists after an Exhausting Endurance Trial: A Randomised Controlled Trial. Nutrients 2019; 11:nu11040721. [PMID: 30925733 PMCID: PMC6521089 DOI: 10.3390/nu11040721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
The efficacy of pomegranate (Punica granatum) extract (PE) for improving performance and post-exercise recovery in an active population was equivocal in previous studies. In this study, a randomised, double-blinded, placebo-controlled, balanced, cross-over trial with two arms was conducted. Eligibility criteria for participants were as follows: male, amateur cyclist, with a training routine of 2 to 4 sessions per week (at least one hour per session). The cyclists (n = 26) were divided into treatment (PE) and placebo (PLA) groups for a period of 15 days. After physical tests, the groups were exchanged after a 14-day washout period. Exercise tests consisted of endurance bouts (square-wave endurance exercise test followed by an incremental exercise test to exhaustion) and an eccentric exercise drill. The objective was to assess the efficacy of PE in performance outcomes and post-exercise muscular recovery and force restoration after a prolonged submaximal effort. Twenty-six participants were included for statistical analysis. There was a statistically significant difference in total time to exhaustion (TTE)(17.66–170.94 s, p < 0.02) and the time to reach ventilatory threshold 2 (VT2)(26.98–82.55 s, p < 0.001), with greater values for the PE compared to the PLA group. No significant results were obtained for force restoration in the isokinetic unilateral low limb test. PE, after a prolonged submaximal effort, may be effective in improving performance outcomes at maximal effort and might help to restore force in the damaged muscles.
Collapse
|
19
|
Yimcharoen M, Kittikunnathum S, Suknikorn C, Nak-On W, Yeethong P, Anthony TG, Bunpo P. Effects of ascorbic acid supplementation on oxidative stress markers in healthy women following a single bout of exercise. J Int Soc Sports Nutr 2019; 16:2. [PMID: 30665439 PMCID: PMC6341721 DOI: 10.1186/s12970-019-0269-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ascorbic acid is a water-soluble chain breaking antioxidant. It scavenges free radicals and reactive oxygen species (ROS), which are produced during metabolic pathways. Exercise can produce an imbalance between ROS and antioxidants, leading to oxidative stress-related tissue damages. This study was designed to determine the effects of ascorbic acid supplementation on circulating biomarkers of oxidative stress and muscle damage following a single bout of exercise. METHODS In a crossover design with a 1 wk. wash-out period, 19 healthy women performed 30 min moderate-intensity cycling after ingesting 1000 mg of ascorbic acid (AA) or placebo. Blood samples were taken immediately before, immediately after and 30 min post-exercise to determine plasma albumin, total protein, glucose, oxidative stress and muscle damage markers. RESULTS Plasma albumin and total protein levels increased immediately after exercise in placebo alongside slight reductions in glucose (p = 0.001). These effects were absent in AA cohort. Ferric reducing ability of plasma and vitamin C levels in AA cohort significantly increased after exercise (p < 0.05). Superoxide dismutase activity was significantly elevated after exercise (p = 0.002) in placebo but not AA. Plasma malondialdehyde did not change after exercise in placebo but was significantly decreased in AA (p < 0.05). The exercise protocol promoted slight muscle damage, reflected in significant increases in total creatine kinase in all subjects after exercise. On the other hand, plasma C-reactive protein and lactate dehydrogenase remained unchanged. CONCLUSION Supplementation with ascorbic acid prior exercise improves antioxidant power but does not prevent muscle damage.
Collapse
Affiliation(s)
- Manita Yimcharoen
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwatsin Kittikunnathum
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chawannut Suknikorn
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichuda Nak-On
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Petcharee Yeethong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Piyawan Bunpo
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
20
|
Vafaee R, Soori H, Hedayati M, Ainy E, Hatamabadi H. Effects of resveratrol supplementation in male Wistar rats undergoing an endurance exercise and acute exercise training. Hum Antibodies 2019; 27:257-264. [PMID: 31127758 DOI: 10.3233/hab-190380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The present study was aimed to assess the effect of Resveratrol supplementation, endurance exercise and acute exercise training on oxidative stress and tissue damage markers. METHODS Sixty-four male Wistar rats were categorized into four groups including resveratrol group, exercise group, exercise + resveratrol group (n= 16) and control group (n= 16). RES was orally administered to male rats for 28 day at a dose of 10 mg per kg body during exercise. Following the familiarization sessions, rats were acclimated to a calibrated motor driven rodent treadmill for endurance exercise and acute exercise implementation. Changes in oxidative stress and tissue damage markers including 8-hydroxy-2'-deoxyguanosine (8-OhdG), Lactate dehydrogenase (LDH), Creatine Phosphokinase (CPK), protein carbonyl were biochemically measured using commercial ELISA kits based on the manufacturer's instructions. RESULTS The endurance and acute exercise training led to an increase in the levels of CPK and LDH, However, following the endurance and acute exercise training, a reduction in the level of carbonyl and 8-OHdG was observed. RES supplementation did not have any effect on the levels of CPK and LDH; nevertheless, reduced significantly carbonyl, and 8-OHdG levels. Based on this evidence, RES may have protective effects against exercise-induced oxidative stress. CONCLUSION This study provides further evidence of the antioxidant effects of RES after exercise. However, several factors such as type and duration of exercise, the type of model, the amount of RES supplementation and the time-course consideration can affect the quality of the results. For this reason, further studies in this field are required.
Collapse
Affiliation(s)
- Reza Vafaee
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Soori
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Ainy
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Hatamabadi
- Safety Promotion and Injury Prevention Research Center, Department of Emergency Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Gorini G, Gamberi T, Fiaschi T, Mannelli M, Modesti A, Magherini F. Irreversible plasma and muscle protein oxidation and physical exercise. Free Radic Res 2018; 53:126-138. [PMID: 30513020 DOI: 10.1080/10715762.2018.1542141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins - the most susceptible to oxidative modification - lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.
Collapse
Affiliation(s)
- Giulia Gorini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Gamberi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Fiaschi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Michele Mannelli
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Alessandra Modesti
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Francesca Magherini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
22
|
Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants (Basel) 2018; 7:antiox7090119. [PMID: 30189660 PMCID: PMC6162669 DOI: 10.3390/antiox7090119] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022] Open
Abstract
It is well established that the increase in reactive oxygen species (ROS) and free radicals production during exercise has both positive and negative physiological effects. Among them, the present review focuses on oxidative stress caused by acute exercise, mainly on evidence in healthy individuals. This review also summarizes findings on the determinants of exercise-induced oxidative stress and sources of free radical production. Moreover, we outline the effects of antioxidant supplementation on exercise-induced oxidative stress, which have been studied extensively. Finally, the following review briefly summarizes future tasks in the field of redox biology of exercise. In principle, this review covers findings for the whole body, and describes human trials and animal experiments separately.
Collapse
|
23
|
Comparison of the effects of two antioxidant diets on oxidative stress markers in triathletes. Biol Sport 2018; 35:181-189. [PMID: 30455547 PMCID: PMC6234303 DOI: 10.5114/biolsport.2018.74194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/08/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Intense exercise generates an imbalance in the redox system. However, chronic exercise can yield antioxidant adaptations. A few studies with humans have investigated the effects of antioxidant diets on athletes. Therefore we compared the effects of two dietary interventions on oxidative stress in competitive triathletes. Thirteen male triathletes were selected and divided into 2 groups: one that had a regular antioxidant diet (RE-diet) and the other that had a high antioxidant diet (AO-diet). The diet period was 14 days and blood samples were collected before and after this period. The AO-diet provided twice the dietary reference intake (DRI) of α-tocopherol (30 mg), five times the DRI of ascorbic acid (450 mg), and twice the DRI of vitamin A (1800 g), while the RE-diet provided the DRI of α-tocopherol (15 mg), twice the DRI of ascorbic acid (180 mg) and the DRI of vitamin A (900 μg). The oxidative stress parameters evaluated were: thiobarbituric acid reactive substances (TBARS), total reactive antioxidant potential (TRAP), total sulfhydryl, carbonyl, superoxide dismutase (SOD) activity, hydrogen peroxide consumption and glutathione peroxidase (GPx) activity. We observed, after the diet period, an increase in sulfhydryl, TRAP, TBARS and SOD activity, and a decrease in carbonyl levels. However, no changes were found in hydrogen peroxide consumption or GPx activity. We concluded that antioxidant-enriched diets can improve the redox status of triathletes.
Collapse
|
24
|
Zeb A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol Cell Biochem 2018; 448:27-41. [PMID: 29388153 DOI: 10.1007/s11010-018-3310-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/27/2018] [Indexed: 01/20/2023]
Abstract
Oxidative stress is a biological condition produced by a variety of factors, causing several chronic diseases. Oxidative stress was, therefore, treated with natural antioxidants, such as ellagic acid (EA). EA has a major role in protecting against different diseases associated with oxidative stress. This review critically discussed the antioxidant role of EA in biological systems. The in vitro and in vivo studies have confirmed the protective role of EA in suppressing oxidative stress. The review also discussed the mechanism of EA in suppressing of oxidative stress, which showed that EA activates specific endogenous antioxidant enzymes and suppresses specific genes responsible for inflammation, diseases, or disturbance of biochemical systems. The amount of EA used and duration, which plays a significant role in the treatment of oxidative stress has been discussed. In conclusion, EA is a strong natural antioxidant, which possesses the suppressing power of oxidative stress in biological systems.
Collapse
Affiliation(s)
- Alam Zeb
- Laboratory of Biochemistry, Department of Biotechnology, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
25
|
Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst Rev 2017; 12:CD009789. [PMID: 29238948 PMCID: PMC6486214 DOI: 10.1002/14651858.cd009789.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant-enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise. OBJECTIVES To assess the effects (benefits and harms) of antioxidant supplements and antioxidant-enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise. SEARCH METHODS We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant-enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement. DATA COLLECTION AND ANALYSIS Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre-piloted form. Where appropriate, we pooled results of comparable trials, generally using the random-effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post-exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE. MAIN RESULTS Fifty randomised, placebo-controlled trials were included, 12 of which used a cross-over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre-exercise or post-exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high-dose versus low-dose, where the low-dose supplementation was within normal or recommended levels for the antioxidant involved.Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS-inducing exercise at all main follow-ups: up to 6 hours (standardised mean difference (SMD) -0.30, 95% confidence interval (CI) -0.56 to -0.04; 525 participants, 21 studies; low-quality evidence); at 24 hours (SMD -0.13, 95% CI -0.27 to 0.00; 936 participants, 41 studies; moderate-quality evidence); at 48 hours (SMD -0.24, 95% CI -0.42 to -0.07; 1047 participants, 45 studies; low-quality evidence); at 72 hours (SMD -0.19, 95% CI -0.38 to -0.00; 657 participants, 28 studies; moderate-quality evidence), and little difference at 96 hours (SMD -0.05, 95% CI -0.29 to 0.19; 436 participants, 17 studies; low-quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (MD -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS-inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross-over trials showed that their inclusion had no important impact on results.None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well-known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress. AUTHORS' CONCLUSIONS There is moderate to low-quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.
Collapse
Affiliation(s)
- Mayur K Ranchordas
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - David Rogerson
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - Hora Soltani
- Sheffield Hallam UniversityCentre for Health and Social Care Research32 Collegiate CrescentSheffieldUKS10 2BP
| | - Joseph T Costello
- University of PortsmouthDepartment of Sport and Exercise ScienceSpinnaker BuildingCambridge RoadPortsmouthUKP01 2ER
| | | |
Collapse
|
26
|
|
27
|
Cases J, Romain C, Marín-Pagán C, Chung LH, Rubio-Pérez JM, Laurent C, Gaillet S, Prost-Camus E, Prost M, Alcaraz PE. Supplementation with a Polyphenol-Rich Extract, PerfLoad ®, Improves Physical Performance during High-Intensity Exercise: A Randomized, Double Blind, Crossover Trial. Nutrients 2017; 9:nu9040421. [PMID: 28441760 PMCID: PMC5409760 DOI: 10.3390/nu9040421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023] Open
Abstract
Workout capacity is energy-production driven. To produce peak metabolic power outputs, the organism predominantly relies more on anaerobic metabolism, but this undoubtedly has a negative and limiting impact on muscle function and performance. The aim of the study was to evaluate if an innovative polyphenol-based food supplement, PerfLoad®, was able to improve metabolic homeostasis and physical performance during high-intensity exercises under anaerobic conditions. The effect of a supplementation has been investigated on fifteen recreationally-active male athletes during a randomized, double-blind and crossover clinical investigation. The Wingate test, an inducer of an unbalanced metabolism associated to oxidative stress, was used to assess maximum anaerobic power during a high-intensity exercise on a cycle ergometer. Supplementation with PerfLoad® correlated with a significant increase in total power output (5%), maximal peak power output (3.7%), and average power developed (5%), without inducing more fatigue or greater heart rate. Instead, oxidative homeostasis was stabilized in supplemented subjects. Such results demonstrated that PerfLoad® is a natural and efficient solution capable of, similarly to training benefits, helping athletes to improve their physical performance, while balancing their metabolism and reducing exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Julien Cases
- Fytexia, Innovation and Scientific Affairs, 34350 Vendres, France.
| | - Cindy Romain
- Fytexia, Innovation and Scientific Affairs, 34350 Vendres, France.
| | - Cristian Marín-Pagán
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain.
| | - Linda H Chung
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain.
| | - José Miguel Rubio-Pérez
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain.
| | - Caroline Laurent
- UMR 204 Nutripass, Institut de Recherche pour le Développement, Université de Montpellier, 34095 Montpellier, France.
| | - Sylvie Gaillet
- UMR 204 Nutripass, Institut de Recherche pour le Développement, Université de Montpellier, 34095 Montpellier, France.
| | | | | | - Pedro E Alcaraz
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain.
| |
Collapse
|
28
|
Teng YS, Wu D. Anti-Fatigue Effect of Green Tea Polyphenols (-)-Epigallocatechin-3-Gallate (EGCG). Pharmacogn Mag 2017; 13:326-331. [PMID: 28539729 PMCID: PMC5421434 DOI: 10.4103/0973-1296.204546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant of the green tea polyphenols that exhibit a variety of bioactivities. The objective of this study was to evaluate the anti-fatigue effect of EGCG by forced swimming exercise. MATERIALS AND METHODS The mice were divided into one control group and three EGCG-treated groups. The control group was administered with distilled water and EGCG-treated groups were administered with different dose of EGCG (50, 100, and 200 mg/kg) by oral gavage for 28 days. On the last day of experiment, the forced swimming exercise was performed and corresponding biochemical parameters were measured. RESULTS The data showed that EGCG prolonged exhaustive swimming time, decreasing the levels of blood lactic acid, serum urea nitrogen, serum creatine kinase and malondialdehyde, which were accompanied by corresponding increase in liver and muscle glycogen contents, and superoxide dismutase, catalase, and glutathione peroxidase activities. CONCLUSIONS This study indicated that EGCG had an anti-fatigue effect. SUMMARY EGCG significantly prolonged exhaustive swimming time and decreased the levels of BLA, SUN, SCK and MDA, which were accompanied by corresponding increases in liver and muscle glycogen contents, and SOD, CAT, and GPx activities.EGCG can be used to design nutraceutical supplements aimed to facilitate recovery from fatigue and attenuate exhaustive exercise-induced oxidative damage. Abbreviations used: EGCG: (-)-Epigallocatechin-3-gallate, ROS: reactive oxygen species, BLA: blood lactic acid, SUN: serum urea nitrogen, SOD: superoxide dismutase, GPx: glutathione peroxidase, CAT: catalase, SCK: serum creatine kinase, MDA: malondialdehyde, C: control, LET: Low-dose EGCG-treated, MET: Middle-dose EGCG-treated, HET: High-dose EGCG-treated, GTE: green tea extract.
Collapse
Affiliation(s)
- Yu-song Teng
- School of Physical Education, Liaoning Normal University, Dalian, P.R. China
| | - Di Wu
- School of Physical Education, Liaoning Normal University, Dalian, P.R. China
| |
Collapse
|
29
|
Hadi A, Pourmasoumi M, Kafeshani M, Karimian J, Maracy MR, Entezari MH. The Effect of Green Tea and Sour Tea (Hibiscus sabdariffaL.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. J Diet Suppl 2016; 14:346-357. [DOI: 10.1080/19390211.2016.1237400] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Petrovic S, Arsic A, Glibetic M, Cikiriz N, Jakovljevic V, Vucic V. The effects of polyphenol-rich chokeberry juice on fatty acid profiles and lipid peroxidation of active handball players: results from a randomized, double-blind, placebo-controlled study. Can J Physiol Pharmacol 2016; 94:1058-1063. [PMID: 27322521 DOI: 10.1139/cjpp-2015-0575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of polyphenol-rich chokeberry juice consumption on plasma phospholipid fatty acid profiles of 32 active male and female handball players was examined. This randomized, double-blind, placebo-controlled study was conducted during the preparatory training in a closed campus, where 18 players (8 males, 10 females) consumed 100 mL of chokeberry juice, while 14 players (7 males, 7 females) consumed placebo. Lipid status, glucose, thiobarbituric acid reactive substances (TBARS), and percentages of fatty acids were assessed at baseline and at the end of the study. Consumption of chokeberry juice induced decreases of C18:1n-9 and C18:3n-3 in men, but no changes in female players. However, placebo-controlled groups had reduced proportions of mono- (C16:1n-7, C18:1n-7) and polyunsaturated fatty acids (PUFAs: C18:3n-3, C20:5n-3, and C22:4n-6) in males, as well as n-6 PUFAs and total PUFAs in females after consumption. These results indicate that chokeberry juice had a weak impact on attenuating the effect of intensive training in active handball players.
Collapse
Affiliation(s)
- Snjezana Petrovic
- a Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Serbia
| | - Aleksandra Arsic
- a Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Serbia
| | - Marija Glibetic
- a Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Serbia
| | - Nikola Cikiriz
- b Department of Exercise Physiology, Institute of Hygiene, Military Medical Academy, Belgrade, Serbia
| | - Vladimir Jakovljevic
- c Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Vesna Vucic
- a Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Serbia
| |
Collapse
|
31
|
Wadley AJ, Turner JE, Aldred S. Factors influencing post-exercise plasma protein carbonyl concentration. Free Radic Res 2016; 50:375-84. [PMID: 26873473 DOI: 10.3109/10715762.2015.1131824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exercise of sufficient intensity and duration can cause acute oxidative stress. Plasma protein carbonyl (PC) moieties are abundant, chemically stable, and easily detectable markers of oxidative stress that are widely used for the interpretation of exercise-induced changes in redox balance. Despite many studies reporting acute increases in plasma PC concentration in response to exercise, some studies, including those from our own laboratory have shown decreases. This review will discuss the differences between studies reporting increases, decreases, and no change in plasma PC concentration following exercise in humans; highlighting participant physiology (i.e. training status) and study design (i.e. intensity, duration, and novelty of the exercise bout) as the main factors driving the direction of the PC response to exercise. The role of the 20S proteasome system is proposed as a possible mechanism mediating the clearance of plasma PC following exercise. Resting and exercise-induced differences in plasma protein composition and balance between tissues are also discussed. We suggest that exercise may stimulate the clearance of plasma PC present at baseline, whereas simultaneously increasing reactive oxygen species production that facilitates the formation of new PC groups. The balance between these two processes likely explains why some studies have reported no change or even decreases in plasma PC level post-exercise when other biomarkers of oxidative stress (e.g. markers of lipid peroxidation) were elevated. Future studies should determine factors that influence the balance between PC clearance and formation following acute exercise.
Collapse
Affiliation(s)
- Alex J Wadley
- a Institute of Science and the Environment , University of Worcester , Worcester , UK
| | - James E Turner
- b School of Sport, Exercise & Rehabilitation Sciences , University of Birmingham , Edgbaston , Birmingham , UK
| | - Sarah Aldred
- c Department for Health , University of Bath , Bath , UK
| |
Collapse
|
32
|
Burton-Freeman BM, Sandhu AK, Edirisinghe I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv Nutr 2016; 7:44-65. [PMID: 26773014 PMCID: PMC4717884 DOI: 10.3945/an.115.009639] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diet is an essential factor that affects the risk of modern-day metabolic diseases, including cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease. The potential ability of certain foods and their bioactive compounds to reverse or prevent the progression of the pathogenic processes that underlie these diseases has attracted research attention. Red raspberries (Rubus idaeus L.) are unique berries with a rich history and nutrient and bioactive composition. They possess several essential micronutrients, dietary fibers, and polyphenolic components, especially ellagitannins and anthocyanins, the latter of which give them their distinctive red coloring. In vitro and in vivo studies have revealed various mechanisms through which anthocyanins and ellagitannins (via ellagic acid or their urolithin metabolites) and red raspberry extracts (or the entire fruit) could reduce the risk of or reverse metabolically associated pathophysiologies. To our knowledge, few studies in humans are available for evaluation. We review and summarize the available literature that assesses the health-promoting potential of red raspberries and select components in modulating metabolic disease risk, especially cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease-all of which share critical metabolic, oxidative, and inflammatory links. The body of research is growing and supports a potential role for red raspberries in reducing the risk of metabolically based chronic diseases.
Collapse
Affiliation(s)
- Britt M Burton-Freeman
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL; and Department of Nutrition, University of California, Davis, CA
| | - Amandeep K Sandhu
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL; and
| | - Indika Edirisinghe
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL; and
| |
Collapse
|
33
|
Pietrangelo T, Di Filippo ES, Mancinelli R, Doria C, Rotini A, Fanò-Illic G, Fulle S. Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential. Front Physiol 2015; 6:399. [PMID: 26733888 PMCID: PMC4689811 DOI: 10.3389/fphys.2015.00399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023] Open
Abstract
Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l.) improves skeletal muscle regeneration in sedentary adult women. Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before and after this exercise training at low altitude. They were investigated for differentiation aspects, superoxide anion production, antioxidant enzymes, mitochondrial potential variation after a depolarizing insult, intracellular Ca2+ concentrations, and micro (mi)RNA expression (miR-1, miR-133, miR-206). Results: In these myogenic populations of adult stem cells, those obtained after exercise training, showed increased Fusion Index and intracellular Ca2+ concentrations. This exercise training also generally reduced superoxide anion production in cells (by 12–67%), although not in two women, where there was an increase of ~15% along with a reduced superoxide dismutase activity. miRNA expression showed an exercise-induced epigenetic transcription profile that was specific according to the reduced or increased superoxide anion production of the cells. Conclusions: The present study shows that low-to-moderate exercise training at low altitude improves the regenerative capacity of skeletal muscle in adult women. The differentiation of cells was favored by increased intracellular calcium concentration and increased the fusion index. This low-to-moderate training at low altitude also depicted the epigenetic signature of cells.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Laboratory of Functional Evaluation, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Ester S Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Christian Doria
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Laboratory of Functional Evaluation, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Alessio Rotini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Giorgio Fanò-Illic
- Laboratory of Functional Evaluation, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Laboratory of Functional Evaluation, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| |
Collapse
|
34
|
Implications of a pre-exercise alkalosis-mediated attenuation of HSP72 on its response to a subsequent bout of exercise. Amino Acids 2015; 48:499-504. [PMID: 26433893 DOI: 10.1007/s00726-015-2103-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate if a pre-exercise alkalosis-mediated attenuation of HSP72 had any effect on the response of the same stress protein after a subsequent exercise. Seven physically active males [25.0 ± 6.5 years, 182.1 ± 6.0 cm, 74.0 ± 8.3 kg, peak aerobic power (PPO) 316 ± 46 W] performed a repeated sprint exercise (EXB1) following a dose of 0.3 g kg(-1) body mass of sodium bicarbonate (BICARB), or a placebo of 0.045 g kg(-1) body mass of sodium chloride (PLAC). Participants then completed a 90-min intermittent cycling protocol (EXB2). Monocyte expressed HSP72 was significantly attenuated after EXB1 in BICARB compared to PLAC, however, there was no difference in the HSP72 response to the subsequent EXB2 between conditions. Furthermore there was no difference between conditions for measures of oxidative stress (protein carbonyl and HSP32). These findings confirm the sensitivity of the HSP72 response to exercise-induced changes in acid-base status in vivo, but suggest that the attenuated response has little effect upon subsequent stress in the same day.
Collapse
|
35
|
Lewis NA, Howatson G, Morton K, Hill J, Pedlar CR. Alterations in redox homeostasis in the elite endurance athlete. Sports Med 2015; 45:379-409. [PMID: 25319354 DOI: 10.1007/s40279-014-0276-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The production of reactive oxygen (ROS) and nitrogen species (RNS) is a fundamental feature of mammalian physiology, cellular respiration and cell signalling, and essential for muscle function and training adaptation. Aerobic and anaerobic exercise results in alterations in redox homeostasis (ARH) in untrained, trained and well trained athletes. Low to moderate doses of ROS and RNS play a role in muscle adaptation to endurance training, but an overwhelming increase in RNS and ROS may lead to increased cell apoptosis and immunosuppression, fatigued states and underperformance. OBJECTIVES The objectives of this systematic review are: (a) to test the hypotheses that ARH occur in elite endurance athletes; following an acute exercise bout, in an endurance race or competition; across a micro-, meso- or macro-training cycle; following a training taper; before, during and after altitude training; in females with amenorrhoea versus eumenorrhoea; and in non-functional over-reaching (NFOR) and overtraining states (OTS); (b) to report any relationship between ARH and training load and ARH and performance; and (c) to apply critical difference values for measures of oxidative stress/ARH to address whether there is any evidence of ARH being of physiological significance (not just statistical) and thus relevant to health and performance in the elite athlete. METHODS Electronic databases, Embase, MEDLINE, and SPORTDiscus were searched for relevant articles. Only studies that were observational articles of cross-sectional or longitudinal design, and included elite athletes competing at national or international level in endurance sports were included. Studies had to include biomarkers of ARH; oxidative damage, antioxidant enzymes, antioxidant capacity, and antioxidant vitamins and nutrients in urine, serum, plasma, whole blood, red blood cells (RBCs) and white blood cells (WBCs). A total of 3,057 articles were identified from the electronic searches. Twenty-eight articles met the inclusion criteria and were included in the review. RESULTS ARH occurs in elite endurance athletes, after acute exercise, a competition or race, across training phases, and with natural or simulated altitude. A reduction in ARH occurs across the season in elite athletes, with marked variation around intensified training phases, between individuals, and the greatest disturbances (of physiological significance) occurring with live-high-train-low techniques, and in athletes competing. A relationship with ARH and performance and illness exists in elite athletes. There was considerable heterogeneity across the studies for the biomarkers and assays used; the sport; the blood sampling time points; and the phase in the annual training cycle and thus baseline athlete fitness. In addition, there was a consistent lack of reporting of the analytical variability of the assays used to assess ARH. CONCLUSIONS The reported biochemical changes around ARH in elite athletes suggest that it may be of value to monitor biomarkers of ARH at rest, pre- and post-simulated performance tests, and before and after training micro- and meso-cycles, and altitude camps, to identify individual tolerance to training loads, potentially allowing the prevention of non-functionally over-reached states and optimisation of the individual training taper and training programme.
Collapse
|
36
|
Xiao NN. Effects of Resveratrol Supplementation on Oxidative Damage and Lipid Peroxidation Induced by Strenuous Exercise in Rats. Biomol Ther (Seoul) 2015; 23:374-8. [PMID: 26157555 PMCID: PMC4489833 DOI: 10.4062/biomolther.2015.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
The purpose of the present study was to investigate the effects of resveratrol supplementation on oxidative damage and lipid peroxidation induced by strenuous exercise in rats. The rats were randomly divided into five groups: a sedentary control group, an exercise control group, and three treatment exercise groups administered increasing doses of resveratrol (25, 50, and 100 mg/kg body weight). Resveratrol was administered by oral gavage once daily for four weeks. At the end of the four-week period, the rats performed a strenuous exercise on the treadmill, and the levels of lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. The results showed that resveratrol supplementation had protective effects against strenuous exercise-induced oxidative damage and lipid peroxidation by lowering the levels of LDH, CK, MDA, 4-HNE, and 8-OHdG in the serum or muscle of rats. These beneficial effects are probably owing to the inherent antioxidant activities of resveratrol.
Collapse
Affiliation(s)
- Ning-Ning Xiao
- College of Sports Science, Harbin Normal University, Harbin 150025,
P.R. China
| |
Collapse
|
37
|
Del Bo’ C, Martini D, Porrini M, Klimis-Zacas D, Riso P. Berries and oxidative stress markers: an overview of human intervention studies. Food Funct 2015; 6:2890-917. [DOI: 10.1039/c5fo00657k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severalin vitroandin vivostudies have demonstrated that polyphenol-rich berries may counteract oxidative stress. In this review, we summarized the main finding from human intervention trials on the role of berries in the modulation of markers of oxidative lipid, protein and DNA damage.
Collapse
Affiliation(s)
- Cristian Del Bo’
- Department of Food
- Environmental and Nutritional Sciences
- Division of Human Nutrition
- Università degli Studi di Milano
- Milano
| | - Daniela Martini
- Department of Food
- Environmental and Nutritional Sciences
- Division of Human Nutrition
- Università degli Studi di Milano
- Milano
| | - Marisa Porrini
- Department of Food
- Environmental and Nutritional Sciences
- Division of Human Nutrition
- Università degli Studi di Milano
- Milano
| | | | - Patrizia Riso
- Department of Food
- Environmental and Nutritional Sciences
- Division of Human Nutrition
- Università degli Studi di Milano
- Milano
| |
Collapse
|
38
|
Kitamura H, Terunuma N, Kurosaki S, Hata K, Masuda M, Kochi T, Yanagi N, Murase T, Ogami A, Higashi T. A cohort study of toner-handling workers on inflammatory, allergic, and oxidative stress markers. Hum Exp Toxicol 2014; 34:337-44. [DOI: 10.1177/0960327113512339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: This study examines the relationship between toner exposure and its health effects in terms of biomarkers which are known to assess the damages to humans caused by toxic material exposure. Methods: The subjects were 1504 male workers aged below 50 in 2003 in a Japanese toner and photocopier manufacturing company. Personal exposure measurements, pulmonary function tests, chest X-ray examinations, biomarker measurement, and a questionnaire about respiratory symptoms were conducted. We will report about biomarker measurement in this study. Cross-sectional survey studies and a longitudinal study from 2003 to 2008 were conducted. Results: Few significant findings were associated with the toner exposure in both the cross-sectional and the longitudinal studies. The higher toner exposure concentrations did not induce effects on increasing biomarkers. Conclusion: There was no evidence of excessive inflammatory, allergic, or oxidative stress reaction in toner-handling workers as compared to non-handling workers, despite some sporadically significant findings. There are no other reports of a longitudinal epidemiological study with regard to toner exposure; this report significantly contributes to toner exposure literature. Although in the current well-controlled working environment, the toner exposure concentrations are quite low; further studies are needed to completely understand the health effects toner may have, however small they may be.
Collapse
Affiliation(s)
- H Kitamura
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - N Terunuma
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - S Kurosaki
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - K Hata
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - M Masuda
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Kochi
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - N Yanagi
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Murase
- Department of Haematology, Tokai University School of Medicine, Hachioji, Japan
| | - A Ogami
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Higashi
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
39
|
Vattem D, Hutton T. Effect of Dietary Bioactives on in vivo Peroxide Induced Stress in
Lumbricus terrestris. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.514.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Perrea A, Vlachos IS, Korou LM, Doulamis IP, Exarhopoulou K, Kypraios G, Kalofoutis A, Perrea DN. Comparison of the short-term oxidative stress response in National League basketball and soccer adolescent athletes. Angiology 2013; 65:624-9. [PMID: 23921505 DOI: 10.1177/0003319713497991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Physical exercise is considered protective against oxidative stress-related disorders. However, there is increasing evidence that strenuous activity may induce increased oxidative stress response. This study investigated the impact of vigorous physical activity on serum oxidative stress markers in 36 soccer and 12 basketball National League adolescent athletes 40 minutes before and 15 minutes after a National League game. Serum total peroxide, fibrinogen, polymorphonuclear (PMN) elastase, and myeloperoxidase levels were determined. No significant differences in any of the measured parameters were observed before the match. Soccer players exhibited significantly lower total peroxide (P < .05) and higher PMN elastase concentrations (P < .05) than that of the basketball athletes after the game. A number of important differences between these 2 sports, such as duration or total aerobic and anaerobic demands, may affect oxidative status. These parameters need to be further examined in order to elucidate the different effects of these 2 sports on postexercise oxidative status.
Collapse
Affiliation(s)
- Anastasia Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," Medical School, University of Athens, Athens, Greece
| | - Ioannis S Vlachos
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," Medical School, University of Athens, Athens, Greece
| | - Laskarina-Maria Korou
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," Medical School, University of Athens, Athens, Greece
| | - Ilias P Doulamis
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," Medical School, University of Athens, Athens, Greece
| | - Konstantina Exarhopoulou
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," Medical School, University of Athens, Athens, Greece
| | - George Kypraios
- Department of Human Motion Science and Quality of Life, University of Peloponnese, Sparti, Greece
| | | | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," Medical School, University of Athens, Athens, Greece
| |
Collapse
|
41
|
Pittaluga M, Sgadari A, Tavazzi B, Fantini C, Sabatini S, Ceci R, Amorini AM, Parisi P, Caporossi D. Exercise-induced oxidative stress in elderly subjects: the effect of red orange supplementation on the biochemical and cellular response to a single bout of intense physical activity. Free Radic Res 2013; 47:202-11. [DOI: 10.3109/10715762.2012.761696] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Sato Y, Ogino K, Sakano N, Wang DH, Yoshida J, Akazawa Y, Kanbara S, Inoue K, Kubo M, Takahashi H. Evaluation of urinary hydrogen peroxide as an oxidative stress biomarker in a healthy Japanese population. Free Radic Res 2013; 47:181-91. [DOI: 10.3109/10715762.2012.759218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Mano T, Katsuno M, Banno H, Suzuki K, Suga N, Hashizume A, Tanaka F, Sobue G. Cross-sectional and longitudinal analysis of an oxidative stress biomarker for spinal and bulbar muscular atrophy. Muscle Nerve 2012; 46:692-7. [DOI: 10.1002/mus.23413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2012] [Indexed: 12/12/2022]
|
44
|
Orozco MN, Solomons NW, Schümann K, Friel JK. Response of urinary biomarkers of systemic oxidation to oral iron supplementation in healthy men. Food Nutr Bull 2012; 33:53-62. [PMID: 22624298 DOI: 10.1177/156482651203300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Urinary biomarkers are used in assessment of severe, clinical oxidative stress. Little is known, however, about their diagnostic value within the normative range. OBJECTIVE To evaluate the response of urinary thiobarbituric acid reactive substances (TBARS) and 8-hydroxy-2-deoxyguanosine (8-OHdG) as indicators of systemic oxidation in response to short-term oral iron and antioxidant supplementation. METHODS Five healthy adult men participated in the pilot study phase and 12 in the definitive intervention trial. For 7 days each, separated by 12-day washouts, the subjects received different treatment regimens, consisting of 120 mg of iron, 120 mg of iron in refined palm oil, and 120 mg of iron in palm oil combined with one of the two doses of Carotino Tocotrienol Carotene Mixed Concentrate (CTCMC). Creatinine-normalized urinary TBARS and 8-OHdG concentrations were quantified in samples taken from subjects with and without active supplementation. Temporal and correlative associations between TBARS and 8-OHdG were explored. RESULTS Daily intake of supplemental iron failed to produce any increment in urinary excretion of TBARS or 8-OHdG. However, a significant within-individual correlation between the urinary biomarkers was observed (Spearman r = 0.697, p < .0001, n = 466). Both doses of CTCMC significantly lowered urinary excretion of both oxidation indicators. CONCLUSIONS Despite the lack of effect of oral iron on the biomarkers of systemic oxidation, they show a strong and significant mutual association within the nonpathological range of oxidative stress in healthy male adults.
Collapse
Affiliation(s)
- Monica N Orozco
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala.
| | | | | | | |
Collapse
|
45
|
Prasetyo EN, Willibald W, Nyanhongo GS, Guebitz GM. A unique two-way approach for the validation of total antioxidant capacity of serum samples. Eur J Clin Invest 2012; 42:432-8. [PMID: 21950774 DOI: 10.1111/j.1365-2362.2011.02600.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The human body is constantly exposed to a large variety of reactive oxygen species that are implicated in many pathophysiological conditions (atherosclerosis, cancer, neurodegenerative diseases etc.). Monitoring the antioxidant status of biological fluids could be used as an early warning sign 'biomarker' of possible disease onset. However, although several methods have been developed, questionable sensitivity, unreliability and non-reproducibility hamper all, making it difficult to have an internationally accepted standardized method. This study presents and demonstrates the remarkable ability of a newly developed antioxidant capacity assay method based on tetramethoxy azobismethylene quinone (TMAMQ) to measure the total antioxidant capacity of serum samples using three complimentary approaches. DESIGN Using an UV-Vis spectroscopy and oxygen sensor, the reduction of TMAMQ by serum antioxidants was compared to either the formation of syringaldazine or consumption of oxygen. RESULTS After adding a fraction of human serum, 4·01 μM TMAMQ was reduced to syringaldazine from a stock of 11·74 μM TMAMQ. Subsequent addition of laccase resulted in the oxidation of the formed syringaldazine back to TMAMQ resulting in an increase in TMAMQ concentration to 11·71 μM (re-establishing almost the same initial concentration of TMAMQ) while consuming 1·04 μM molecular oxygen. CONCLUSIONS The reduction of TMAMQ by serum samples is directly proportional to the consumption of oxygen and the formation of syringaldazine. This means that either the formation of syringaldazine or oxygen consumption can be used to validate or confirm data obtained through monitoring TMAMQ reduction.
Collapse
Affiliation(s)
- Endry N Prasetyo
- Institute of Environmental Biotechnology, Graz University of Technology, Austria
| | | | | | | |
Collapse
|
46
|
Hillman AR, Vince RV, Taylor L, McNaughton L, Mitchell N, Siegler J. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress. Appl Physiol Nutr Metab 2011; 36:698-706. [DOI: 10.1139/h11-080] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While in vitro work has revealed that dehydration and hyperthermia can elicit increased cellular and oxidative stress, in vivo research linking dehydration, hyperthermia, and oxidative stress is limited. The purpose of this study was to investigate the effects of exercise-induced dehydration with and without hyperthermia on oxidative stress. Seven healthy male, trained cyclists (power output (W) at lactate threshold (LT): 199 ± 19 W) completed 90 min of cycling exercise at 95% LT followed by a 5-km time trial (TT) in 4 trials: (i) euhydration in a warm environment (EU-W, control), (ii) dehydration in a warm environment (DE-W), (iii) euhydration in a thermoneutral environment (EU-T), and (iv) dehydration in a thermoneutral environment (DE-T) (W: 33.9 ± 0.9 °C; T: 23.0 ± 1.0 °C). Oxidized glutathione (GSSG) increased significantly postexercise in dehydration trials only (DE-W: p < 0.01, DE-T: p = 0.03), and while not significant, total glutathione (TGSH) and thiobarbituric acid reactive substances (TBARS) tended to increase postexercise in dehydration trials (p = 0.08 for both). Monocyte heat shock protein 72 (HSP72) concentration was increased (p = 0.01) while lymphocyte HSP32 concentration was decreased for all trials (p = 0.02). Exercise-induced dehydration led to an increase in GSSG concentration while maintenance of euhydration attenuated these increases regardless of environmental condition. Additionally, we found evidence of increased cellular stress (measured via HSP) during all trials independent of hydration status and environment. Finally, both 90-min and 5-km TT performances were reduced during only the DE-W trial, likely a result of combined cellular stress, hyperthermia, and dehydration. These findings highlight the importance of fluid consumption during exercise to attenuate thermal and oxidative stress during prolonged exercise in the heat.
Collapse
Affiliation(s)
- Angela R. Hillman
- Department of Sport, Health, and Exercise Science, The University of Hull, Hull, UK
| | - Rebecca V. Vince
- Department of Sport, Health, and Exercise Science, The University of Hull, Hull, UK
| | - Lee Taylor
- Department of Sport and Exercise Sciences, Institute of Sport and Physical Activity Research (ISPAR). The University of Bedfordshire, Bedford, UK
| | - Lars McNaughton
- School of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Nigel Mitchell
- Head of Nutrition British Cycling/Team Sky, Manchester, UK
| | - Jason Siegler
- Sport and Exercise Science, School of Biomedical and Health Sciences, University of Western Sydney, Campbelltown Campus, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
47
|
Davison G, Callister R, Williamson G, Cooper KA, Gleeson M. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise. Eur J Nutr 2011; 51:69-79. [PMID: 21465244 DOI: 10.1007/s00394-011-0193-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/22/2011] [Indexed: 11/26/2022]
Abstract
PURPOSE Acute antioxidant supplementation may modulate oxidative stress and some immune perturbations that typically occur following prolonged exercise. The aims of the present study were to examine the effects of acutely consuming dark chocolate (high polyphenol content) on plasma antioxidant capacity, markers of oxidative stress and immunoendocrine responses to prolonged exercise. METHODS Fourteen healthy men cycled for 2.5 h at ~60% maximal oxygen uptake 2 h after consuming 100 g dark chocolate (DC), an isomacronutrient control bar (CC) or neither (BL) in a randomised-counterbalanced design. RESULTS DC enhanced pre-exercise antioxidant status (P = 0.003) and reduced by trend (P = 0.088) 1 h post-exercise plasma free [F₂-isoprostane] compared with CC (also, [F₂-isoprostane] increased post-exercise in CC and BL but not DC trials). Plasma insulin concentration was significantly higher pre-exercise (P = 0.012) and 1 h post-exercise (P = 0.026) in the DC compared with the CC trial. There was a better maintenance of plasma glucose concentration on the DC trial (2-way ANOVA trial × time interaction P = 0.001), which decreased post-exercise in all trials but was significantly higher 1 h post-exercise (P = 0.039) in the DC trial. There were no between trial differences in the temporal responses (trial × time interactions all P > 0.05) of hypothalamic-pituitary-adrenal axis stress hormones, plasma interleukin-6, the magnitude of leukocytosis and neutrophilia and changes in neutrophil function. CONCLUSION Acute DC consumption may affect insulin, glucose, antioxidant status and oxidative stress responses, but has minimal effects on immunoendocrine responses, to prolonged exercise.
Collapse
Affiliation(s)
- Glen Davison
- Department of Sport and Exercise Science, Aberystwyth University, Ceredigion, Aberystwyth SY23 3FD, UK.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables and beverages derived from plants. These molecules have been reported to possess a wide range of activities in the prevention of common diseases, including CHD, cancer, neurodegenerative diseases, gastrointestinal disorders and others. The effects appear to be related to the various biological/pharmacological activities of flavonoids. A large number of publications suggest immunomodulatory and anti-inflammatory properties of these compounds. However, almost all studies are in vitro studies with limited research on animal models and scarce data from human studies. The majority of in vitro research has been carried out with single flavonoids, generally aglycones, at rather supraphysiological concentrations. Few studies have investigated the anti-inflammatory effects of physiologically attainable flavonoid concentrations in healthy subjects, and more epidemiological studies and prospective randomised trials are still required. This review summarises evidence for the effects of fruit and tea flavonoids and their metabolites in inflammation and immunity. Mechanisms of effect are discussed, including those on enzyme function and regulation of gene and protein expression. Animal work is included, and evidence from epidemiological studies and human intervention trials is reviewed. Biological relevance and functional benefits of the reported effects, such as resistance to infection or exercise performance, are also discussed.
Collapse
|
49
|
Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol 2010; 111:695-705. [DOI: 10.1007/s00421-010-1684-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 11/27/2022]
|
50
|
Rao AV, Snyder DM. Raspberries and human health: a review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3871-3883. [PMID: 20178390 DOI: 10.1021/jf903484g] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dietary guidelines around the world recommend the increased consumption of fruits and vegetables as good sources of antioxidant phytochemicals for the prevention of chronic diseases. Red raspberries are a common and important fruit in the Western diet due to their content of essential nutrients and beneficial phytochemicals. Anthocyanins and ellagitannins are polyphenolic compounds and the major antioxidant phytochemicals present in raspberries. Whereas individual phytochemical constituents of raspberries have been studied for their biological activities, human intervention studies using whole berries are lacking in the literature. The nutritional and phytochemical compositions of red raspberries and their absorption, metabolism, and biological activity are reviewed. Finally, future directions of research are also identified.
Collapse
Affiliation(s)
- A Venketeshwer Rao
- Department of Nutritional Sciences, Faculty of Medicine, FitzGerald Building, University of Toronto, Toronto, Ontario, Canada M5S 3E2.
| | | |
Collapse
|