1
|
Garnacho-Castaño MV, Pleguezuelos-Cobo E, Berbel M, Irurtia A, Carrasco-Marginet M, Castizo-Olier J, Veiga-Herreros P, Faundez-Zanuy M, Serra-Payá N. Effects of acute beetroot juice intake on performance, maximal oxygen uptake, and ventilatory efficiency in well-trained master rowers: a randomized, double-blinded crossover study. J Int Soc Sports Nutr 2024; 21:2373170. [PMID: 38953606 PMCID: PMC11221466 DOI: 10.1080/15502783.2024.2373170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Beetroot juice (BRJ) intake has been considered a practical nutritional strategy among well-trained athletes. This study aimed to assess the effects of BRJ intake on performance, cardiorespiratory and metabolic variables during a simulated 2000-meter rowing ergometer test in well-trained master rowers. METHOD Ten well-trained male master rowers (30-48 years) participated in a randomized, double-blind, crossover design for 3 weeks. In the first week, a researcher explained all the experimental procedures to the participants. In the next two weeks, the participants were tested in 2 rowing ergometer sessions, separated from each other by a 7-day washout period. In both strictly identical sessions, the participants randomly drank BRJ or placebo (PL) 3 hours before the start of the tests. Subsequently, the participants carried out the 2000-meter rowing ergometer tests. Oxygen saturation and blood lactate measurements were performed before starting (pretest) and at the end of the test (posttest). Performance parameters and cardiorespiratory variables were recorded during the rowing ergometer test. RESULTS An improvement in time trial performance was observed, with a mean difference of 4 seconds (90% confidence limits ± 3.10; p ≤ 0.05) compared to PL. Relative and absolute maximaloxygenuptake V ˙ O 2 max increased (mean difference of 2.10 mL·kg-1·min-1, 90% confidence limits ± 1.80; mean difference of 0.16 L·min-1 90% confidence limits ± 0.11, respectively; p ≤ 0.05) compared to PL. No ergogenic effect was observed on ventilatory efficiency and blood lactate concentrations after BRJ intake. CONCLUSION Acute BRJ intake may improve time trial performance as well as V ˙ O 2 max in well-trained master rowers. However, BRJ does not appear to improve ventilatory efficiency.
Collapse
Affiliation(s)
- Manuel V. Garnacho-Castaño
- Universitat de Barcelona, DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu. Sant Boi de Llobregat, Barcelona, Spain
- Universidad Internacional de Valencia (VIU), Facultad de Ciencias de la Salud, Valencia, Spain
| | | | - Marina Berbel
- Universitat de Barcelona, DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu. Sant Boi de Llobregat, Barcelona, Spain
| | - Alfredo Irurtia
- Universitat de Barcelona, INEFC‐Barcelona Sports Sciences Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Barcelona, Spain
| | - Marta Carrasco-Marginet
- Universitat de Barcelona, INEFC‐Barcelona Sports Sciences Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Barcelona, Spain
| | - Jorge Castizo-Olier
- Universitat de Barcelona, DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu. Sant Boi de Llobregat, Barcelona, Spain
| | - Pablo Veiga-Herreros
- Universidad de Alfonso X el Sabio, Facultad de Ciencias de la Salud, Madrid, Spain
| | | | - Noemí Serra-Payá
- Universitat de Barcelona, DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu. Sant Boi de Llobregat, Barcelona, Spain
| |
Collapse
|
2
|
Urianstad T, Villanova S, Odden I, Hansen J, Mølmen KS, Porcelli S, Rønnestad BR, Cardinale DA. Carbon monoxide supplementation: evaluating its potential to enhance altitude training effects and cycling performance in elite athletes. J Appl Physiol (1985) 2024; 137:1092-1105. [PMID: 39236115 DOI: 10.1152/japplphysiol.00469.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Altitude training is a cornerstone for endurance athletes for improving blood variables and performance, with optimal effects observed at ∼2,300-2,500 meters above sea level (m.a.s.l.). However, elite cyclists face challenges such as limited access to such altitudes, inadequate training facilities, and high expenses. To address these issues, a novel method involving daily exposure to carbon monoxide (CO) has been proposed to amplify altitude training adaptations at suboptimal altitudes. Thirty-one male cyclists were assigned to three groups: Live-High Train-High with CO inhalation (LHTHCO), Live-High Train-High (LHTH), and Live-Low Train-Low (LLTL). The LHTHCO group underwent CO inhalation twice daily in the afternoon/evening to elevate carboxyhemoglobin concentration to ∼10%. Hematological variables, in vivo muscle oxidative capacity, and physiological indicators of cycling performance were assessed before and after a 3-week altitude training camp at 2,100 m.a.s.l. LHTHCO demonstrated a larger increase in hemoglobin mass (Hbmass) compared to both LHTH and LLTL. Although there were no statistical differences between LHTHCO and LHTH in submaximal and maximal performance measures, LHTHCO displayed greater improvements in 1-min maximal power output during incremental testing (Wmax), power output at lactate threshold, and maximal oxygen consumption (V̇o2max) compared to LLTL. LHTH demonstrated a larger improvement than LLTL in Wmax and V̇o2max, with no group differences in Hbmass or submaximal measures. Muscle oxidative capacity did not differ between groups. These findings suggest that combining moderate-altitude training with daily CO inhalation promotes hematological adaptations more effectively than moderate altitude alone and enhances cycling performance metrics in cyclists more than sea-level training.NEW & NOTEWORTHY Three weeks of training at moderate altitude with exposure to low doses of CO can significantly enhance hematological adaptations in elite cyclists compared to moderate-altitude training alone. Cycling performance determinants improved more with CO inhalation at moderate altitude compared to sea-level training, whereas there were no differences in submaximal and maximal performance measures compared to moderate-altitude training alone. This study highlights the potential of CO supplementation as an effective adjunct to altitude training regimens.
Collapse
Affiliation(s)
- Tomas Urianstad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Simone Villanova
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Ingvill Odden
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Joar Hansen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Knut S Mølmen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Daniele A Cardinale
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences GIH, Stockholm, Sweden
- The Swedish Sports Confederation (Riksidrottsförbundet), Stockholm, Sweden
| |
Collapse
|
3
|
Ferretti G, Strapazzon G. A revision of maximal oxygen consumption and exercise capacity at altitude 70 years after the first climb of Mount Everest. J Physiol 2024; 602:5419-5433. [PMID: 38299739 DOI: 10.1113/jp285606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
On the 70th anniversary of the first climb of Mount Everest by Edmund Hillary and Tensing Norgay, we discuss the physiological bases of climbing Everest with or without supplementary oxygen. After summarizing the data of the 1953 expedition and the effects of oxygen administration, we analyse the reasons why Reinhold Messner and Peter Habeler succeeded without supplementary oxygen in 1978. The consequences of this climb for physiology are briefly discussed. An overall analysis of maximal oxygen consumption (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) at altitude follows. In this section, we discuss the reasons for the non-linear fall ofV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at altitude, we support the statement that it is a mirror image of the oxygen equilibrium curve, and we propose an analogue of Hill's model of the oxygen equilibrium curve to analyse theV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ fall. In the following section, we discuss the role of the ventilatory and pulmonary resistances to oxygen flow in limitingV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , which becomes progressively greater while moving toward higher altitudes. On top of Everest, these resistances provide most of theV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ limitation, and the oxygen equilibrium curve and the respiratory system provide linear responses. This phenomenon is more accentuated in athletes with elevatedV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , due to exercise-induced arterial hypoxaemia. The large differences inV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ that we observe at sea level disappear at altitude. There is no need for a very highV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at sea level to climb the highest peaks on Earth.
Collapse
Affiliation(s)
- Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- SIMeM Italian Society of Mountain Medicine, Padova, Italy
| |
Collapse
|
4
|
Schafer EA, Chapman CL, Castellani JW, Looney DP. Energy expenditure during physical work in cold environments: physiology and performance considerations for military service members. J Appl Physiol (1985) 2024; 137:995-1013. [PMID: 39205639 PMCID: PMC11486477 DOI: 10.1152/japplphysiol.00210.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Effective execution of military missions in cold environments requires highly trained, well-equipped, and operationally ready service members. Understanding the metabolic energetic demands of performing physical work in extreme cold conditions is critical for individual medical readiness of service members. In this narrative review, we describe 1) the extreme energy costs of performing militarily relevant physical work in cold environments, 2) key factors specific to cold environments that explain these additional energy costs, 3) additional environmental factors that modulate the metabolic burden, 4) medical readiness consequences associated with these circumstances, and 5) potential countermeasures to be developed to aid future military personnel. Key characteristics of the cold operational environment that cause excessive energy expenditure in military personnel include thermoregulatory mechanisms, winter apparel, inspiration of cold air, inclement weather, and activities specific to cold weather. The combination of cold temperatures with other environmental stressors, including altitude, wind, and wet environments, exacerbates the overall metabolic strain on military service members. The high energy cost of working in these environments increases the risk of undesirable consequences, including negative energy balance, dehydration, and subsequent decrements in physical and cognitive performance. Such consequences may be mitigated by the application of enhanced clothing and equipment design, wearable technologies for biomechanical assistance and localized heating, thermogenic pharmaceuticals, and cold habituation and training guidance. Altogether, the reduction in energy expenditure of modern military personnel during physical work in cold environments would promote desirable operational outcomes and optimize the health and performance of service members.
Collapse
Affiliation(s)
- Erica A Schafer
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - Christopher L Chapman
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - John W Castellani
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - David P Looney
- Military Performance Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
5
|
Magaña MA, Gorini Pereira FL, Kuennen MR, Lutz CJ, Almond DG, Lira AA, Apilado AJ, Kim JK, Boyer WR, Gillum TL. Caffeine has no effect on submaximal running in hypoxia in low caffeine consuming males and females. J Sports Med Phys Fitness 2024; 64:863-870. [PMID: 38842372 DOI: 10.23736/s0022-4707.24.15840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Exposure to hypoxia immediately challenges a variety of physiologic systems that limit exercise capacity. Under normoxia, caffeine (CAFF) increases ventilation and subsequent oxygenation of hemoglobin (SpO2) and skeletal muscle (SmO2). CAFF improves exercise performance at altitude. However, little attention has been given to submaximal exercise in hypoxia, particularly regarding low CAFF consumers and female participants. The aim of this study was to determine the effect of CAFF on pulmonary, metabolic, and perceptual variables in response to submaximal running in hypoxia in low CAFF consuming males and females. METHODS In a double blinded, counterbalanced design, 14 (6 females) individuals (24.1±5.1 years; VO2max: 40.6±5.6 mL × kg-1 × min-1; 20.8±8.0% body fat), who habitually consumed ≤150 mg/day of CAFF performed treadmill running at workloads of 25%, 40%, 60%, and 75% of sea level VO2max in normobaric hypoxia (FIO2=0.15) on two separate occasions: 1) 60 minutes after 6 mg/kg of CAFF; or 2) placebo. RESULTS CAFF had no effect on any variable measured. Specifically, VE (condition: P=0.12; interaction: P=0.19), VT (condition: P=0.16; interaction: P=0.57), and Ve:VO2 (condition: P=0.07; interaction: P=0.69) were similar between groups. Further, CAFF had no effect on relative VO2 (condition: P=0.84; interaction: P=0.95), HR (condition: P=0.28; interaction: P=0.35), SmO2 (condition: P=0.66; interaction: P=0.82), or SpO2 (condition: P=0.16; interaction: P=0.97). Finally, rating of perceived exertion (RPE; P=0.92) and acute mountain sickness scores (P=0.29) were similar across conditions. CONCLUSIONS These data demonstrate that CAFF provides no physiologic advantage to submaximal exercise in acute, normobaric hypoxia with low CAFF consuming males and females.
Collapse
Affiliation(s)
- Marc A Magaña
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | | | - Matthew R Kuennen
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Christen J Lutz
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Danee G Almond
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Albert A Lira
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Alvin J Apilado
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Jong-Kyung Kim
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - William R Boyer
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, USA -
| |
Collapse
|
6
|
Alvarez-Araos P, Jiménez S, Salazar-Ardiles C, Núñez-Espinosa C, Paez V, Rodriguez-Fernandez M, Raberin A, Millet GP, Iturriaga R, Andrade DC. Baroreflex and chemoreflex interaction in high-altitude exposure: possible role on exercise performance. Front Physiol 2024; 15:1422927. [PMID: 38895516 PMCID: PMC11184637 DOI: 10.3389/fphys.2024.1422927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The hypoxic chemoreflex and the arterial baroreflex are implicated in the ventilatory response to exercise. It is well known that long-term exercise training increases parasympathetic and decreases sympathetic tone, both processes influenced by the arterial baroreflex and hypoxic chemoreflex function. Hypobaric hypoxia (i.e., high altitude [HA]) markedly reduces exercise capacity associated with autonomic reflexes. Indeed, a reduced exercise capacity has been found, paralleled by a baroreflex-related parasympathetic withdrawal and a pronounced chemoreflex potentiation. Additionally, it is well known that the baroreflex and chemoreflex interact, and during activation by hypoxia, the chemoreflex is predominant over the baroreflex. Thus, the baroreflex function impairment may likely facilitate the exercise deterioration through the reduction of parasympathetic tone following acute HA exposure, secondary to the chemoreflex activation. Therefore, the main goal of this review is to describe the main physiological mechanisms controlling baro- and chemoreflex function and their role in exercise capacity during HA exposure.
Collapse
Affiliation(s)
- Pablo Alvarez-Araos
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Sergio Jiménez
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristian Núñez-Espinosa
- Escuela de Medicina de la Universidad de Magallanes, Punta Arenas, Chile
- Centro Asistencial de Docencia e Investigación (CADI-UMAG), Santiago, Chile
| | - Valeria Paez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rodrigo Iturriaga
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
7
|
Callovini A, Fornasiero A, Savoldelli A, Decet M, Skafidas S, Pellegrini B, Bortolan L, Schena F. Independent, additive and interactive effects of acute normobaric hypoxia and cold on submaximal and maximal endurance exercise. Eur J Appl Physiol 2024; 124:1185-1200. [PMID: 37962573 PMCID: PMC10955012 DOI: 10.1007/s00421-023-05343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE To evaluate the independent and combined effects of hypoxia (FiO2 = 13.5%) and cold (- 20 °C) on physiological and perceptual responses to endurance exercise. METHODS 14 trained male subjects ( V . O2max: 64 ± 5 mL/kg/min) randomly performed a discontinuous maximal incremental test to exhaustion on a motorized treadmill under four environmental conditions: Normothermic-Normoxia (N), Normothermic-Hypoxia (H), Cold-Normoxia (C) and Cold-Hypoxia (CH). Performance and physiological and perceptual responses throughout exercise were evaluated. RESULTS Maximal WorkLoad (WL) and WL at lactate threshold (LT) were reduced in C (- 2.3% and - 3.5%) and H (- 18.0% and - 21.7%) compared to N, with no interactive (p = 0.25 and 0.81) but additive effect in CH (- 21.5% and - 24.6%). Similarly, HRmax and Vemax were reduced in C (- 3.2% and - 14.6%) and H (- 5.0% and - 7%), showing additive effects in CH (- 7.7% and - 16.6%). At LT, additive effect of C (- 2.8%) and H (- 3.8%) on HR reduction in CH (- 5.7%) was maintained, whereas an interactive effect (p = 0.007) of the two stressors combined was noted on Ve (C: - 3.1%, H: + 5.5%, CH: - 10.9%). [La] curve shifted on the left in CH, displaying an interaction effect between the 2 stressors on this parameter. Finally, RPE at LT was exclusively reduced by hypoxia (p < 0.001), whereas TSmax is synergistically reduced by cold and hypoxia (interaction p = 0.047). CONCLUSION If compared to single stress exposure, exercise performance and physiological and perceptual variables undergo additive or synergistic effects when cold and hypoxia are combined. These results provide new insight into human physiological responses to extreme environments.
Collapse
Affiliation(s)
- A Callovini
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - A Fornasiero
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - A Savoldelli
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - M Decet
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - S Skafidas
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | - B Pellegrini
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - L Bortolan
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - F Schena
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Harnish CR, Swinand GP, Fisher AE. Making History in 1 h: How Sex, Aging, Technology, and Elevation Affect the Cycling Hour Record. Med Sci Sports Exerc 2024; 56:454-463. [PMID: 38051143 DOI: 10.1249/mss.0000000000003328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE The purpose of this article was to analyze more than a century of cycling hour records (CHR) to examine the effects of sex, age, and altitude on cycling performance. Our hypotheses were that men's performance (distance) would exceed those of women by more than 10% but would decline at similar rates with aging and that altitude would have a small benefit, which might reach a maximum. METHODS Data were cultivated from the Facebook World Hour Record Discussion Group's crowd-sourced database of more than 600-known-hour records and verified through extensive online research and/or personal communication. Regression and statistical modeling were produced using STATA v15.0. R2 values were used to ascertain model quality, with four distinct models being produced for comparisons. Alpha was set at 0.05 significance for all tests. RESULTS R2 values ranged from 65% to 74.9%. Women's distances were 10.8% shorter ( P < 0.001) than those of men, but the difference was narrower than either the historical elite women's difference of 14.2% or the 2022 record difference of 13.3%. Age-related decline modeling indicates performance declines significantly past age 40 yr at a rate of 1.08% per year. Altitude had a significant ( P < 0.001) marginal improvement up to 1000 m before declining. The marginal benefits of altitude were small, but this is consistent with the finding benefits reach a maximum at a moderate altitude with "benefits" becoming ambiguous starting at ~1000 m. Technological advancement was estimated to be a small but significant ( P < 0.001) improvement of ~0.18% per year. CONCLUSIONS Across decades of CHR data in well-trained endurance cyclists, men are only ~11% faster, and this difference remains stable until at least age 80 yr. CHR attempts greater than 500 m likely offer at best a small advantage. Despite small year-on-year improvements, the CHR has likely improved more than 10 km because of technological advancements.
Collapse
Affiliation(s)
| | | | - Anna E Fisher
- Department of Exercise Science, Murphy Deming College of Health Sciences, Mary Baldwin University, Staunton, VA
| |
Collapse
|
9
|
Richalet JP, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol 2024; 21:75-88. [PMID: 37783743 DOI: 10.1038/s41569-023-00924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.
Collapse
Affiliation(s)
- Jean-Paul Richalet
- Hypoxie et Poumon, Université Sorbonne Paris Nord, INSERM U1272, Paris, France.
| | - Eric Hermand
- Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR 7369-URePSSS, Université Littoral Côte d'Opale, Université Artois, Université Lille, CHU Lille, Dunkirk, France
| | | |
Collapse
|
10
|
Ducharme JB, McKenna ZJ, Specht JW, Fennel ZJ, Berkemeier QN, Deyhle MR. Divergent mechanisms regulate TLR4 expression on peripheral blood mononuclear cells following workload-matched exercise in normoxic and hypoxic environments. J Appl Physiol (1985) 2024; 136:33-42. [PMID: 37994415 DOI: 10.1152/japplphysiol.00626.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Exercise in hypoxia increases immune responses compared with normoxic exercise, and while Toll-like receptor 4 (TLR4) is implicated in these responses, its regulation remains undefined. The purpose of this study was to 1) investigate TLR4 regulation during workload-matched endurance exercise in normoxic and hypoxic conditions in vivo and 2) determine the independent effects of hypoxia and muscle contractions on TLR4 expression in vitro. Eight recreationally active men cycled for 1 h at 65% of their V̇o2max in normoxia (630 mmHg) and in hypobaric hypoxia (440 mmHg). Exercise in normoxia decreased TLR4 expressed on peripheral blood mononuclear cells (PBMCs), had no effect on the expression of inhibitor of κBα (IκBα), and increased the concentration of soluble TLR4 (sTLR4) in circulation. In contrast, exercise in hypoxia decreased the expression of TLR4 and IκBα in PBMCs, and sTLR4 in circulation. Markers of physiological stress were higher during exercise in hypoxia, correlating with markers of intestinal barrier damage, circulating lipopolysaccharides (LPS), and a concurrent decrease in circulating sTLR4, suggesting heightened TLR4 activation, internalization, and degradation in response to escalating physiological strain. In vitro, both hypoxia and myotube contractions independently, and in combination, reduced TLR4 expressed on C2C12 myotubes, and these effects were dependent on hypoxia-inducible factor 1 (HIF-1). In summary, the regulation of TLR4 varies depending on the physiological stress during exercise. To our knowledge, our study provides the first evidence of exercise-induced effects on sTLR4 in vivo and highlights the essential role of HIF-1 in the reduction of TLR4 during contraction and hypoxia in vitro.NEW & NOTEWORTHY We provide the first evidence of exercise affecting soluble Toll-like receptor 4 (sTLR4), a TLR4 ligand decoy receptor. We found that the degree of exercise-induced physiological stress influences TLR4 regulation on peripheral blood mononuclear cells (PBMCs). Moderate-intensity exercise reduces PBMC TLR4 and increases circulating sTLR4. Conversely, workload-matched exercise in hypoxia induces greater physiological stress, intestinal barrier damage, circulating lipopolysaccharides, and reduces both TLR4 and sTLR4, suggesting heightened TLR4 activation, internalization, and degradation under increased strain.
Collapse
Affiliation(s)
- Jeremy B Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jonathan W Specht
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Quint N Berkemeier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
11
|
Oberholzer L, Aamaas NS, Hallén J. Changes in cycling economy and fractional utilization of V̇O 2peak during a 40-min maximal effort exercise test with acute hypobaric hypoxia corresponding to 2800 m of altitude. Scand J Med Sci Sports 2024; 34:e14511. [PMID: 37828810 DOI: 10.1111/sms.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Peak oxygen uptake (V̇O2peak ) declines by ~7% per 1000 m of increasing altitude, whereas exercise performance seems reduced to a lesser extent. For example, 800-10 000 m track and field performances are decreased by 0.4%-2.4% above 1000 m as compared to below and some studies show similar drops in cycling performance. A greater decline in V̇O2peak than in endurance performance with altitude suggests a higher fractional utilization of V̇O2peak (%V̇O2peak ). Therefore, we hypothesized that the %V̇O2peak is higher with acute hypoxic exposure than near sea level. METHODS Sixteen lowlanders (8 women, age: 31 ± 7 years [mean ± SD], body mass: 68 ± 8 kg, V̇O2peak : 60 ± 8 mL min-1 kg-1 ) underwent cycling testing in a hypobaric hypoxic chamber on 6 test days, three conducted at 300 m and three at 2800 m of acute altitude. At both altitudes, V̇O2peak was determined, and during a 40-min all out maximal effort time trial (TT), mean power output (MPO) and mean V̇O2 (%V̇O2peak ) were assessed. RESULTS V̇O2peak decreased by 11.2 ± 3.0% (p < 0.001), while MPO during the TT declined by 10.7 ± 3.1% (p < 0.001) at 2800 m as compared to 300 m. During the TT, %V̇O2peak was higher at altitude, corresponding to 75.9 ± 4.5% at 300 m and 78.8 ± 4.2% at 2800 m (p = 0.011), and cycling economy (mL O2 kJ-1 ) was poorer (+3.4 ± 2.7%, p < 0.001). CONCLUSION The %V̇O2peak was higher during a cycling TT at 2800 m of altitude than near sea level, while cycling economy was poorer. This resulted in a similar reduction in performance and V̇O2peak . Future studies should address the physiological mechanisms underlying the elevated %V̇O2peak .
Collapse
Affiliation(s)
- Laura Oberholzer
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Jostein Hallén
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
12
|
Faulhaber M, Schneider S, Rausch LK, Dünnwald T, Menz V, Gatterer H, Kennedy MD, Schobersberger W. Repeated Short-Term Bouts of Hyperoxia Improve Aerobic Performance in Acute Hypoxia. J Strength Cond Res 2023; 37:2016-2022. [PMID: 37729514 DOI: 10.1519/jsc.0000000000004502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
ABSTRACT Faulhaber, M, Schneider, S, Rausch, LK, Dünnwald, T, Menz, V, Gatterer, H, Kennedy, MD, and Schobersberger, W. Repeated short-term bouts of hyperoxia improve aerobic performance in acute hypoxia. J Strength Cond Res 37(10): 2016-2022, 2023-This study aimed to test the effects of repeated short-term bouts of hyperoxia on maximal 5-minute cycling performance under acute hypoxic conditions (3,200 m). Seventeen healthy and recreationally trained individuals (7 women and 10 men) participated in this randomized placebo-controlled cross-over trial. The procedures included a maximal cycle ergometer test and 3 maximal 5-minute cycling time trials (TTs). TT1 took place in normoxia and served for habituation and reference. TT2 and TT3 were conducted in normobaric hypoxia (15.0% inspiratory fraction of oxygen). During TT2 and TT3, the subjects were breathing through a face mask during five 15-second periods. The face mask was connected through a nonrebreathing T valve to a 300-L bag filled with 100% oxygen (intermittent hyperoxia) or ambient hypoxic air (placebo). The main outcome was the mean power output during the TT. Statistical significance level was set at p < 0.05. The mean power output was higher in the intermittent hyperoxia compared with the placebo condition (255.5 ± 49.6 W vs. 247.4 ± 48.2 W, p = 0.001). Blood lactate concentration and ratings of perceived exertion were significantly lower by about 9.7 and 7.3%, respectively, in the intermittent hyperoxia compared with the placebo condition, whereas heart rate values were unchanged. IH application increased arterial oxygen saturation (82.9 ± 2.6% to 92.4 ± 3.3%, p < 0.001). Repeated 15-second bouts of hyperoxia, applied during high-intensity exercise in hypoxia, are sufficient to increase power output. Future studies should focus on potential dose-response effects and the involved mechanisms.
Collapse
Affiliation(s)
- Martin Faulhaber
- Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
- Austrian Society of Alpine and High-Altitude Medicine, Mieming, Austria
| | - Sina Schneider
- Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
| | - Linda K Rausch
- Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sport Medicine, Alpine Medicine and Health Tourism (ISAG), Private University for Health Sciences, Medical Informatics and Technology (UMIT Tirol), Tirol, Austria
| | - Verena Menz
- Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Michael D Kennedy
- Faculty of Kinesiology, Sport and Recreation, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; and
| | - Wolfgang Schobersberger
- Institute for Sport Medicine, Alpine Medicine and Health Tourism (ISAG), Private University for Health Sciences, Medical Informatics and Technology (UMIT Tirol), Tirol, Austria
- Institute for Sport Medicine, Alpine Medicine anad Health Tourism (ISAG), Tirol Kliniken GmbH, Innsbruck, Austria
| |
Collapse
|
13
|
Feng X, Zhao L, Chen Y, Wang Z, Lu H, Wang C. Optimal type and dose of hypoxic training for improving maximal aerobic capacity in athletes: a systematic review and Bayesian model-based network meta-analysis. Front Physiol 2023; 14:1223037. [PMID: 37745240 PMCID: PMC10513096 DOI: 10.3389/fphys.2023.1223037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Objective: This study aimed to compare and rank the effect of hypoxic practices on maximum oxygen consumption (VO2max) in athletes and determine the hypoxic dose-response correlation using network meta-analysis. Methods: The Web of Science, PubMed, EMBASE, and EBSCO databases were systematically search for randomized controlled trials on the effect of hypoxc interventions on the VO2max of athletes published from inception until 21 February 2023. Studies that used live-high train-high (LHTH), live-high train-low (LHTL), live-high, train-high/low (HHL), intermittent hypoxic training (IHT), and intermittent hypoxic exposure (IHE) interventions were primarily included. LHTL was further defined according to the type of hypoxic environment (natural and simulated) and the altitude of the training site (low altitude and sea level). A meta-analysis was conducted to determine the standardized mean difference between the effects of various hypoxic interventions on VO2max and dose-response correlation. Furthermore, the hypoxic dosage of the different interventions were coordinated using the "kilometer hour" model. Results: From 2,072 originally identified titles, 59 studies were finally included in this study. After data pooling, LHTL, LHTH, and IHT outperformed normoxic training in improving the VO2max of athletes. According to the P-scores, LHTL combined with low altitude training was the most effective intervention for improving VO2max (natural: 0.92 and simulated: 0.86) and was better than LHTL combined with sea level training (0.56). A reasonable hypoxic dose range for LHTH (470-1,130 kmh) and HL (500-1,415 kmh) was reported with an inverted U-shaped curve relationship. Conclusion: Different types of hypoxic training compared with normoxic training serve as significant approaches for improving aerobic capacity in athletes. Regardless of the type of hypoxic training and the residential condition, LHTL with low altitude training was the most effective intervention. The characteristics of the dose-effect correlation of LHTH and LHTL may be associated with the negative effects of chronic hypoxia.
Collapse
Affiliation(s)
- Xinmiao Feng
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Linlin Zhao
- Sports Coaching College, Beijing Sports University, Beijing, China
| | | | - Zihao Wang
- Capital Institute of Physical Education and Sports, Beijing, Beijing, China
| | - Hongyuan Lu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Chuangang Wang
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
14
|
Yang J, Ye X, Liu Z, Sun M, Yu S, Lv H, Wu B, Zhang C, Gu W, He J, Wang X, Huang L. Effect of ubiquinol on cardiorespiratory fitness during high-altitude acclimatization and de-acclimatization in healthy adults: the Shigatse CARdiorespiratory fitness study design. Front Cardiovasc Med 2023; 10:1129144. [PMID: 37560117 PMCID: PMC10407655 DOI: 10.3389/fcvm.2023.1129144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Cardiorespiratory function influences exercise capacity and is an important determinant of high-altitude adaptation. Some studies have investigated the characteristics of changes in cardiorespiratory fitness during high-altitude acclimatization. However, studies on changes in cardiorespiratory fitness during high-altitude de-acclimatization are still lacking and have not yet been elucidated. Furthermore, few drugs have been studied to improve cardiorespiratory function during both processes. The Shigatse CARdiorespiratory Fitness (SCARF) study is a single-center, randomized, double-blind, placebo-control clinical trial to explore the effects of ubiquinol on cardiorespiratory fitness during high-altitude acclimatization and de-acclimatization in healthy adults. Participants will be randomly assigned 1:1 to ubiquinol 200 mg daily or a placebo for 14 days before departure until the end of data collection after return in 7 days. Cardiorespiratory fitness is the primary outcome, while acute mountain sickness and high-altitude de-acclimatization symptoms are secondary endpoints. In addition, laboratory measurements, including routine blood tests and serological measurements, will be performed. To the best of our knowledge, the SCARF study will be the first to reveal the changes in the cardiorespiratory fitness characteristics during high-altitude acclimatization and de-acclimatization. Furthermore, the results of this study will contribute to exploring whether ubiquinol supplementation could be beneficial for endurance exercise capacity at different altitudes and help improve adaptation to acute hypoxia and de-acclimatization. Clinical Trial Registration: This study has been registered in the Chinese Clinical Trial Register (www.chictr.org.cn) as ChiCTR2200059900 and ChiCTR2200066328.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaowei Ye
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Liu
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Yu
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hailin Lv
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boji Wu
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Zhang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenzhu Gu
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingyu He
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhong Wang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
15
|
Kushwaha AD, Varshney R, Saraswat D. Effect of hypobaric hypoxia on the fiber type transition of skeletal muscle: a synergistic therapy of exercise preconditioning with a nanocurcumin formulation. J Physiol Biochem 2023:10.1007/s13105-023-00965-1. [PMID: 37147493 DOI: 10.1007/s13105-023-00965-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Hypobaric hypoxia (HH) leads to various adverse effects on skeletal muscles, including atrophy and reduced oxidative work capacity. However, the effects of HH on muscle fatigue resistance and myofiber remodeling are largely unexplored. Therefore, the present study aimed to explore the impact of HH on slow-oxidative fibers and to evaluate the ameliorative potential of exercise preconditioning and nanocurcumin formulation on muscle anti-fatigue ability. C2C12 cells (murine myoblasts) were used to assess the effect of hypoxia (0.5%, 24 h) with and without the nanocurcumin formulation (NCF) on myofiber phenotypic conversion. To further validate this hypothesis, male Sprague Dawley rats were exposed to a simulated HH (7620 m) for 7 days, along with NCF administration and/or exercise training. Both in vitro and in vivo studies revealed a significant reduction in slow-oxidative fibers (p < 0.01, 61% vs. normoxia control) under hypoxia. There was also a marked decrease in exhaustion time (p < 0.01, 65% vs. normoxia) in hypoxia control rats, indicating a reduced work capacity. Exercise preconditioning along with NCF supplementation significantly increased the slow-oxidative fiber proportion and exhaustion time while maintaining mitochondrial homeostasis. These findings suggest that HH leads to an increased transition of slow-oxidative fibers to fast glycolytic fibers and increased muscular fatigue. Administration of NCF in combination with exercise preconditioning restored this myofiber remodeling and improved muscle anti-fatigue ability.
Collapse
Affiliation(s)
- Asha D Kushwaha
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054
| | - Rajeev Varshney
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054
| | - Deepika Saraswat
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054.
| |
Collapse
|
16
|
Ušaj A, Sotiridis A, Debevec T. Cardio-Respiratory and Muscle Oxygenation Responses to Submaximal and Maximal Exercise in Normobaric Hypoxia: Comparison between Children and Adults. BIOLOGY 2023; 12:biology12030457. [PMID: 36979149 PMCID: PMC10044758 DOI: 10.3390/biology12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
As differential physiological responses to hypoxic exercise between adults and children remain poorly understood, we aimed to comprehensively characterise cardiorespiratory and muscle oxygenation responses to submaximal and maximal exercise in normobaric hypoxia between the two groups. Following familiarisation, fifteen children (Age = 9 ± 1 years) and fifteen adults (Age = 22 ± 2 years) completed two graded cycling exercise sessions to exhaustion in a randomized and single-blind manner in normoxia (NOR; FiO2 = 20.9) and normobaric hypoxia (HYP; FiO2 = 13.0) exercises conditions. Age-specific workload increments were 25 W·3 min−1 for children and 40 W·3 min−1 for adults. Gas exchange and vastus lateralis oxygenation parameters were measured continuously via metabolic cart and near-infrared spectroscopy, respectively. Hypoxia provoked significant decreases in maximal power output PMAX (children = 29%; adults 16% (F = 39.3; p < 0.01)) and power output at the gas exchange threshold (children = 10%; adults:18% (F = 8.08; p = 0.01)) in both groups. Comparable changes were noted in most respiratory and gas exchange parameters at similar power outputs between groups. Children, however, demonstrated, lower PETCO2 throughout the test at similar power outputs and during the maintenance of V˙CO2 at the maximal power output. These data indicate that, while most cardiorespiratory responses to acute hypoxic exercise are comparable between children and adults, there exist age-related differential responses in select respiratory and muscle oxygenation parameters.
Collapse
Affiliation(s)
- Anton Ušaj
- Faculty of Sport, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alexandros Sotiridis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
17
|
Seiler T, Nakas CT, Brill AK, Hefti U, Hilty MP, Perret-Hoigné E, Sailer J, Kabitz HJ, Merz TM, Pichler Hefti J. Do cardiopulmonary exercise tests predict summit success and acute mountain sickness? A prospective observational field study at extreme altitude. Br J Sports Med 2023:bjsports-2022-106211. [PMID: 36898769 DOI: 10.1136/bjsports-2022-106211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE During a high-altitude expedition, the association of cardiopulmonary exercise testing (CPET) parameters with the risk of developing acute mountain sickness (AMS) and the chance of reaching the summit were investigated. METHODS Thirty-nine subjects underwent maximal CPET at lowlands and during ascent to Mount Himlung Himal (7126 m) at 4844 m, before and after 12 days of acclimatisation, and at 6022 m. Daily records of Lake-Louise-Score (LLS) determined AMS. Participants were categorised as AMS+ if moderate to severe AMS occurred. RESULTS Maximal oxygen uptake (V̇O2max) decreased by 40.5%±13.7% at 6022 m and improved after acclimatisation (all p<0.001). Ventilation at maximal exercise (VEmax) was reduced at 6022 m, but higher VEmax was related to summit success (p=0.031). In the 23 AMS+ subjects (mean LLS 7.4±2.4), a pronounced exercise-induced oxygen desaturation (ΔSpO2exercise) was found after arrival at 4844 m (p=0.005). ΔSpO2exercise >-14.0% identified 74% of participants correctly with a sensitivity of 70% and specificity of 81% for predicting moderate to severe AMS. All 15 summiteers showed higher V̇O2max (p<0.001), and a higher risk of AMS in non-summiteers was suggested but did not reach statistical significance (OR: 3.64 (95% CI: 0.78 to 17.58), p=0.057). V̇O2max ≥49.0 mL/min/kg at lowlands and ≥35.0 mL/min/kg at 4844 m predicted summit success with a sensitivity of 46.7% and 53.3%, and specificity of 83.3% and 91.3%, respectively. CONCLUSION Summiteers were able to sustain higher VEmax throughout the expedition. Baseline V̇O2max below 49.0 mL/min/kg was associated with a high chance of 83.3% for summit failure, when climbing without supplemental oxygen. A pronounced drop of SpO2exercise at 4844 m may identify climbers at higher risk of AMS.
Collapse
Affiliation(s)
- Thomas Seiler
- Department of Pulmonary Medicine, Inselspital,Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christos T Nakas
- Institute of Clinical Chemistry, Inselspital University Hospital, University of Bern, Bern, Switzerland.,Laboratory of Biometry, University of Thessaly, Volos, Greece
| | - Anne-Kathrin Brill
- Department of Pulmonary Medicine, Inselspital,Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urs Hefti
- Swiss Sportclinic, Bern, Switzerland
| | - Matthias Peter Hilty
- Department of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Eveline Perret-Hoigné
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jannis Sailer
- Swiss Sportclinic, Bern, Switzerland.,Orthopedics and Traumatology, Hospital Nidwalden, Stans, Switzerland
| | - Hans-Joachim Kabitz
- Department of Internal Medicine II Pneumology Cardiology Intensive Care Medicine, Klinikum Konstanz, Konstanz, Germany
| | - Tobias M Merz
- Cardiovascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand.,Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, University of Bern, Bern, Switzerland
| | - Jacqueline Pichler Hefti
- Department of Pulmonary Medicine, Inselspital,Bern University Hospital, University of Bern, Bern, Switzerland .,Swiss Sportclinic, Bern, Switzerland
| |
Collapse
|
18
|
Páez V, Rodriguez-Fernandez M, Silva-Urra J, Núñez-Espinosa C, Lang M. Maximal pulmonary ventilation and lactate affect the anaerobic performance in young women exposed to hypobaric hypoxia. Front Physiol 2023; 14:1110477. [PMID: 36846343 PMCID: PMC9945331 DOI: 10.3389/fphys.2023.1110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Athletes, tourists, and mining workers from all over the world ascend daily to an altitude greater than 3.000 meters above sea level to perform different activities, all of which demand physical effort. A ventilation increase is the first mechanism once the chemoreceptors perceive hypoxia, and is key to maintaining blood oxygen levels during acute exposure to high altitudes and to buffering lactic acidosis during exercise. It has been observed that gender is a variable that can influence the ventilatory response. Still, the available literature is limited due to the few studies considering women as study subjects. The influence of gender on anaerobic performance and its effects under high altitudes (HA) environments have been poorly studied. Objective: The objectives of this study were to evaluate anaerobic performance in young women exposed to high altitudes and to compare the physiological response to multiple sprints between women and men measured by ergospirometry. Methodology: Nine women and nine men (22.9 ± 3.2 years old) carried out the multiple-sprint anaerobic tests under two conditions, sea level and high altitudes. Results: In the first 24 h of exposure to a high altitudes, lactate levels were higher in women than those in men (2.57 ± 0.4 Mmol/L, 2.18 ± 0.3 Mmol/L, respectively; p < 0.05). Second, women had a decreased ventilatory response in exposure to high altitudes compared to men (p > 0.005). Third, there is a positive correlation between lactate levels prior to an anaerobic test and the ventilatory response developed by subjects at high altitudes (R2 = 0.33, slope = -41.7, and p < 0.05). Lastly, this ventilatory response can influence VO2peak (R2 = 0.60, slope = 0.02, and p < 0.001). Conclusion: This study provides insights into the mechanisms behind the reduced respiratory capacity observed in women during an anaerobic exercise test at high altitudes. An acute response to HA showed a greater work of breathing and increased the drive ventilatory response. It is possible to postulate the differences in the fatigue-induced metaboreflex of the respiratory muscles and aerobic-anaerobic transition between genders. These results on multiple sprint performance and the influences of gender in hypoxic environments deserve further investigation.
Collapse
Affiliation(s)
- Valeria Páez
- Center for Research in Physiology and Medicine of Altitude, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile,Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Silva-Urra
- Network for Extreme Environmental Research (NEXER), Universidad de Antofagasta, Antofagasta, Chile
| | - Cristian Núñez-Espinosa
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile,Centro Asistencial Docente y de Investigación, CADI-UMAG, Punta Arenas, Chile
| | - Morin Lang
- Center for Research in Physiology and Medicine of Altitude, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile,Network for Extreme Environmental Research (NEXER), Universidad de Antofagasta, Antofagasta, Chile,Department of Rehabilitation Sciences and Human Movement, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile,*Correspondence: Morin Lang,
| |
Collapse
|
19
|
Fornasiero A, Savoldelli A, Zignoli A, Callovini A, Decet M, Bortolan L, Schena F, Pellegrini B. Eager to set a record in a vertical race? Test your VO 2max first! J Sports Sci 2023; 40:2544-2551. [PMID: 36725692 DOI: 10.1080/02640414.2023.2172801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the relationship between maximal oxygen consumption (VO2max) and performance in vertical races (VRs). In total, 270 performances, from 26 VRs, and cardiopulmonary data of 64 highly-trained mountain runners (53 M, V O2max: 75.7±5.8 mL/min/kg; 11 F: 65.7±3.4 mL/min/kg), collected over a 11-year period (2012-2022), were analysed. The relationship between performance and VO2max was modelled separately for national (NVRs), international (IVRs), and VRs of current pole-unassisted and pole-assisted vertical kilometre (VK) records (RVRs). Three different (p<0.001) exponential models described the relationship between performance and VO2max in IVRs (R2=0.96, p<0.001), NRs (R2=0.91, p<0.001) and RVRs (R2=0.97, p<0.001). Estimated VO2max requirements (with 95% CI) to win/set a record time in IVRs were 86.2(85.3-87.1)/89.4(88.2-90.5) and 74.0(73.6-74.4)/76.8(76.4-77.3) mL/min/kg, for males and females, respectively, 86.1(85.0-87.1)/90.4(89.0-91.8) and 74.8(74.2-75.3)/77.1(77.6-77.7) mL/min/kg in RVRs, decreasing to 83.7(82.5-84.9)/87.6(86.0-89.2) and 66.8(65.9-67.7)/70.7(70.1-71.4) mL/min/kg in NVRs. Our study also suggested a tendency towards a non-uniform variation in the metabolic demand of off-road running, likely attributable to the different features of the VRs (e.g., terrain, technical level, use of poles). These data provide mean VO2max requirements for mountain runners to win and establish new records in VRs and stimulate new research on the energy cost of off-road running.
Collapse
Affiliation(s)
- Alessandro Fornasiero
- Department of Neurosciences, Biomedicine and Movement Sciences, CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Aldo Savoldelli
- Department of Neurosciences, Biomedicine and Movement Sciences, CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Zignoli
- Department of Neurosciences, Biomedicine and Movement Sciences, CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.,Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Alexa Callovini
- Department of Neurosciences, Biomedicine and Movement Sciences, CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Decet
- Department of Neurosciences, Biomedicine and Movement Sciences, CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Bortolan
- Department of Neurosciences, Biomedicine and Movement Sciences, CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Barbara Pellegrini
- Department of Neurosciences, Biomedicine and Movement Sciences, CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Mlinar T, Debevec T, Kapus J, Najdenov P, McDonnell AC, Ušaj A, Mekjavic IB, Jaki Mekjavic P. Retinal blood vessel diameters in children and adults exposed to a simulated altitude of 3,000 m. Front Physiol 2023; 14:1026987. [PMID: 36926190 PMCID: PMC10011172 DOI: 10.3389/fphys.2023.1026987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Technological advances have made high-altitude ski slopes easily accessible to skiers of all ages. However, research on the effects of hypoxia experienced during excursions to such altitudes on physiological systems, including the ocular system, in children is scarce. Retinal vessels are embryologically of the same origin as vessels in the brain, and have similar anatomical and physiological characteristics. Thus, any hypoxia-related changes in the morphology of the former may reflect the status of the latter. Objective: To compare the effect of one-day hypoxic exposure, equivalent to the elevation of high-altitude ski resorts in North America and Europe (∼3,000 m), on retinal vessel diameter between adults and children. Methods: 11 adults (age: 40.1 ± 4.1 years) and 8 children (age: 9.3 ± 1.3 years) took part in the study. They spent 3 days at the Olympic Sports Centre Planica (Slovenia; altitude: 940 m). During days 1 and 2 they were exposed to normoxia (FiO2 = 0.209), and day 3 to normobaric hypoxia (FiO2 = 0.162 ± 0.03). Digital high-resolution retinal fundus photographs were obtained in normoxia (Day 2) and hypoxia (Day 3). Central retinal arteriolar equivalent (CRAE) and venular equivalents (CRVE) were determined using an Automated Retinal Image Analyser. Results: Central retinal arteriolar and venular equivalents increased with hypoxia in children (central retinal arteriolar equivalent: 105.32 ± 7.72 µm, hypoxia: 110.13 ± 7.16 µm, central retinal venular equivalent: normoxia: 123.39 ± 8.34 µm, hypoxia: 130.11 ± 8.54 µm) and adults (central retinal arteriolar equivalent: normoxia: 105.35 ± 10.67 µm, hypoxia: 110.77 ± 8.36 µm; central retinal venular equivalent: normoxia: 126.89 ± 7.24 µm, hypoxia: 132.03 ± 9.72 µm), with no main effect of group or group*condition interaction. A main effect of condition on central retinal arteriolar and venular equivalents was observed (central retinal arteriolar equivalent:normoxia: 105.34 ± 9.30 µm, hypoxia: 110.50 ± 7.67 µm, p < 0.001; central retinal venular equivalent: normoxia: 125.41 ± 7.70 µm, hypoxia: 131.22 ± 9.05 µm, p < 0.001). Conclusion: A 20-hour hypoxic exposure significantly increased central retinal arteriolar and venular equivalents in adults and children. These hypoxia-induced increases were not significantly different between the age groups, confirming that vasomotor sensitivity of the retinal vessels to acute hypoxia is comparable between adults and prepubertal children.
Collapse
Affiliation(s)
- Tinkara Mlinar
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kapus
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Najdenov
- Department of Paediatrics, General Hospital Jesenice, Jesenice, Slovenia
| | - Adam C McDonnell
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Anton Ušaj
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Igor B Mekjavic
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Polona Jaki Mekjavic
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Eye Hospital, University Medical Centre, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Furian M, Tannheimer M, Burtscher M. Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease. J Clin Med 2022; 11:6699. [PMID: 36431176 PMCID: PMC9697047 DOI: 10.3390/jcm11226699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Maximal values of aerobic power (VO2max) and peripheral oxygen saturation (SpO2max) decline in parallel with gain in altitude. Whereas this relationship has been well investigated when acutely exposed to high altitude, potential benefits of acclimatization on SpO2 and related VO2max in healthy and diseased individuals have been much less considered. Therefore, this narrative review was primarily aimed to identify relevant literature reporting altitude-dependent changes in determinants, in particular SpO2, of VO2max and effects of acclimatization in athletes, healthy non-athletes, and patients suffering from cardiovascular, respiratory and/or metabolic diseases. Moreover, focus was set on potential differences with regard to baseline exercise performance, age and sex. Main findings of this review emphasize the close association between individual SpO2 and VO2max, and demonstrate similar altitude effects (acute and during acclimatization) in healthy people and those suffering from cardiovascular and metabolic diseases. However, in patients with ventilatory constrains, i.e., chronic obstructive pulmonary disease, steep decline in SpO2 and V̇O2max and reduced potential to acclimatize stress the already low exercise performance. Finally, implications for prevention and therapy are briefly discussed.
Collapse
Affiliation(s)
- Michael Furian
- Pulmonary Division, University Hospital Zurich, 8092 Zurich, Switzerland
- Research Department, Swiss University of Traditional Chinese Medicine, 5330 Bad Zurzach, Switzerland
| | - Markus Tannheimer
- Department of Sport and Rehabilitation Medicine, University of Ulm, 89075 Ulm, Germany
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Wang L, Yang L, Wei B, Li H, Cai H, Huang J, Yuan X. Incorporating Exercise Efficiency to Evaluate the Accessibility and Capacity of Medical Resources in Tibet, China. CHINESE GEOGRAPHICAL SCIENCE 2022; 33:175-188. [PMID: 36405373 PMCID: PMC9641690 DOI: 10.1007/s11769-022-1321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Accessibility and capacity of medical resources are key for the health care and emergency response, while the efficiency of the medical resources is very much limited by hypoxia in Tibet, China. Through introducing exercise efficiency, this study explores the accessibility of township residence to county-ship medical resources in Tibet using weighted mean travel time (WMT), and evaluates the medical capacity accordingly. The results show that: 1) the average travel time of township residence to county-level hospital is around 2 h by motor vehicle in Tibet. More than half of the population can not reach the county-ship hospital within 1 h, 33.24% of the population can not reach within 2 h, and 3.75% of the population can not reach within 6 h. 2) When considering the catchment of the medical resources and the population size, the WMT of the county-ship medical resources ranges from 0.25 h to 10.92 h. 3) After adjusted by travel time and exercise efficiency, the county-ship medical capacity became more unequal, with 38 out of 74 counties could not meet the national guideline of 1.8 medical beds per 1000. 4) In total, there are 17 counties with good WMT and sufficient medical resources, while 13 counties having very high WMT and low capacity of medical resources in Tibet. In the end, suggestions on medical resources relocation and to improve the capacity are provided. This study provides a method to incorporate exercise efficiency to access the accessibility and evaluate medical capacity that can be applied in high altitude ranges. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11769-022-1321-1.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongyan Cai
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jixia Huang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083 China
| | - Xing Yuan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
23
|
Effects of Acute Moderate Hypoxia versus Normoxia on Metabolic and Cardiac Function and Skeletal Muscle Oxygenation during Endurance Exercise at the Same Heart Rate Level. Metabolites 2022; 12:metabo12100975. [PMID: 36295877 PMCID: PMC9609186 DOI: 10.3390/metabo12100975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the effects of acute moderate hypoxia (HYP), compared with those of normoxia (NORM), during endurance exercise with the same HR level on metabolic function, skeletal muscle oxygenation, and cardiac function. Twelve healthy men (aged 25.1 ± 2.3 years) completed 30 min of endurance exercise using a cycle ergometer with the same HR level (136.5 ± 1.5 bpm) corresponding to 70% maximal heart rate (HRmax) under NORM (760 mmHg) and HYP (526 mmHg, simulated 3000 m altitude) after a 30 min exposure in the respective environments on different days, in random order. Exercise load, rating of perceived exertion (RPE), metabolic function (saturation of percutaneous oxygen; SpO2, minute ventilation; oxygen uptake; VO2, carbon dioxide excretion; respiratory exchange ratio; RER, and oxygen pulse), skeletal muscle oxygen profiles (oxyhemoglobin, oxhb, deoxyhemoglobin, dxhb, total hemoglobin, and tissue oxygenation index; StO2), and cardiac function (heart rate, stroke volume, cardiac output, end-diastolic volume, end-systolic volume, and ejection fraction) were measured during endurance exercise. HYP showed a lower exercise load with the same RPE during exercise than did NORM. In addition, HYP showed a lower SpO2, VO2, oxygen pulse, oxhb, and StO2, and a higher RER and dxhb during exercise than NORM. We found that HYP showed lower exercise load and VO2 at the same RPE than NORM and also confirmed a higher anaerobic metabolism and oxygen inflow into skeletal muscle tissue due to the limitation of oxygen delivery capacity.
Collapse
|
24
|
Zhong Z, Dong H, Wu Y, Zhou S, Li H, Huang P, Tian H, Li X, Xiao H, Yang T, Xiong K, Zhang G, Tang Z, Li Y, Fan X, Yuan C, Ning J, Li Y, Xie J, Li P. Remote ischemic preconditioning enhances aerobic performance by accelerating regional oxygenation and improving cardiac function during acute hypobaric hypoxia exposure. Front Physiol 2022; 13:950086. [PMID: 36160840 PMCID: PMC9500473 DOI: 10.3389/fphys.2022.950086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) may improve exercise performance. However, the influence of RIPC on aerobic performance and underlying physiological mechanisms during hypobaric hypoxia (HH) exposure remains relatively uncertain. Here, we systematically evaluated the potential performance benefits and underlying mechanisms of RIPC during HH exposure. Seventy-nine healthy participants were randomly assigned to receive sham intervention or RIPC (4 × 5 min occlusion 180 mm Hg/reperfusion 0 mm Hg, bilaterally on the upper arms) for 8 consecutive days in phases 1 (24 participants) and phase 2 (55 participants). In the phases 1, we measured the change in maximal oxygen uptake capacity (VO2max) and muscle oxygenation (SmO2) on the leg during a graded exercise test. We also measured regional cerebral oxygenation (rSO2) on the forehead. These measures and physiological variables, such as cardiovascular hemodynamic parameters and heart rate variability index, were used to evaluate the intervention effect of RIPC on the changes in bodily functions caused by HH exposure. In the phase 2, plasma protein mass spectrometry was then performed after RIPC intervention, and the results were further evaluated using ELISA tests to assess possible mechanisms. The results suggested that RIPC intervention improved VO2max (11.29%) and accelerated both the maximum (18.13%) and minimum (53%) values of SmO2 and rSO2 (6.88%) compared to sham intervention in hypobaric hypoxia exposure. Cardiovascular hemodynamic parameters (SV, SVRI, PPV% and SpMet%) and the heart rate variability index (Mean RR, Mean HR, RMSSD, pNN50, Lfnu, Hfnu, SD1, SD2/SD1, ApEn, SampEn, DFA1and DFA2) were evaluated. Protein sequence analysis showed 42 unregulated and six downregulated proteins in the plasma of the RIPC group compared to the sham group after HH exposure. Three proteins, thymosin β4 (Tβ4), heat shock protein-70 (HSP70), and heat shock protein-90 (HSP90), were significantly altered in the plasma of the RIPC group before and after HH exposure. Our data demonstrated that in acute HH exposure, RIPC mitigates the decline in VO2max and regional oxygenation, as well as physiological variables, such as cardiovascular hemodynamic parameters and the heart rate variability index, by influencing plasma Tβ4, HSP70, and HSP90. These data suggest that RIPC may be beneficial for acute HH exposure.
Collapse
Affiliation(s)
- Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoxu Li
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Heng Xiao
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Yang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kun Xiong
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Zhang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhongwei Tang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xueying Fan
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Yuan
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaolin Ning
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Li
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| |
Collapse
|
25
|
Rupp T, Saugy JJ, Bourdillon N, Millet GP. Brain-muscle interplay during endurance self-paced exercise in normobaric and hypobaric hypoxia. Front Physiol 2022; 13:893872. [PMID: 36091393 PMCID: PMC9453479 DOI: 10.3389/fphys.2022.893872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: Hypoxia is one major environmental factor, supposed to mediate central motor command as well as afferent feedbacks at rest and during exercise. By using a comparison of normobaric (NH) and hypobaric (HH) hypoxia with the same ambient pressure in oxygen, we examined the potential differences on the cerebrovascular and muscular regulation interplay during a self-paced aerobic exercise. Methods: Sixteen healthy subjects performed three cycling time-trials (250 kJ) in three conditions: HH, NH and normobaric normoxia (NN) after 24 h of exposure. Cerebral and muscular oxygenation were assessed by near-infrared spectroscopy, cerebral blood flow by Doppler ultrasound system. Gas exchanges, peripheral oxygen saturation, power output and associated pacing strategies were also continuously assessed. Results: The cerebral oxygen delivery was lower in hypoxia than in NN but decreased similarly in both hypoxic conditions. Overall performance and pacing were significantly more down-regulated in HH versus NH, in conjunction with more impaired systemic (e.g. saturation and cerebral blood flow) and prefrontal cortex oxygenation during exercise. Conclusions: The difference in pacing was likely the consequence of a complex interplay between systemic alterations and cerebral oxygenation observed in HH compared to NH, aiming to maintain an equivalent cerebral oxygen delivery despite higher adaptive cost (lower absolute power output for the same relative exercise intensity) in HH compared to NH.
Collapse
Affiliation(s)
- Thomas Rupp
- LIBM, Inter-university Laboratory of Human Movement Science, University Savoie Mont Blanc, Chambéry, France
| | - Jonas J. Saugy
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P. Millet
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Grégoire P. Millet,
| |
Collapse
|
26
|
Lloyd A, Fiala D, Heyde C, Havenith G. A mathematical model for predicting cardiovascular responses at rest and during exercise in demanding environmental conditions. J Appl Physiol (1985) 2022; 133:247-261. [PMID: 35652831 PMCID: PMC9342140 DOI: 10.1152/japplphysiol.00619.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present research describes the development and validation of a cardiovascular model (CVR Model) for use in conjunction with advanced thermophysiological models, where usually only a total cardiac output is estimated. The CVR Model detailed herein estimates cardio-dynamic parameters (changes in cardiac output, stroke volume, and heart rate), regional blood flow, and muscle oxygen extraction, in response to rest and physical workloads, across a range of ages and aerobic fitness levels, as well as during exposure to heat, dehydration, and altitude. The model development strategy was to first establish basic resting and exercise predictions for cardio-dynamic parameters in an "ideal" environment (cool, sea level, and hydrated person). This basic model was then advanced for increasing levels of altitude, heat strain, and dehydration, using meta-analysis and reaggregation of published data. Using the estimated altitude- and heat-induced changes in maximum oxygen extraction and maximum cardiac output, the decline in maximum oxygen consumption at high altitude and in the heat was also modeled. A validation of predicted cardiovascular strain using heart rate was conducted using a dataset of 101 heterogeneous individuals (1,371 data points) during rest and exercise in the heat and at altitude, demonstrating that the CVR Model performs well (R2 = 0.82-0.84) in predicting cardiovascular strain, particularly at a group mean level (R2 = 0.97). The development of the CVR Model is aimed at providing the Fiala thermal Physiology & Comfort (FPC) Model and other complex thermophysiological models with improved estimations of cardiac strain and exercise tolerance, across a range of individuals during acute exposure to environmental stressors.NEW & NOTEWORTHY The present research promotes the adaption of thermophysiological modeling to the estimation of cardiovascular strain in individuals exercising under acute environmental stress. Integration with advanced models of human thermoregulation opens doors for detailed numerical analysis of athletes' performance and physiology during exercise, occupational safety, and individual work tolerability. The research provides a simple-to-validate metric of cardiovascular function (heart rate), as well as a method to evaluate key principles influencing exercise- and thermoregulation in humans.
Collapse
Affiliation(s)
- Alex Lloyd
- 1Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Dusan Fiala
- 2ERGONSIM—Human Thermal Modelling, Messstetten, Germany
| | | | - George Havenith
- 1Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
27
|
Mateo-March M, Muriel X, Valenzuela PL, Gandia-Soriano A, Zabala M, Barranco-Gil D, Pallarés JG, Lucia A. Altitude and Endurance Performance in Altitude Natives versus Lowlanders: Insights from Professional Cycling. Med Sci Sports Exerc 2022; 54:1218-1224. [PMID: 35142712 DOI: 10.1249/mss.0000000000002890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Acute altitude exposure influences exercise performance, although most research, especially regarding altitude natives, comes from laboratory data in nonathletes. PURPOSE We analyzed the influence of altitude on real-world cycling performance in top-level professional cyclists attending to whether they were altitude natives or not. METHODS Thirty-three male cyclists (29 ± 5 yr) were studied and were classified as lowlanders (n = 19) or altitude natives (n = 14) attending to the altitude of their place of birth (431 ± 380 and 2583 ± 334 meters above sea level (m a.s.l.), respectively). Both groups included top 3 finishers (including winners) in the general classification of Grand Tours and major races. Using data from both training and competitions during years 2013-2020 (8 ± 5 seasons per cyclist), we registered participants' mean maximal power (MMP) for efforts lasting 5 s, 30 s, 5 min, and 10 min, respectively, at altitudes ranging from 0-500 to >2000 m a.s.l. RESULTS A significant altitude-MMP interaction effect (two-factor repeated-measures ANOVA) was found in lowlanders (P < 0.001) but not in altitude natives (P = 0.150). In lowlanders, individual performance decreased in a dose-response manner with increasing altitudes compared with sea (or near-sea) level (0-500 m a.s.l.), whereas this trend was much less evident in natives. A significant altitude-MMP-group effect was found (P < 0.001), with nonsignificant (and overall trivial-to-small differences) between lowlanders and altitude natives for any effort duration at altitudes ≤1500 m a.s.l. but with significant differences at higher altitudes (≥1501 m a.s.l.). CONCLUSIONS Acute altitude exposure influences real-world performance differently in low landers and altitude natives, which might confer a competitive advantage to the latter, particularly in races including efforts at >1500 m a.s.l.
Collapse
Affiliation(s)
| | - Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, SPAIN
| | - Pedro L Valenzuela
- Instituto de Investigación Hospital 12 de Octubre (imas12), Grupo de Investigación en Actividad Física y Salud (PaHerg), Madrid, SPAIN
| | - Alexis Gandia-Soriano
- Biophysics and Medical Physics Group (GIFIME), Department of Physiology, University of Valencia, Valencia, SPAIN
| | - Mikel Zabala
- Department of Physical Education & Sport, Faculty of Sport Sciences, University of Granada, Granada, SPAIN
| | | | - Jesús G Pallarés
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, SPAIN
| | | |
Collapse
|
28
|
Saugy JJ, Schmoutz T, Botrè F. Altitude and Erythropoietin: Comparative Evaluation of Their Impact on Key Parameters of the Athlete Biological Passport: A Review. Front Sports Act Living 2022; 4:864532. [PMID: 35847455 PMCID: PMC9282833 DOI: 10.3389/fspor.2022.864532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The hematological module of the Athlete's Biological Passport (ABP) identifies doping methods and/or substances used to increase the blood's capacity to transport or deliver oxygen to the tissues. Recombinant human erythropoietin (rhEPOs) are doping substances known to boost the production of red blood cells and might have an effect on the blood biomarkers of the ABP. However, hypoxic exposure influences these biomarkers similarly to rhEPOs. This analogous impact complicates the ABP profiles' interpretation by antidoping experts. The present study aimed to collect and identify, through a literature search, the physiological effects on ABP blood biomarkers induced by these external factors. A total of 43 studies were selected for this review. A positive correlation (R2 = 0.605, r = 0.778, p < 0.001) was identified between the hypoxic dose and the increase in hemoglobin concentration (HGB) percentage. In addition, the change in the reticulocyte percentage (RET%) has been identified as one of the most sensitive parameters to rhEPO use. The mean effects of rhEPO on blood parameters were greater than those induced by hypoxic exposure (1.7 times higher for HGB and RET% and 4 times higher for hemoglobin mass). However, rhEPO micro-doses have shown effects that are hardly distinguishable from those identified after hypoxic exposure. The results of the literature search allowed to identify temporal and quantitative evolution of blood parameters in connection with different hypoxic exposure doses, as well as different rhEPOs doses. This might be considered to provide justified and well-documented interpretations of physiological changes in blood parameters of the Athlete Biological Passport.
Collapse
Affiliation(s)
- Jonas J. Saugy
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
- *Correspondence: Jonas J. Saugy
| | - Tania Schmoutz
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Francesco Botrè
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Ochi G, Kuwamizu R, Suwabe K, Fukuie T, Hyodo K, Soya H. Cognitive fatigue due to exercise under normobaric hypoxia is related to hypoxemia during exercise. Sci Rep 2022; 12:9835. [PMID: 35764684 PMCID: PMC9240057 DOI: 10.1038/s41598-022-14146-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
We previously found that a 10-min bout of moderate-intensity exercise (50% maximal oxygen uptake) under normobaric and hypoxic conditions (fraction of inspired oxygen [[Formula: see text]] = 0.135) reduced executive performance and neural activity in the left dorsolateral prefrontal cortex (DLPFC). To examine whether this cognitive fatigue is due to a decrease in SpO2 during exercise, we compared executive performance and related prefrontal activation between two experimental conditions, in which the participants inhaled normobaric hypoxic gas ([Formula: see text]= 0.135) (hypoxic exercise [HE]) or hypoxic gas adjusted so that SpO2 during exercise remained at the resting level (milder hypoxic exercise [ME]). ME condition showed that reaction time in executive performance decreased (t[13] = 2.228, P < 0.05, d = 0.34, paired t-test) and left DLPFC activity increased (t[13] = -2.376, P < 0.05, d = 0.63, paired t-test) after exercise compared with HE condition. These results showed that the HE-induced reductions in the left DLPFC activity and executive performance were both suppressed in the ME condition, supporting the hypothesis that exercise-induced cognitive fatigue under hypoxic environment is due to hypoxemia during exercise. This may lead to the development of a method of coping with cognitive fatigue due to exercise that causes hypoxemia.
Collapse
Affiliation(s)
- Genta Ochi
- Faculty of Health Sciences, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, 950-3198, Japan.,Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan.,Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
| | - Kazuya Suwabe
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan.,Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan.,Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ibaraki, 301-8555, Japan
| | - Takemune Fukuie
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
| | - Kazuki Hyodo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, 192-0001, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan. .,Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan.
| |
Collapse
|
30
|
Hohenauer E, Freitag L, Herten M, Siallagan J, Pollock E, Taube W, Clijsen R. The Methodological Quality of Studies Investigating the Acute Effects of Exercise During Hypoxia Over the Past 40 years: A Systematic Review. Front Physiol 2022; 13:919359. [PMID: 35784889 PMCID: PMC9243659 DOI: 10.3389/fphys.2022.919359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Exercise under hypoxia and the physiological impact compared to normoxia or hypoxia has gained attention in the last decades. However, methodological quality assessment of articles in this area is lacking in the literature. Therefore, this article aimed to evaluate the methodologic quality of trials studying exercise under hypoxia. An electronic search was conducted until December 2021. The search was conducted in PubMed, CENTRAL, and PEDro using the PICO model. (P) Participants had to be healthy, (I) exercise under normobaric or hypobaric hypoxia had to be (C) compared to exercise in normoxia or hypoxia on (O) any physiological outcome. The 11-item PEDro scale was used to assess the methodological quality (internal validity) of the studies. A linear regression model was used to evaluate the evolution of trials in this area, using the total PEDro score of the rated trials. A total of n = 81 studies met the inclusion criteria and were processed in this study. With a mean score of 5.1 ± 0.9 between the years 1982 and 2021, the mean methodological quality can be described as "fair." Only one study reached the highest score of 8/10, and n = 2 studies reached the lowest observed value of 3/10. The linear regression showed an increase of the PEDro score of 0.1 points per decade. A positive and small tendency toward increased methodologic quality was observed. The current results demonstrate that a positive and small tendency can be seen for the increase in the methodological quality in the field of exercise science under hypoxia. A "good" methodological quality, reaching a PEDro score of 6 points can be expected in the year 2063, using a linear regression model analysis. To accelerate this process, future research should ensure that methodological quality criteria are already included during the planning phase of a study.
Collapse
Affiliation(s)
- Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Livia Freitag
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Miriam Herten
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Julia Siallagan
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Elke Pollock
- Department of Physiotherapy, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
31
|
Differences in stress response between two altitudes assessed by salivary cortisol levels within circadian rhythms in long-distance runners. Sci Rep 2022; 12:9749. [PMID: 35697776 PMCID: PMC9192635 DOI: 10.1038/s41598-022-13965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
There are conflicting reports regarding the efficacy of cortisol as a stress marker in altitude training due to the influence of the circadian rhythm. This study aimed to verify whether the automated measurement of salivary cortisol concentration via sequential sampling could detect the differences in exercise stress between two altitudes. We enrolled 12 elite female long-distance runners living near sea level. For the first higher-altitude camp, the runners lived at 1800 m and trained at 1700 m for 7 days. For the second lower-altitude camp, they lived at 1550 m and trained at 1300 m for 7 days. Their saliva was sequentially collected on the last 2 days during each camp which involved different intensity exercises in the morning and afternoon. The salivary cortisol concentrations were measured using electrochemiluminescence immunoassay. Before dinner, the basal salivary cortisol concentrations were significantly higher in the higher-altitude camp. The rate of change in the salivary cortisol concentration during the morning exercise was significantly higher in the higher-altitude camp than in lower-altitude camp (p = 0.028) despite the same exercise programs and intensities. Salivary cortisol level measurements during the athletes' circadian rhythms could detect the differences in acclimatization and exercise stress between two altitudes.
Collapse
|
32
|
Hallam L, Ducharme J, Mang Z, Amorim F. The role of the anaerobic speed reserve in female middle-distance running. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Christensen DL, Jørgensen SW, Koch LS, Nordsborg NB, Sironga J, Ramaiya KL, Larsen S, Brage S, Bygbjerg IC, Maro VP, Helge JW. Directly measured aerobic fitness in male Maasai of Tanzania. Am J Hum Biol 2022; 34:e23674. [PMID: 34487396 PMCID: PMC7613916 DOI: 10.1002/ajhb.23674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/10/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The agro-pastoralist Maasai of East Africa are highly physically active, but their aerobic fitness has so far only been estimated using heart rate (HR) response to submaximal exercise and not directly measured. Thus, we aimed to measure aerobic fitness directly using respiratory gas analysis in a group of Maasai, and habitual physical activity energy expenditure (PAEE) as explanatory variable. METHODS In total, 21 (10 rural, 11 semi-urban) of 30 volunteering Tanzanian Maasai men were eligible to participate. Respiratory gas exchange was measured during a graded exercise test until exhaustion on a stationary bicycle to determine aerobic fitness. Maximal effort criteria were at least two of the following (1) leveling off, (2) respiratory exchange ratio (RER) >1.10, and (3) maximum HR within 10 bpm of age-estimated maximum HR. Habitual PAEE was estimated using combined accelerometry and HR monitoring. Anthropometry, biochemistry, blood pressure, resting HR, and dietary intake information were collected for background information. RESULTS Mean age was 43.2 (range 26-60) years, and hemoglobin was higher in the rural versus semi-urban Maasai (16.9 vs. 15.4 g/dl, p = .02). Mean aerobic fitness (34.4 vs. 33.3 mlO2 /min/kg, p = .79), and mean PAEE (58.5 vs. 52.9 kJ/day/kg, p = .64) were similar in rural and semi-urban Maasai, respectively. CONCLUSIONS Aerobic fitness was low to moderate in male rural and semi-urban Maasai. This may be explained by relatively low PAEE in comparison to previous objectively measured activity levels in Maasai, which indicates recent lifestyle changes.
Collapse
Affiliation(s)
| | - Sine W. Jørgensen
- Section of Endocrinology, Copenhagen University Hospital (Slagelse), Denmark
| | - Lars S. Koch
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Nikolai B. Nordsborg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Steen Larsen
- Center of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Søren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ib C. Bygbjerg
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Venance P. Maro
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jørn W. Helge
- Center of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Fagher K, Baumgart JK, Solli GS, Holmberg HC, Lexell J, Sandbakk Ø. Preparing for snow-sport events at the Paralympic Games in Beijing in 2022: recommendations and remaining questions. BMJ Open Sport Exerc Med 2022; 8:e001294. [PMID: 35295372 PMCID: PMC8867376 DOI: 10.1136/bmjsem-2021-001294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
During the 2022 Winter Paralympic Games in Beijing, the Para snow-sport events will be held at high altitudes and in possibly cold conditions while also requiring adjustment to several time zones. Furthermore, the ongoing COVID-19 pandemic may lead to suboptimal preparations. Another concern is the high rate of injuries that have been reported in the Para alpine and snowboard events. In addition to these challenges, Para athletes various impairments may affect both sports-specific demands and athlete health. However, the group of Para snow-sport athletes is an understudied population. Accordingly, this perspective paper summarises current knowledge to consider when preparing for the Paralympic Games in Beijing and point out important unanswered questions. We here focus specifically on how sport-specific demands and impairment-related considerations are influenced by altitude acclimatisation, cold conditions, travel fatigue and jetlag, complications due to the COVID-19 pandemic, and injury prevention and sports safety considerations. As Para athletes with spinal cord injury, limb deficiency, cerebral palsy and visual impairment account for the majority of the Para snow-sport athletes, the focus is mainly on these impairment groups. In brief, we highlight the extra caution required to ensure athlete health, performance and sports safety among Para athletes participating in the snow-sport events in the 2022 Beijing Paralympic Games. Although there is an urgent need for more high-quality research focusing on Para winter athletes, we hope these non-consensus recommendations will help prepare for the 2022 Beijing Paralympic Winter Games.
Collapse
Affiliation(s)
- K Fagher
- Department of Health Sciences, Lund University, Lund, Sweden
- The Swedish Paralympic Committee, Stockholm, Sweden
| | - J K Baumgart
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - G S Solli
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sports Science and Physical Education, Nord University, Bodo, Norway
| | - H C Holmberg
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - J Lexell
- Department of Health Sciences, Lund University, Lund, Sweden
- The Medical Committee, The International Paralympic Committee, Bonn, Germany
| | - Ø Sandbakk
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
35
|
Scalzo RL, Schauer IE, Rafferty D, Knaub LA, Kvaratskhelia N, Johnson TK, Pott GB, Abushamat LA, Whipple MO, Huebschmann AG, Cree-Green M, Reusch JEB, Regensteiner JG. Single-leg exercise training augments in vivo skeletal muscle oxidative flux and vascular content and function in adults with type 2 diabetes. J Physiol 2022; 600:963-978. [PMID: 33569797 PMCID: PMC9006339 DOI: 10.1113/jp280603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS People with type 2 diabetes (T2D) have impaired skeletal muscle oxidative flux due to limited oxygen delivery. In the current study, this impairment in oxidative flux in people with T2D was abrogated with a single-leg exercise training protocol. Additionally, single-leg exercise training increased skeletal muscle CD31 content, calf blood flow and state 4 mitochondrial respiration in all participants. ABSTRACT Cardiorespiratory fitness is impaired in type 2 diabetes (T2D), conferring significant cardiovascular risk in this population; interventions are needed. Previously, we reported that a T2D-associated decrement in skeletal muscle oxidative flux is ameliorated with acute use of supplemental oxygen, suggesting that skeletal muscle oxygenation is rate-limiting to in vivo mitochondrial oxidative flux during exercise in T2D. We hypothesized that single-leg exercise training (SLET) would improve the T2D-specific impairment in in vivo mitochondrial oxidative flux during exercise. Adults with (n = 19) and without T2D (n = 22) with similar body mass indexes and levels of physical activity participated in two weeks of SLET. Following SLET, in vivo oxidative flux measured by 31 P-MRS increased in participants with T2D, but not people without T2D, measured by the increase in initial phosphocreatine synthesis (P = 0.0455 for the group × exercise interaction) and maximum rate of oxidative ATP synthesis (P = 0.0286 for the interaction). Additionally, oxidative phosphorylation increased in all participants with SLET (P = 0.0209). After SLET, there was no effect of supplemental oxygen on any of the in vivo oxidative flux measurements in either group (P > 0.02), consistent with resolution of the T2D-associated oxygen limitation previously observed at baseline in subjects with T2D. State 4 mitochondrial respiration also improved in muscle fibres ex vivo. Skeletal muscle vasculature content and calf blood flow increased in all participants with SLET (P < 0.0040); oxygen extraction in the calf increased only in T2D (P = 0.0461). SLET resolves the T2D-associated impairment of skeletal muscle in vivo mitochondrial oxidative flux potentially through improved effective blood flow/oxygen delivery.
Collapse
Affiliation(s)
- Rebecca L Scalzo
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Irene E Schauer
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Deirdre Rafferty
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Leslie A Knaub
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Nina Kvaratskhelia
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Taro Kaelix Johnson
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gregory B Pott
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Layla A Abushamat
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Mary O Whipple
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amy G Huebschmann
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Melanie Cree-Green
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jane E B Reusch
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Judith G Regensteiner
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
36
|
Metabolic, Cardiac, and Hemorheological Responses to Submaximal Exercise under Light and Moderate Hypobaric Hypoxia in Healthy Men. BIOLOGY 2022; 11:biology11010144. [PMID: 35053141 PMCID: PMC8772706 DOI: 10.3390/biology11010144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary The lower atmospheric partial pressure of oxygen under hypobaric hypoxia decreases oxygen saturation and arteriovenous oxygen difference. Exercise under hypoxia decreases arterial oxygen saturation, which reduces the ability to deliver oxygen to active muscles and consequently worsens aerobic capacity and exercise performance. Previous studies on metabolic and cardiac responses to submaximal exercise under hypoxia have been well documented, but information on hemorheological responses is relatively insufficient. In this regard, a review of hemorheological responses to exercise under hypoxia could provide further information on reduced aerobic capacity and exercise performance caused by acute hypoxia. We conducted a randomized crossover trial to compare the effects of acute exercise under light and moderate hypobaric hypoxia versus normoxia on metabolic parameters, cardiac function, and hemorheological properties in healthy men. The main findings of our study revealed that endurance submaximal exercise under light (596 mmHg, simulated 2000 m) and moderate (526 mmHg, simulated 3000 m) hypoxia induced greater metabolic and cardiac responses than exercise under normoxia. However, exercise under hypobaric hypoxia did not affect hemorheological properties, including erythrocyte deformability and aggregation. These results can be used as basic data for understanding hemorheological responses in light and moderate hypobaric hypoxia. Abstract We compared the effects of metabolic, cardiac, and hemorheological responses to submaximal exercise under light hypoxia (LH) and moderate hypoxia (MH) versus normoxia (N). Ten healthy men (aged 21.3 ± 1.0 years) completed 30 min submaximal exercise corresponding to 60% maximal oxygen uptake at normoxia on a cycle ergometer under normoxia (760 mmHg), light hypoxia (596 mmHg, simulated 2000 m altitude), and moderate hypoxia (526 mmHg, simulated 3000 m altitude) after a 30 min exposure in the respective environments on different days, in a random order. Metabolic parameters (oxygen saturation (SPO2), minute ventilation, oxygen uptake, carbon dioxide excretion, respiratory exchange ratio, and blood lactate), cardiac function (heart rate (HR), stroke volume, cardiac output, and ejection fraction), and hemorheological properties (erythrocyte deformability and aggregation) were measured at rest and 5, 10, 15, and 30 min after exercise. SPO2 significantly reduced as hypoxia became more severe (MH > LH > N), and blood lactate was significantly higher in the MH than in the LH and N groups. HR significantly increased in the MH and LH groups compared to the N group. There was no significant difference in hemorheological properties, including erythrocyte deformability and aggregation. Thus, submaximal exercise under light/moderate hypoxia induced greater metabolic and cardiac responses but did not affect hemorheological properties.
Collapse
|
37
|
Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC. Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 2022; 12:763933. [PMID: 35095551 PMCID: PMC8795792 DOI: 10.3389/fphys.2021.763933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Chad C. Wiggins,
| |
Collapse
|
38
|
Li Y, Li J, Atakan MM, Wang Z, Hu Y, Nazif M, Zarekookandeh N, Ye HZ, Kuang J, Ferri A, Petersen A, Garnham A, Bishop DJ, Girard O, Huang Y, Yan X. Methods to match high-intensity interval exercise intensity in hypoxia and normoxia - A pilot study. J Exerc Sci Fit 2022; 20:70-76. [PMID: 35024050 PMCID: PMC8728434 DOI: 10.1016/j.jesf.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to compare high-intensity interval exercise (HIIE) sessions prescribed on the basis of a maximal value (peak power output, PPO) and a submaximal value (lactate threshold, LT) derived from graded exercise tests (GXTs) in normoxia and hypoxia. Methods: A total of ten males (aged 18–37) volunteered to participate in this study. The experimental protocol consisted of a familiarization procedure, two GXTs under normoxia (FiO2 = 0.209) and two GXTs under normobaric hypoxia (FiO2 = 0.140), and three HIIE sessions performed in a random order. The HIIE sessions included one at hypoxia (HY) and two at normoxia (one matched for the absolute intensity in hypoxia, designated as NA, and one matched for the relative intensity in hypoxia, designated as NR). Results: The data demonstrated that there was significant lower peak oxygen uptake (V̇O2peak), peak heart rate (HRpeak), PPO, and LT derived from GXTs in hypoxia, with higher respiratory exchange ratio (RER), when compared to those from GXTs performed in normoxia (p < 0.001). Among the three HIIE sessions, the NA session resulted in lower percentage of HRpeak (85.0 ± 7.5% vs 94.4 ± 5.0%; p = 0.002) and V̇O2peak (74.1 ± 9.1% vs 88.7 ± 7.7%; p = 0.005), when compared to the NR session. HIIE sessions in HY and NR resulted in similar percentage of HRpeak and V̇O2peak, as well as similar rating of perceived exertion and RER. The blood lactate level increased immediately after all the three HIIE sessions (p < 0.001), while higher blood lactate concentrations were observed immediately after the HY (p = 0.0003) and NR (p = 0.014) sessions when compared with NA. Conclusion: Combining of PPO and LT derived from GXTs can be used to prescribe exercise intensity of HIIE in hypoxia.
Collapse
Affiliation(s)
- Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, 100084, China
| | - Jia Li
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia.,College of Physical Education, Southwest University, Chongqin, China
| | - Muhammed M Atakan
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia.,Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, 06800, Turkey
| | - Zhenhuan Wang
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, 100084, China
| | - Mostafa Nazif
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia
| | - Navabeh Zarekookandeh
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia
| | - Henry Zhihong Ye
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Jujiao Kuang
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia.,Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, 3021, Australia
| | - Alessandra Ferri
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia
| | - Aaron Petersen
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia
| | - Andrew Garnham
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia
| | - David J Bishop
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia
| | - Olivier Girard
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yaru Huang
- Department of Physical Education and Art, China Agricultural University, Beijing, 100083, China
| | - Xu Yan
- Institute for Health and Sport,(iHeS), Victoria University, Melbourne, 3011, Australia.,Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, 3021, Australia.,Department of Medicine - Western Health, The University of Melbourne, Melbourne, 3021, Australia
| |
Collapse
|
39
|
Płoszczyca K, Chalimoniuk M, Przybylska I, Czuba M. Effects of Short-Term Phosphate Loading on Aerobic Capacity under Acute Hypoxia in Cyclists: A Randomized, Placebo-Controlled, Crossover Study. Nutrients 2022; 14:236. [PMID: 35057416 PMCID: PMC8778537 DOI: 10.3390/nu14020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the effects of sodium phosphate (SP) supplementation on aerobic capacity in hypoxia. Twenty-four trained male cyclists received SP (50 mg·kg-1 of FFM/day) or placebo for six days in a randomized, crossover study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion in hypoxia (FiO2 = 16%). Additionally, the levels of 2,3-diphosphoglycerate (2,3-DPG), hypoxia-inducible factor 1 alpha (HIF-1α), inorganic phosphate (Pi), calcium (Ca), parathyroid hormone (PTH) and acid-base balance were determined. The results showed that phosphate loading significantly increased the Pi level by 9.0%, whereas 2,3-DPG levels, hemoglobin oxygen affinity, buffering capacity and myocardial efficiency remained unchanged. The aerobic capacity in hypoxia was not improved following SP. Additionally, our data revealed high inter-individual variability in response to SP. Therefore, the participants were grouped as Responders and Non-Responders. In the Responders, a significant increase in aerobic performance in the range of 3-5% was observed. In conclusion, SP supplementation is not an ergogenic aid for aerobic capacity in hypoxia. However, in certain individuals, some benefits can be expected, but mainly in athletes with less training-induced central and/or peripheral adaptation.
Collapse
Affiliation(s)
- Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland
| | - Małgorzata Chalimoniuk
- Department of Physiotherapy, Faculty of Physical Education and Health in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland
| | - Iwona Przybylska
- Department of Physiotherapy, Faculty of Physical Education and Health in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland
| | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland
| |
Collapse
|
40
|
Does Altitude of Birth Influence the Performance of National- to Elite-Level Colombian Cyclists? Int J Sports Physiol Perform 2022; 17:1756-1759. [DOI: 10.1123/ijspp.2022-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
Abstract
Objective: To determine whether the altitude of birth/childhood influences the values in peak power output (PPO) and estimated maximum oxygen uptake (estVO2max) in male Colombian road cyclists of different performance levels. This study also aimed to determine whether cyclists born at high altitudes tend to be more successful. Methods: Eighty riders aged between 17 and 22 years of 3 performance levels (U23 world-class level, WC, n = 8; U23 national level, N23, n = 41; junior national level, J, n = 31) and 3 altitude levels (<800 m, low; 800–2000 m, moderate; >2000 m, high) performed an ergocycle maximal incremental test to exhaustion at an altitude of 2570 m. Results: Altogether, while cyclists born at an altitude >2000 m represented ∼50% of the analyzed sample, there was a significantly higher proportion (84%) of these cyclists who had participated as professionals in a Grand Tour (χ2[1, N = 80] = 4.58, P < .05). Riders of the low group had lower values of PPO and estVO2max than cyclists of moderate and high altitudes, while no differences were noted between moderate- and high-altitude groups. In N23, PPO and estVO2max were lower in the low- than in the moderate-altitude group, while in the J cyclists, PPO and estVO2max were lower in the low-altitude compared with both moderate- and high-altitude groups. Discussion: Among the cyclists tested at altitude in junior and U23, there is an overrepresentation of individuals who reached an elite level and were born at a high altitude (>2000 m). As no clear differences were observed between moderate- and high-altitude cyclists, the higher prevalence of elite cyclists in the latter group may originate from various—still unclear—mechanisms.
Collapse
|
41
|
Chopra K, Jeffries O, Tallent J, Heffernan S, Kilduff L, Gray A, Waldron M. Repeated Ischemic Preconditioning Effects on Physiological Responses to Hypoxic Exercise. Aerosp Med Hum Perform 2022; 93:13-21. [PMID: 35063051 DOI: 10.3357/amhp.5919.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION: Repeated ischemic preconditioning (IPC) can improve muscle and pulmonary oxygen on-kinetics, blood flow, and exercise efficiency, but these effects have not been investigated in severe hypoxia. The aim of the current study was to evaluate the effects of 7 d of IPC on resting and exercising muscle and cardio-pulmonary responses to severe hypoxia.METHODS: A total of 14 subjects received either: 1) 7 d of repeated lower-limb occlusion (4 × 5 min, 217 ± 30 mmHg) at limb occlusive pressure (IPC) or SHAM (4 × 5 min, 20 mmHg). Subjects were tested for resting limb blood flow, relative microvascular deoxyhemoglobin concentration ([HHB]), and pulmonary oxygen (Vo2p) responses to steady state and incremental exercise to exhaustion in hypoxia (fractional inspired O₂ = 0.103), which was followed by 7 d of IPC or SHAM and retesting 72 h post-intervention.RESULTS: There were no effects of IPC on maximal oxygen consumption, time to exhaustion during the incremental test, or minute ventilation and arterial oxygen saturation. However, the IPC group had higher delta efficiency based on pooled results and lower steady state Δ[HHB] (IPC ∼24% vs. SHAM ∼6% pre to post), as well as slowing the [HHB] time constant (IPC ∼26% vs. SHAM ∼3% pre to post) and reducing the overshoot in [HHB]: Vo₂ ratio during exercise onset.CONCLUSIONS: Collectively, these results demonstrate that muscle O₂ efficiency and microvascular O₂ distribution can be improved by repeated IPC, but there are no effects on maximal exercise capacity in severe hypoxia.Chopra K, Jeffries O, Tallent J, Heffernan S, Kilduff L, Gray A, Waldron M. Repeated ischemic preconditioning effects on physiological responses to hypoxic exercise. Aerosp Med Hum Perform. 2022; 93(1):13-21.
Collapse
|
42
|
Burtscher M, Viscor G. How important is V̇O 2max when climbing Mt. Everest (8,849 m)? Respir Physiol Neurobiol 2021; 297:103833. [PMID: 34952230 DOI: 10.1016/j.resp.2021.103833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
The maximal rate of oxygen uptake (V̇O2max) of humans declines with increasing altitude, but represents the upper limit of aerobic endurance performance at low and high altitude as well. Before Reinhold Messner and Peter Habeler climbed Mt. Everest first (1978) without supplemental oxygen, physiologists have doubted whether this would be possible due to insufficient V̇O2max remaining when approaching the summit (8849 m). Subsequently, several studies evaluated the decline in the V̇O2max levels at real and simulated extreme altitudes. However, the potential influence of the preexisting individual sea level V̇O2max remained largely unconsidered. Based on available studies and case observations, here we discuss the observed and expected decline of V̇O2max up to 8849 m dependent on the individual sea level V̇O2max. It is concluded that a high sea level V̇O2max and an only moderate decline of arterial oxygen saturation and associated V̇O2max with increasing altitude, due to appropriate acclimatization and ascent strategies, enable certain mountaineers to climb 8,000er summits and even the Everest without supplemental oxygen.
Collapse
Affiliation(s)
- Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Pühringer R, Gatterer H, Berger M, Said M, Faulhaber M, Burtscher M. Does Moderate Altitude Affect VO 2max in Acclimatized Mountain Guides? High Alt Med Biol 2021; 23:37-42. [PMID: 34939827 DOI: 10.1089/ham.2021.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pühringer, Reinhard, Hannes Gatterer, Martin Berger, Michael Said, Martin Faulhaber, and Martin Burtscher. Does moderate altitude affect VO2max in acclimatized mountain guides? High Alt Med Biol 00:000-000, 2021. Background: Altitude exposure reduces maximal oxygen uptake (VO2max). Usually, the reduction is not restored with acclimatization (at least at altitudes above 2,500 m) and is more pronounced in highly trained athletes compared to nonathletes. It still remains to be elucidated whether these also apply for well-acclimatized individuals (i.e., mountain guides) acutely exposed to moderate altitude (i.e., 2,000 m). Methods: A total of 128 acclimatized male mountain guides of the Austrian armed forces (42.2 ± 7.0 years, 177.8 ± 5.6 cm, 77.2 ± 7.0 kg) of different fitness levels performed 2 incremental cycle ergometer tests 1 week apart, one at low (600 m) and one at moderate altitude (2,000 m). Oxygen uptake, heart rate (HR), and lactate concentration were measured during the tests. Results: In acclimatized mountain guides, lower baseline VO2max levels were associated with better preservation of VO2max at moderate altitude compared to higher levels. At moderate altitude, physiological responses (HR and blood lactate at 100 W) at a submaximal exercise intensity of 100 W remained unchanged or were even slightly reduced in both groups. Conclusions: Long-term acclimatization to moderate altitude may prevent the VO2max decline at a moderate altitude of 2,000 m particularly in subjects with lower VO2max levels, that is, below the 80th percentile (for age and sex). In people with higher fitness levels, VO2max may still be negatively affected. These results are of practical relevance, for example, for workers, athletes, ski and mountain guides, military staff, or rescue staff who regularly or continuously have to perform at moderate altitude.
Collapse
Affiliation(s)
- Reinhard Pühringer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Martin Berger
- Department of Medicine, Military Hospital Innsbruck, Innsbruck, Austria
| | - Michael Said
- Department of Medicine, Military Hospital Innsbruck, Innsbruck, Austria
| | - Martin Faulhaber
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| |
Collapse
|
44
|
Poffé C, Robberechts R, Podlogar T, Kusters M, Debevec T, Hespel P. Exogenous ketosis increases blood and muscle oxygenation but not performance during exercise in hypoxia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R844-R857. [PMID: 34668436 DOI: 10.1152/ajpregu.00198.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Available evidence indicates that elevated blood ketones are associated with improved hypoxic tolerance in rodents. From this perspective, we hypothesized that exogenous ketosis by oral intake of the ketone ester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE) may induce beneficial physiological effects during prolonged exercise in acute hypoxia. As we recently demonstrated KE to deplete blood bicarbonate, which per se may alter the physiological response to hypoxia, we evaluated the effect of KE both in the presence and absence of bicarbonate intake (BIC). Fourteen highly trained male cyclists performed a simulated cycling race (RACE) consisting of 3-h intermittent cycling (IMT180') followed by a 15-min time-trial (TT15') and an all-out sprint at 175% of lactate threshold (SPRINT). During RACE, fraction of inspired oxygen ([Formula: see text]) was gradually decreased from 18.6% to 14.5%. Before and during RACE, participants received either 1) 75 g of ketone ester (KE), 2) 300 mg/kg body mass bicarbonate (BIC), 3) KE + BIC, or 4) a control drink in addition to 60 g of carbohydrates/h in a randomized, crossover design. KE counteracted the hypoxia-induced drop in blood ([Formula: see text]) and muscle oxygenation by ∼3%. In contrast, BIC decreased [Formula: see text] by ∼2% without impacting muscle oxygenation. Performance during TT15' and SPRINT were similar between all conditions. In conclusion, KE slightly elevated the degree of blood and muscle oxygenation during prolonged exercise in moderate hypoxia without impacting exercise performance. Our data warrant to further investigate the potential of exogenous ketosis to improve muscular and cerebral oxygenation status, and exercise tolerance in extreme hypoxia.
Collapse
Affiliation(s)
- Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Tim Podlogar
- Department for Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Martijn Kusters
- Bakala Academy-Athletic Performance Center, KU Leuven, Leuven, Belgium
| | - Tadej Debevec
- Department for Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Bakala Academy-Athletic Performance Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Effect of nocturnal oxygen therapy on exercise performance of COPD patients at 2048 m: data from a randomized clinical trial. Sci Rep 2021; 11:20355. [PMID: 34645842 PMCID: PMC8514448 DOI: 10.1038/s41598-021-98395-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
This trial evaluates whether nocturnal oxygen therapy (NOT) during a stay at 2048 m improves altitude-induced exercise intolerance in lowlanders with chronic obstructive pulmonary disease (COPD). 32 lowlanders with moderate to severe COPD, mean ± SD forced expiratory volume in the first second of expiration (FEV1) 54 ± 13% predicted, stayed for 2 days at 2048 m twice, once with NOT, once with placebo according to a randomized, crossover trial with a 2-week washout period at < 800 m in-between. Semi-supine, constant-load cycle exercise to exhaustion at 60% of maximal work-rate was performed at 490 m and after the first night at 2048 m. Endurance time was the primary outcome. Additional outcomes were cerebral tissue oxygenation (CTO), arterial blood gases and breath-by-breath measurements (http://www.ClinicalTrials.gov NCT02150590). Mean ± SE endurance time at 490 m was 602 ± 65 s, at 2048 m after placebo 345 ± 62 s and at 2048 m after NOT 293 ± 60 s, respectively (P < 0.001 vs. 490 m). Mean difference (95%CI) NOT versus placebo was − 52 s (− 174 to 70), P = 0.401. End-exercise pulse oximetry (SpO2), CTO and minute ventilation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}_{{\text{E}}}$$\end{document}V˙E) at 490 m were: SpO2 92 ± 1%, CTO 65 ± 1%, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}_{{\text{E}}}$$\end{document}V˙E 37.7 ± 2.0 L/min; at 2048 m with placebo: SpO2 85 ± 1%, CTO 61 ± 1%, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}_{{\text{E}}}$$\end{document}V˙E 40.6 ± 2.0 L/min and with NOT: SpO2 84 ± 1%; CTO 61 ± 1%; \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}_{{\text{E}}}$$\end{document}V˙E 40.6 ± 2.0 L/min (P < 0.05, SpO2, CTO at 2048 m with placebo vs. 490 m; P = NS, NOT vs. placebo). Altitude-related hypoxemia and cerebral hypoxia impaired exercise endurance in patients with moderate to severe COPD and were not prevented by NOT.
Collapse
|
46
|
Seibel B, Andres A, Birk M, Shaw T, Timpe A, Welsh C. Response to 'Coming up for air'. J Exp Biol 2021; 224:272172. [PMID: 34522952 DOI: 10.1242/jeb.243148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Brad Seibel
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Alyssa Andres
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Matthew Birk
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Tracy Shaw
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Alexander Timpe
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Christina Welsh
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| |
Collapse
|
47
|
Assessment of Maximal Aerobic Capacity in Ski Mountaineering: A Laboratory-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137002. [PMID: 34208925 PMCID: PMC8297253 DOI: 10.3390/ijerph18137002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
This study aims to evaluate the agreement in maximum oxygen consumption (V˙O2max) between a running protocol and a ski mountaineering (SKIMO) protocol. Eighteen (eleven males, seven females) ski mountaineers (age: 25 ± 3 years) participated in the study. V˙O2max, maximum heart rate (HRmax), and maximum blood lactate concentration (BLAmax) were determined in an incremental uphill running test and an incremental SKIMO-equipment-specific test. V˙O2max did not differ between the SKIMO and uphill running protocols (p = 0.927; mean difference -0.07 ± 3.3 mL/min/kg), nor did HRmax (p = 0.587, mean difference -0.7 ± 5.1 bpm). A significant correlation was found between V˙O2max SKIMO and V˙O2max running (p ≤ 0.001; ICC = 0.862 (95% CI: 0.670-0.946)). The coefficient of variation was 4.4% (95% CI: 3.3-6.5). BLAmax was significantly lower for SKIMO compared to running (12.0 ± 14.1%; p = 0.002). This study demonstrates that V˙O2max determined with a traditional uphill running protocol demonstrates good agreement with an equipment-specific SKIMO protocol.
Collapse
|
48
|
Płoszczyca K, Czuba M, Chalimoniuk M, Gajda R, Baranowski M. Red Blood Cell 2,3-Diphosphoglycerate Decreases in Response to a 30 km Time Trial Under Hypoxia in Cyclists. Front Physiol 2021; 12:670977. [PMID: 34211402 PMCID: PMC8239298 DOI: 10.3389/fphys.2021.670977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022] Open
Abstract
Red blood cell 2,3-diphosphoglycerate (2,3-DPG) is one of the factors of rightward-shifted oxygen dissociation curves and decrease of Hb-O2 affinity. The reduction of Hb-O2 affinity is beneficial to O2 unloading at the tissue level. In the current literature, there are no studies about the changes in 2,3-DPG level following acute exercise in moderate hypoxia in athletes. For this reason, the aim of this study was to analyze the effect of prolonged intense exercise under normoxic and hypoxic conditions on 2,3-DPG level in cyclists. Fourteen male trained cyclists performed a simulation of a 30 km time trial (TT) in normoxia and normobaric hypoxia (FiO2 = 16.5%, ~2,000 m). During the TT, the following variables were measured: power, blood oxygen saturation (SpO2), and heart rate (HR). Before and immediately after exercise, the blood level of 2,3-DPG and acid–base equilibrium were determined. The results showed that the mean SpO2 during TT in hypoxia was 8% lower than in normoxia. The reduction of SpO2 in hypoxia resulted in a decrease of average power by 9.6% (p < 0.001) and an increase in the 30 km TT completion time by 3.8% (p < 0.01) compared to normoxia. The exercise in hypoxia caused a significant (p < 0.001) decrease in 2,3-DPG level by 17.6%. After exercise in normoxia, a downward trend of 2,3-DPG level was also observed, but this effect was not statistically significant. The analysis also revealed that changes of acid–base balance were significantly larger (p < 0.05) after exercise in hypoxia than in normoxia. In conclusion, intense exercise in hypoxic conditions leads to a decrease in 2,3-DPG concentration, primarily due to exercise-induced acidosis.
Collapse
Affiliation(s)
- Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport - National Research Institute, Warsaw, Poland
| | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport - National Research Institute, Warsaw, Poland
| | - Małgorzata Chalimoniuk
- Department of Physical Education and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Biala Podlaska, Poland
| | - Robert Gajda
- Center for Sports Cardiology, Gajda-Med Medical Center in Pułtusk, Pułtusk, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
49
|
Mallet RT, Burtscher J, Richalet JP, Millet GP, Burtscher M. Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc Health Risk Manag 2021; 17:317-335. [PMID: 34135590 PMCID: PMC8197622 DOI: 10.2147/vhrm.s294121] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Globally, about 400 million people reside at terrestrial altitudes above 1500 m, and more than 100 million lowlanders visit mountainous areas above 2500 m annually. The interactions between the low barometric pressure and partial pressure of O2, climate, individual genetic, lifestyle and socio-economic factors, as well as adaptation and acclimatization processes at high elevations are extremely complex. It is challenging to decipher the effects of these myriad factors on the cardiovascular health in high altitude residents, and even more so in those ascending to high altitudes with or without preexisting diseases. This review aims to interpret epidemiological observations in high-altitude populations; present and discuss cardiovascular responses to acute and subacute high-altitude exposure in general and more specifically in people with preexisting cardiovascular diseases; the relations between cardiovascular pathologies and neurodegenerative diseases at altitude; the effects of high-altitude exercise; and the putative cardioprotective mechanisms of hypobaric hypoxia.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Jean-Paul Richalet
- Laboratoire Hypoxie & Poumon, UMR Inserm U1272, Université Sorbonne Paris Nord 13, Bobigny Cedex, F-93017, France
| | - Gregoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria
- Austrian Society for Alpine and High-Altitude Medicine, Mieming, Austria
| |
Collapse
|
50
|
Malgoyre A, Prola A, Meunier A, Chapot R, Serrurier B, Koulmann N, Bigard X, Sanchez H. Endurance Is Improved in Female Rats After Living High-Training High Despite Alterations in Skeletal Muscle. Front Sports Act Living 2021; 3:663857. [PMID: 34124658 PMCID: PMC8193088 DOI: 10.3389/fspor.2021.663857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Altitude camps are used during the preparation of endurance athletes to improve performance based on the stimulation of erythropoiesis by living at high altitude. In addition to such whole-body adaptations, studies have suggested that high-altitude training increases mitochondrial mass, but this has been challenged by later studies. Here, we hypothesized that living and training at high altitude (LHTH) improves mitochondrial efficiency and/or substrate utilization. Female rats were exposed and trained in hypoxia (simulated 3,200 m) for 5 weeks (LHTH) and compared to sedentary rats living in hypoxia (LH) or normoxia (LL) or those that trained in normoxia (LLTL). Maximal aerobic velocity (MAV) improved with training, independently of hypoxia, whereas the time to exhaustion, performed at 65% of MAV, increased both with training (P = 0.009) and hypoxia (P = 0.015), with an additive effect of the two conditions. The distance run was 7.98 ± 0.57 km in LHTH vs. 6.94 ± 0.51 in LLTL (+15%, ns). The hematocrit increased >20% with hypoxia (P < 0.001). The increases in mitochondrial mass and maximal oxidative capacity with endurance training were blunted by combination with hypoxia (−30% for citrate synthase, P < 0.01, and −23% for Vmax glut−succ, P < 0.001 between LHTH and LLTL). A similar reduction between the LHTH and LLTL groups was found for maximal respiration with pyruvate (−29%, P < 0.001), for acceptor-control ratio (−36%, hypoxia effect, P < 0.001), and for creatine kinase efficiency (−48%, P < 0.01). 3-hydroxyl acyl coenzyme A dehydrogenase was not altered by hypoxia, whereas maximal respiration with Palmitoyl-CoA specifically decreased. Overall, our results show that mitochondrial adaptations are not involved in the improvement of submaximal aerobic performance after LHTH, suggesting that the benefits of altitude camps in females relies essentially on other factors, such as the transitory elevation of hematocrit, and should be planned a few weeks before competition and not several months.
Collapse
Affiliation(s)
- Alexandra Malgoyre
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adelie Meunier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Rachel Chapot
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Bernard Serrurier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Nathalie Koulmann
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France.,Ecole du Val de Grâce, Paris, France
| | - Xavier Bigard
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Ecole du Val de Grâce, Paris, France
| | - Hervé Sanchez
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|