1
|
Puzzo CD, Martinez-Garcia RI, Liu H, Dyson LF, Gilbert WO, Cruikshank SJ. Integration of distinct cortical inputs to primary and higher order inhibitory cells of the thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618039. [PMID: 39416152 PMCID: PMC11482941 DOI: 10.1101/2024.10.12.618039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The neocortex controls its own sensory input in part through top-down inhibitory mechanisms. Descending corticothalamic projections drive GABAergic neurons of the thalamic reticular nucleus (TRN), which govern thalamocortical cell activity via inhibition. Neurons in sensory TRN are organized into primary and higher order (HO) subpopulations, with separate intrathalamic connections and distinct genetic and functional properties. Here, we investigated top-down neocortical control over primary and HO neurons of somatosensory TRN. Projections from layer 6 of somatosensory cortex evoked stronger and more state-dependent activity in primary than in HO TRN, driven by more robust synaptic inputs and potent T-type calcium currents. However, HO TRN received additional, physiologically distinct, inputs from motor cortex and layer 5 of S1. Thus, in a departure from the canonical focused sensory layer 6 innervation characteristic of primary TRN, HO TRN integrates broadly from multiple corticothalamic systems, with unique state-dependence, extending the range of mechanisms for top-down control.
Collapse
|
2
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
3
|
Gomez K, Tang C, Tan B, Perez-Miller S, Ran D, Loya S, Calderon-Rivera A, Stratton HJ, Duran P, Masterson KA, Gabrielsen AT, Alsbiei O, Dorame A, Serafini M, Moutal A, Wang J, Khanna R. Stereospecific Effects of Benzimidazolonepiperidine Compounds on T-Type Ca 2+ Channels and Pain. ACS Chem Neurosci 2022; 13:2035-2047. [PMID: 35671441 DOI: 10.1021/acschemneuro.2c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
T-type calcium channels activate in response to subthreshold membrane depolarizations and represent an important source of Ca2+ influx near the resting membrane potential. These channels regulate neuronal excitability and have been linked to pain. For this reason, T-type calcium channels are suitable molecular targets for the development of new non-opioid analgesics. Our previous work identified an analogue of benzimidazolonepiperidine, 5bk, that preferentially inhibited CaV3.2 channels and reversed mechanical allodynia. In this study, we synthesized and screened a small library of 47 compounds derived from 5bk. We found several compounds that inhibited the Ca2+ influx in DRG neurons of all sizes. After separating the enantiomers of each active compound, we found two compounds, 3-25-R and 3-14-3-S, that potently inhibited the Ca2+ influx. Whole-cell patch clamp recordings from small- to medium-sized DRG neurons revealed that both compounds decreased total Ca2+. Application of 3-14-3-S (but not 3-25-R) blocked transiently expressed CaV3.1-3.3 channels with a similar IC50 value. 3-14-3-S decreased T-type, but not N-type, Ca2+ currents in DRG neurons. Furthermore, intrathecal delivery of 3-14-3-S relieved tonic, neuropathic, and inflammatory pain in preclinical models. 3-14-3-S did not exhibit any activity against G protein-coupled opioid receptors. Preliminary docking studies also suggest that 3-14-3-S can bind to the central pore domain of T-type channels. Together, our chemical characterization and functional and behavioral data identify a novel T-type calcium channel blocker with in vivo efficacy in experimental models of tonic, neuropathic, and inflammatory pain.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States.,The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, William Levine Hall, Room 320, 160 Frelinghuysen Road, Piscataway, New Jersey 0885, United States
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Dongzhi Ran
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Santiago Loya
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Harrison J Stratton
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Kyleigh A Masterson
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Anna T Gabrielsen
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Omar Alsbiei
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Angie Dorame
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Maria Serafini
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Jun Wang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| |
Collapse
|
4
|
Mirlohi S, Bladen C, Santiago MJ, Arnold JC, McGregor I, Connor M. Inhibition of human recombinant T-type calcium channels by phytocannabinoids in vitro. Br J Pharmacol 2022; 179:4031-4043. [PMID: 35342937 DOI: 10.1111/bph.15842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE T-type Ca channels (ICa ) regulate neuronal excitability and contribute to neurotransmitter release. The phytocannabinoids Δ9 -tetrahydrocannabinol and cannabidiol effectively modulate T-type ICa , but effects of other biologically active phytocannabinoids on these channels are unknown. We thus investigated the modulation of T-type ICa by low abundance phytocannabinoids. EXPERIMENTAL APPROACH A fluorometric (FLIPR) assay was used to investigate modulation of human T-type ICa (CaV 3.1, 3.2 and 3.3) stably expressed in FlpIn-TREx HEK293 cells. The biophysical effects of some compounds were examined using whole-cell patch clamp recordings from the same cells. KEY RESULTS In the FLIPR assay, all eleven phytocannabinoids tested modulated T-type ICa , with most inhibiting CaV 3.1 and CaV 3.2 more effectively than CaV 3.3. Cannabigerolic acid was the most potent inhibitor of CaV 3.1 (pIC50 6.1 ± 0.6) and CaV 3.2 (pIC50 6.4 ± 0.4); in all cases phytocannabinoid acids were more potent than their corresponding neutral forms. In patch clamp recordings, cannabigerolic acid inhibited CaV 3.1 and 3.2 with similar potency to the FLIPR assay, the inhibition was associated with significant hyperpolarizing shift in activation and steady state inactivation of these channels. In contrast, cannabidiol, cannabidivarin and cannabigerol only affected channel inactivation. CONCLUSION AND IMPLICATIONS Modulation of T-type calcium channels is a common property of phytocannabinoids, which all increase steady state inactivation at physiological membrane potentials, with some also affecting channel activation. Thus, T-type ICa may be a common site of action for phytocannabinoids, and the diverse actions of phytocannabinoids on channel gating may provide insight into structural requirement for selective T-type ICa modulators.
Collapse
Affiliation(s)
- Somayeh Mirlohi
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Chris Bladen
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Marina J Santiago
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Jonathon C Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| |
Collapse
|
5
|
Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells 2021; 11:cells11010124. [PMID: 35011686 PMCID: PMC8750120 DOI: 10.3390/cells11010124] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions.
Collapse
|
6
|
Perissinotti PP, Martínez-Hernández E, He Y, Koob MD, Piedras-Rentería ES. Genetic Deletion of KLHL1 Leads to Hyperexcitability in Hypothalamic POMC Neurons and Lack of Electrical Responses to Leptin. Front Neurosci 2021; 15:718464. [PMID: 34566565 PMCID: PMC8458657 DOI: 10.3389/fnins.2021.718464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated calcium channels. The KLHL1 knockout (KO) model displays altered calcium channel expression in various brain regions. We analyzed the electrical behavior of hypothalamic POMC (proopiomelanocortin) neurons and their response to leptin. Leptin's effects on POMC neurons include enhanced gene expression, activation of the ERK1/2 pathway and increased electrical excitability. The latter is initiated by activation of the Jak2-PI3K-PLC pathway, which activates TRPC1/5 (Transient Receptor Potential Cation) channels that in turn recruit T-type channel activity resulting in increased excitability. Here we report over-expression of CaV3.1 T-type channels in the hypothalamus of KLHL1 KO mice increased T-type current density and enhanced POMC neuron basal excitability, rendering them electrically unresponsive to leptin. Electrical sensitivity to leptin was restored by partial blockade of T-type channels. The overexpression of hypothalamic T-type channels in POMC neurons may partially contribute to the obese and abnormal feeding phenotypes observed in KLHL1 KO mice.
Collapse
Affiliation(s)
- Paula P Perissinotti
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Elizabeth Martínez-Hernández
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Yungui He
- Institute for Translational Neuroscience and Department of Lab Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Michael D Koob
- Institute for Translational Neuroscience and Department of Lab Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Erika S Piedras-Rentería
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
7
|
Tjaden J, Eickhoff A, Stahlke S, Gehmeyr J, Vorgerd M, Theis V, Matschke V, Theiss C. Expression Pattern of T-Type Ca 2+ Channels in Cerebellar Purkinje Cells after VEGF Treatment. Cells 2021; 10:2277. [PMID: 34571926 PMCID: PMC8470219 DOI: 10.3390/cells10092277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/04/2022] Open
Abstract
T-type Ca2+ channels, generating low threshold calcium influx in neurons, play a crucial role in the function of neuronal networks and their plasticity. To further investigate their role in the complex field of research in plasticity of neurons on a molecular level, this study aimed to analyse the impact of the vascular endothelial growth factor (VEGF) on these channels. VEGF, known as a player in vasculogenesis, also shows potent influence in the central nervous system, where it elicits neuronal growth. To investigate the influence of VEGF on the three T-type Ca2+ channel isoforms, Cav3.1 (encoded by Cacna1g), Cav3.2 (encoded by Cacna1h), and Cav3.3 (encoded by Cacna1i), lasermicrodissection of in vivo-grown Purkinje cells (PCs) was performed, gene expression was analysed via qPCR and compared to in vitro-grown PCs. We investigated the VEGF receptor composition of in vivo- and in vitro-grown PCs and underlined the importance of VEGF receptor 2 for PCs. Furthermore, we performed immunostaining of T-type Ca2+ channels with in vivo- and in vitro-grown PCs and showed the distribution of T-type Ca2+ channel expression during PC development. Overall, our findings provide the first evidence that the mRNA expression of Cav3.1, Cav3.2, and Cav3.3 increases due to VEGF stimulation, which indicates an impact of VEGF on neuronal plasticity.
Collapse
Affiliation(s)
- Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Annika Eickhoff
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Julian Gehmeyr
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany;
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| |
Collapse
|
8
|
Perissinotti PP, Martínez-Hernández E, Piedras-Rentería ES. TRPC1/5-Ca V 3 Complex Mediates Leptin-Induced Excitability in Hypothalamic Neurons. Front Neurosci 2021; 15:679078. [PMID: 34177455 PMCID: PMC8226082 DOI: 10.3389/fnins.2021.679078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
Leptin regulates hypothalamic POMC+ (pro-opiomelanocortin) neurons by inducing TRPC (Transient Receptor Potential Cation) channel-mediate membrane depolarization. The role of TRPC channels in POMC neuron excitability is clearly established; however, it remains unknown whether their activity alone is sufficient to trigger excitability. Here we show that the right-shift voltage induced by the leptin-induced TRPC channel-mediated depolarization of the resting membrane potential brings T-type channels into the active window current range, resulting in an increase of the steady state T-type calcium current from 40 to 70% resulting in increased intrinsic excitability of POMC neurons. We assessed the role and timing of T-type channels on excitability and leptin-induced depolarization in vitro in cultured mouse POMC neurons. The involvement of TRPC channels in the leptin-induced excitability of POMC neurons was corroborated by using the TRPC channel inhibitor 2APB, which precluded the effect of leptin. We demonstrate T-type currents are indispensable for both processes, as treatment with NNC-55-0396 prevented the membrane depolarization and rheobase changes induced by leptin. Furthermore, co-immunoprecipitation experiments suggest that TRPC1/5 channels and CaV3.1 and CaV3.2 channels co-exist in complex. The functional relevance of this complex was corroborated using intracellular Ca2+ chelators; intracellular BAPTA (but not EGTA) application was sufficient to preclude POMC neuron excitability. However, leptin-induced depolarization still occurred in the presence of either BAPTA or EGTA suggesting that the calcium entry necessary to self-activate the TRPC1/5 complex is not blocked by the presence of BAPTA in hypothalamic neurons. Our study establishes T-type channels as integral part of the signaling cascade induced by leptin, modulating POMC neuron excitability. Leptin activation of TRPC channels existing in a macromolecular complex with T-type channels recruits the latter by locally induced membrane depolarization, further depolarizing POMC neurons, triggering action potentials and excitability.
Collapse
Affiliation(s)
- Paula P Perissinotti
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Elizabeth Martínez-Hernández
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Erika S Piedras-Rentería
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
9
|
T-Type Ca 2+ Enhancer SAK3 Activates CaMKII and Proteasome Activities in Lewy Body Dementia Mice Model. Int J Mol Sci 2021; 22:ijms22126185. [PMID: 34201181 PMCID: PMC8228122 DOI: 10.3390/ijms22126185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
Lewy bodies are pathological characteristics of Lewy body dementia (LBD) and are composed of α-synuclein (α-Syn), which is mostly degraded via the ubiquitin–proteasome system. More importantly, 26S proteasomal activity decreases in the brain of LBD patients. We recently introduced a T-type calcium channel enhancer SAK3 (ethyl-8-methyl-2,4-dioxo-2-(piperidin-1-yl)- 2H-spiro[cyclopentane-1,3-imidazo [1,2-a]pyridin]-2-ene-3-carboxylate) for Alzheimer’s disease therapeutics. SAK3 enhanced the proteasome activity via CaMKII activation in amyloid precursor protein knock-in mice, promoting the degradation of amyloid-β plaques to improve cognition. At this point, we addressed whether SAK3 promotes the degradation of misfolded α-Syn and the aggregates in α-Syn preformed fibril (PFF)-injected mice. The mice were injected with α-Syn PFF in the dorsal striatum, and SAK3 (0.5 or 1.0 mg/kg) was administered orally for three months, either immediately or during the last month after injection. SAK3 significantly inhibited the accumulation of fibrilized phosphorylated-α-Syn in the substantia nigra. Accordingly, SAK3 significantly recovered mesencephalic dopamine neurons from cell death. Decreased α-Syn accumulation was closely associated with increased proteasome activity. Elevated CaMKII/Rpt-6 signaling possibly mediates the enhanced proteasome activity after SAK3 administration in the cortex and hippocampus. CaMKII/Rpt-6 activation also accounted for improved memory and cognition in α-Syn PFF-injected mice. These findings indicate that CaMKII/Rpt-6-dependent proteasomal activation by SAK3 recovers from α-Syn pathology in LBD.
Collapse
|
10
|
Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochem Biophys Res Commun 2021; 553:99-106. [PMID: 33765560 DOI: 10.1016/j.bbrc.2021.02.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
Spontaneous burst firing is a hallmark attributed to the neuronal network activity. It is known to be accompanied by intracellular calcium [Са2+]i oscillations within the bursting neurons. Studying mechanisms underlying regulation of burst firing is highly relevant, since impairment in neuronal bursting accompanies different neurological disorders. In the present study, the contribution of NMDA and GABA(A) receptors to the shape formation of spontaneous burst -was studied in cultured hippocampal neurons. A combination of inhibitory analysis with simultaneous registration of neuronal bursting by whole-cell patch clamp and calcium imaging was used to assess spontaneous burst firing and [Са2+]i level. Using bicuculline and D-AP5 we showed that GABA(A) and NMDA receptors effectively modulate burst plateau phase and [Са2+]i transient spike which can further affect action potential (AP) amplitudes and firing frequency within a burst. Bicuculline significantly elevated the amplitude and reduced the duration of both burst plateau phase and [Са2+]i spike resulting in an increase of AP firing frequency and shortening of AP amplitudes within a burst. D-AP5 significantly decreases the amplitude of both plateau phase and [Са2+]i spike along with a burst duration that correlated with an increase in AP amplitudes and reduced firing frequency within a burst. The effect of bicuculline was occluded by co-addition of D-AP5 revealing modulatory role of GABA(A) receptors to the NMDA receptor-mediated formation of the burst. Our results provide new evidence on importance of NMDA and GABA(A) receptors in shaping burst firing and Ca2+transient spikes in cultured hippocampal neurons.
Collapse
|
11
|
Rivero-Echeto MC, Perissinotti PP, González-Inchauspe C, Kargieman L, Bisagno V, Urbano FJ. Simultaneous administration of cocaine and caffeine dysregulates HCN and T-type channels. Psychopharmacology (Berl) 2021; 238:787-810. [PMID: 33241481 PMCID: PMC7688300 DOI: 10.1007/s00213-020-05731-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
RATIONALE The abuse of psychostimulants has adverse consequences on the physiology of the central nervous system. In Argentina, and other South American countries, coca paste or "PACO" (cocaine and caffeine are its major components) is massively consumed with deleterious clinical consequences for the health and well-being of the general population. A scant number of studies have addressed the consequences of stimulant combination of cocaine and caffeine on the physiology of the somatosensory thalamocortical (ThCo) system. OBJECTIVES Our aim was to study ion conductances that have important implications regulating sleep-wake states 24-h after an acute or chronic binge-like administration of a cocaine and caffeine mixture following previously analyzed pasta base samples ("PACO"-like binge") using mice. METHODS We randomly injected (i.p.) male C57BL/6JFcen mice with a binge-like psychostimulants regimen during either 1 day (acute) or 1 day on/1 day off during 13 days for a total of 7 binges (chronic). Single-cell patch-clamp recordings of VB neurons were performed in thalamocortical slices 24 h after the last psychostimulant injection. We also recorded EEG/EMG from mice 24 h after being systemically treated with chronic administration of cocaine + caffeine versus saline, vehicle. RESULTS Our results showed notorious changes in the intrinsic properties of the VB nucleus neurons that persist after 24-h of either acute or chronic binge administrations of combined cocaine and caffeine ("PACO"-like binge). Functional dysregulation of HCN (hyperpolarization-activated cyclic nucleotide-gated) and T-type VGC (voltage-gated calcium) channels was described 24-h after acute/chronic "PACO"-like administrations. Furthermore, intracellular basal [Ca2+] disturbances resulted a key factor that modulated the availability and the activation of T-type channels, altering T-type "window currents." As a result, all these changes ultimately shaped the low-threshold spikes (LTS)-associated Ca2+ transients, regulated the membrane excitability, and altered sleep-wake transitions. CONCLUSION Our results suggest that deleterious consequences of stimulants cocaine and caffeine combination on the thalamocortical physiology as a whole might be related to potential neurotoxic effects of soaring intracellular [Ca2+].
Collapse
Affiliation(s)
- María Celeste Rivero-Echeto
- grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad de Buenos Aires, Argentina
| | - Paula P. Perissinotti
- grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad de Buenos Aires, Argentina
| | - Carlota González-Inchauspe
- grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad de Buenos Aires, Argentina
| | - Lucila Kargieman
- grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad de Buenos Aires, Argentina
| | - Verónica Bisagno
- grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad de Buenos Aires, Argentina
| | - Francisco J. Urbano
- grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad de Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado”, Ciudad de Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981IFIBYNE (UBA-CONICET), Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
12
|
T-Type Calcium Channels Contribute to Burst Firing in a Subpopulation of Medial Habenula Neurons. eNeuro 2020; 7:ENEURO.0201-20.2020. [PMID: 32719103 PMCID: PMC7433892 DOI: 10.1523/eneuro.0201-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
Action potential (AP) burst firing caused by the activation of low-voltage-activated T-type Ca2+ channels is a unique mode of neuronal firing. T-type channels have been implicated in diverse physiological and pathophysiological processes, including epilepsy, autism, and mood regulation, but the brain structures involved remain incompletely understood. The medial habenula (MHb) is an epithalamic structure implicated in anxiety-like and withdrawal behavior. Previous studies have shown that MHb neurons fire tonic APs at a frequency of ∼2–10 Hz or display depolarized low-amplitude membrane oscillations. Here, we report in C57BL/6J mice that a subpopulation of MHb neurons are capable of firing transient, high-frequency AP bursts mediated by T-type channels. Burst firing was observed following rebounding from hyperpolarizing current injections or during depolarization from hyperpolarized membrane potentials in ∼20% of MHb neurons. It was rarely observed at baseline but could be evoked in MHb neurons displaying different initial activity states. Further, we show that T-type channel mRNA, in particular Cav3.1, is expressed in the MHb in both cholinergic and substance P-ergic neurons. Pharmacological Cav3 antagonism blocked both burst firing and evoked Ca2+ currents in MHb neurons. Additionally, we observed high-frequency AP doublet firing at sustained depolarized membrane potentials that was independent of T-type channels. Thus, there is a greater diversity of AP firing patterns in MHb neurons than previously identified, including T-type channel-mediated burst firing, which may uniquely contribute to behaviors with relevance to neuropsychiatric disease.
Collapse
|
13
|
Martinez-Garcia RI, Voelcker B, Zaltsman JB, Patrick SL, Stevens TR, Connors BW, Cruikshank SJ. Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature 2020; 583:813-818. [PMID: 32699410 PMCID: PMC7394732 DOI: 10.1038/s41586-020-2512-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
Abstract
Most sensory information destined for the neocortex is relayed through the thalamus, where considerable transformation occurs1,2. One means of transformation involves interactions between excitatory thalamocortical neurons that carry data to the cortex and inhibitory neurons of the thalamic reticular nucleus (TRN) that regulate the flow of those data3-6. Although the importance of the TRN has long been recognised7-9, understanding of its cell types, their organization and their functional properties has lagged behind that of the thalamocortical systems they control. Here we address this by investigating the somatosensory and visual circuits of the TRN in mice. In the somatosensory TRN we observed two groups of genetically defined neurons that are topographically segregated and physiologically distinct, and that connect reciprocally with independent thalamocortical nuclei through dynamically divergent synapses. Calbindin-expressing cells-located in the central core-connect with the ventral posterior nucleus, the primary somatosensory thalamocortical relay. By contrast, somatostatin-expressing cells-which reside along the surrounding edges of the TRN-synapse with the posterior medial thalamic nucleus, a higher-order structure that carries both top-down and bottom-up information10-12. The two TRN cell groups process their inputs in pathway-specific ways. Synapses from the ventral posterior nucleus to central TRN cells transmit rapid excitatory currents that depress deeply during repetitive activity, driving phasic spike output. Synapses from the posterior medial thalamic nucleus to edge TRN cells evoke slower, less depressing excitatory currents that drive more persistent spiking. Differences in the intrinsic physiology of TRN cell types, including state-dependent bursting, contribute to these output dynamics. The processing specializations of these two somatosensory TRN subcircuits therefore appear to be tuned to the signals they carry-a primary central subcircuit tuned to discrete sensory events, and a higher-order edge subcircuit tuned to temporally distributed signals integrated from multiple sources. The structure and function of visual TRN subcircuits closely resemble those of the somatosensory TRN. These results provide insights into how subnetworks of TRN neurons may differentially process distinct classes of thalamic information.
Collapse
Affiliation(s)
- Rosa I Martinez-Garcia
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bettina Voelcker
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Center for Neural Science, New York University, New York, NY, USA
| | - Julia B Zaltsman
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Saundra L Patrick
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Tanya R Stevens
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Barry W Connors
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Scott J Cruikshank
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA. .,The UAB Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA. .,UAB Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Cdk5-Dependent Phosphorylation of Ca V3.2 T-Type Channels: Possible Role in Nerve Ligation-Induced Neuropathic Allodynia and the Compound Action Potential in Primary Afferent C Fibers. J Neurosci 2019; 40:283-296. [PMID: 31744861 DOI: 10.1523/jneurosci.0181-19.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Voltage-gated T-type Ca2+ (CaV3) channels regulate diverse physiological events, including neuronal excitability, and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that calcium/calmodulin-dependent protein kinase II and protein kinases A and C regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and upregulates CaV3.2 channels and cyclin-dependent kinase 5 (Cdk5) in dorsal root ganglia (DRG) and spinal dorsal horn. Here, we report that recombinant CaV3.2 channels expressed in HEK293 cells are regulatory targets of Cdk5. Site-directed mutagenesis showed that the relevant sites for this regulation are residues S561 and S1987. We also found that Cdk5 may regulate CaV3.2 channel functional expression in rats with mechanical allodynia induced by spinal nerve ligation (SNL). Consequently, the Cdk5 inhibitor olomoucine affected the compound action potential recorded in the spinal nerves, as well as the paw withdrawal threshold. Likewise, Cdk5 expression was upregulated after SNL in the DRG. These findings unveil a novel mechanism for how phosphorylation may regulate CaV3.2 channels and suggest that increased channel activity by Cdk5-mediated phosphorylation after SNL contributes nerve injury-induced tactile allodynia.SIGNIFICANCE STATEMENT Neuropathic pain is a current public health challenge. It can develop as a result of injury or nerve illness. It is acknowledged that the expression of various ion channels can be altered in neuropathic pain, including T-type Ca2+ channels that are expressed in sensory neurons, where they play a role in the regulation of cellular excitability. The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of CaV3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.
Collapse
|
15
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
16
|
Richard M, Kaufmann P, Kornberger R, Dingemanse J. First‐in‐man study of
ACT
‐709478, a novel selective triple T‐type calcium channel blocker. Epilepsia 2019; 60:968-978. [DOI: 10.1111/epi.14732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Muriel Richard
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Priska Kaufmann
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | | | - Jasper Dingemanse
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| |
Collapse
|
17
|
T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice. PLoS One 2018; 13:e0206986. [PMID: 30571684 PMCID: PMC6301769 DOI: 10.1371/journal.pone.0206986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
T-type calcium channels in the brain mediate the pathophysiology of epilepsy, pain, and sleep. Recently, we developed a novel therapeutic candidate, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a] pyridine]-2-ene-3-carboxylate), for Alzheimer's disease (AD). The cognitive improvement by SAK3 is closely associated with enhanced acetylcholine (ACh) release in the hippocampus. Since monoamines such as dopamine (DA), noradrenaline (NA), and serotonin (5-HT) are also involved in hippocampus-dependent learning and psychomotor behaviors in mice, we investigated the effects of SAK3 on these monoamine releases in the mouse brain. Oral administration of SAK3 (0.5 mg/kg, p.o.) significantly promoted DA and 5-HT releases in the naive mouse hippocampal CA1 region but not in the medial prefrontal cortex (mPFC), while SAK3 did not affect NA release in either brain region. The T-type calcium channel-specific inhibitor, NNC 55-0396 (1 μM) significantly antagonized SAK3-enhanced DA and 5-HT releases in the hippocampus. Interestingly, the α7 nicotinic ACh receptor (nAChR) antagonist, methyllycaconitine (1 nM) significantly inhibited DA release, and the α4 nAChR antagonist, dihydro-β-erythroidine (100 μM) significantly blocked both DA and 5-HT releases following SAK3 (0.5 mg/kg, p.o.) administration in the hippocampus. SAK3 did not alter basal monoamine contents both in the mPFC and hippocampus. SAK3 (0.5 mg/kg, p.o.) administration also significantly elevated DA and 5-HT releases in the hippocampal CA1 region of amyloid-precursor protein (APP)NL-GF knock-in (KI) mice. Moreover, hippocampal DA and 5-HT contents were significantly decreased in APPNL-GF KI mice. Taken together, our data suggest that SAK3 promotes monoamine DA and 5-HT releases by enhancing the T-type calcium channel and nAChR in the mouse hippocampus.
Collapse
|
18
|
Wang D, Ragnarsson L, Lewis RJ. T-type Calcium Channels in Health and Disease. Curr Med Chem 2018; 27:3098-3122. [PMID: 30277145 DOI: 10.2174/0929867325666181001112821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Low Voltage-Activated (LVA) T-type calcium channels are characterized by transient current and Low Threshold Spikes (LTS) that trigger neuronal firing and oscillatory behavior. Combined with their preferential localization in dendrites and their specific "window current", T-type calcium channels are considered to be key players in signal amplification and synaptic integration. Assisted by the emerging pharmacological tools, the structural determinants of channel gating and kinetics, as well as novel physiological and pathological functions of T-type calcium channels, are being uncovered. In this review, we provide an overview of structural determinants in T-type calcium channels, their involvement in disorders and diseases, the development of novel channel modulators, as well as Structure-Activity Relationship (SAR) studies that lead to rational drug design.
Collapse
Affiliation(s)
- Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
19
|
He R, Zhang J, Yu Y, Jizi L, Wang W, Li M. New Insights Into Interactions of Presynaptic Calcium Channel Subtypes and SNARE Proteins in Neurotransmitter Release. Front Mol Neurosci 2018; 11:213. [PMID: 30061813 PMCID: PMC6054978 DOI: 10.3389/fnmol.2018.00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Action potential (AP) induces presynaptic membrane depolarization and subsequent opening of Ca2+ channels, and then triggers neurotransmitter release at the active zone of presynaptic terminal. Presynaptic Ca2+ channels and SNARE proteins (SNAREs) interactions form a large signal transfer complex, which are core components for exocytosis. Ca2+ channels serve to regulate the activity of Ca2+ channels through direct binding and indirect activation of active zone proteins and SNAREs. The activation of Ca2+ channels promotes synaptic vesicle recruitment, docking, priming, fusion and neurotransmission release. Intracellular calcium increase is a key step for the initiation of vesicle fusion. Various voltage-gated calcium channel (VGCC) subtypes exert different physiological functions. Until now, it has not been clear how different subtypes of calcium channels integrally regulate the release of neurotransmitters within 200 μs of the AP arriving at the active zone of synaptic terminal. In this mini review, we provide a brief overview of the structure and physiological function of Ca2+ channel subtypes, interactions of Ca2+ channels and SNAREs in neurotransmitter release, and dynamic fine-tune Ca2+ channel activities by G proteins (Gβγ), multiple protein kinases and Ca2+ sensor (CaS) proteins.
Collapse
Affiliation(s)
- Rongfang He
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Infectious Disease Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yiyan Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Laluo Jizi
- Department of Neurology, Liangshan Hospital of Integrated Traditional and Western Medicine, Xichang, China
| | - Weizhong Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Sanchez-Sandoval AL, Herrera Carrillo Z, Díaz Velásquez CE, Delgadillo DM, Rivera HM, Gomora JC. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels. PLoS One 2018; 13:e0193490. [PMID: 29474447 PMCID: PMC5825144 DOI: 10.1371/journal.pone.0193490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/12/2018] [Indexed: 11/25/2022] Open
Abstract
Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, México
| | - Zazil Herrera Carrillo
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, México
| | - Clara Estela Díaz Velásquez
- Programa de Neurociencias, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Dulce María Delgadillo
- Laboratorios Nacionales de Servicios Experimentales Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
| | - Heriberto Manuel Rivera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos Cuernavaca, Morelos, México
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, México
- * E-mail:
| |
Collapse
|
21
|
Bezençon O, Heidmann B, Siegrist R, Stamm S, Richard S, Pozzi D, Corminboeuf O, Roch C, Kessler M, Ertel EA, Reymond I, Pfeifer T, de Kanter R, Toeroek-Schafroth M, Moccia LG, Mawet J, Moon R, Rey M, Capeleto B, Fournier E. Discovery of a Potent, Selective T-type Calcium Channel Blocker as a Drug Candidate for the Treatment of Generalized Epilepsies. J Med Chem 2017; 60:9769-9789. [PMID: 29116786 DOI: 10.1021/acs.jmedchem.7b01236] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.
Collapse
Affiliation(s)
- Olivier Bezençon
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Bibia Heidmann
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Romain Siegrist
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Simon Stamm
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Sylvia Richard
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Davide Pozzi
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Olivier Corminboeuf
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Catherine Roch
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Melanie Kessler
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Eric A Ertel
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Isabelle Reymond
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Thomas Pfeifer
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Ruben de Kanter
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Michael Toeroek-Schafroth
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Luca G Moccia
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Jacques Mawet
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Richard Moon
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Markus Rey
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Bruno Capeleto
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Elvire Fournier
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
22
|
Asaoka N, Nishitani N, Kinoshita H, Kawai H, Shibui N, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S. Chronic antidepressant potentiates spontaneous activity of dorsal raphe serotonergic neurons by decreasing GABA B receptor-mediated inhibition of L-type calcium channels. Sci Rep 2017; 7:13609. [PMID: 29051549 PMCID: PMC5648823 DOI: 10.1038/s41598-017-13599-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Spontaneous activity of serotonergic neurons of the dorsal raphe nucleus (DRN) regulates mood and motivational state. Potentiation of serotonergic function is one of the therapeutic strategies for treatment of various psychiatric disorders, such as major depression, panic disorder and obsessive-compulsive disorder. However, the control mechanisms of the serotonergic firing activity are still unknown. In this study, we examined the control mechanisms for serotonergic spontaneous activity and effects of chronic antidepressant administration on these mechanisms by using modified ex vivo electrophysiological recording methods. Serotonergic neurons remained firing even in the absence of glutamatergic and GABAergic ionotropic inputs, while blockade of L-type voltage dependent Ca2+ channels (VDCCs) in serotonergic neurons decreased spontaneous firing activity. L-type VDCCs in serotonergic neurons received gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition, which maintained serotonergic slow spontaneous firing activity. Chronic administration of an antidepressant, citalopram, disinhibited the serotonergic spontaneous firing activity by weakening the GABAB receptor-mediated inhibition of L-type VDCCs in serotonergic neurons. Our results provide a new mechanism underlying the spontaneous serotonergic activity and new insights into the mechanism of action of antidepressants.
Collapse
Affiliation(s)
- Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Haruko Kinoshita
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Kawai
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Norihiro Shibui
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
23
|
Kim J, Kim Y, Nakajima R, Shin A, Jeong M, Park AH, Jeong Y, Jo S, Yang S, Park H, Cho SH, Cho KH, Shim I, Chung JH, Paik SB, Augustine GJ, Kim D. Inhibitory Basal Ganglia Inputs Induce Excitatory Motor Signals in the Thalamus. Neuron 2017; 95:1181-1196.e8. [PMID: 28858620 DOI: 10.1016/j.neuron.2017.08.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Basal ganglia (BG) circuits orchestrate complex motor behaviors predominantly via inhibitory synaptic outputs. Although these inhibitory BG outputs are known to reduce the excitability of postsynaptic target neurons, precisely how this change impairs motor performance remains poorly understood. Here, we show that optogenetic photostimulation of inhibitory BG inputs from the globus pallidus induces a surge of action potentials in the ventrolateral thalamic (VL) neurons and muscle contractions during the post-inhibitory period. Reduction of the neuronal population with this post-inhibitory rebound firing by knockout of T-type Ca2+ channels or photoinhibition abolishes multiple motor responses induced by the inhibitory BG input. In a low dopamine state, the number of VL neurons showing post-inhibitory firing increases, while reducing the number of active VL neurons via photoinhibition of BG input, effectively prevents Parkinson disease (PD)-like motor symptoms. Thus, BG inhibitory input generates excitatory motor signals in the thalamus and, in excess, promotes PD-like motor abnormalities. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jeongjin Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Center for Neuroscience, KIST, Seoul 02792, Republic of Korea
| | - Youngsoo Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Ryuichi Nakajima
- Center for Functional Connectomics, KIST, Seoul 02792, Republic of Korea
| | - Anna Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Minju Jeong
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Ah Hyung Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yongcheol Jeong
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seonmi Jo
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seungkyoung Yang
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Hosung Park
- School of Computing, KAIST, Daejeon 34141, Republic of Korea
| | - Sung-Hwan Cho
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Jae Hoon Chung
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - George J Augustine
- Center for Functional Connectomics, KIST, Seoul 02792, Republic of Korea; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Daesoo Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
24
|
Asmara H, Micu I, Rizwan AP, Sahu G, Simms BA, Zhang FX, Engbers JDT, Stys PK, Zamponi GW, Turner RW. A T-type channel-calmodulin complex triggers αCaMKII activation. Mol Brain 2017; 10:37. [PMID: 28800734 PMCID: PMC5553682 DOI: 10.1186/s13041-017-0317-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/28/2017] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is an important signaling molecule that regulates a vast array of cellular functions by activating second messengers involved in cell function and plasticity. Low voltage-activated calcium channels of the Cav3 family have the important role of mediating low threshold calcium influx, but were not believed to interact with CaM. We find a constitutive association between CaM and the Cav3.1 channel at rest that is lost through an activity-dependent and Cav3.1 calcium-dependent CaM dissociation. Moreover, Cav3 calcium influx is sufficient to activate αCaMKII in the cytoplasm in a manner that depends on an intact Cav3.1 C-terminus needed to support the CaM interaction. Our findings thus establish that T-type channel calcium influx invokes a novel dynamic interaction between CaM and Cav3.1 channels to trigger a signaling cascade that leads to αCaMKII activation.
Collapse
Affiliation(s)
- Hadhimulya Asmara
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ileana Micu
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Arsalan P Rizwan
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Giriraj Sahu
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Brett A Simms
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jordan D T Engbers
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ray W Turner
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,HRIC 1AA14, University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
25
|
Leresche N, Lambert RC. GABA receptors and T-type Ca 2+ channels crosstalk in thalamic networks. Neuropharmacology 2017; 136:37-45. [PMID: 28601398 DOI: 10.1016/j.neuropharm.2017.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Although the thalamus presents a rather limited repertoire of GABAergic cell types compare to other CNS area, this structure is a privileged system to study how GABA impacts neuronal network excitability. Indeed both glutamatergic thalamocortical (TC) and GABAergic nucleus reticularis thalami (NRT) neurons present a high expression of T-type voltage-dependent Ca2+ channels whose activation that shapes the output of the thalamus critically depends upon a preceding hyperpolarisation. Because of this strict dependence, a tight functional link between GABA mediated hyperpolarization and T-currents characterizes the thalamic network excitability. In this review we summarize a number of studies showing that the relationships between the various thalamic GABAA/B receptors and T-channels are complex and bidirectional. We discuss how this dynamic interaction sets the global intrathalamic network activity and its long-term plasticity and highlight how the functional relationship between GABA release and T-channel-dependent excitability is finely tuned by the T-channel activation itself. Finally, we illustrate how an impaired balance between T-channels and GABA receptors can lead to pathologically abnormal cellular and network behaviours. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Nathalie Leresche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Régis C Lambert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| |
Collapse
|
26
|
Mak-McCully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, Rey M, Bastuji H, Halgren E. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat Commun 2017; 8:15499. [PMID: 28541306 PMCID: PMC5458505 DOI: 10.1038/ncomms15499] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/29/2017] [Indexed: 11/21/2022] Open
Abstract
Every night, the human brain produces thousands of downstates and spindles during non-REM sleep. Previous studies indicate that spindles originate thalamically and downstates cortically, loosely grouping spindle occurrence. However, the mechanisms whereby the thalamus and cortex interact in generating these sleep phenomena remain poorly understood. Using bipolar depth recordings, we report here a sequence wherein: (1) convergent cortical downstates lead thalamic downstates; (2) thalamic downstates hyperpolarize thalamic cells, thus triggering spindles; and (3) thalamic spindles are focally projected back to cortex, arriving during the down-to-upstate transition when the cortex replays memories. Thalamic intrinsic currents, therefore, may not be continuously available during non-REM sleep, permitting the cortex to control thalamic spindling by inducing downstates. This archetypical cortico-thalamo-cortical sequence could provide the global physiological context for memory consolidation during non-REM sleep. During non-REM sleep, the thalamus produces spindles and the cortex produces downstates, but the interaction between these two areas in these sleep phenomena is not understood. Here, authors describe the dynamic loop between the thalamus and cortex that organizes the production of spindles and downstates in the human brain.
Collapse
Affiliation(s)
- Rachel A Mak-McCully
- Department of Neurosciences, University of California, San Diego, California 92093, USA
| | - Matthieu Rolland
- Department of Radiology, University of California, San Diego, California 92093, USA
| | - Anna Sargsyan
- Department of Radiology, University of California, San Diego, California 92093, USA
| | - Chris Gonzalez
- Department of Neurosciences, University of California, San Diego, California 92093, USA
| | - Michel Magnin
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028; CNRS, UMR5292; Université Claude Bernard, Lyon, Bron, France
| | - Patrick Chauvel
- Aix-Marseille Université, 13385 Marseille, France.,INSERM, Institut de Neurosciences des Systèmes UMR 1106, 13005 Marseille, France.,APHM (Assistance Publique-Hôpitaux de Marseille), Timone Hospital, 13005 Marseille, France
| | - Marc Rey
- Aix-Marseille Université, 13385 Marseille, France.,INSERM, Institut de Neurosciences des Systèmes UMR 1106, 13005 Marseille, France.,APHM (Assistance Publique-Hôpitaux de Marseille), Timone Hospital, 13005 Marseille, France
| | - Hélène Bastuji
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028; CNRS, UMR5292; Université Claude Bernard, Lyon, Bron, France.,Unité d'Hypnologie, Service de Neurologie Fonctionnelle et d'Épileptologie, Hôpital Neurologique, Hospices Civils de Lyon, Bron 69002, France
| | - Eric Halgren
- Department of Neurosciences, University of California, San Diego, California 92093, USA.,Department of Radiology, University of California, San Diego, California 92093, USA.,Department of Psychiatry, University of California, San Diego, California 92093, USA
| |
Collapse
|
27
|
Lapied B, Defaix A, Stankiewicz M, Moreau E, Raymond V. Modulation of Low-Voltage-Activated Inward Current Permeable to Sodium and Calcium by DARPP-32 Drives Spontaneous Firing of Insect Octopaminergic Neurosecretory Cells. Front Syst Neurosci 2017; 11:31. [PMID: 28579948 PMCID: PMC5437719 DOI: 10.3389/fnsys.2017.00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 12/02/2022] Open
Abstract
Identification of the different intracellular pathways that control phosphorylation/dephosphorylation process of ionic channels represents an exciting alternative approach for studying the ionic mechanisms underlying neuronal pacemaker activity. In the central nervous system of the cockroach Periplaneta americana, octopaminergic neurons, called dorsal unpaired median (DUM; DUM neurons), generate spontaneous repetitive action potentials. Short-term cultured adult DUM neurons isolated from the terminal abdominal ganglion (TAG) of the nerve cord were used to study the regulation of a tetrodotoxin-sensitive low-voltage-activated (LVA) channel permeable to sodium and calcium (Na/Ca), under whole cell voltage- and current-clamp conditions. A bell-shaped curve illustrating the regulation of the amplitude of the maintained current vs. [ATP]i was observed. This suggested the existence of phosphorylation mechanisms. The protein kinase A (PKA) inhibitor, H89 and elevating [cyclic adenosine 3′, 5′ monophosphate, cAMP]i, increased and decreased the current amplitude, respectively. This indicated a regulation of the current via a cAMP/PKA cascade. Furthermore, intracellular application of PP2B inhibitors, cyclosporine A, FK506 and PP1/2A inhibitor, okadaic acid decreased the current amplitude. From these results and because octopamine (OA) regulates DUM neuron electrical activity via an elevation of [cAMP]i, we wanted to know if, like in vertebrate dopaminergic neurons, OA receptor (OAR) stimulation could indirectly affect the current via PKA-mediated phosphorylation of Dopamine- and cAMP-regulated Phosphoprotein-32 (DARPP-32) known to inhibit PP1/2A. Experiments were performed using intracellular application of phospho-DARPP-32 and non-phospho-DARPP-32. Phospho-DARPP-32 strongly reduced the current amplitude whereas non-phospho-DARPP-32 did not affect the current. All together, these results confirm that DARPP-32-mediated inhibition of PP1/2A regulates the maintained sodium/calcium current, which contributes to the development of the pre-depolarizing phase of the DUM neuron pacemaker activity.
Collapse
Affiliation(s)
- Bruno Lapied
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Antoine Defaix
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Maria Stankiewicz
- Faculty of Biology and Environment Protection, N. Copernicus UniversityTorun, Poland
| | - Eléonore Moreau
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Valérie Raymond
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| |
Collapse
|
28
|
Mease RA, Kuner T, Fairhall AL, Groh A. Multiplexed Spike Coding and Adaptation in the Thalamus. Cell Rep 2017; 19:1130-1140. [PMID: 28494863 PMCID: PMC5554799 DOI: 10.1016/j.celrep.2017.04.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/18/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022] Open
Abstract
High-frequency "burst" clusters of spikes are a generic output pattern of many neurons. While bursting is a ubiquitous computational feature of different nervous systems across animal species, the encoding of synaptic inputs by bursts is not well understood. We find that bursting neurons in the rodent thalamus employ "multiplexing" to differentially encode low- and high-frequency stimulus features associated with either T-type calcium "low-threshold" or fast sodium spiking events, respectively, and these events adapt differently. Thus, thalamic bursts encode disparate information in three channels: (1) burst size, (2) burst onset time, and (3) precise spike timing within bursts. Strikingly, this latter "intraburst" encoding channel shows millisecond-level feature selectivity and adapts across statistical contexts to maintain stable information encoded per spike. Consequently, calcium events both encode low-frequency stimuli and, in parallel, gate a transient window for high-frequency, adaptive stimulus encoding by sodium spike timing, allowing bursts to efficiently convey fine-scale temporal information.
Collapse
Affiliation(s)
- Rebecca A Mease
- Department of Neurosurgery, Technische Universität München, Munich 81675, Germany; Neurobiology and Behavior Graduate Program, University of Washington, Seattle, WA 98195, USA.
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Alexander Groh
- Department of Neurosurgery, Technische Universität München, Munich 81675, Germany
| |
Collapse
|
29
|
Wang F, Koide M, Wellman GC. Nifedipine Inhibition of High-Voltage Activated Calcium Channel Currents in Cerebral Artery Myocytes Is Influenced by Extracellular Divalent Cations. Front Physiol 2017; 8:210. [PMID: 28439241 PMCID: PMC5383720 DOI: 10.3389/fphys.2017.00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/23/2017] [Indexed: 01/10/2023] Open
Abstract
Voltage-dependent calcium channels (VDCCs) play an essential role in regulating cerebral artery diameter and it is widely appreciated that the L-type VDCC, CaV1.2, encoded by the CACNA1C gene, is a principal Ca2+ entry pathway in vascular myocytes. However, electrophysiological studies using 10 mM extracellular barium ([Ba2+]o) as a charge carrier have shown that ~20% of VDCC currents in cerebral artery myocytes are insensitive to 1,4-dihydropyridine (1,4-DHP) L-type VDDC inhibitors such as nifedipine. Here, we investigated the hypothesis that the concentration of extracellular divalent cations can influence nifedipine inhibition of VDCC currents. Whole-cell VDCC membrane currents were obtained from freshly isolated rat cerebral artery myocytes in extracellular solutions containing Ba2+ and/or Ca2+. In the absence of [Ca2+]o, both nifedipine-sensitive and -insensitive calcium currents were observed in 10 mM [Ba2+]o. However, VDCC currents were abolished by nifedipine when using a combination of 10 mM [Ba2+]o and 100 μM [Ca2+]o. VDCC currents were also completely inhibited by nifedipine in either 2 mM [Ba2+]o or 2 mM [Ca2+]o. The biophysical characteristics of all recorded VDCC currents were consistent with properties of a high-voltage activated VDCC, such as CaV1.2. Further, VDCC currents recorded in 10 mM [Ba2+]o ± 100 μM [Ca2+]o or 2 mM [Ba2+]o exhibited similar sensitivity to the benzothiazepine L-type VDCC blocker, diltiazem, with complete current inhibition at 100 μM. These data suggest that nifedipine inhibition is influenced by both Ca2+ binding to an external site(s) on these channels and surface charge effects related to extracellular divalent cations. In sum, this work demonstrates that the extracellular environment can profoundly impact VDCC current measurements.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pharmacology, University of Vermont Larner College of MedicineBurlington, VT, USA.,Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Masayo Koide
- Department of Pharmacology, University of Vermont Larner College of MedicineBurlington, VT, USA
| | - George C Wellman
- Department of Pharmacology, University of Vermont Larner College of MedicineBurlington, VT, USA
| |
Collapse
|
30
|
Siegrist R, Pozzi D, Jacob G, Torrisi C, Colas K, Braibant B, Mawet J, Pfeifer T, de Kanter R, Roch C, Kessler M, Corminboeuf O, Bezençon O. Structure–Activity Relationship, Drug Metabolism and Pharmacokinetics Properties Optimization, and in Vivo Studies of New Brain Penetrant Triple T-Type Calcium Channel Blockers. J Med Chem 2016; 59:10661-10675. [DOI: 10.1021/acs.jmedchem.6b01356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Romain Siegrist
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Davide Pozzi
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Gaël Jacob
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Caterina Torrisi
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Kilian Colas
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Bertrand Braibant
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Jacques Mawet
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Thomas Pfeifer
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Ruben de Kanter
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Catherine Roch
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Melanie Kessler
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Olivier Corminboeuf
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Olivier Bezençon
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| |
Collapse
|
31
|
Abstract
The role of T-type calcium currents is rarely considered in the extensive literature covering the mechanisms of long-term synaptic plasticity. This situation reflects the lack of suitable T-type channel antagonists that till recently has hampered investigations of the functional roles of these channels. However, with the development of new pharmacological and genetic tools, a clear involvement of T-type channels in synaptic plasticity is starting to emerge. Here, we review a number of studies showing that T-type channels participate to numerous homo- and hetero-synaptic plasticity mechanisms that involve different molecular partners and both pre- and post-synaptic modifications. The existence of T-channel dependent and independent plasticity at the same synapse strongly suggests a subcellular localization of these channels and their partners that allows specific interactions. Moreover, we illustrate the functional importance of T-channel dependent synaptic plasticity in neocortex and thalamus.
Collapse
Affiliation(s)
- Nathalie Leresche
- a Sorbonne Universités, Université Pierre et Marie Curie (UPMC) UM119, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine (NPS) , Paris , France
| | - Régis C Lambert
- a Sorbonne Universités, Université Pierre et Marie Curie (UPMC) UM119, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine (NPS) , Paris , France
| |
Collapse
|
32
|
Chen E, Paré JF, Wichmann T, Smith Y. Sub-synaptic localization of Ca v3.1 T-type calcium channels in the thalamus of normal and parkinsonian monkeys. Brain Struct Funct 2016; 222:735-748. [PMID: 27255751 DOI: 10.1007/s00429-016-1242-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022]
Abstract
T-type calcium channels (Cav3) are key mediators of thalamic bursting activity, but also regulate single cells excitability, dendritic integration, synaptic strength and transmitter release. These functions are strongly influenced by the subcellular and subsynaptic localization of Cav3 channels along the somatodendritic domain of thalamic cells. In Parkinson's disease, T-type calcium channels dysfunction in the basal ganglia-receiving thalamic nuclei likely contributes to pathological thalamic bursting activity. In this study, we analyzed the cellular, subcellular, and subsynaptic localization of the Cav3.1 channel in the ventral anterior (VA) and centromedian/parafascicular (CM/Pf) thalamic nuclei, the main thalamic targets of basal ganglia output, in normal and parkinsonian monkeys. All thalamic nuclei displayed strong Cav3.1 neuropil immunoreactivity, although the intensity of immunolabeling in CM/Pf was significantly lower than in VA. Ultrastructurally, 70-80 % of the Cav3.1-immunoreactive structures were dendritic shafts. Using immunogold labeling, Cav3.1 was commonly found perisynaptic to asymmetric and symmetric axo-dendritic synapses, suggesting a role of Cav3.1 in regulating excitatory and inhibitory neurotransmission. Significant labeling was also found at non-synaptic sites along the plasma membrane of thalamic neurons. There was no difference in the overall pattern and intensity of immunostaining between normal and parkinsonian monkeys, suggesting that the increased rebound bursting in the parkinsonian state is not driven by changes in Cav3.1 expression. Thus, T-type calcium channels are located to subserve neuronal bursting, but also regulate glutamatergic and non-glutamatergic transmission along the whole somatodendritic domain of basal ganglia-receiving neurons of the primate thalamus.
Collapse
Affiliation(s)
- Erdong Chen
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, 30322, USA
| | - Jean-Francois Paré
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, 30322, USA
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Rogawski MA, Löscher W, Rho JM. Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harb Perspect Med 2016; 6:a022780. [PMID: 26801895 PMCID: PMC4852797 DOI: 10.1101/cshperspect.a022780] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antiseizure drugs (ASDs), also termed antiepileptic drugs, are the main form of symptomatic treatment for people with epilepsy, but not all patients become free of seizures. The ketogenic diet is one treatment option for drug-resistant patients. Both types of therapy exert their clinical effects through interactions with one or more of a diverse set of molecular targets in the brain. ASDs act by modulation of voltage-gated ion channels, including sodium, calcium, and potassium channels; by enhancement of γ-aminobutyric acid (GABA)-mediated inhibition through effects on GABAA receptors, the GABA transporter 1 (GAT1) GABA uptake transporter, or GABA transaminase; through interactions with elements of the synaptic release machinery, including synaptic vesicle 2A (SV2A) and α2δ; or by blockade of ionotropic glutamate receptors, including α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors. The ketogenic diet leads to increases in circulating ketones, which may contribute to the efficacy in treating pharmacoresistant seizures. Production in the brain of inhibitory mediators, such as adenosine, or ion channel modulators, such as polyunsaturated fatty acids, may also play a role. Metabolic effects, including diversion from glycolysis, are a further postulated mechanism. For some ASDs and the ketogenic diet, effects on multiple targets may contribute to activity. Better understanding of the ketogenic diet will inform the development of improved drug therapies to treat refractory seizures.
Collapse
Affiliation(s)
- Michael A Rogawski
- Department of Neurology, University of California, Davis, Sacramento, California 95817
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Jong M Rho
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| |
Collapse
|
34
|
David F, Crunelli V, Leresche N, Lambert RC. Dynamic Analysis of the Conditional Oscillator Underlying Slow Waves in Thalamocortical Neurons. Front Neural Circuits 2016; 10:10. [PMID: 26941611 PMCID: PMC4766279 DOI: 10.3389/fncir.2016.00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/08/2016] [Indexed: 11/29/2022] Open
Abstract
During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca(2+) channels play a pivotal role in almost every type of neuronal oscillations, including slow (< 1 Hz) waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs), and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e., ITwindow) is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC) neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states ("grouped-delta slow waves") requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.
Collapse
Affiliation(s)
- François David
- Neuroscience Division, School of Biosciences, Cardiff UniversityCardiff, UK
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR 5292Lyon, France
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028Lyon, France
- Faculté de Médecine, Université Claude BernardLyon, France
- Sorbonne Universités, UPMC Université Paris 06, UM 119, Neuroscience Paris SeineParis, France
- Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris SeineParis, France
- Institut National de la Santé et de la Recherche Médicale, U1130, Neuroscience Paris SeineParis, France
| | - Vincenzo Crunelli
- Neuroscience Division, School of Biosciences, Cardiff UniversityCardiff, UK
- Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| | - Nathalie Leresche
- Sorbonne Universités, UPMC Université Paris 06, UM 119, Neuroscience Paris SeineParis, France
- Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris SeineParis, France
- Institut National de la Santé et de la Recherche Médicale, U1130, Neuroscience Paris SeineParis, France
| | - Régis C. Lambert
- Sorbonne Universités, UPMC Université Paris 06, UM 119, Neuroscience Paris SeineParis, France
- Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris SeineParis, France
- Institut National de la Santé et de la Recherche Médicale, U1130, Neuroscience Paris SeineParis, France
| |
Collapse
|
35
|
李 凌, 张 达, 彭 斯, 吴 静, 蒋 昌, 柳 涛. [Rebound depolarization of substantia gelatinosa neurons and its modulatory mechanisms in rat spinal dorsal horn]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:204-209. [PMID: 28219864 PMCID: PMC6779672 DOI: 10.3969/j.issn.1673-4254.2017.02.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate the rebound depolarization of substantia gelatinosa (SG) neurons in rat spinal dorsal horn and explore its modulatory mechanisms to provide better insights into rebound depolarization-related diseases. METHODS Parasagittal slices of the spinal cord were prepared from 3- to 5-week-old Sprague-Dawley rats. The electrophysiologic characteristics and responses to hyperpolarization stimulation were recorded using whole-cell patch-clamp technique. The effects of hyperpolarization-activated cyclic nucleotide gated cation (HCN) channel blockers and T-type calcium channel blockers on rebound depolarization of the neurons were studied. RESULTS A total of 63 SG neurons were recorded. Among them, 23 neurons showed no rebound depolarization, 19 neurons showed rebound depolarization without spikes, and 21 neurons showed rebound depolarization with spikes. The action potential thresholds of the neurons without rebound depolarization were significantly higher than those of the neurons with rebound depolarization and spikes (-28.7∓1.6 mV vs -36.0∓2.0 mV, P<0.05). The two HCN channel blockers CsCl and ZD7288 significantly delayed the latency of rebound depolarization with spike from 45.9∓11.6 ms to 121.6∓51.3 ms (P<0.05) and from 36.2∓10.3 ms to 73.6∓13.6 ms (P<0.05), respectively. ZD7288 also significantly prolonged the latency of rebound depolarization without spike from 71.9∓35.1 ms to 267.0∓68.8 ms (P<0.05). The T-type calcium channel blockers NiCl2 and mibefradil strongly decreased the amplitude of rebound depolarization with spike from 19.9∓6.3 mV to 9.5∓4.5 mV (P<0.05) and from 26.1∓9.4 mV to 15.5∓5.0 mV (P<0.05), respectively. Mibefradil also significantly decreased the amplitude of rebound depolarization without spike from 14.3∓3.0 mV to 7.9∓2.0 mV (P<0.05). CONCLUSION Nearly two-thirds of the SG neurons have rebound depolarizations modulated by HCN channel and T-type calcium channel.
Collapse
Affiliation(s)
- 凌超 李
- 南昌大学第一附属医院 疼痛科, 江西 南昌 330006Department of Pain Clinic
| | - 达颖 张
- 南昌大学第一附属医院 疼痛科, 江西 南昌 330006Department of Pain Clinic
| | - 斯聪 彭
- 南昌大学第一附属医院 儿科, 江西 南昌 330006Department of Pediatrics
| | - 静 吴
- 南昌大学第一附属医院 儿科, 江西 南昌 330006Department of Pediatrics
| | - 昌宇 蒋
- 深圳市南山医院韩济生院士疼痛医学工作站, 广东 深圳 518052Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hosptal, Shenzhen 518052, China
| | - 涛 柳
- 南昌大学第一附属医院 儿科, 江西 南昌 330006Department of Pediatrics
- 南昌大学第一附属医院 医学科研中心, 江西 南昌 330006Center for Experimental Medicine, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- 深圳市南山医院韩济生院士疼痛医学工作站, 广东 深圳 518052Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hosptal, Shenzhen 518052, China
| |
Collapse
|
36
|
Devergnas A, Chen E, Ma Y, Hamada I, Pittard D, Kammermeier S, Mullin AP, Faundez V, Lindsley CW, Jones C, Smith Y, Wichmann T. Anatomical localization of Cav3.1 calcium channels and electrophysiological effects of T-type calcium channel blockade in the motor thalamus of MPTP-treated monkeys. J Neurophysiol 2015; 115:470-85. [PMID: 26538609 DOI: 10.1152/jn.00858.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022] Open
Abstract
Conventional anti-Parkinsonian dopamine replacement therapy is often complicated by side effects that limit the use of these medications. There is a continuing need to develop nondopaminergic approaches to treat Parkinsonism. One such approach is to use medications that normalize dopamine depletion-related firing abnormalities in the basal ganglia-thalamocortical circuitry. In this study, we assessed the potential of a specific T-type calcium channel blocker (ML218) to eliminate pathologic burst patterns of firing in the basal ganglia-receiving territory of the motor thalamus in Parkinsonian monkeys. We also carried out an anatomical study, demonstrating that the immunoreactivity for T-type calcium channels is strongly expressed in the motor thalamus in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. At the electron microscopic level, dendrites accounted for >90% of all tissue elements that were immunoreactive for voltage-gated calcium channel, type 3.2-containing T-type calcium channels in normal and Parkinsonian monkeys. Subsequent in vivo electrophysiologic studies in awake MPTP-treated Parkinsonian monkeys demonstrated that intrathalamic microinjections of ML218 (0.5 μl of a 2.5-mM solution, injected at 0.1-0.2 μl/min) partially normalized the thalamic activity by reducing the proportion of rebound bursts and increasing the proportion of spikes in non-rebound bursts. The drug also attenuated oscillatory activity in the 3-13-Hz frequency range and increased gamma frequency oscillations. However, ML218 did not normalize Parkinsonism-related changes in firing rates and oscillatory activity in the beta frequency range. Whereas the described changes are promising, a more complete assessment of the cellular and behavioral effects of ML218 (or similar drugs) is needed for a full appraisal of their anti-Parkinsonian potential.
Collapse
Affiliation(s)
- Annaelle Devergnas
- Yerkes National Primate Research Center, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research at Emory University, Atlanta, Georgia;
| | - Erdong Chen
- Yerkes National Primate Research Center, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research at Emory University, Atlanta, Georgia
| | - Yuxian Ma
- Yerkes National Primate Research Center, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research at Emory University, Atlanta, Georgia
| | - Ikuma Hamada
- Yerkes National Primate Research Center, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research at Emory University, Atlanta, Georgia
| | - Damien Pittard
- Yerkes National Primate Research Center, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research at Emory University, Atlanta, Georgia
| | - Stefan Kammermeier
- Yerkes National Primate Research Center, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research at Emory University, Atlanta, Georgia; Klinikum der Universität München, Neurologische Klinik und Poliklinik, München, Germany
| | - Ariana P Mullin
- Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia; Center for Social Translational Neuroscience, Emory University, Atlanta, Georgia
| | - Craig W Lindsley
- Department of Pharmacology and Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Carrie Jones
- Department of Pharmacology and Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yoland Smith
- Yerkes National Primate Research Center, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research at Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research at Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
37
|
Monteil A, Chausson P, Boutourlinsky K, Mezghrani A, Huc-Brandt S, Blesneac I, Bidaud I, Lemmers C, Leresche N, Lambert RC, Lory P. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop. J Biol Chem 2015; 290:16168-76. [PMID: 25931121 DOI: 10.1074/jbc.m114.634261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser(423)-Pro(542)) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.
Collapse
Affiliation(s)
- Arnaud Monteil
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, Plateforme de Vectorologie, Biocampus Montpellier CNRS UMS 3426, INSERM US009, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Patrick Chausson
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris F-75005, France, CNRS UMR 8246, NPS, Paris F-75005, France, and INSERM, U1130, NPS, Paris F-75005, France
| | - Katia Boutourlinsky
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris F-75005, France, CNRS UMR 8246, NPS, Paris F-75005, France, and INSERM, U1130, NPS, Paris F-75005, France
| | - Alexandre Mezghrani
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Sylvaine Huc-Brandt
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Iulia Blesneac
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Isabelle Bidaud
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Céline Lemmers
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, Plateforme de Vectorologie, Biocampus Montpellier CNRS UMS 3426, INSERM US009, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Nathalie Leresche
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris F-75005, France, CNRS UMR 8246, NPS, Paris F-75005, France, and INSERM, U1130, NPS, Paris F-75005, France
| | - Régis C Lambert
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris F-75005, France, CNRS UMR 8246, NPS, Paris F-75005, France, and INSERM, U1130, NPS, Paris F-75005, France
| | - Philippe Lory
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France,
| |
Collapse
|
38
|
Leuchter AF, Hunter AM, Krantz DE, Cook IA. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments. Ann N Y Acad Sci 2015; 1344:78-91. [PMID: 25809789 DOI: 10.1111/nyas.12742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD.
Collapse
Affiliation(s)
- Andrew F Leuchter
- Laboratory of Brain, Behavior, and Pharmacology, and the Depression Research and Clinic Program, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California
| | | | | | | |
Collapse
|
39
|
Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle. PLoS One 2014; 9:e108187. [PMID: 25255145 PMCID: PMC4177857 DOI: 10.1371/journal.pone.0108187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated Ca2+ (CaV) channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type) a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR). In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.
Collapse
|
40
|
T-type channel-mediated neurotransmitter release. Pflugers Arch 2014; 466:677-87. [PMID: 24595475 DOI: 10.1007/s00424-014-1489-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Besides controlling a wide variety of cell functions, T-type channels have been shown to regulate neurotransmitter release in peripheral and central synapses and neuroendocrine cells. Growing evidence over the last 10 years suggests a key role of Cav3.2 and Cav3.1 channels in controlling basal neurosecretion near resting conditions and sustained release during mild stimulations. In some cases, the contribution of low-voltage-activated (LVA) channels is not directly evident but requires either the activation of coupled presynaptic receptors, block of ion channels, or chelation of metal ions. Concerning the coupling to the secretory machinery, T-type channels appear loosely coupled to neurotransmitter and hormone release. In neurons, Cav3.2 and Cav3.1 channels mainly control the asynchronous appearance of "minis" [miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory postsynaptic currents (mEPSCs)]. The same loose coupling is evident from membrane capacity and amperometric recordings in chromaffin cells and melanotropes where the low-threshold-driven exocytosis possesses the same linear Ca(2+) dependence of the other voltage-gated Ca(2+) channels (Cav1 and Cav2) that is strongly attenuated by slow calcium buffers. The intriguing issue is that, despite not expressing a consensus "synprint" site, Cav3.2 channels do interact with syntaxin 1A and SNAP-25 and, thus, may form nanodomains with secretory vesicles that can be regulated at low voltages. In this review, we discuss all the past and recent issues related to T-type channel-secretion coupling in neurons and neuroendocrine cells.
Collapse
|
41
|
Amazing T-type calcium channels: updating functional properties in health and disease. Pflugers Arch 2014; 466:623-6. [PMID: 24563221 DOI: 10.1007/s00424-014-1481-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
T-type Ca(2+) channels have gained, 15 years after cloning, an immense interest as novel players in very unexpected cell functions, and its many relations to diseases have been discovered. This special issue provides a state-of-the-art overview on novel functional properties of T-type Ca(2+) channels, unexpected cellular functions, and most importantly will also summarizes and review the involvement of this "tiny, transient" type of Ca(2+) channels in several diseases. It is tried to bridge the gap between molecular biophysical properties of T-type Ca(2+) channels and diseases providing finally a translational view on this amazing ion channel.
Collapse
|
42
|
Senatore A, Guan W, Spafford JD. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Pflugers Arch 2014; 466:645-60. [PMID: 24515291 DOI: 10.1007/s00424-014-1449-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
Cav3 T-type channels are low-voltage-gated channels with rapid kinetics that are classified among the calcium-selective Cav1 and Cav2 type channels. Here, we outline the fundamental and unique regulators of T-type channels. An ubiquitous and proximally located "gating brake" works in concert with the voltage-sensor domain and S6 alpha-helical segment from domain II to set the canonical low-threshold and transient gating features of T-type channels. Gene splicing of optional exon 25c (and/or exon 26) in the short III-IV linker provides a developmental switch between modes of activity, such as activating in response to membrane depolarization, to channels requiring hyperpolarization input before being available to activate. Downstream of the gating brake in the I-II linker is a key region for regulating channel expression where alternative splicing patterns correlate with functional diversity of spike patterns, pacemaking rate (especially in the heart), stage of development, and animal size. A small but persistent window conductance depolarizes cells and boosts excitability at rest. T-type channels possess an ion selectivity that can resemble not only the calcium ion exclusive Cav1 and Cav2 channels but also the sodium ion selectivity of Nav1 sodium channels too. Alternative splicing in the extracellular turret of domain II generates highly sodium-permeable channels, which contribute to low-threshold sodium spikes. Cav3 channels are more ubiquitous among multicellular animals and more widespread in tissues than the more brain centric Nav1 sodium channels in invertebrates. Highly sodium-permeant Cav3 channels can functionally replace Nav1 channels in species where they are lacking, such as in Caenorhabditis elegans.
Collapse
Affiliation(s)
- A Senatore
- Department of Biology, University of Waterloo, B1-173, Waterloo, ON, N2L 3G1, Canada
| | | | | |
Collapse
|
43
|
Abstract
The electrical output of neurons relies critically on voltage- and calcium-gated ion channels. The traditional view of ion channels is that they operate independently of each other in the plasma membrane in a manner that could be predicted according to biophysical characteristics of the isolated current. However, there is increasing evidence that channels interact with each other not just functionally but also physically. This is exemplified in the case of Cav3 T-type calcium channels, where new work indicates the ability to form signaling complexes with different types of calcium-gated and even voltage-gated potassium channels. The formation of a Cav3-K complex provides the calcium source required to activate KCa1.1 or KCa3.1 channels and, furthermore, to bestow a calcium-dependent regulation of Kv4 channels via associated KChIP proteins. Here, we review these interactions and discuss their significance in the context of neuronal firing properties.
Collapse
|
44
|
Michaela P, Mária K, Silvia H, L'ubica L. Bisphenol A differently inhibits CaV3.1, Ca V3.2 and Ca V3.3 calcium channels. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:153-63. [PMID: 24170242 DOI: 10.1007/s00210-013-0932-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/16/2013] [Indexed: 01/26/2023]
Abstract
Bisphenol A (BPA) is a widespread environmental contaminant detected in urine of 93 % of investigated US population. Recent epidemiological studies found correlation between BPA exposure and diseases including cardiovascular and neuronal disorders. BPA targets include hormone receptors and voltage-dependent ion channels. T-type calcium channels are important regulatory elements in both cardiovascular and neuronal system. Therefore, we investigated effects of BPA on T-type calcium channels. Calcium current flowing through recombinant T-type calcium channels expressed in HEK 293 cells was measured using whole-cell patch clamp. BPA inhibited the current through individual T-type calcium channel subtypes in a concentration-dependent manner with two distinguishable components in these concentration-dependencies. Nanomolar concentrations of BPA inhibited calcium current through T-type calcium channels in the order of efficiency CaV3.2 ≥ CaV3.1 > CaV3.3 without affecting voltage dependence and kinetics of channel gating. Micromolar concentrations of BPA accelerated kinetics of current decay, shifted voltage dependence of steady-state inactivation towards more negative values and inhibited current amplitudes. We suggest that BPA acts as a modifier of channel gating and directly plugs conductive channel pore at high concentration. Concentration range in which inhibition was observed corresponds to concentrations detected in human fluids and therefore may be relevant for evaluation of health effects of BPA.
Collapse
Affiliation(s)
- Pavlovičová Michaela
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|