1
|
Kang MJ, Ioannou S, Lougheide Q, Dittmar M, Hsu Y, Pastor-Soler NM. The study of intercalated cells using ex vivo techniques: primary cell culture, cell lines, kidney slices, and organoids. Am J Physiol Cell Physiol 2024; 326:C229-C251. [PMID: 37899748 DOI: 10.1152/ajpcell.00479.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.
Collapse
Affiliation(s)
- Min Ju Kang
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Silvia Ioannou
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Quinn Lougheide
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Michael Dittmar
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Young Hsu
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
2
|
Figueiredo M, Daryadel A, Sihn G, Müller DN, Popova E, Rouselle A, Nguyen G, Bader M, Wagner CA. The (pro)renin receptor (ATP6ap2) facilitates receptor-mediated endocytosis and lysosomal function in the renal proximal tubule. Pflugers Arch 2021; 473:1229-1246. [PMID: 34228176 PMCID: PMC8302575 DOI: 10.1007/s00424-021-02598-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
The ATP6ap2 (Pro)renin receptor protein associates with H+-ATPases which regulate organellar, cellular, and systemic acid-base homeostasis. In the kidney, ATP6ap2 colocalizes with H+-ATPases in various cell types including the cells of the proximal tubule. There, H+-ATPases are involved in receptor-mediated endocytosis of low molecular weight proteins via the megalin/cubilin receptors. To study ATP6ap2 function in the proximal tubule, we used an inducible shRNA Atp6ap2 knockdown rat model (Kd) and an inducible kidney-specific Atp6ap2 knockout mouse model. Both animal lines showed higher proteinuria with elevated albumin, vitamin D binding protein, and procathepsin B in urine. Endocytosis of an injected fluid-phase marker (FITC- dextran, 10 kDa) was normal whereas processing of recombinant transferrin, a marker for receptor-mediated endocytosis, to lysosomes was delayed. While megalin and cubilin expression was unchanged, abundance of several subunits of the H+-ATPase involved in receptor-mediated endocytosis was reduced. Lysosomal integrity and H+-ATPase function are associated with mTOR signaling. In ATP6ap2, KO mice mTOR and phospho-mTOR appeared normal but increased abundance of the LC3-B subunit of the autophagosome was observed suggesting a more generalized impairment of lysosomal function in the absence of ATP6ap2. Hence, our data suggests a role for ATP6ap2 for proximal tubule function in the kidney with a defect in receptor-mediated endocytosis in mice and rats.
Collapse
Affiliation(s)
- Marta Figueiredo
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dominik N Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anthony Rouselle
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | | | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Charite University Medicine Berlin, Berlin, Germany.
- Institute for Biology, University of Lübeck, Lübeck, Germany.
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Banki E, Fisi V, Moser S, Wengi A, Carrel M, Loffing-Cueni D, Penton D, Kratschmar DV, Rizzo L, Lienkamp S, Odermatt A, Rinschen MM, Loffing J. Specific disruption of calcineurin-signaling in the distal convoluted tubule impacts the transcriptome and proteome, and causes hypomagnesemia and metabolic acidosis. Kidney Int 2021; 100:850-869. [PMID: 34252449 DOI: 10.1016/j.kint.2021.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Adverse effects of calcineurin inhibitors (CNI), such as hypertension, hyperkalemia, acidosis, hypomagnesemia and hypercalciuria, have been linked to dysfunction of the distal convoluted tubule (DCT). To test this, we generated a mouse model with an inducible DCT-specific deletion of the calcineurin regulatory subunit B alpha (CnB1-KO). Three weeks after CnB1 deletion, these mice exhibited hypomagnesemia and acidosis, but no hypertension, hyperkalemia or hypercalciuria. Consistent with the hypomagnesemia, CnB1-KO mice showed a downregulation of proteins implicated in DCT magnesium transport, including TRPM6, CNNM2, SLC41A3 and parvalbumin but expression of calcium channel TRPV5 in the kidney was unchanged. The abundance of the chloride/bicarbonate exchanger pendrin was increased, likely explaining the acidosis. Plasma aldosterone levels, kidney renin expression, abundance of phosphorylated sodium chloride-cotransporter and abundance of the epithelial sodium channel were similar in control and CnB1-KO mice, consistent with a normal sodium balance. Long-term potassium homeostasis was maintained in CnB1-KO mice, but in-vivo and ex-vivo experiments indicated that CnB1 contributes to acute regulation of potassium balance and sodium chloride-cotransporter. Tacrolimus treatment of control and CnB1-KO mice demonstrated that CNI-related hypomagnesemia is linked to impaired calcineurin-signaling in DCT, while hypocalciuria and hyponatremia occur independently of CnB1 in DCT. Transcriptome and proteome analyses of isolated DCTs demonstrated that CnB1 deletion impacts the expression of several DCT-specific proteins and signaling pathways. Thus, our data support a critical role of calcineurin for DCT function and provide novel insights into the pathophysiology of CNI side-effects and involved molecular players in the DCT.
Collapse
Affiliation(s)
- Eszter Banki
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland
| | - Viktoria Fisi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Sandra Moser
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Agnieszka Wengi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Monique Carrel
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - David Penton
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland
| | - Denise V Kratschmar
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Soeren Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
| | - Markus M Rinschen
- Kidney Research Center, University of Cologne, Köln, Germany; Department of Biomedicine, Aarhus University, Aarhus, Denmark; III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland.
| |
Collapse
|
4
|
Deletion of the transcription factor Prox-1 specifically in the renal distal convoluted tubule causes hypomagnesemia via reduced expression of TRPM6 and NCC. Pflugers Arch 2020; 473:79-93. [PMID: 33200256 PMCID: PMC7782375 DOI: 10.1007/s00424-020-02491-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.
Collapse
|
5
|
Hu MY, Petersen I, Chang WW, Blurton C, Stumpp M. Cellular bicarbonate accumulation and vesicular proton transport promote calcification in the sea urchin larva. Proc Biol Sci 2020; 287:20201506. [PMID: 32900308 PMCID: PMC7542784 DOI: 10.1098/rspb.2020.1506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The sea urchin embryo develops a calcitic endoskeleton through intracellular formation of amorphous calcium carbonate (ACC). Intracellular precipitation of ACC, requires [Formula: see text] concentrating as well as proton export mechanisms to promote calcification. These processes are of fundamental importance in biological mineralization, but remain largely unexplored. Here, we demonstrate that the calcifying primary mesenchyme cells (PMCs) use Na+/H+-exchange (NHE) mechanisms to control cellular pH homeostasis during maintenance of the skeleton. During skeleton re-calcification, pHi of PMCs is increased accompanied by substantial elevation in intracellular [Formula: see text] mediated by the [Formula: see text] cotransporter Sp_Slc4a10. However, PMCs lower their pHi regulatory capacities associated with a reduction in NHE activity. Live-cell imaging using green fluorescent protein reporter constructs in combination with intravesicular pH measurements demonstrated alkaline and acidic populations of vesicles in PMCs and extensive trafficking of large V-type H+-ATPase (VHA)-rich acidic vesicles in blastocoelar filopodial cells. Pharmacological and gene expression analyses underline a central role of the VHA isoforms Sp_ATP6V0a1, Sp_ATP6V01_1 and Sp_ATPa1-4 for the process of skeleton re-calcification. These results highlight novel pH regulatory strategies in calcifying cells of a marine species with important implications for our understanding of the mineralization process in times of rapid changes in oceanic pH.
Collapse
Affiliation(s)
- Marian Y. Hu
- Institute of Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - Inga Petersen
- Institute of Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - William Weijen Chang
- Institute of Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - Christine Blurton
- Institute of Immunobiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Meike Stumpp
- Institute of Immunobiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
6
|
Elitok S, Sidler M, Bieringer M, Mohebbi N, Schneider W, Wagner CA. A patient with chronic kidney disease, primary biliary cirrhosis and metabolic acidosis. Clin Kidney J 2019; 13:463-467. [PMID: 32699627 PMCID: PMC7367120 DOI: 10.1093/ckj/sfz059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/17/2019] [Indexed: 11/14/2022] Open
Abstract
Autoimmune disorders such as rheumatoid arthritis or Sjögren's syndrome can be associated with impaired renal acid excretion. Only few cases of patients with primary biliary cirrhosis (PBC) and distal renal tubular acidosis (dRTA) have been described. Here, we present the case of a 60-year-old woman with PBC and dRTA. Her kidney biopsy showed an absence of markers of acid-secretory Type A intercalated cells (A-ICs) and expression of aquaporin-2, a marker of principal cells, in all cells lining the collecting duct. Moreover, the serum of the patient contained antibodies directed against a subset of cells of the collecting duct. Thus, PBC-related autoantibodies may target acid-secretory A-ICs and thereby impair urinary acidification.
Collapse
Affiliation(s)
- Saban Elitok
- Department of Nephrology and Endocrinology/Diabetology, Klinikum Ernst von Bergmann, Potsdam, Germany
- Correspondence and offprint requests to: Saban Elitok; E-mail: , Carsten A. Wagner; E-mail:
| | - Marius Sidler
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Nilufar Mohebbi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Correspondence and offprint requests to: Saban Elitok; E-mail: , Carsten A. Wagner; E-mail:
| |
Collapse
|
7
|
Li H, Ren C, Jiang X, Cheng C, Ruan Y, Zhang X, Huang W, Chen T, Hu C. Na+/H+ exchanger (NHE) in Pacific white shrimp (Litopenaeus vannamei): Molecular cloning, transcriptional response to acidity stress, and physiological roles in pH homeostasis. PLoS One 2019; 14:e0212887. [PMID: 30811482 PMCID: PMC6392280 DOI: 10.1371/journal.pone.0212887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 01/09/2023] Open
Abstract
Na+/H+ exchangers are the most common membrane proteins involved in the regulation of intracellular pH that concurrently transport Na+ into the cells and H+ out of the cells. In this study, the full-length cDNA of the Na+/H+ exchanger (NHE) from the Pacific white shrimp (Litopenaeus vannamei) was cloned. The LvNHE cDNA is 3167 bp long, contains a 5’-untranslated region (UTR) of 74 bp and a 3’-UTR of 456 bp and an open reading frame (ORF) of 2637 bp, coding for a protein of 878 amino acids with 11 putative transmembrane domains and a long cytoplasmic tail. LvNHE shows high sequence homology with mud crab NHE at the amino acid level. LvNHE mRNA was detected in the hepatopancreas, gill, eyestalk, skin, heart, intestine, muscle, brain and stomach, with the highest abundance in the intestine. In the shrimp intestinal fragment cultures exposed to gradually declining pH medium (from pH 8.0 to pH 6.4), the LvNHE mRNA expression was significantly stimulated, with the highest response when incubated in pH 7.0 medium for 6 h. To investigate the functional roles of LvNHE in pH regulation at the physiological and cellular levels, the LvNHE mRNA expression was silenced by siRNA knockdown. Upon low-pH challenge, the hemolymph pH was significantly reduced in the LvNHE mRNA knockdown shrimp. In addition, knockdown of LvNHE mRNA reduced the recovery capacity of intracellular pH in intestinal fragment cultures after acidification. Altogether, this study demonstrates the role of NHE in shrimp response to low pH stress and provides new insights into the acid/base homeostasis mechanisms of crustaceans.
Collapse
Affiliation(s)
- Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (TC); (CH)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (TC); (CH)
| |
Collapse
|
8
|
Bourgeois S, Bounoure L, Mouro-Chanteloup I, Colin Y, Brown D, Wagner CA. The ammonia transporter RhCG modulates urinary acidification by interacting with the vacuolar proton-ATPases in renal intercalated cells. Kidney Int 2018; 93:390-402. [PMID: 29054531 PMCID: PMC6166241 DOI: 10.1016/j.kint.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Ammonium, stemming from renal ammoniagenesis, is a major urinary proton buffer and is excreted along the collecting duct. This process depends on the concomitant secretion of ammonia by the ammonia channel RhCG and of protons by the vacuolar-type proton-ATPase pump. Thus, urinary ammonium content and urinary acidification are tightly linked. However, mice lacking Rhcg excrete more alkaline urine despite lower urinary ammonium, suggesting an unexpected role of Rhcg in urinary acidification. RhCG and the B1 and B2 proton-ATPase subunits could be co-immunoprecipitated from kidney. In ex vivo microperfused cortical collecting ducts (CCD) proton-ATPase activity was drastically reduced in the absence of Rhcg. Conversely, overexpression of RhCG in HEK293 cells resulted in higher proton secretion rates and increased B1 proton-ATPase mRNA expression. However, in kidneys from Rhcg-/- mice the expression of only B1 and B2 subunits was altered. Immunolocalization of proton-ATPase subunits together with immuno-gold detection of the A proton-ATPase subunit showed similar localization and density of staining in kidneys from Rhcg+/+ and Rhcg-/-mice. In order to test for a reciprocal effect of intercalated cell proton-ATPases on Rhcg activity, we assessed Rhcg and proton-ATPase activities in microperfused CCD from Atp6v1b1-/- mice and showed reduced proton-ATPase activity without altering Rhcg activity. Thus, RhCG and proton-ATPase are located within the same cellular protein complex. RhCG may modulate proton-ATPase function and urinary acidification, whereas proton-ATPase activity does not affect RhCG function. This mechanism may help to coordinate ammonia and proton secretion beyond physicochemical driving forces.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Lisa Bounoure
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Yves Colin
- UMR_S1134, INSERM, Université Paris Diderot, INTS, Labex GR-Ex, Paris, France
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Daryadel A, Bourgeois S, Figueiredo MFL, Gomes Moreira A, Kampik NB, Oberli L, Mohebbi N, Lu X, Meima ME, Danser AHJ, Wagner CA. Colocalization of the (Pro)renin Receptor/Atp6ap2 with H+-ATPases in Mouse Kidney but Prorenin Does Not Acutely Regulate Intercalated Cell H+-ATPase Activity. PLoS One 2016; 11:e0147831. [PMID: 26824839 PMCID: PMC4732657 DOI: 10.1371/journal.pone.0147831] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022] Open
Abstract
The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H+-ATPases and alternative functions in H+-ATPase regulation as well as in Wnt signalling have been reported. Kidneys express very high levels of H+-ATPases which are involved in multiple functions such as endocytosis, membrane protein recycling as well as urinary acidification, bicarbonate reabsorption, and salt absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H+-ATPase subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates H+-ATPase activity in intercalated cells in freshly isolated collecting ducts. We localized (P)PR/Atp6ap2 along the murine nephron by qPCR and immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments with highest levels in the collecting system coinciding with H+-ATPases. Further experiments demonstrated expression at the brush border membrane of proximal tubules and in all types of intercalated cells colocalizing with H+-ATPases. In mice treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 days, (P)RR/Atp6ap2 and H+-ATPase subunits were regulated but not co-regulated at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H+-ATPase subunits at the brush border membrane of proximal tubules, the apical pole of type A intercalated cells, and at basolateral and/or apical membranes of non-type A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal application of prorenin did not acutely stimulate H+-ATPase activity. However, incubation of isolated collecting ducts with prorenin non-significantly increased ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a complex with H+-ATPases in proximal tubule and intercalated cells but that prorenin has no acute effect on H+-ATPase activity in intercalated cells.
Collapse
MESH Headings
- Ammonium Chloride/pharmacology
- Animals
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Dogs
- Gene Expression Regulation
- Kidney Cortex/cytology
- Kidney Cortex/drug effects
- Kidney Cortex/metabolism
- Kidney Medulla/cytology
- Kidney Medulla/drug effects
- Kidney Medulla/metabolism
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Madin Darby Canine Kidney Cells
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Proton-Translocating ATPases/genetics
- Proton-Translocating ATPases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Renin/pharmacology
- Renin-Angiotensin System/drug effects
- Signal Transduction
- Sodium Bicarbonate/pharmacology
- Sodium Chloride/pharmacology
- Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
- Solute Carrier Family 12, Member 1/genetics
- Solute Carrier Family 12, Member 1/metabolism
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
- Sulfate Transporters
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | - Nicole B. Kampik
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Lisa Oberli
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Divison of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Xifeng Lu
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel E. Meima
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
10
|
de Groot T, Sinke AP, Kortenoeven MLA, Alsady M, Baumgarten R, Devuyst O, Loffing J, Wetzels JF, Deen PMT. Acetazolamide Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus. J Am Soc Nephrol 2015; 27:2082-91. [PMID: 26574046 DOI: 10.1681/asn.2015070796] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Olivier Devuyst
- Institute of Physiology, Zurich Centre for Integrative Human Physiology, Zurich, Switzerland; and
| | | | - Jack F Wetzels
- Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
11
|
Wen D, Yuan Y, Cornelius RJ, Li H, Warner PC, Wang B, Wang-France J, Boettger T, Sansom SC. Deficient acid handling with distal RTA in the NBCe2 knockout mouse. Am J Physiol Renal Physiol 2015; 309:F523-30. [PMID: 26109087 DOI: 10.1152/ajprenal.00163.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
In many circumstances, the pathogenesis of distal renal tubular acidosis (dRTA) is not understood. In the present study, we report that a mouse model lacking the electrogenic Na(+)-HCO3 (-) cotransporter [NBCe2/Slc4a5; NBCe2 knockout (KO) mice] developed dRTA after an oral acid challenge. NBCe2 expression was identified in the connecting tubule (CNT) of wild-type mice, and its expression was significantly increased after acid loading. NBCe2 KO mice did not have dRTA when on a standard mouse diet. However, after acid loading, NBCe2 KO mice exhibited complete features of dRTA, characterized by insufficient urinary acidification, hyperchloremic hypokalemic metabolic acidosis, and hypercalciuria. Additional experiments showed that NBCe2 KO mice had decreased luminal transepithelial potential in the CNT, as revealed by micropuncture. Further immunofluorescence and Western blot experiments found that NBCe2 KO mice had increased expression of H(+)-ATPase B1 in the plasma membrane. These results showed that NBCe2 KO mice with acid loading developed increased urinary K(+) and Ca(2+) wasting due to decreased luminal transepithelial potential in the CNT. NBCe2 KO mice compensated to maintain systemic pH by increasing H(+)-ATPase in the plasma membrane. Therefore, defects in NBCe2 can cause dRTA, and NBCe2 has an important role to regulate urinary acidification and the transport of K(+) and Ca(2+) in the distal nephron.
Collapse
Affiliation(s)
- Donghai Wen
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Yang Yuan
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Ryan J Cornelius
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Huaqing Li
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Paige C Warner
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Bangchen Wang
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Jun Wang-France
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Thomas Boettger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Steven C Sansom
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| |
Collapse
|
12
|
Lazzeri E, Ronconi E, Angelotti ML, Peired A, Mazzinghi B, Becherucci F, Conti S, Sansavini G, Sisti A, Ravaglia F, Lombardi D, Provenzano A, Manonelles A, Cruzado JM, Giglio S, Roperto RM, Materassi M, Lasagni L, Romagnani P. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders. J Am Soc Nephrol 2015; 26:1961-74. [PMID: 25568173 DOI: 10.1681/asn.2014010057] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022] Open
Abstract
The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders.
Collapse
Affiliation(s)
- Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Elisa Ronconi
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Anna Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Francesca Becherucci
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Sara Conti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy; and
| | - Giulia Sansavini
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Alessandro Sisti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Fiammetta Ravaglia
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Duccio Lombardi
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | | | - Anna Manonelles
- Department of Nephrology, Bellvitge's University Hospital, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Bellvitge's University Hospital, Barcelona, Spain
| | - Sabrina Giglio
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy; Medical Genetics Unit and
| | - Rosa Maria Roperto
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Marco Materassi
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy; Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy;
| |
Collapse
|
13
|
Umbach AT, Zhang B, Daniel C, Fajol A, Velic A, Hosseinzadeh Z, Bhavsar SK, Bock CT, Kandolf R, Pichler BJ, Amann KU, Föller M, Lang F. Janus kinase 3 regulates renal 25-hydroxyvitamin D 1α-hydroxylase expression, calcitriol formation, and phosphate metabolism. Kidney Int 2014; 87:728-37. [PMID: 25493954 DOI: 10.1038/ki.2014.371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 01/26/2023]
Abstract
Calcitriol, a powerful regulator of phosphate metabolism and immune response, is generated by 25-hydroxyvitamin D 1α-hydroxylase in the kidney and macrophages. Renal 1α-hydroxylase expression is suppressed by Klotho and FGF23, the expression of which is stimulated by calcitriol. Interferon γ (INFγ) regulates 1α-hydroxylase expression in macrophages through transcription factor interferon regulatory factor-1. INFγ-signaling includes Janus kinase 3 (JAK3) but a role of JAK3 in the regulation of 1α-hydroxylase expression and mineral metabolism has not been shown. Thus, the impact of JAK3 deficiency on calcitriol formation and phosphate metabolism was measured. Renal interferon regulatory factor-1 and 1α-hydroxylase transcript levels, serum calcitriol and FGF23 levels, intestinal phosphate absorption as well as absolute and fractional renal phosphate excretion were significantly higher in jak3 knockout than in wild-type mice. Coexpression of JAK3 increased the phosphate-induced current in renal sodium-phosphate cotransporter-expressing Xenopus oocytes. Thus, JAK3 is a powerful regulator of 1α-hydroxylase expression and phosphate transport. Its deficiency leads to marked derangement of phosphate metabolism.
Collapse
Affiliation(s)
- Anja T Umbach
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Bingbing Zhang
- 1] Department of Physiology, University of Tübingen, Tübingen, Germany [2] Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Abul Fajol
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ana Velic
- Proteome Center, University of Tübingen, Tübingen, Germany
| | | | - Shefalee K Bhavsar
- 1] Department of Physiology, University of Tübingen, Tübingen, Germany [2] Novartis Oncology, Novartis International AG, Hyderabad, India
| | - C-Thomas Bock
- Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Reinhard Kandolf
- Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Kerstin U Amann
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Föller
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Bocanegra V, Gil Lorenzo AF, Cacciamani V, Benardón ME, Costantino VV, Vallés PG. RhoA and MAPK signal transduction pathways regulate NHE1-dependent proximal tubule cell apoptosis after mechanical stretch. Am J Physiol Renal Physiol 2014; 307:F881-9. [PMID: 25080524 DOI: 10.1152/ajprenal.00232.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical deformation after congenital ureteral obstruction is traduced into biochemical signals leading to tubular atrophy due to epithelial cell apoptosis. We investigated whether Na(+)/H(+) exchanger 1 (NHE1) could be responsible for HK-2 cell apoptosis induction in response to mechanical stretch through its ability to function as a control point of RhoA and MAPK signaling pathways. When mechanical stretch was applied to HK-2 cells, cell apoptosis was associated with diminished NHE1 expression and RhoA activation. The RhoA signaling pathway was confirmed to be upstream from the MAPK cascade when HK-2 cells were transfected with the active RhoA-V14 mutant, showing higher ERK1/2 expression and decreased p38 activation associated with NHE1 downregulation. NHE1 participation in apoptosis induction was confirmed by specific small interfering RNA NHE1 showing caspase-3 activation and decreased Bcl-2 expression. The decreased NHE1 expression was correlated with abnormal NHE1 activity addressed by intracellular pH measurements. These results demonstrate that mitochondrial proximal tubule cell apoptosis in response to mechanical stretch is orchestrated by signaling pathways initiated by the small GTPase RhoA and followed by the opposing effects of ERK1/2 and p38 MAPK phosphorylation, regulating NHE1 decreased expression and activity.
Collapse
Affiliation(s)
- Victoria Bocanegra
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Andrea Fernanda Gil Lorenzo
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Valeria Cacciamani
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Eugenia Benardón
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Valeria Victoria Costantino
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Patricia G Vallés
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
15
|
Sinke AP, Kortenoeven MLA, de Groot T, Baumgarten R, Devuyst O, Wetzels JFM, Loffing J, Deen PMT. Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. Am J Physiol Renal Physiol 2013; 306:F525-33. [PMID: 24352504 DOI: 10.1152/ajprenal.00617.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lithium is the most common cause of nephrogenic diabetes insipidus (Li-NDI). Hydrochlorothiazide (HCTZ) combined with amiloride is the mainstay treatment in Li-NDI. The paradoxical antidiuretic action of HCTZ in Li-NDI is generally attributed to increased sodium and water uptake in proximal tubules as a compensation for increased volume loss due to HCTZ inhibition of the Na-Cl cotransporter (NCC), but alternative actions for HCTZ have been suggested. Here, we investigated whether HCTZ exerted an NCC-independent effect in Li-NDI. In polarized mouse cortical collecting duct (mpkCCD) cells, HCTZ treatment attenuated the Li-induced downregulation of aquaporin-2 (AQP2) water channel abundance. In these cells, amiloride reduces cellular Li influx through the epithelial sodium channel (ENaC). HCTZ also reduced Li influx, but to a lower extent. HCTZ increased AQP2 abundance on top of that of amiloride and did not affect the ENaC-mediated transcellular voltage. MpkCCD cells did not express NCC mRNA or protein. These data indicated that in mpkCCD cells, HCTZ attenuated lithium-induced downregulation of AQP2 independently of NCC and ENaC. Treatment of Li-NDI NCC knockout mice with HCTZ revealed a significantly reduced urine volume, unchanged urine osmolality, and increased cortical AQP2 abundance compared with Li-treated NCC knockout mice. HCTZ treatment further resulted in reduced blood Li levels, creatinine clearance, and alkalinized urinary pH. Our in vitro and in vivo data indicate that part of the antidiuretic effect of HCTZ in Li-NDI is NCC independent and may involve a tubuloglomerular feedback response-mediated reduction in glomerular filtration rate due to proximal tubular carbonic anhydrase inhibition.
Collapse
Affiliation(s)
- Anne P Sinke
- 286 Dept. of Physiology, Radboud Institute for Molecular Life Sciences, Radboud Univ. Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
O’Neill AC, Ricardo SD. Human kidney cell reprogramming: applications for disease modeling and personalized medicine. J Am Soc Nephrol 2013; 24:1347-56. [PMID: 23949797 PMCID: PMC3752950 DOI: 10.1681/asn.2012121199] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ability to reprogram fully differentiated cells into a pluripotent embryonic state, termed induced pluripotent stem cells (iPSCs), has been met with great excitement. iPSC technology has advanced the fundamental study of disease modeling with the potential for cell-replacement therapy, especially in the neuronal and cardiac fields. However, renal medicine as of yet has not benefited from similar advancements. This review summarizes the unique characteristics of iPSCs and their potential applications for modeling kidney disease. Pioneering such endeavors could yield constructs that recapitulate disease phenotypes, open avenues for more targeted drug development, and potentially serve as replenishable sources for replacement of kidney cells in the setting of human disease.
Collapse
Affiliation(s)
- Adam C. O’Neill
- Department of Pediatrics, Dunedin School of Medicine, Otago University, Dunedin, New Zealand, and
| | - Sharon D. Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Lu X, Garrelds IM, Wagner CA, Danser AHJ, Meima ME. (Pro)renin receptor is required for prorenin-dependent and -independent regulation of vacuolar H+-ATPase activity in MDCK.C11 collecting duct cells. Am J Physiol Renal Physiol 2013; 305:F417-25. [DOI: 10.1152/ajprenal.00037.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prorenin binding to the prorenin receptor [(P)RR] results in nonproteolytic activation of prorenin but also directly (i.e., independent of angiotensin generation) activates signal transduction cascades that can lead to the upregulation of profibrotic factors. The (P)RR is an accessory protein of vacuolar-type H+-ATPase (V-ATPase) and is required for V-ATPase integrity. In addition, in collecting duct cells, prorenin-induced activation of Erk depends on V-ATPase activity. However, whether prorenin binding to the (P)RR directly regulates V-ATPase activity is as yet unknown. Here, we studied the effect of prorenin on plasma membrane V-ATPase activity in Madin-Darby canine kidney clone 11 (MDCK.C11) cells, which resemble intercalated cells of the collecting duct. Prorenin increased V-ATPase activity at low nanomolar concentrations, and the V-ATPase inhibitor bafilomycin A1, but not the angiotensin II type 1 and 2 receptor blockers irbesartan and PD-123319, prevented this. Increased, but not basal, V-ATPase activity was abolished by small interfering RNA depletion of the (P)RR. Unexpectedly, the putative peptidic (P)RR blocker handle region peptide also increasedV-ATPase activity in a (P)RR-dependent manner. Finally, [Arg8]-vasopressin-stimulated V-ATPase activity and cAMP production were also abolished by (P)RR depletion. Our results show that in MDCK.C11 cells, the (P)RR is required for prorenin-dependent and -independent regulation of V-ATPase activity.
Collapse
Affiliation(s)
- Xifeng Lu
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Ingrid M. Garrelds
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | | | - A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Marcel E. Meima
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| |
Collapse
|
18
|
Abstract
Ion channels play key roles in physiology. They function as protein transducers able to transform stimuli and chemical gradients into electrical signals. They also are critical for cell signaling and play a particularly important role in epithelial transport acting as gateways for the movement of electrolytes across epithelial cell membranes. Experimental limitations, though, have hampered the recording of ion channel activity in many types of tissue. This has slowed progress in understanding the cellular and physiological function of these channels with most function inferred from in vitro systems and cell culture models. In many cases, such inferences have clouded rather than clarified the picture. Here, we describe a contemporary method for isolating and patch-clamping renal tubules for ex vivo analysis of ion channel function in native tissue. Focus is placed on quantifying the activity of the epithelial Na(+) channel (ENaC) in the aldosterone--sensitive distal nephron (ASDN). This isolated, split-open tubule preparation enables recording of renal ion channels in the close-to-native environment under the control of native cell signaling pathways and receptors. When combined with complementary measurements of organ and system function, and contemporary molecular genetics and pharmacology used to manipulate function and regulation, patch-clamping renal channels in the isolated, split-open tubule enables understanding to emerge about the physiological function of these key proteins from the molecule to the whole animal.
Collapse
|
19
|
Wagner CA, Mohebbi N, Uhlig U, Giebisch GH, Breton S, Brown D, Geibel JP. Angiotensin II stimulates H⁺-ATPase activity in intercalated cells from isolated mouse connecting tubules and cortical collecting ducts. Cell Physiol Biochem 2011; 28:513-20. [PMID: 22116365 DOI: 10.1159/000335112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Intercalated cells in the collecting duct system express V-type H(+)-ATPases which participate in acid extrusion, bicarbonate secretion, and chloride absorption depending on the specific subtype. The activity of H(+)-ATPases is regulated by acid-base status and several hormones, including angiotensin II and aldosterone. Angiotensin II stimulates chloride absorption mediated by pendrin in type B intercalated cells and this process is energized by the activity of H(+)-ATPases. Moreover, angiotensin II stimulates bicarbonate secretion by the connecting tubule (CNT) and early cortical collecting duct (CCD). In the present study we examined the effect of angiotensin II (10 nM) on H(+)-ATPase activity and localization in isolated mouse connecting tubules and cortical collecting ducts. Angiotensin II stimulated Na(+)-independent intracellular pH recovery about 2-3 fold, and this was abolished by the specific H(+)-ATPase inhibitor concanamycin. The effect of angiotensin II was mediated through type 1 angiotensin II receptors (AT(1)-receptors) because it could be blocked by saralasin. Stimulation of H(+)-ATPase activity required an intact microtubular network--it was completely inhibited by colchicine. Immunocytochemistry of isolated CNT/CCDs incubated in vitro with angiotensin II suggests enhanced membrane associated staining of H(+)-ATPases in pendrin expressing intercalated cells. In summary, angiotensin II stimulates H(+)-ATPases in CNT/CCD intercalated cells, and may contribute to the regulation of chloride absorption and bicarbonate secretion in this nephron segment.
Collapse
Affiliation(s)
- Carsten A Wagner
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Winter C, Kampik NB, Vedovelli L, Rothenberger F, Paunescu TG, Stehberger PA, Brown D, John H, Wagner CA. Aldosterone stimulates vacuolar H(+)-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway. Am J Physiol Cell Physiol 2011; 301:C1251-61. [PMID: 21832245 DOI: 10.1152/ajpcell.00076.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Urinary acidification in the collecting duct is mediated by the activity of H(+)-ATPases and is stimulated by various factors including angiotensin II and aldosterone. Classically, aldosterone effects are mediated via the mineralocorticoid receptor. Recently, we demonstrated a nongenomic stimulatory effect of aldosterone on H(+)-ATPase activity in acid-secretory intercalated cells of isolated mouse outer medullary collecting ducts (OMCD). Here we investigated the intracellular signaling cascade mediating this stimulatory effect. Aldosterone stimulated H(+)-ATPase activity in isolated mouse and human OMCDs. This effect was blocked by suramin, a general G protein inhibitor, and GP-2A, a specific G(αq) inhibitor, whereas pertussis toxin was without effect. Inhibition of phospholipase C with U-73122, chelation of intracellular Ca(2+) with BAPTA, and blockade of protein kinase C prevented the stimulation of H(+)-ATPases. Stimulation of PKC by DOG mimicked the effect of aldosterone on H(+)-ATPase activity. Similarly, aldosterone and DOG induced a rapid translocation of H(+)-ATPases to the luminal side of OMCD cells in vivo. In addition, PD098059, an inhibitor of ERK1/2 activation, blocked the aldosterone and DOG effects. Inhibition of PKA with H89 or KT2750 prevented and incubation with 8-bromoadenosine-cAMP mildly increased H(+)-ATPase activity. Thus, the nongenomic modulation of H(+)-ATPase activity in OMCD-intercalated cells by aldosterone involves several intracellular pathways and may be mediated by a G(αq) protein-coupled receptor and PKC. PKA and cAMP appear to have a modulatory effect. The rapid nongenomic action of aldosterone may participate in the regulation of H(+)-ATPase activity and contribute to final urinary acidification.
Collapse
Affiliation(s)
- Christian Winter
- Institute of Physiology, Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Organs are complex structures that consist of multiple tissues with different levels of gene expression. To achieve comprehensive coverage and accurate quantitation data, organs ideally should be separated into morphologic and/or functional substructures before gene or protein expression analysis. However, because of complex morphology and elaborate isolation protocols, to date this often has been difficult to achieve. Kidneys are organs in which functional and morphologic subdivision is especially important. Each subunit of the kidney, the nephron, consists of more than 10 subsegments with distinct morphologic and functional characteristics. For a full understanding of kidney physiology, global gene and protein expression analyses have to be performed at the level of the nephron subsegments; however, such studies have been extremely rare to date. Here we describe the latest approaches in quantitative high-accuracy mass spectrometry-based proteomics and their application to quantitative proteomics studies of the whole kidney and nephron subsegments, both in human beings and in animal models. We compare these studies with similar studies performed on other organ substructures. We argue that the newest technologies used for preparation, processing, and measurement of small amounts of starting material are finally enabling global and subsegment-specific quantitative measurement of protein levels in the kidney and other organs. These new technologies and approaches are making a decisive impact on our understanding of the (patho)physiological processes at the molecular level.
Collapse
|
22
|
Păunescu TG, Ljubojevic M, Russo LM, Winter C, McLaughlin MM, Wagner CA, Breton S, Brown D. cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol Renal Physiol 2010; 298:F643-54. [PMID: 20053793 DOI: 10.1152/ajprenal.00584.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kidney proton-secreting A-intercalated cells (A-IC) respond to systemic acidosis by accumulating the vacuolar ATPase (V-ATPase) in their apical membrane and by increasing the length and number of apical microvilli. We show here that the cell-permeant cAMP analog CPT-cAMP, infused in vivo, results in an almost twofold increase in apical V-ATPase accumulation in AE1-positive A-IC within 15 min and that these cells develop an extensive array of apical microvilli compared with controls. In contrast, no significant change in V-ATPase distribution could be detected by immunocytochemistry in B-intercalated cells at the acute time point examined. To show a direct effect of cAMP on A-IC, we prepared cell suspensions from the medulla of transgenic mice expressing EGFP in IC (driven by the B1-subunit promoter of the V-ATPase) and exposed them to cAMP analogs in vitro. Three-dimensional reconstructions of confocal images revealed that cAMP induced a time-dependent growth of apical microvilli, starting within minutes after addition. This effect was blocked by the PKA inhibitor myristoylated PKI. These morphological changes were paralleled by increased cAMP-mediated proton extrusion (pHi recovery) by A-IC in outer medullary collecting ducts measured using the ratiometric probe BCECF. These results, and our prior data showing that the bicarbonate-stimulated soluble adenylyl cyclase (sAC) is highly expressed in kidney intercalated cells, support the idea that cAMP generated either by sAC, or by activation of other signaling pathways, is part of the signal transduction mechanism involved in acid-base sensing and V-ATPase membrane trafficking in kidney intercalated cells.
Collapse
Affiliation(s)
- Teodor G Păunescu
- MGH Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 2009; 20:1705-13. [PMID: 19470676 DOI: 10.1681/asn.2008111195] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypercalciuria increases the risk for urolithiasis, but renal adaptive mechanisms reduce this risk. For example, transient receptor potential vanilloid 5 knockout (TPRV5(-/-)) mice lack kidney stones despite urinary calcium (Ca(2+)) wasting and hyperphosphaturia, perhaps as a result of their significant polyuria and urinary acidification. Here, we investigated the mechanisms linking hypercalciuria with these adaptive mechanisms. Exposure of dissected mouse outer medullary collecting ducts to high (5.0 mM) extracellular Ca(2+) stimulated H(+)-ATPase activity. In TRPV5(-/-) mice, activation of the renal Ca(2+)-sensing receptor promoted H(+)-ATPase-mediated H(+) excretion and downregulation of aquaporin 2, leading to urinary acidification and polyuria, respectively. Gene ablation of the collecting duct-specific B1 subunit of H(+)-ATPase in TRPV5(-/-) mice abolished the enhanced urinary acidification, which resulted in severe tubular precipitations of Ca(2+)-phosphate in the renal medulla. In conclusion, activation of Ca(2+)-sensing receptor by increased luminal Ca(2+) leads to urinary acidification and polyuria. These beneficial adaptations facilitate the excretion of large amounts of soluble Ca(2+), which is crucial to prevent the formation of kidney stones.
Collapse
Affiliation(s)
- Kirsten Y Renkema
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, Meer E, Peti-Peterdi J. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest 2008; 118:2526-34. [PMID: 18535668 DOI: 10.1172/jci33293] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 04/23/2008] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus is the most common and rapidly growing cause of end-stage renal disease in developed countries. A classic hallmark of early diabetes mellitus includes activation of the renin-angiotensin system (RAS), which may lead to hypertension and renal tissue injury, but the mechanism of RAS activation is elusive. Here we identified a paracrine signaling pathway in the kidney in which high levels of glucose directly triggered the release of the prohypertensive hormone renin. The signaling cascade involved the local accumulation of succinate and activation of the kidney-specific G protein-coupled metabolic receptor, GPR91, in the glomerular endothelium as observed in rat, mouse, and rabbit kidney sections. Elements of signal transduction included endothelial Ca2+, the production of NO and prostaglandin (PGE2), and their paracrine actions on adjacent renin-producing cells. This GPR91 signaling cascade may serve to modulate kidney function and help remove metabolic waste products through renal hyperfiltration, and it could also link metabolic diseases, such as diabetes, or metabolic syndrome with RAS overactivation, systemic hypertension, and organ injury.
Collapse
Affiliation(s)
- Ildikó Toma
- Department of Physiology and Biophysics, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Paunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice. Am J Physiol Renal Physiol 2007; 293:F1915-26. [PMID: 17898041 DOI: 10.1152/ajprenal.00160.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice deficient in the ATP6V1B1 ("B1") subunit of the vacuolar proton-pumping ATPase (V-ATPase) maintain body acid-base homeostasis under normal conditions, but not when exposed to an acid load. Here, compensatory mechanisms involving the alternate ATP6V1B2 ("B2") isoform were examined to explain the persistence of baseline pH regulation in these animals. By immunocytochemistry, the mean pixel intensity of apical B2 immunostaining in medullary A intercalated cells (A-ICs) was twofold greater in B1-/- mice than in B1+/+ animals, and B2 was colocalized with other V-ATPase subunits. No significant upregulation of B2 mRNA or protein expression was detected in B1-/- mice compared with wild-type controls. We conclude that increased apical B2 staining is due to relocalization of B2-containing V-ATPase complexes from the cytosol to the plasma membrane. Recycling of B2-containing holoenzymes between these domains was confirmed by the intracellular accumulation of B1-deficient V-ATPases in response to the microtubule-disrupting drug colchicine. V-ATPase membrane expression is further supported by the presence of "rod-shaped" intramembranous particles seen by freeze fracture microscopy in apical membranes of normal and B1-deficient A-ICs. Intracellular pH recovery assays show that significant (28-40% of normal) V-ATPase function is preserved in medullary ICs from B1-/- mice. We conclude that the activity of apical B2-containing V-ATPase holoenzymes in A-ICs is sufficient to maintain baseline acid-base homeostasis in B1-deficient mice. However, our results show no increase in cell surface V-ATPase activity in response to metabolic acidosis in ICs from these animals, consistent with their inability to appropriately acidify their urine under these conditions.
Collapse
Affiliation(s)
- Teodor G Paunescu
- Div. of Nephrology, Massachusetts General Hospital, 185 Cambridge St., CPZN 8150, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rothenberger F, Velic A, Stehberger PA, Kovacikova J, Wagner CA. Angiotensin II stimulates vacuolar H+ -ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 2007; 18:2085-93. [PMID: 17561490 DOI: 10.1681/asn.2006070753] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Final urinary acidification is mediated by the action of vacuolar H(+)-ATPases expressed in acid-secretory type A intercalated cells (A-IC) in the collecting duct. Angiotensin II (AngII) has profound effects on renal acid-base transport in the proximal tubule, distal tubule, and collecting duct. This study investigated the effects on vacuolar H(+)-ATPase activity in A-IC in freshly isolated mouse outer medullary collecting ducts. AngII (10 nM) stimulated concanamycin-sensitive vacuolar H(+)-ATPase activity in A-IC in freshly isolated mouse outer medullary collecting ducts via AT(1) receptors, which were also detected immunohistochemically in A-IC. AngII increased intracellular Ca(2+) levels transiently. Chelation of intracellular Ca(2+) with BAPTA and depletion of endoplasmic reticulum Ca(2+) stores prevented the stimulatory effect on H(+)-ATPase activity. The effect of AngII on H(+)-ATPase activity was abolished by inhibitors of small G proteins and phospholipase C, by blockers of Ca(2+)-dependent and -independent isoforms of protein kinase C and extracellular signal-regulated kinase 1/2. Disruption of the microtubular network and cleavage of cellubrevin attenuated the stimulation. Finally, AngII failed to stimulate residual vacuolar H(+)-ATPase activity in A-IC from mice that were deficient for the B1 subunit of the vacuolar H(+)-ATPase. Thus, AngII presents a potent stimulus for vacuolar H(+)-ATPase activity in outer medullary collecting duct IC and requires trafficking of stimulatory proteins or vacuolar H(+)-ATPases. The B1 subunit is indispensable for the stimulation by AngII, and its importance for stimulation of vacuolar H(+)-ATPase activity may contribute to the inappropriate urinary acidification that is seen in patients who have distal renal tubular acidosis and mutations in this subunit.
Collapse
Affiliation(s)
- Florina Rothenberger
- Institute of Physiology and Centre for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Terryn S, Jouret F, Vandenabeele F, Smolders I, Moreels M, Devuyst O, Steels P, Van Kerkhove E. A primary culture of mouse proximal tubular cells, established on collagen-coated membranes. Am J Physiol Renal Physiol 2007; 293:F476-85. [PMID: 17475898 DOI: 10.1152/ajprenal.00363.2006] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A simple method is described to establish primary cultures of kidney proximal tubule cells (PTC) on membranes. The permeable membranes represent a unique culture surface, allowing a high degree of differentiation since both apical and basolateral membranes are accessible for medium. Proximal tubule (PT) segments from collagenase-digested mouse renal cortices were grown for 7 days, by which time cells were organized as a confluent monolayer. Electron microscopic evaluation revealed structurally polarized epithelial cells with numerous microvilli, basolateral invaginations, and apical tight junctions. Immunoblotting for markers of distinct parts of the nephron demonstrated that these primary cultures only expressed PT-specific proteins. Moreover immunodetection of distinct components of the receptor-mediated endocytic pathway and uptake of FITC-albumin indicated that these cells expressed a functional endocytotic apparatus. In addition, primary cultures possessed the PT brush-border enzymes, alkaline phosphatase, and gamma-glutamyl-transferase, and a phloridzin-sensitive sodium-dependent glucose transport at their apical side. Electrophysiological measurements show that the primary cultured cells have a low transepithelial resistance and high short-circuit current that was completely carried by Na(+) similar to a leaky epithelium like proximal tubule cells. This novel method established well-differentiated PTC cultures.
Collapse
Affiliation(s)
- Sara Terryn
- Laboratory of Cell Physiology, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jouret F, Bernard A, Hermans C, Dom G, Terryn S, Leal T, Lebecque P, Cassiman JJ, Scholte BJ, de Jonge HR, Courtoy PJ, Devuyst O. Cystic fibrosis is associated with a defect in apical receptor-mediated endocytosis in mouse and human kidney. J Am Soc Nephrol 2007; 18:707-18. [PMID: 17287432 DOI: 10.1681/asn.2006030269] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inactivation of the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) causes cystic fibrosis (CF). Although CFTR is expressed in the kidney, no overwhelming renal phenotype has been documented in patients with CF. This study investigated the expression, subcellular distribution, and processing of CFTR in the kidney; used various mouse models to assess the role of CFTR in proximal tubule (PT) endocytosis; and tested the relevance of these findings in patients with CF. The level of CFTR mRNA in mouse kidney approached that found in lung. CFTR was located in the apical area of PT cells, with a maximal intensity in the straight part (S3) of the PT. Fractionation showed that CFTR co-distributed with the chloride/proton exchanger ClC-5 in PT endosomes. Cftr(-/-) mice showed impaired (125)I-beta(2)-microglobulin uptake, together with a decreased amount of the multiligand receptor cubilin in the S3 segment and a significant loss of cubilin and its low molecular weight (LMW) ligands into the urine. Defective receptor-mediated endocytosis was found less consistently in Cftr(DeltaF/DeltaF) mice, characterized by a large phenotypic heterogeneity and moderate versus mice that lacked ClC-5. A significant LMW proteinuria (and particularly transferrinuria) also was documented in a cohort of patients with CF but not in patients with asthma and chronic lung inflammation. In conclusion, CFTR inactivation leads to a moderate defect in receptor-mediated PT endocytosis, associated with a cubilin defect and a significant LMW proteinuria in mouse and human. The magnitude of the endocytosis defect that is caused by CFTR versus ClC-5 loss likely reflects functional heterogeneity along the PT.
Collapse
Affiliation(s)
- François Jouret
- Division of Nephrology, Université catholique de Louvain, 10 Avenue Hippocrate, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The vacuolar H(+)-ATPase is a multisubunit protein consisting of a peripheral catalytic domain (V(1)) that binds and hydrolyzes adenosine triphosphate (ATP) and provides energy to pump H(+) through the transmembrane domain (V(0)) against a large gradient. This proton-translocating vacuolar H(+)-ATPase is present in both intracellular compartments and the plasma membrane of eukaryotic cells. Mutations in genes encoding kidney intercalated cell-specific V(0) a4 and V(1) B1 subunits of the vacuolar H(+)-ATPase cause the syndrome of distal tubular renal acidosis. This review focuses on the function, regulation, and the role of vacuolar H(+)-ATPases in renal physiology. The localization of vacuolar H(+)-ATPases in the kidney, and their role in intracellular pH (pHi) regulation, transepithelial proton transport, and acid-base homeostasis are discussed.
Collapse
Affiliation(s)
- Patricia Valles
- Area de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | |
Collapse
|
30
|
Kirchhoff P, Dave MH, Remy C, Kosiek O, Busque SM, Dufner M, Geibel JP, Verrey F, Wagner CA. An amino acid transporter involved in gastric acid secretion. Pflugers Arch 2005; 451:738-48. [PMID: 16308696 DOI: 10.1007/s00424-005-1507-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 08/04/2005] [Indexed: 11/27/2022]
Abstract
Gastric acid secretion is regulated by a variety of stimuli, in particular histamine and acetyl choline. In addition, dietary factors such as the acute intake of a protein-rich diet and the subsequent increase in serum amino acids can stimulate gastric acid secretion only through partially characterized pathways. Recently, we described in mouse stomach parietal cells the expression of the system L heteromeric amino acid transporter comprised of the LAT2-4F2hc dimer. Here we address the potential role of the system L amino acid transporter in gastric acid secretion by parietal cells in freshly isolated rat gastric glands. RT-PCR, western blotting and immunohistochemistry confirmed the expression of 4F2-LAT2 amino acid transporters in rat parietal cells. In addition, mRNA was detected for the B(0)AT1, ASCT2, and ATB(0+) amino acid transporters. Intracellular pH measurements in parietal cells showed histamine-induced and omeprazole-sensitive H+-extrusion which was enhanced by about 50% in the presence of glutamine or cysteine (1 mM), two substrates of system L amino acid transporters. BCH, a non-metabolizable substrate and a competitive inhibitor of system L amino acid transport, abolished the stimulation of acid secretion by glutamine or cysteine suggesting that this stimulation required the uptake of amino acids by system L. In the absence of histamine glutamine also stimulated H+-extrusion, whereas glutamate did not. Also, phenylalanine was effective in stimulating H+/K+-ATPase activity. Glutamine did not increase intracellular Ca2+ levels indicating that it did not act via the recently described amino acid modulated Ca2+-sensing receptor. These data suggest a novel role for heterodimeric amino acid transporters and may elucidate a pathway by which protein-rich diets stimulate gastric acid secretion.
Collapse
Affiliation(s)
- Philipp Kirchhoff
- Institute of Physiology and Center for Integrative Human Physiology (CIHP), University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Finberg KE, Wagner CA, Bailey MA, Paunescu TG, Breton S, Brown D, Giebisch G, Geibel JP, Lifton RP. The B1-subunit of the H(+) ATPase is required for maximal urinary acidification. Proc Natl Acad Sci U S A 2005; 102:13616-21. [PMID: 16174750 PMCID: PMC1224669 DOI: 10.1073/pnas.0506769102] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multisubunit vacuolar-type H(+)ATPases mediate acidification of various intracellular organelles and in some tissues mediate H(+) secretion across the plasma membrane. Mutations in the B1-subunit of the apical H(+)ATPase that secretes protons in the distal nephron cause distal renal tubular acidosis in humans, a condition characterized by metabolic acidosis with an inappropriately alkaline urine. To examine the detailed cellular and organismal physiology resulting from this mutation, we have generated mice deficient in the B1-subunit (Atp6v1b1(-/-) mice). Urine pH is more alkaline and metabolic acidosis is more severe in Atp6v1b1(-/-) mice after oral acid challenge, demonstrating a failure of normal urinary acidification. In Atp6v1b1(-/-) mice, the normal urinary acidification induced by a lumen-negative potential in response to furosemide infusion is abolished. After an acute intracellular acidification, Na(+)-independent pH recovery rates of individual Atp6v1b1(-/-) intercalated cells of the cortical collecting duct are markedly reduced and show no further decrease after treatment with the selective H(+)ATPase inhibitor concanamycin. Apical expression of the alternative B-subunit isoform, B2, is increased in Atp6v1b1(-/-) medulla and colocalizes with the H(+)ATPase E-subunit; however, the greater severity of metabolic acidosis in Atp6v1b1(-/-) mice after oral acid challenge indicates that the B2-subunit cannot fully functionally compensate for the loss of B1. Our results indicate that the B1 isoform is the major B-subunit isoform that incorporates into functional, plasma membrane H(+)ATPases in intercalated cells of the cortical collecting duct and is required for maximal urinary acidification.
Collapse
Affiliation(s)
- Karin E Finberg
- Departments of Genetics, Cellular and Molecular Physiology, Surgery, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
33
|
Winter C, Schulz N, Giebisch G, Geibel JP, Wagner CA. Nongenomic stimulation of vacuolar H+-ATPases in intercalated renal tubule cells by aldosterone. Proc Natl Acad Sci U S A 2004; 101:2636-41. [PMID: 14983061 PMCID: PMC357002 DOI: 10.1073/pnas.0307321101] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Renal collecting ducts play a critical role in acid-base homeostasis by establishing steep transepithelial pH gradients necessary for the almost complete reabsorption of bicarbonate and the effective secretion of ammonium into the urine. The mechanisms of urine acidification in collecting ducts involve active, electrogenic hydrogen (H+) secretion and, less importantly, potassium (K+)-H+ exchange. Deranged renal acidification and the inability to lower urine pH are hallmarks of distal tubular acidosis and often result from inborn errors of metabolism involving vacuolar H+-ATPase subunits in the collecting ducts. Three factors regulate H+-ATPase activity in intercalated cells of collecting ducts: the acid-base status, angiotensin II, and aldosterone. Most effects of aldosterone involve activation of the mineralocorticoid receptor and genomic changes in transcription and protein synthesis. Here we demonstrate a nongenomic pathway of vacuolar H+-ATPase activation in intercalated cells of isolated mouse outer medullary collecting ducts (OMCD). In vitro exposure of isolated outer medullary collecting ducts to aldosterone (10 nM) for times as short as 15 min increases vacuolar H+-ATPase activity approximately 2- to 3-fold. Neither inhibition of mineralocorticoid receptors nor of transcription and protein synthesis prevented aldosterone-induced stimulation of H+-ATPase. Incubation with colchicine, however, abolished the stimulatory effect of aldosterone, suggesting a role of the microtubular network for H+-ATPase stimulation. Immunohistochemistry in kidneys from aldosterone-injected mice showed increased apical H+-ATPase staining in OMCD-intercalated cells. The stimulatory effect of aldosterone was associated with a transient rise in intracellular Ca2+ and required intact PKC. Thus, rapid nongenomic modulation of vacuolar H+-ATPase activity in OMCD-intercalated cells by aldosterone may play an additional role in hormonal control of systemic acid-base homeostasis.
Collapse
Affiliation(s)
- Christian Winter
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Bonnici B, Wagner CA. Postnatal expression of transport proteins involved in acid-base transport in mouse kidney. Pflugers Arch 2004; 448:16-28. [PMID: 14758480 DOI: 10.1007/s00424-003-1227-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2003] [Revised: 11/24/2003] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
The kidney plays a major role in maintaining and controlling systemic acid-base homeostasis by reabsorbing bicarbonate and secreting protons and acid-equivalents, respectively. During postnatal kidney development and adaptation to changing diets, plasma bicarbonate levels are increasing, the capacity for urinary acidification maturates, and the final morphology and distribution of intercalated cells is achieved. In adult kidney, at least two types of intercalated cells (IC) are found along the collecting duct characterised either by the expression of AE1 (type A IC) or pendrin (non-type A IC) where non-type A IC are found only in the convoluted distal tubule, connecting tubule and cortical collecting duct. Here we investigated in mouse kidney the relative mRNA abundance, protein expression levels and distribution of several proteins involved in renal acid-base transport, namely, the Na(+)/HCO(3)(-) cotransporter NBC1 (SLC4A4), the Na(+)/H(+)-exchanger NHE3 (SLC9A3), two subunits of the vacuolar H(+)-ATPase [ATP6V0A4 (a4), ATP6V1B1 (B1)], the Cl(-)/HCO(3)(-) exchangers AE1 (SLC4A1) and pendrin (SLC26A4). Relative mRNA abundance of all transport proteins was lowest at day 3 after birth and increased thereafter in parallel with protein levels. The numbers of type A and non-type A IC in the cortical collecting duct (CCD) increased from day 3 to days 18 and 24, whereas the number of IC in the CCD with apical staining for the vacuolar H(+)-ATPase subunits a4 and B1 decreased from day 3 to days 18 and 24, respectively. In addition, cells with characteristics of non-type A IC (pendrin expression, basolateral expression of vacuolar H(+)-ATPase subunits) were found in the inner and outer medulla 3 days after birth but were absent from the medulla of 24-day-old mice. Taken together, these results demonstrate massive changes in mRNA and protein expression levels of several acid-base transporters during postnatal kidney maturation and also show changes in intercalated cell phenotype in the medulla during these processes.
Collapse
Affiliation(s)
- Brenda Bonnici
- Institute of Physiology, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | |
Collapse
|