1
|
Byars SG, Prestes PR, Suphapimol V, Takeuchi F, De Vries N, Maier MC, Melo M, Balding D, Samani N, Allen AM, Kato N, Wilkinson-Berka JL, Charchar F, Harrap SB. Four-week inhibition of the renin-angiotensin system in spontaneously hypertensive rats results in persistently lower blood pressure with reduced kidney renin and changes in expression of relevant gene networks. Cardiovasc Res 2024; 120:769-781. [PMID: 38501595 PMCID: PMC11135646 DOI: 10.1093/cvr/cvae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 03/20/2024] Open
Abstract
AIMS Prevention of human hypertension is an important challenge and has been achieved in experimental models. Brief treatment with renin-angiotensin system (RAS) inhibitors permanently reduces the genetic hypertension of the spontaneously hypertensive rat (SHR). The kidney is involved in this fascinating phenomenon, but relevant changes in gene expression are unknown. METHODS AND RESULTS In SHR, we studied the effect of treatment between 10 and 14 weeks of age with the angiotensin receptor blocker, losartan, or the angiotensin-converting enzyme inhibitor, perindopril [with controls for non-specific effects of lowering blood pressure (BP)], on differential RNA expression, DNA methylation, and renin immunolabelling in the kidney at 20 weeks of age. RNA sequencing revealed a six-fold increase in renin gene (Ren) expression during losartan treatment (P < 0.0001). Six weeks after losartan, arterial pressure remained lower (P = 0.006), yet kidney Ren showed reduced expression by 23% after losartan (P = 0.03) and by 43% after perindopril (P = 1.4 × 10-6) associated with increased DNA methylation (P = 0.04). Immunolabelling confirmed reduced cortical renin after earlier RAS blockade (P = 0.002). RNA sequencing identified differential expression of mRNAs, miRNAs, and lncRNAs with evidence of networking and co-regulation. These included 13 candidate genes (Grhl1, Ammecr1l, Hs6st1, Nfil3, Fam221a, Lmo4, Adamts1, Cish, Hif3a, Bcl6, Rad54l2, Adap1, Dok4), the miRNA miR-145-3p, and the lncRNA AC115371. Gene ontogeny analyses revealed that these networks were enriched with genes relevant to BP, RAS, and the kidneys. CONCLUSION Early RAS inhibition in SHR resets genetic pathways and networks resulting in a legacy of reduced Ren expression and BP persisting for a minimum of 6 weeks.
Collapse
Affiliation(s)
- Sean G Byars
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University, Ballarat, Victoria, Australia
| | - Varaporn Suphapimol
- Department of Anatomy & Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nathan De Vries
- Health Innovation and Transformation Centre, Federation University, Ballarat, Victoria, Australia
| | - Michelle C Maier
- Health Innovation and Transformation Centre, Federation University, Ballarat, Victoria, Australia
| | - Mariana Melo
- Department of Anatomy & Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Balding
- Melbourne Integrative Genomic and School of Mathematics & Statistics, University of Melbourne, Victoria, Australia
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Andrew M Allen
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jennifer L Wilkinson-Berka
- Department of Anatomy & Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fadi Charchar
- Health Innovation and Transformation Centre, Federation University, Ballarat, Victoria, Australia
| | - Stephen B Harrap
- Department of Anatomy & Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Daniel EA, Sommer NA, Sharma M. Polycystic kidneys: interaction of notch and renin. Clin Sci (Lond) 2023; 137:1145-1150. [PMID: 37553961 PMCID: PMC11132639 DOI: 10.1042/cs20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Polycystic kidney disease (PKD) is a developmental disorder, which either manifests in early childhood or later in life, depending on the genetic mutation one harbors. The mechanisms of cyst initiation are not well understood. Increasing literature is now suggesting that Notch signaling may play a critical role in PKD. Activation of Notch signaling is important during nephrogenesis and slows down after development. Deletion of various Notch molecules in the cap mesenchyme leads to formation of cysts and early death in mice. A new study by Belyea et al. has now found that cells of renin lineage may link Notch expression and cystic kidney disease. Here, we use our understanding of Notch signaling and PKD to speculate about the significance of these interactions.
Collapse
Affiliation(s)
- Emily A Daniel
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Nicole A Sommer
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| |
Collapse
|
3
|
Martini AG, Smith JP, Medrano S, Sheffield NC, Sequeira-Lopez MLS, Gomez RA. Determinants of renin cell differentiation: a single cell epi-transcriptomics approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524595. [PMID: 36711565 PMCID: PMC9882312 DOI: 10.1101/2023.01.18.524595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rationale Renin cells are essential for survival. They control the morphogenesis of the kidney arterioles, and the composition and volume of our extracellular fluid, arterial blood pressure, tissue perfusion, and oxygen delivery. It is known that renin cells and associated arteriolar cells descend from FoxD1 + progenitor cells, yet renin cells remain challenging to study due in no small part to their rarity within the kidney. As such, the molecular mechanisms underlying the differentiation and maintenance of these cells remain insufficiently understood. Objective We sought to comprehensively evaluate the chromatin states and transcription factors (TFs) that drive the differentiation of FoxD1 + progenitor cells into those that compose the kidney vasculature with a focus on renin cells. Methods and Results We isolated single nuclei of FoxD1 + progenitor cells and their descendants from FoxD1 cre/+ ; R26R-mTmG mice at embryonic day 12 (E12) (n cells =1234), embryonic day 18 (E18) (n cells =3696), postnatal day 5 (P5) (n cells =1986), and postnatal day 30 (P30) (n cells =1196). Using integrated scRNA-seq and scATAC-seq we established the developmental trajectory that leads to the mosaic of cells that compose the kidney arterioles, and specifically identified the factors that determine the elusive, myo-endocrine adult renin-secreting juxtaglomerular (JG) cell. We confirm the role of Nfix in JG cell development and renin expression, and identified the myocyte enhancer factor-2 (MEF2) family of TFs as putative drivers of JG cell differentiation. Conclusions We provide the first developmental trajectory of renin cell differentiation as they become JG cells in a single-cell atlas of kidney vascular open chromatin and highlighted novel factors important for their stage-specific differentiation. This improved understanding of the regulatory landscape of renin expressing JG cells is necessary to better learn the control and function of this rare cell population as overactivation or aberrant activity of the RAS is a key factor in cardiovascular and kidney pathologies.
Collapse
|
4
|
Nakagawa P, Sigmund CD. Under Pressure: A Baroreceptor Mechanism in the Renal Renin Cell Controlling Renin. Circ Res 2021; 129:277-279. [PMID: 34236885 DOI: 10.1161/circresaha.121.319559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pablo Nakagawa
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
5
|
Kirchner S, Reuter S, Westphal A, Mrowka R. Decipher the complexity of cis-regulatory regions by a modified Cas9. PLoS One 2020; 15:e0235530. [PMID: 32614871 PMCID: PMC7332081 DOI: 10.1371/journal.pone.0235530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/18/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Understanding complex mechanisms of human transcriptional regulation remains a major challenge. Classical reporter studies already enabled the discovery of cis-regulatory elements within the non-coding DNA; however, the influence of genomic context and potential interactions are still largely unknown. Using a modified Cas9 activation complex we explore the complexity of renin transcription in its native genomic context. METHODS With the help of genomic editing, we stably tagged the native renin on chromosome 1 with the firefly luciferase and stably integrated a programmable modified Cas9 based trans-activation complex (SAM-complex) by lentiviral transduction into human cells. By delivering five specific guide-RNA homologous to specific promoter regions of renin we were able to guide this SAM-complex to these regions of interest. We measured gene expression and generated and compared computational models. RESULTS SAM complexes induced activation of renin in our cells after renin specific guide-RNA had been provided. All possible combinations of the five guides were subjected to model analysis in linear models. Quantifying the prediction error and the calculation of an estimator of the relative quality of the statistical models for our given set of data revealed that a model incorporating interactions in the proximal promoter is the superior model for explanation of the data. CONCLUSION By applying our combined experimental and modelling approach we can show that interactions occur within the selected sequences of the proximal renin promoter region. This combined approach might potentially be useful to investigate other genomic regions. Our findings may help to better understand the transcriptional regulation of human renin.
Collapse
Affiliation(s)
- Steven Kirchner
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Stefanie Reuter
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Anika Westphal
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Ralf Mrowka
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
6
|
Discovery of a Novel Mutation in the REN Gene in Patient With Chronic Progressive Kidney Disease of Unknown Etiology Presenting With Acute Spontaneous Carotid Artery Dissection. J Stroke Cerebrovasc Dis 2019; 28:104302. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 11/23/2022] Open
|
7
|
Stodola TJ, Liu P, Liu Y, Vallejos AK, Geurts AM, Greene AS, Liang M. Genome-wide map of proximity linkage to renin proximal promoter in rat. Physiol Genomics 2018. [PMID: 29521603 DOI: 10.1152/physiolgenomics.00132.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A challenge to understanding enhancer-gene relationships is that enhancers are not always sequentially close to the gene they regulate. Physical proximity mapping through sequencing can provide an unbiased view of the chromatin close to the proximal promoter of the renin gene ( Ren). Our objective was to determine genomic regions that physically interact with the renin proximal promoter, using two different genetic backgrounds, the Dahl salt sensitive and normotensive SS-13BN, which have been shown to have different regulation of plasma renin in vivo. The chromatin conformation capture method with sequencing focused at the Ren proximal promoter in rat-derived cardiac endothelial cells was used. Cells were fixed, chromatin close to the Ren promoter was captured, and fragments were sequenced. The clustering of mapped reads produced a genome-wide map of chromatin in contact with the Ren promoter. The largest number of contacts was found on chromosome 13, the chromosome with Ren, and contacts were found on all other chromosomes except chromosome X. These contacts were significantly enriched with genes positively correlated with Ren expression and with mapped quantitative trait loci associated with blood pressure, cardiovascular, and renal phenotypes. The results were reproducible in an independent biological replicate. The findings reported here represent the first map between a critical cardiovascular gene and physical interacting loci throughout the genome and will provide the basis for several new directions of research.
Collapse
Affiliation(s)
- Timothy J Stodola
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.,Cancer Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Andrew K Vallejos
- Department of Biomedical Engineering, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Andrew S Greene
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Biomedical Engineering, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
8
|
Brossaud J, Pallet V, Corcuff JB. Vitamin A, endocrine tissues and hormones: interplay and interactions. Endocr Connect 2017; 6:R121-R130. [PMID: 28720593 PMCID: PMC5551430 DOI: 10.1530/ec-17-0101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A (retinol) is a micronutrient critical for cell proliferation and differentiation. In adults, vitamin A and metabolites such as retinoic acid (RA) play major roles in vision, immune and brain functions, and tissue remodelling and metabolism. This review presents the physiological interactions of retinoids and endocrine tissues and hormonal systems. Two endocrine systems have been particularly studied. In the pituitary, retinoids targets the corticotrophs with a possible therapeutic use in corticotropinomas. In the thyroid, retinoids interfere with iodine metabolism and vitamin A deficiency aggravates thyroid dysfunction caused by iodine-deficient diets. Retinoids use in thyroid cancer appears less promising than expected. Recent and still controversial studies investigated the relations between retinoids and metabolic syndrome. Indeed, retinoids contribute to pancreatic development and modify fat and glucose metabolism. However, more detailed studies are needed before planning any therapeutic use. Finally, retinoids probably play more minor roles in adrenal and gonads development and function apart from their major effects on spermatogenesis.
Collapse
Affiliation(s)
- Julie Brossaud
- J Brossaud, Nuclear Medicine, University hospital of Bordeaux, Pessac, France
| | - Veronique Pallet
- V Pallet, NutriNeurO-INRA 1286 - Université Bdx 2, University of Bordeaux, Bordeaux, 33076 BORDEAUX , France
| | - Jean-Benoit Corcuff
- J Corcuff, Nuclear Medicine, University hospital of Bordeaux, Pessac, 33604, France
| |
Collapse
|
9
|
Lachmann P, Selbmann J, Hickmann L, Hohenstein B, Hugo C, Todorov VT. The PPAR-gamma-binding sequence Pal3 is necessary for basal but dispensable for high-fat diet regulated human renin expression in the kidney. Pflugers Arch 2017; 469:1349-1357. [PMID: 28534088 DOI: 10.1007/s00424-017-1994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
We reported earlier that PPAR-gamma regulates renin transcription through a human-specific atypical binding sequence termed hRen-Pal3. Here we developed a mouse model to investigate the functional relevance of the hRen-Pal3 sequence in vivo since it might be responsible for the increased renin production in obesity and thus for the development of accompanying arterial hypertension. We used bacterial artificial chromosome construct and co-placement strategy to generate two transgenic mouse lines expressing the human renin gene from identical genomic locus without affecting the intrinsic mouse renin expression. One line carried a wild-type hRen-Pal3 in the transgene (Pal3wt strain) and the other a mutated non-functional Pal3 (Pal3mut strain). Human renin expression was correctly targeted to the renin-producing juxtaglomerular (JG) cells of kidney in both lines. However, Pal3mut mice had lower basal human renin expression. Since human renin does not recognize mouse angiotensinogen as substrate, the blood pressure was not different between the strains. Stimulation of renin production with the angiotensin-converting enzyme inhibitor enalapril equipotentially stimulated the human renin expression in Pal3wt and Pal3mut mice. High-fat diet for 10 weeks which is known to activate PPAR-gamma failed to increase human renin mRNA in kidneys of either strain. These findings showed that the human renin PPAR-gamma-binding sequence hRen-Pal3 is essential for basal renin expression but dispensable for the cell-specific and high-fat diet regulated renin expression in the kidney.
Collapse
Affiliation(s)
- Peter Lachmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jenny Selbmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Bernd Hohenstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
10
|
Shinohara K, Liu X, Morgan DA, Davis DR, Sequeira-Lopez MLS, Cassell MD, Grobe JL, Rahmouni K, Sigmund CD. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension 2016; 68:1385-1392. [PMID: 27754863 DOI: 10.1161/hypertensionaha.116.08242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/11/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
Abstract
The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Xuebo Liu
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Donald A Morgan
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Deborah R Davis
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Maria Luisa S Sequeira-Lopez
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Martin D Cassell
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Justin L Grobe
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Kamal Rahmouni
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Curt D Sigmund
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville.
| |
Collapse
|
11
|
Lu KT, Keen HL, Weatherford ET, Sequeira-Lopez MLS, Gomez RA, Sigmund CD. Estrogen Receptor α Is Required for Maintaining Baseline Renin Expression. Hypertension 2016; 67:992-9. [PMID: 26928806 DOI: 10.1161/hypertensionaha.115.07082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/08/2016] [Indexed: 01/08/2023]
Abstract
Enzymatic cleavage of angiotensinogen by renin represents the critical rate-limiting step in the production of angiotensin II, but the mechanisms regulating the initial expression of the renin gene remain incomplete. The purpose of this study is to unravel the molecular mechanism controlling renin expression. We identified a subset of nuclear receptors that exhibited an expression pattern similar to renin by reanalyzing a publicly available microarray data set. Expression of some of these nuclear receptors was similarly regulated as renin in response to physiological cues, which are known to regulate renin. Among these, only estrogen receptor α (ERα) and hepatic nuclear factor α have no known function in regulating renin expression. We determined that ERα is essential for the maintenance of renin expression by transfection of small interfering RNAs targeting Esr1, the gene encoding ERα, in renin-expressing As4.1 cells. We also observed that previously characterized negative regulators of renin expression, Nr2f2 and vitamin D receptor, exhibited elevated expression in response to ERα inhibition. Therefore, we tested whether ERα regulates renin expression through an interaction with Nr2f2 and vitamin D receptor. Renin expression did not return to baseline when we concurrently suppressed both Esr1 and Nr2f2 or Esr1 and vitamin D receptor mRNAs, strongly suggesting that Esr1 regulates renin expression independent of Nr2f2 and vitamin D receptor. ERα directly binds to the hormone response element within the renin enhancer region. We conclude that ERα is a previously unknown regulator of renin that directly binds to the renin enhancer hormone response element sequence and is critical in maintaining renin expression in renin-expressing As4.1 cells.
Collapse
Affiliation(s)
- Ko-Ting Lu
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - Henry L Keen
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - Eric T Weatherford
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - Maria Luisa S Sequeira-Lopez
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - R Ariel Gomez
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - Curt D Sigmund
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.).
| |
Collapse
|
12
|
Rautureau Y, Coelho SC, Fraulob-Aquino JC, Huo KG, Rehman A, Offermanns S, Paradis P, Schiffrin EL. Inducible human endothelin-1 overexpression in endothelium raises blood pressure via endothelin type A receptors. Hypertension 2015; 66:347-55. [PMID: 26101346 DOI: 10.1161/hypertensionaha.115.05168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022]
Abstract
The mechanisms of blood pressure regulation by endothelin-1 produced by endothelial cells are complex and still unclear. Transgenic mice with endothelium-restricted human endothelin-1 (EDN1) overexpression presented vascular damage but no significant change in blood pressure, which could be because of adaptation to life-long exposure to elevated endothelin-1 levels. We now generated a tamoxifen-inducible endothelium-restricted EDN1 overexpressing transgenic mouse (ieET-1) using Cre/loxP technology. Sixteen days after tamoxifen treatment, ieET-1 mice presented ≥10-fold increase in plasma endothelin-1 (P<0.01) and ≥20 mm Hg elevation in systolic blood pressure (P<0.01), which could be reversed by atrasentan (P<0.05). Endothelin-1 overexpression did not cause vascular or kidney injury or changes in kidney perfusion or function. However, endothelin type A and B receptor expression was differentially regulated in the mesenteric arteries and the kidney. Our results demonstrate using this ieET-1 mouse model that 21 days of induction of endothelin-1 overexpression caused endothelin-1-dependent elevated blood pressure mediated by endothelin type A receptors.
Collapse
Affiliation(s)
- Yohann Rautureau
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (Y.R., S.C.C., J.C.F.-A., K.-G.H., A.R., P.P., E.L.S.) and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada; and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Nauheim, Germany (S.O.)
| | - Suellen C Coelho
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (Y.R., S.C.C., J.C.F.-A., K.-G.H., A.R., P.P., E.L.S.) and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada; and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Nauheim, Germany (S.O.)
| | - Julio C Fraulob-Aquino
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (Y.R., S.C.C., J.C.F.-A., K.-G.H., A.R., P.P., E.L.S.) and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada; and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Nauheim, Germany (S.O.)
| | - Ku-Geng Huo
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (Y.R., S.C.C., J.C.F.-A., K.-G.H., A.R., P.P., E.L.S.) and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada; and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Nauheim, Germany (S.O.)
| | - Asia Rehman
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (Y.R., S.C.C., J.C.F.-A., K.-G.H., A.R., P.P., E.L.S.) and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada; and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Nauheim, Germany (S.O.)
| | - Stefan Offermanns
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (Y.R., S.C.C., J.C.F.-A., K.-G.H., A.R., P.P., E.L.S.) and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada; and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Nauheim, Germany (S.O.)
| | - Pierre Paradis
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (Y.R., S.C.C., J.C.F.-A., K.-G.H., A.R., P.P., E.L.S.) and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada; and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Nauheim, Germany (S.O.)
| | - Ernesto L Schiffrin
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (Y.R., S.C.C., J.C.F.-A., K.-G.H., A.R., P.P., E.L.S.) and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada; and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Nauheim, Germany (S.O.).
| |
Collapse
|
13
|
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2015; 4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | |
Collapse
|
14
|
Andersen LB, Przybyl L, Haase N, von Versen-Höynck F, Qadri F, Jørgensen JS, Sorensen GL, Fruekilde P, Poglitsch M, Szijarto I, Gollasch M, Peters J, Muller DN, Christesen HT, Dechend R. Vitamin D depletion aggravates hypertension and target-organ damage. J Am Heart Assoc 2015; 4:jah3789. [PMID: 25630909 PMCID: PMC4345870 DOI: 10.1161/jaha.114.001417] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background We tested the controversial hypothesis that vitamin D depletion aggravates hypertension and target‐organ damage by influencing renin. Methods and Results Four‐week‐old double‐transgenic rats (dTGR) with excess angiotensin (Ang) II production due to overexpression of the human renin (hREN) and angiotensinogen (hAGT) genes received vitamin D‐depleted (n=18) or standard chow (n=15) for 3 weeks. The depleted group had very low serum 25‐hydroxyvitamin D levels (mean±SEM; 3.8±0.29 versus 40.6±1.19 nmol/L) and had higher mean systolic BP at week 5 (158±3.5 versus 134.6±3.7 mm Hg, P<0.001), week 6 (176.6±3.3 versus 162.3±3.8 mm Hg, P<0.01), and week 7 (171.6±5.1 versus 155.9±4.3 mm Hg, P<0.05). Vitamin D depletion led to increased relative heart weights and increased serum creatinine concentrations. Furthermore, the mRNAs of natriuretic peptides, neutrophil gelatinase‐associated lipocalin, hREN, and rRen were increased by vitamin D depletion. Regulatory T cells in the spleen and in the circulation were not affected. Ang metabolites, including Ang II and the counter‐regulatory breakdown product Ang 1 to 7, were significantly up‐regulated in the vitamin D‐depleted groups, while ACE‐1 and ACE‐2 activities were not affected. Conclusions Short‐term severe vitamin D depletion aggravated hypertension and target‐organ damage in dTGR. Our data suggest that even short‐term severe vitamin D deficiency may directly promote hypertension and impacts on renin‐angiotensin system components that could contribute to target‐organ damage. The findings add to the evidence that vitamin D deficiency could also affect human hypertension.
Collapse
Affiliation(s)
- Louise Bjørkholt Andersen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Denmark (L.B.A., H.T.C.) Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (L.B.A., J.S., H.T.C.)
| | - Lukasz Przybyl
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.)
| | - Nadine Haase
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.)
| | | | - Fatimunnisa Qadri
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.)
| | - Jan Stener Jørgensen
- Department of Obstetrics and Gynecology, Odense University Hospital, Denmark (J.S.) Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (L.B.A., J.S., H.T.C.)
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark (G.L.S.)
| | - Palle Fruekilde
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark (P.F.)
| | | | - István Szijarto
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.) Max-Delbruck Center for Molecular Medicine, Berlin, Germany (I.S., M.G., D.N.M.)
| | - Maik Gollasch
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.) Max-Delbruck Center for Molecular Medicine, Berlin, Germany (I.S., M.G., D.N.M.)
| | - Joerg Peters
- Institute of Physiology, University Medicine Greifswald, Germany (J.P.)
| | - Dominik N Muller
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.) Max-Delbruck Center for Molecular Medicine, Berlin, Germany (I.S., M.G., D.N.M.)
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Denmark (L.B.A., H.T.C.) Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (L.B.A., J.S., H.T.C.)
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.) HELIOS-Klinikum Berlin, Berlin, Germany (R.D.)
| |
Collapse
|
15
|
Tanimoto K, Kanafusa S, Ushiki A, Matsuzaki H, Ishida J, Sugiyama F, Fukamizu A. A mouse renin distal enhancer is essential for blood pressure homeostasis in BAC-rescued renin-null mutant mice. J Recept Signal Transduct Res 2014; 34:401-9. [PMID: 24734888 DOI: 10.3109/10799893.2014.908917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Renin is predominantly expressed in juxtaglomerular cells in the kidney and regulates blood pressure homeostasis. To examine possible in vivo functions of a mouse distal enhancer (mdE), we generated transgenic mice (TgM) carrying either wild-type or mdE-deficient renin BACs (bacterial artificial chromosome), integrated at the identical chromosomal site. In the kidneys of the TgM, the mdE contributed 80% to basal renin promoter activity. To test for possible physiological roles for the mdE, renin BAC transgenes were used to rescue the hypotensive renin-null mice. Interestingly, renal renin expression in the Tg(BAC):renin-null compound mice was indistinguishable between the wild-type and mutant BAC carriers. Surprisingly, however, the plasma renin activity and angiotensin I concentration in the mdE compound mutant mice were significantly lower than the same parameters in the control mice, and the mutants were consistently hypotensive, demonstrating that blood pressure homeostasis is regulated through transcriptional cis elements controlling renin activity.
Collapse
Affiliation(s)
- Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba , Tsukuba, Ibaraki , Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
PPARgamma-Dependent Control of Renin Expression: Molecular Mechanisms and Pathophysiological Relevance. PPAR Res 2013; 2013:451016. [PMID: 24288524 PMCID: PMC3832966 DOI: 10.1155/2013/451016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/19/2013] [Indexed: 11/24/2022] Open
Abstract
During the last years accumulating evidence demonstrated that the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) regulates the expression of renin gene and thus the overall renin production. This review summarizes the current knowledge of the transcriptional control of the renin gene by PPARgamma received from variety of models ranging from cell culture to transgenic animals. The molecular mechanisms of the PPARgamma action on renin are particularly interesting because they are featured by two newly described characteristics: one of them is the recently identified PPARgamma target sequence Pal3 which is specific for the human renin gene and mediates exceptionally high sensitivity to transactivation; the other is the potentiating effect of PPARgamma on the cAMP signaling in the renin-producing cells. Furthermore, I discuss the need for generating of additional transgenic animal models which are more appropriate with regard to the role of the PPARgamma-dependent regulation of the renin gene expression in human diseases such as arterial hypertension and metabolic syndrome.
Collapse
|