1
|
Fukuoka S, Adachi N, Ouchi E, Ikemoto H, Okumo T, Ishikawa F, Onda H, Sunagawa M. Mechanoreceptor Piezo1 channel-mediated interleukin expression in conjunctival epithelial cells: Linking mechanical stress to ocular inflammation. Ocul Surf 2025; 36:56-68. [PMID: 39778715 DOI: 10.1016/j.jtos.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
PURPOSE Mechanical stress on the ocular surface, such as from eye-rubbing, has been reported to lead to inflammation and various ocular conditions. We hypothesized that the mechanosensitive Piezo1 channel in the conjunctival epithelium contributes to the inflammatory response at the ocular surface after receiving mechanical stimuli. METHODS Human conjunctival epithelial cells (HConjECs) were treated with Yoda1, a Piezo1-specific agonist, and various allergens to measure cytokine expression levels using qRT-PCR. Piezo1 activation-induced intracellular signaling pathways were also investigated by Western blot. Mechanical stretching experiments were conducted to simulate Piezo1 activation in HConjECs. Specificity of Piezo1 was confirmed by PIEZO1 knockdown and GsMTx4. In in vivo studies, using immunohistochemistry, rats were administered Yoda1 eye drops to examine the inflammatory response in the conjunctiva and Piezo1-induced signaling activation. RESULTS HConjECs expressed functional Piezo1 channel which was the dominant mechanoreceptor among putative channels and whose activation significantly increased IL-6 and IL-8 expression through the p38 MAPK-CREB pathway. Piezo1-induced [Ca2+]i elevation was crucial for the production of IL-6. The Yoda1-induced inflammatory responses were blocked by PIEZO1 knockdown. Mechanical stretching mimicked these effects, which were suppressed by GsMTx4. In vivo, Yoda1 administration led to increased phospho-p38 MAPK, phospho-CREB, and IL-6 in the rat conjunctival epithelium, with significant neutrophil infiltration. CONCLUSION Mechanical stress-induced Piezo1 channel activation in conjunctival epithelial cells can cause ocular inflammation by upregulating pro-inflammatory cytokines via the p38 MAPK-CREB pathway and promoting neutrophil infiltration. These findings suggest that mechanical stimuli on ocular surface tissues are significant risk factors for ocular inflammation.
Collapse
Affiliation(s)
- Seiya Fukuoka
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Naoki Adachi
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Erika Ouchi
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hideshi Ikemoto
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takayuki Okumo
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Fumihiro Ishikawa
- Center for Biotechnology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hidetoshi Onda
- Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masataka Sunagawa
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
2
|
Zhu M, Fang Y, Sun Y, Li S, Yu J, Xiong B, Wen C, Zhou B, Huang B, Yin H, Xu H. Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407373. [PMID: 39488795 DOI: 10.1002/advs.202407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Sonogenetics is an innovative technology that integrates ultrasound with genetic editing to precisely modulate cellular activities in a non-invasive manner. This method entails introducing and activating mechanosensitive channels on the cell membrane of specific cells using gene delivery vectors. When exposed to ultrasound, these channels can be manipulated to open or close, thereby impacting cellular functions. Sonogenetics is currently being used extensively in the treatment of various chronic diseases, including Parkinson's disease, vision restoration, and cancer therapy. This paper provides a comprehensive review of key components of sonogenetics and focuses on evaluating its prospects and potential challenges in the treatment of chronic disease.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yan Fang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yikang Sun
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jifeng Yu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Bing Xiong
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Congjian Wen
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Boyang Zhou
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Bin Huang
- Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Haohao Yin
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Huixiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
3
|
Byun KA, Seo SB, Oh S, Jang JW, Son KH, Byun K. Poly-D,L-Lactic Acid Fillers Increase Subcutaneous Adipose Tissue Volume by Promoting Adipogenesis in Aged Animal Skin. Int J Mol Sci 2024; 25:12739. [PMID: 39684448 DOI: 10.3390/ijms252312739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
During aging, subcutaneous white adipose tissue (sWAT) thickness and the adipogenic potential of adipose-derived stem cells (ASCs) decline. Poly-D,L-lactic acid (PDLLA) fillers are commonly used to restore diminished facial volume. Piezo1 increases polarizing macrophages towards the M2 phenotype, which promotes the secretion of fibroblast growth factor 2 (FGF2), thereby increasing ASC survival. This study evaluated whether PDLLA enhances adipogenesis in ASCs by modulating M2 polarization in an in vitro senescence model and in aged animals. Lipopolysaccharide (LPS)-induced senescent macrophages showed decreased Piezo1, which was upregulated by PDLLA. CD163 (an M2 marker) and FGF2 were downregulated in senescent macrophages but were upregulated by PDLLA. We evaluated whether reduced FGF2 secretion from senescent macrophages affects ASCs by applying conditioned media (CM) from macrophage cultures to ASCs. CM from senescent macrophages decreased ERK1/2 and proliferation in ASCs, both of which were restored by CM from PDLLA-stimulated senescent macrophages. Adipogenesis inducers (PPAR-γ and C/EBP-α) were downregulated by CM from senescent macrophages but upregulated by CM from PDLLA-stimulated senescent macrophages in ASCs. Similar patterns were observed in aged animal adipose tissue. PDLLA increased Piezo1 activity, M2 polarization, and FGF2 levels. PDLLA also enhanced ERK1/2, cell proliferation, PPAR-γ, and C/EBP-α expression, leading to increased adipose tissue thickness. In conclusion, our study showed that PDLLA increased adipose tissue thickness by modulating adipogenesis.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Suk Bae Seo
- SeoAh Song Dermatologic Clinic, Seoul 05557, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jong-Won Jang
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Sonkodi B, Kováts T, Gálik B, Tompa M, Urbán P, Nagy ZF, Ács P, Tóth M, Gyenesei A. Prohibited Olympic Medalist with PIEZO1 VUS Who Claims Innocence. Int J Mol Sci 2024; 25:11842. [PMID: 39519393 PMCID: PMC11546675 DOI: 10.3390/ijms252111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Competitive athletes are often exposed to extreme physiological loading, resulting in over excessive mechanotransduction during their acute intensive training sessions and competitions. Individual differences in their genetics often affect how they cope with these challenges, as reflected in their high performances. Olympic Medalists are prohibited from providing atypical values in the Hematological Module of the Athlete Biological Passport. Since there was no aphysiological result and the Athlete maintained his innocence, a whole genome sequence analysis was carried out on him and his parents, with the primary focus on the PIEZO ion channels encoding gene. PIEZO1 is known to participate in homeostatic regulation even on a whole-body level, including the regulation of physical performance, circulatory longevity of red blood cells and cell fate determination of mesenchymal stem cells in relation to hydrostatic pressure. However, PIEZO2 was found to be the principal mechanosensory ion channel for proprioception. These regulatory mechanisms play a pivotal role in mechanotransduction and intensive exercise moments. Interestingly, two variances of uncertain significance of PIEZO1 were found that may explain the atypical values of the Athlete. Furthermore, two additional variances in SDC2, the syndcan-2 encoding gene, were identified in trans position that may influence the crosstalk between PIEZO2 and PIEZO1, with more likely relevance to the detected atypical values. After all, based on the found variances of PIEZO1 and syndecan-2, it cannot be ruled out that these VUS variants may have caused or impacted the exhibited outlier findings of the ABP Hematological Module of the Athlete.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary; (T.K.); (M.T.)
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Tímea Kováts
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary; (T.K.); (M.T.)
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
- Hungarian Swimming Federation, 1007 Budapest, Hungary
| | - Bence Gálik
- Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (B.G.); (M.T.); (P.U.); (P.Á.); (A.G.)
| | - Márton Tompa
- Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (B.G.); (M.T.); (P.U.); (P.Á.); (A.G.)
| | - Péter Urbán
- Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (B.G.); (M.T.); (P.U.); (P.Á.); (A.G.)
| | - Zsófia Flóra Nagy
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 1123 Budapest, Hungary;
| | - Pongrác Ács
- Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (B.G.); (M.T.); (P.U.); (P.Á.); (A.G.)
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, University of Pécs, 7622 Pécs, Hungary
| | - Miklós Tóth
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary; (T.K.); (M.T.)
- Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (B.G.); (M.T.); (P.U.); (P.Á.); (A.G.)
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, University of Pécs, 7622 Pécs, Hungary
- Institute of Laboratory Medicine, Semmelweis University, 1123 Budapest, Hungary
| | - Attila Gyenesei
- Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (B.G.); (M.T.); (P.U.); (P.Á.); (A.G.)
| |
Collapse
|
5
|
Luo S, Yang B, Xu H, Pan X, Chen X, Jue X, Liu S, Wan R, Tan Q, Yao Y, Chen X, Jiang J, Deng B, Li J. Lithospermic acid improves liver fibrosis through Piezo1-mediated oxidative stress and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155974. [PMID: 39217657 DOI: 10.1016/j.phymed.2024.155974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hepatic fibrosis is becoming an increasingly serious public health issue worldwide. Although liver transplantation is the only and definitive treatment for end-stage liver fibrosis, traditional Chinese medicine offers certain benefits in the treatment of advanced hepatic fibrosis. PURPOSE This study aims to explore the protective effect of lithospermic acid (LA), an extraction from Salvia miltiorrhiza (the roots of S. miltiorrhiza Bunge, known as Danshen in Chinese), on liver fibrosis and investigate its potential mechanisms. METHODS AND RESULTS Mice were treated with carbon tetrachloride (CCl4) via intraperitoneal injection for 4 weeks. LA was orally administered or colchicine (COL) was injected intraperitoneally for 3 weeks starting one week after the initial CCl4 injection. After the LA treatment, we observed a decrease in the fibrosis index and an improvement in liver function. Molecular docking results revealed that Piezo1 may be a potential pharmacological target of LA. The further experimental results showed that LA inhibited Piezo1 activation and expression in macrophages. Mechanistically, both Piezo1/Notch-mediated inflammation and oxidative stress regulated by the Piezo1/Ca2+ pathway were alleviated in fibrotic livers following LA treatment. Moreover, less oxidative stress and Notch activation were observed in the deficiency of macrophage Piezo1 (Piezo1ΔLysM) mice. In addition, Piezo1ΔLysM partially counteracted the pharmacological effects of LA on liver fibrosis. CONCLUSION In conclusion, our present study corroborated LA limits the progression of liver fibrosis by regulating Piezo1-mediated oxidative stress and inflammation. These results indicate that LA could be a potential medication for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Shangfei Luo
- Innovation Research Center, Shandong University of Chinese Medicine, Jinan, 250307, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglin Xu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianmei Pan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoyu Jue
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Silin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rentao Wan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiaorui Tan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Youfen Yao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoting Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jintao Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jing Li
- Innovation Research Center, Shandong University of Chinese Medicine, Jinan, 250307, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
6
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
7
|
Lindquist KA, Mecklenburg J, Hovhannisyan AH, Ruparel S, Akopian AN. Investigating Mechanically Activated Currents from Trigeminal Neurons of Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616876. [PMID: 39416195 PMCID: PMC11482751 DOI: 10.1101/2024.10.06.616876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Introduction Pain sensation has predominantly mechanical modalities in many pain conditions. Mechanically activated (MA) ion channels on sensory neurons underly responsiveness to mechanical stimuli. The study aimed to address gaps in knowledge regarding MA current properties in higher order species such as non-human primates (NHP; common marmosets), and characterization of MA currents in trigeminal (TG) neuronal subtypes. Methods We employed patch clamp electrophysiology and immunohistochemistry (IHC) to associate MA current types to different marmoset TG neuronal groups. TG neurons were grouped according to presumed marker expression, action potential (AP) width, characteristic AP features, after-hyperpolarization parameters, presence/absence of AP trains and transient outward currents, and responses to mechanical stimuli. Results Marmoset TG were clustered into 5 C-fiber and 5 A-fiber neuronal groups. The C1 group likely represent non-peptidergic C-nociceptors, the C2-C4 groups resembles peptidergic C-nociceptors, while the C5 group could be either cold-nociceptors or C-low-threshold-mechanoreceptors (C-LTMR). Among C-fiber neurons only C4 were mechanically responsive. The A1 and A2 groups are likely A-nociceptors, while the A3-A5 groups probably denote different subtypes of A-low-threshold-mechanoreceptors (A-LTMRs). Among A-fiber neurons only A1 was mechanically unresponsive. IHC data was correlated with electrophysiology results and estimates that NHP TG has ∼25% peptidergic C-nociceptors, ∼20% non-peptidergic C-nociceptors, ∼30% A-nociceptors, ∼5% C-LTMR, and ∼20% A-LTMR. Conclusion Overall, marmoset TG neuronal subtypes and their associated MA currents have common and unique properties compared to previously reported data. Findings from this study could be the basis for investigation on MA current sensitizations and mechanical hypersensitivity during head and neck pain conditions.
Collapse
|
8
|
Xiao Y, Zhang Y, Yuan W, Wang C, Ge Y, Huang T, Gao J. Piezo2 Contributes to Traumatic Brain Injury by Activating the RhoA/ROCK1 Pathways. Mol Neurobiol 2024; 61:7419-7430. [PMID: 38388773 PMCID: PMC11415480 DOI: 10.1007/s12035-024-04058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Traumatic brain injury (TBI) can lead to short-term and long-term physical and cognitive impairments, which have significant impacts on patients, families, and society. Currently, treatment outcomes for this disease are often unsatisfactory, due at least in part to the fact that the molecular mechanisms underlying the development of TBI are largely unknown. Here, we observed significant upregulation of Piezo2, a key mechanosensitive ion channel protein, in the injured brain tissue of a mouse model of TBI induced by controlled cortical impact. Pharmacological inhibition and genetic knockdown of Piezo2 after TBI attenuated neuronal death, brain edema, brain tissue necrosis, and deficits in neural function and cognitive function. Mechanistically, the increase in Piezo2 expression contributed to TBI-induced neuronal death and subsequent production of TNF-α and IL-1β, likely through activation of the RhoA/ROCK1 pathways in the central nervous system. Our findings suggest that Piezo2 is a key player in and a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Yinggang Xiao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Wenjuan Yuan
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Cunjin Wang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China.
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Ponce A, Ogazon del Toro A, Jimenez L, Roldan ML, Shoshani L. Osmotically Sensitive TREK Channels in Rat Articular Chondrocytes: Expression and Functional Role. Int J Mol Sci 2024; 25:7848. [PMID: 39063089 PMCID: PMC11277475 DOI: 10.3390/ijms25147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Articular chondrocytes are the primary cells responsible for maintaining the integrity and functionality of articular cartilage, which is essential for smooth joint movement. A key aspect of their role involves mechanosensitive ion channels, which allow chondrocytes to detect and respond to mechanical forces encountered during joint activity; nonetheless, the variety of mechanosensitive ion channels involved in this process has not been fully resolved so far. Because some members of the two-pore domain potassium (K2P) channel family have been described as mechanosensors in other cell types, in this study, we investigate whether articular chondrocytes express such channels. RT-PCR analysis reveals the presence of TREK-1 and TREK-2 channels in these cells. Subsequent protein expression assessments, including Western blotting and immunohistochemistry, confirm the presence of TREK-1 in articular cartilage samples. Furthermore, whole-cell patch clamp assays demonstrate that freshly isolated chondrocytes exhibit currents attributable to TREK-1 channels, as evidenced by activation by arachidonic acid (AA) and ml335 and further inhibition by spadin. Additionally, exposure to hypo-osmolar shock activates currents, which can be attributed to the presence of TREK-1 channels, as indicated by their inhibition with spadin. Therefore, these findings highlight the expression of TREK channels in rat articular chondrocytes and suggest their potential involvement in regulating the integrity of cartilage extracellular matrix.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Ciudad de México 07360, Mexico; (A.O.d.T.); (L.J.); (M.L.R.); (L.S.)
| | | | | | | | | |
Collapse
|
11
|
Morimoto YV. Ion Signaling in Cell Motility and Development in Dictyostelium discoideum. Biomolecules 2024; 14:830. [PMID: 39062545 PMCID: PMC11274586 DOI: 10.3390/biom14070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cell-to-cell communication is fundamental to the organization and functionality of multicellular organisms. Intercellular signals orchestrate a variety of cellular responses, including gene expression and protein function changes, and contribute to the integrated functions of individual tissues. Dictyostelium discoideum is a model organism for cell-to-cell interactions mediated by chemical signals and multicellular formation mechanisms. Upon starvation, D. discoideum cells exhibit coordinated cell aggregation via cyclic adenosine 3',5'-monophosphate (cAMP) gradients and chemotaxis, which facilitates the unicellular-to-multicellular transition. During this process, the calcium signaling synchronizes with the cAMP signaling. The resulting multicellular body exhibits organized collective migration and ultimately forms a fruiting body. Various signaling molecules, such as ion signals, regulate the spatiotemporal differentiation patterns within multicellular bodies. Understanding cell-to-cell and ion signaling in Dictyostelium provides insight into general multicellular formation and differentiation processes. Exploring cell-to-cell and ion signaling enhances our understanding of the fundamental biological processes related to cell communication, coordination, and differentiation, with wide-ranging implications for developmental biology, evolutionary biology, biomedical research, and synthetic biology. In this review, I discuss the role of ion signaling in cell motility and development in D. discoideum.
Collapse
Affiliation(s)
- Yusuke V. Morimoto
- Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan;
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| |
Collapse
|
12
|
Kimball EE, Rousseau B. Mechanotransduction in the Vocal Fold Microenvironment: A Narrative Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2128-2138. [PMID: 38865255 PMCID: PMC11253793 DOI: 10.1044/2024_jslhr-23-00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE The vocal fold tissues undergo nearly continuous and repeated cycles of injury and repair throughout the course of an individual's lifetime. It is well established that certain individuals are at greater risk of lesion development based on personality and behavioral classification. However, these characteristics alone do not wholly predict or explain lesion development or severity. In this review, we discuss current knowledge of mechanotransduction proteins and their potential relevance to tissue homeostasis in the vocal folds. METHOD A review of literature surrounding mechanotransduction and tissue homeostasis as it relates to the vocal folds was conducted. Review of the literature included searches of PubMed, Google Scholar, and other various online peer-reviewed sources. Search terms pertained to mechanosensation, mechanotransduction, mechanically activated channels, mechanical cellular regulation, and other associated concepts and terms. Additional literature was identified through the reference lists of identified papers. Findings of this literature review were then applied to known physiology and pathophysiology of the vocal folds in order to speculate on the contribution of mechanically mediated mechanisms within the vocal fold. DISCUSSION AND CONCLUSION Because the vocal folds are such mechanically active structures, withstanding nearly constant external forces, there is strong support for the idea that mechanically sensitive molecular pathways within the vocal fold tissue play a major role in tissue homeostasis in the presence of these considerable forces. As such, mechanotransduction within the vocal fold should be considered and targeted in future biological studies of vocal fold physiology.
Collapse
Affiliation(s)
- Emily E. Kimball
- Department of Hearing and Speech Sciences, Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Bernard Rousseau
- Doisy College of Health Sciences, Saint Louis University, St. Louis, MO
| |
Collapse
|
13
|
Sripinun P, See LP, Nikonov S, Chavali VRM, Vrathasha V, He J, O'Brien JM, Xia J, Lu W, Mitchell CH. Piezo1 and Piezo2 channels in retinal ganglion cells and the impact of Piezo1 stimulation on light-dependent neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599602. [PMID: 38979351 PMCID: PMC11230181 DOI: 10.1101/2024.06.25.599602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Piezo channels are associated with neuropathology in diseases like traumatic brain injury and glaucoma, but pathways linking tissue stretch to aberrant neural signaling remain unclear. The present study demonstrates that Piezo1 activation increases action potential frequency in response to light and the spontaneous dark signal from mouse retinal explants. Piezo1 stimulation was sufficient to increase cytoplasmic Ca 2+ in soma and neurites, while stretch increased spiking activity in current clamp recordings from of isolated retinal ganglion cells (RGCs). Axon-marker beta-tubulin III colocalized with both Piezo1 and Piezo2 protein in the mouse optic nerve head, while RGC nuclear marker BRN3A colocalized with Piezo channels in the soma. Piezo1 was also present on GFAP-positive regions in the optic nerve head and colocalized with glutamine synthetase in the nerve fiber layer, suggesting expression in optic nerve head astrocytes and Müller glia end feet, respectively. Human RGCs from induced pluripotent stem cells also expressed Piezo1 and Piezo2 in soma and axons, while staining patterns in rats resembled those in mice. mRNA message for Piezo1 was greatest in the RPE/choroid tissue, while Piezo2 levels were highest in the optic nerve, with both channels also expressed in the retina. Increased expression of Piezo1 and Piezo2 occurred both 1 and 10 days after a single stretch in vivo; this increase suggests a potential role in rising sensitivity to repeated nerve stretch. In summary, Piezo1 and Piezo2 were detected in the soma and axons of RGCs, and stimulation affected the light-dependent output of RGCs. The rise in RGCs excitability induced by Piezo stimulation may have parallels to the early disease progression in models of glaucoma and other retinal degenerations. Highlights Activation of Piezo1 excites retinal ganglion cells, paralleling the early neurodegenerative progression in glaucoma mouse models and retinal degeneration.Piezo1 and Piezo2 were expressed in axons and soma of retinal ganglion cells in mice, rats, and human iPSC-RGCs.Functional assays confirmed Piezo1 in soma and neurites of neurons. Sustained elevation of Piezo1 and Piezo2 occurred after a single transient stretch may enhance damage from repeated traumatic nerve injury. Abstract Figure
Collapse
|
14
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Sonkodi B. Commentary: Effects of combined treatment with transcranial and peripheral electromagnetic stimulation on performance and pain recovery from delayed onset muscle soreness induced by eccentric exercise in young athletes. A randomized clinical trial. Front Physiol 2024; 15:1380261. [PMID: 38798879 PMCID: PMC11116897 DOI: 10.3389/fphys.2024.1380261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Nie X, Abbasi Y, Chung MK. Piezo1 and Piezo2 collectively regulate jawbone development. Development 2024; 151:dev202386. [PMID: 38619396 PMCID: PMC11128276 DOI: 10.1242/dev.202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Piezo1 and Piezo2 are recently reported mechanosensory ion channels that transduce mechanical stimuli from the environment into intracellular biochemical signals in various tissues and organ systems. Here, we show that Piezo1 and Piezo2 display a robust expression during jawbone development. Deletion of Piezo1 in neural crest cells causes jawbone malformations in a small but significant number of mice. We further demonstrate that disruption of Piezo1 and Piezo2 in neural crest cells causes more striking defects in jawbone development than any single knockout, suggesting essential but partially redundant roles of Piezo1 and Piezo2. In addition, we observe defects in other neural crest derivatives such as malformation of the vascular smooth muscle in double knockout mice. Moreover, TUNEL examinations reveal excessive cell death in osteogenic cells of the maxillary and mandibular arches of the double knockout mice, suggesting that Piezo1 and Piezo2 together regulate cell survival during jawbone development. We further demonstrate that Yoda1, a Piezo1 agonist, promotes mineralization in the mandibular arches. Altogether, these data firmly establish that Piezo channels play important roles in regulating jawbone formation and maintenance.
Collapse
Affiliation(s)
- Xuguang Nie
- Department of Neural and Pain Sciences, School of Dentistry, the University of Maryland, Baltimore, MD 21201,USA
| | - Yasaman Abbasi
- Department of Neural and Pain Sciences, School of Dentistry, the University of Maryland, Baltimore, MD 21201,USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, the University of Maryland, Baltimore, MD 21201,USA
- Center to Advance Chronic Pain Research, the University of Maryland, Baltimore, MD 21201,USA
| |
Collapse
|
17
|
Bhalla D, Dinesh S, Sharma S, Sathisha GJ. Gut-Brain Axis Modulation of Metabolic Disorders: Exploring the Intertwined Neurohumoral Pathways and Therapeutic Prospects. Neurochem Res 2024; 49:847-871. [PMID: 38244132 DOI: 10.1007/s11064-023-04084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
A significant rise in metabolic disorders, frequently brought on by lifestyle choices, is alarming. A wide range of preliminary studies indicates the significance of the gut-brain axis, which regulates bidirectional signaling between the gastrointestinal tract and the cognitive system, and is crucial for regulating host metabolism and cognition. Intimate connections between the brain and the gastrointestinal tract provide a network of neurohumoral transmission that can transmit in both directions. The gut-brain axis successfully establishes that the wellness of the brain is always correlated with the extent to which the gut operates. Research on the gut-brain axis has historically concentrated on how psychological health affects how well the gastrointestinal system works. The latest studies, however, revealed that the gut microbiota interacts with the brain via the gut-brain axis to control phenotypic changes in the brain and in behavior. This study addresses the significance of the gut microbiota, the role of the gut-brain axis in management of various metabolic disorders, the hormonal and neural signaling pathways and the therapeutic treatments available. Its objective is to establish the significance of the gut-brain axis in metabolic disorders accurately and examine the link between the two while evaluating the therapeutic strategies to be incorporated in the future.
Collapse
Affiliation(s)
- Diya Bhalla
- Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Science, Bangalore, 560048, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore, 560043, India.
| | - Gonchigar Jayanna Sathisha
- Department of Post Graduate Studies and Research in Biochemistry, Jnanasahyadri, Kuvempu University, Shankaraghatta, Shimoga, 577451, India
| |
Collapse
|
18
|
Tytti K, Sanna K, Carla G, Jonatan P, Kaisa R, Sari T. Mechanosensitive TRPV4 channel guides maturation and organization of the bilayered mammary epithelium. Sci Rep 2024; 14:6774. [PMID: 38514727 PMCID: PMC10957991 DOI: 10.1038/s41598-024-57346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Biophysical cues from the cell microenvironment are detected by mechanosensitive components at the cell surface. Such machineries convert physical information into biochemical signaling cascades within cells, subsequently leading to various cellular responses in a stimulus-dependent manner. At the surface of extracellular environment and cell cytoplasm exist several ion channel families that are activated by mechanical signals to direct intracellular events. One of such channel is formed by transient receptor potential cation channel subfamily V member, TRPV4 that is known to act as a mechanosensor in wide variaty of tissues and control ion-influx in a spatio-temporal way. Here we report that TRPV4 is prominently expressed in the stem/progenitor cell populations of the mammary epithelium and seems important for the lineage-specific differentiation, consequently affecting mechanical features of the mature mammary epithelium. This was evident by the lack of several markers for mature myoepithelial and luminal epithelial cells in TRPV4-depleted cell lines. Interestingly, TRPV4 expression is controlled in a tension-dependent manner and it also impacts differentation process dependently on the stiffness of the microenvironment. Furthermore, such cells in a 3D compartment were disabled to maintain normal mammosphere structures and displayed abnormal lumen formation, size of the structures and disrupted cellular junctions. Mechanosensitive TRPV4 channel therefore act as critical player in the homeostasis of normal mammary epithelium through sensing the physical environment and guiding accordingly differentiation and structural organization of the bilayered mammary epithelium.
Collapse
Affiliation(s)
- Kärki Tytti
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Koskimäki Sanna
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Guenther Carla
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pirhonen Jonatan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rajakylä Kaisa
- School of Social Services and Health Care, Tampere University of Applied Sciences, Tampere, Finland
| | - Tojkander Sari
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
19
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Drobnik M, Smólski J, Grądalski Ł, Niemirka S, Młynarska E, Rysz J, Franczyk B. Mechanosensitive Cation Channel Piezo1 Is Involved in Renal Fibrosis Induction. Int J Mol Sci 2024; 25:1718. [PMID: 38338996 PMCID: PMC10855652 DOI: 10.3390/ijms25031718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Renal fibrosis, the result of different pathological processes, impairs kidney function and architecture, and usually leads to renal failure development. Piezo1 is a mechanosensitive cation channel highly expressed in kidneys. Activation of Piezo1 by mechanical stimuli increases cations influx into the cell with slight preference of calcium ions. Two different models of Piezo1 activation are considered: force through lipid and force through filament. Expression of Piezo1 on mRNA and protein levels was confirmed within the kidney. Their capacity is increased in the fibrotic kidney. The pharmacological tools for Piezo1 research comprise selective activators of the channels (Yoda1 and Jedi1/2) as well as non-selective inhibitors (spider peptide toxin) GsMTx4. Piezo1 is hypothesized to be the upstream element responsible for the activation of integrin. This pathway (calcium/calpain2/integrin beta1) is suggested to participate in profibrotic response induced by mechanical stimuli. Administration of the Piezo1 unspecific inhibitor or activators to unilateral ureter obstruction (UUO) mice or animals with folic acid-induced fibrosis modulates extracellular matrix deposition and influences kidney function. All in all, according to the recent data Piezo1 plays an important role in kidney fibrosis development. This channel has been selected as the target for pharmacotherapy of renal fibrosis.
Collapse
Affiliation(s)
- Marta Drobnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Jakub Smólski
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Łukasz Grądalski
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Szymon Niemirka
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| |
Collapse
|
21
|
Komandur A, Fazyl A, Stein W, Vidal-Gadea AG. The mechanoreceptor pezo-1 is required for normal crawling locomotion in the nematode C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001085. [PMID: 38188418 PMCID: PMC10765246 DOI: 10.17912/micropub.biology.001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
The discovery in 2010 of the PIEZO family of mechanoreceptors revolutionized our understanding of the role of proprioceptive feedback in mammalian physiology. Much remains to be elucidated. This study looks at the role this receptor plays in normal locomotion. Like humans, the nematode C. elegans expresses PIEZO-type channels (encoded by the pezo-1 gene) throughout its somatic musculature. Here we use the unbiased automated behavioral software Tierpsy to characterize the effects that mutations removing PEZO-1 from body wall musculature have on C. elegans crawling. We find that loss of PEZO-1 results in disrupted locomotion and posture, consistent with phenotypes associated with loss of PIEZO2 in human musculature. C. elegans is thus an amenable system to study the role of mechanoreception on muscle physiology and function.
Collapse
Affiliation(s)
| | - Adina Fazyl
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| | - Andrés G. Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| |
Collapse
|
22
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
23
|
Häuser F, Rossmann H, Adenaeuer A, Shrestha A, Marandiuc D, Paret C, Faber J, Lackner KJ, Lämmle B, Beck O. Hereditary Spherocytosis: Can Next-Generation Sequencing of the Five Most Frequently Affected Genes Replace Time-Consuming Functional Investigations? Int J Mol Sci 2023; 24:17021. [PMID: 38069343 PMCID: PMC10707146 DOI: 10.3390/ijms242317021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Congenital defects of the erythrocyte membrane are common in northern Europe and all over the world. The resulting diseases, for example, hereditary spherocytosis (HS), are often underdiagnosed, partly due to their sometimes mild and asymptomatic courses. In addition to a broad clinical spectrum, this is also due to the occasionally complex diagnostics that are not available to every patient. To test whether next-generation sequencing (NGS) could replace time-consuming spherocytosis-specific functional tests, 22 consecutive patients with suspected red cell membranopathy underwent functional blood tests. We were able to identify the causative genetic defect in all patients with suspected HS who underwent genetic testing (n = 17). The sensitivity of the NGS approach, which tests five genes (ANK1 (gene product: ankyrin1), EPB42 (erythrocyte membrane protein band4.2), SLC4A1 (band3), SPTA1 (α-spectrin), and SPTB (β-spectrin)), was 100% (95% confidence interval: 81.5-100.0%). The major advantage of genetic testing in the paediatric setting is the small amount of blood required (<200 µL), and compared to functional assays, sample stability is not an issue. The combination of medical history, basic laboratory parameters, and an NGS panel with five genes is sufficient for diagnosis in most cases. Only in rare cases, a more comprehensive functional screening is required.
Collapse
Affiliation(s)
- Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Anke Adenaeuer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Annette Shrestha
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Dana Marandiuc
- Transfusion Center, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Claudia Paret
- Department of Pediatric Hematology, Oncology & Hemostaseology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Jörg Faber
- Department of Pediatric Hematology, Oncology & Hemostaseology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Haemostasis Research Unit, University College London, London WC1E6BT, UK
| | - Olaf Beck
- Department of Pediatric Hematology, Oncology & Hemostaseology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
24
|
Kelley B, Zhang EY, Khalfaoui L, Schiliro M, Wells N, Pabelick CM, Prakash YS, Vogel ER. Piezo channels in stretch effects on developing human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2023; 325:L542-L551. [PMID: 37697925 PMCID: PMC11068394 DOI: 10.1152/ajplung.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The use of respiratory support strategies such as continuous positive airway pressure in premature infants can substantially stretch highly compliant perinatal airways, leading to airway hyperreactivity and remodeling in the long term. The mechanisms by which stretch detrimentally affects the airway are unknown. Airway smooth muscle cells play a critical role in contractility and remodeling. Using 18-22-wk gestation human fetal airway smooth muscle (fASM) as an in vitro model, we tested the hypothesis that mechanosensitive Piezo (PZ) channels contribute to stretch effects. We found that PZ1 and PZ2 channels are expressed in the smooth muscle of developing airways and that their expression is influenced by stretch. PZ activation via agonist Yoda1 or stretch results in significant [Ca2+]i responses as well as increased extracellular matrix production. These data suggest that functional PZ channels may play a role in detrimental stretch-induced airway changes in the context of prematurity.NEW & NOTEWORTHY Piezo channels were first described just over a decade ago and their function in the lung is largely unknown. We found that piezo channels are present and functional in the developing airway and contribute to intracellular calcium responses and extracellular matrix remodeling in the setting of stretch. This may improve our understanding of the mechanisms behind development of chronic airway diseases, such as asthma, in former preterm infants exposed to respiratory support, such as continuous positive airway pressure (CPAP).
Collapse
Affiliation(s)
- Brian Kelley
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Elizabeth R Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
25
|
Kalli M, Poskus MD, Stylianopoulos T, Zervantonakis IK. Beyond matrix stiffness: targeting force-induced cancer drug resistance. Trends Cancer 2023; 9:937-954. [PMID: 37558577 PMCID: PMC10592424 DOI: 10.1016/j.trecan.2023.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
During tumor progression, mechanical abnormalities in the tumor microenvironment (TME) trigger signaling pathways in cells that activate cellular programs, resulting in tumor growth and drug resistance. In this review, we describe mechanisms of action for anti-cancer therapies and mechanotransduction programs that regulate cellular processes, including cell proliferation, apoptosis, survival and phenotype switching. We discuss how the therapeutic response is impacted by the three main mechanical TME abnormalities: high extracellular matrix (ECM) composition and stiffness; interstitial fluid pressure (IFP); and elevated mechanical forces. We also review drugs that normalize these abnormalities or block mechanosensors and mechanotransduction pathways. Finally, we discuss current challenges and perspectives for the development of new strategies targeting mechanically induced drug resistance in the clinic.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Matthew D Poskus
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | | |
Collapse
|
26
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Zhang Z, Ye F, Xiong T, Chen J, Cao J, Chen Y, Liu S. Origin, evolution and diversification of plant mechanosensitive channel of small conductance-like (MSL) proteins. BMC PLANT BIOLOGY 2023; 23:462. [PMID: 37794319 PMCID: PMC10552396 DOI: 10.1186/s12870-023-04479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Mechanosensitive (MS) ion channels provide efficient molecular mechanism for transducing mechanical forces into intracellular ion fluxes in all kingdoms of life. The mechanosensitive channel of small conductance (MscS) was one of the best-studied MS channels and its homologs (MSL, MscS-like) were widely distributed in cell-walled organisms. However, the origin, evolution and expansion of MSL proteins in plants are still not clear. Here, we identified more than 2100 MSL proteins from 176 plants and conducted a broad-scale phylogenetic analysis. The phylogenetic tree showed that plant MSL proteins were divided into three groups (I, II and III) prior to the emergence of chlorophytae algae, consistent with their specific subcellular localization. MSL proteins were distributed unevenly into each of plant species, and four parallel expansion was identified in angiosperms. In Brassicaceae, most MSL duplicates were derived by whole-genome duplication (WGD)/segmental duplications. Finally, a hypothetical evolutionary model of MSL proteins in plants was proposed based on phylogeny. Our studies illustrate the evolutionary history of the MSL proteins and provide a guide for future functional diversity analyses of these proteins in plants.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Jiahui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Jiajia Cao
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Yurui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Sushuang Liu
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
28
|
Humphreys JM, Teixeira LR, Akella R, He H, Kannangara AR, Sekulski K, Pleinis J, Liwocha J, Jiou J, Servage KA, Orth K, Joachimiak L, Rizo J, Cobb MH, Brautigam CA, Rodan AR, Goldsmith EJ. Hydrostatic Pressure Sensing by WNK kinases. Mol Biol Cell 2023; 34:ar109. [PMID: 37585288 PMCID: PMC10559305 DOI: 10.1091/mbc.e23-03-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Previous study has demonstrated that the WNK kinases 1 and 3 are direct osmosensors consistent with their established role in cell-volume control. WNK kinases may also be regulated by hydrostatic pressure. Hydrostatic pressure applied to cells in culture with N2 gas or to Drosophila Malpighian tubules by centrifugation induces phosphorylation of downstream effectors of endogenous WNKs. In vitro, the autophosphorylation and activity of the unphosphorylated kinase domain of WNK3 (uWNK3) is enhanced to a lesser extent than in cells by 190 kPa applied with N2 gas. Hydrostatic pressure measurably alters the structure of uWNK3. Data from size exclusion chromatography in line with multi-angle light scattering (SEC-MALS), SEC alone at different back pressures, analytical ultracentrifugation (AUC), NMR, and chemical crosslinking indicate a change in oligomeric structure in the presence of hydrostatic pressure from a WNK3 dimer to a monomer. The effects on the structure are related to those seen with osmolytes. Potential mechanisms of hydrostatic pressure activation of uWNK3 and the relationships of pressure activation to WNK osmosensing are discussed.
Collapse
Affiliation(s)
- John M. Humphreys
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Liliana R. Teixeira
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Radha Akella
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Haixia He
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ashari R. Kannangara
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kamil Sekulski
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John Pleinis
- Department of Internal Medicine, Division of Nephrology and Hypertension and Department of Human Genetics, University of Utah, Salt Lake City UT 84112
| | - Joanna Liwocha
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jenny Jiou
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lukasz Joachimiak
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Josep Rizo
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Melanie H. Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Aylin R. Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension and Department of Human Genetics, University of Utah, Salt Lake City UT 84112
| | - Elizabeth J. Goldsmith
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
29
|
Figueiredo IAD, Ferreira SRD, Fernandes JM, Silva BA, Vasconcelos LHC, Cavalcante FA. A review of the pathophysiology and the role of ion channels on bronchial asthma. Front Pharmacol 2023; 14:1236550. [PMID: 37841931 PMCID: PMC10568497 DOI: 10.3389/fphar.2023.1236550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sarah Rebeca Dantas Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jayne Muniz Fernandes
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
30
|
Hendargo KJ, Patel AO, Chukwudozie OS, Moreno-Hagelsieb G, Christen JA, Medrano-Soto A, Saier MH. Sequence Similarity among Structural Repeats in the Piezo Family of Mechanosensitive Ion Channels. Microb Physiol 2023; 33:49-62. [PMID: 37321192 PMCID: PMC11283329 DOI: 10.1159/000531468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Members of the Piezo family of mechanically activated cation channels are involved in multiple physiological processes in higher eukaryotes, including vascular development, cell differentiation, touch perception, hearing, and more, but they are also common in single-celled eukaryotic microorganisms. Mutations in these proteins in humans are associated with a variety of diseases, such as colorectal adenomatous polyposis, dehydrated hereditary stomatocytosis, and hereditary xerocytosis. Available 3D structures for Piezo proteins show nine regions of four transmembrane segments each that have the same fold. Despite the remarkable similarity among the nine characteristic structural repeats in the family, no significant sequence similarity among them has been reported. Using bioinformatics approaches and the Transporter Classification Database (TCDB) as reference, we reliably identified sequence similarity among repeats based on four lines of evidence: (1) hidden Markov model-profile similarities across repeats at the family level, (2) pairwise sequence similarities between different repeats across Piezo homologs, (3) Piezo-specific conserved sequence signatures that consistently identify the same regions across repeats, and (4) conserved residues that maintain the same orientation and location in 3D space.
Collapse
Affiliation(s)
- Kevin J. Hendargo
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, USA
| | - Ashay O. Patel
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, USA
| | - Onyeka S. Chukwudozie
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, USA
| | | | - J. Andrés Christen
- Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas, CIMAT, Guanajuato, Mexico
| | - Arturo Medrano-Soto
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, USA
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
31
|
Tang Y, Zhao C, Zhuang Y, Zhong A, Wang M, Zhang W, Zhu L. Mechanosensitive Piezo1 protein as a novel regulator in macrophages and macrophage-mediated inflammatory diseases. Front Immunol 2023; 14:1149336. [PMID: 37334369 PMCID: PMC10275567 DOI: 10.3389/fimmu.2023.1149336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are the most important innate immune cells in humans. They are almost ubiquitous in peripheral tissues with a large variety of different mechanical milieus. Therefore, it is not inconceivable that mechanical stimuli have effects on macrophages. Emerging as key molecular detectors of mechanical stress, the function of Piezo channels in macrophages is becoming attractive. In this review, we addressed the architecture, activation mechanisms, biological functions, and pharmacological regulation of the Piezo1 channel and review the research advancements in functions of Piezo1 channels in macrophages and macrophage-mediated inflammatory diseases as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Yu Tang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Ying Zhuang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Anjing Zhong
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Wang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
32
|
Tian Y, Morin-Poulard I, Liu X, Vanzo N, Crozatier M. A mechanosensitive vascular niche for Drosophila hematopoiesis. Proc Natl Acad Sci U S A 2023; 120:e2217862120. [PMID: 37094122 PMCID: PMC10160988 DOI: 10.1073/pnas.2217862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
Hematopoietic stem and progenitor cells maintain blood cell homeostasis by integrating various cues provided by specialized microenvironments or niches. Biomechanical forces are emerging as key regulators of hematopoiesis. Here, we report that mechanical stimuli provided by blood flow in the vascular niche control Drosophila hematopoiesis. In vascular niche cells, the mechanosensitive channel Piezo transduces mechanical forces through intracellular calcium upregulation, leading to Notch activation and repression of FGF ligand transcription, known to regulate hematopoietic progenitor maintenance. Our results provide insight into how the vascular niche integrates mechanical stimuli to regulate hematopoiesis.
Collapse
Affiliation(s)
- Yushun Tian
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Ismaël Morin-Poulard
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Xiaohui Liu
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Nathalie Vanzo
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Michèle Crozatier
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| |
Collapse
|
33
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
34
|
Sonkodi B. LF Power of HRV Could Be the Piezo2 Activity Level in Baroreceptors with Some Piezo1 Residual Activity Contribution. Int J Mol Sci 2023; 24:ijms24087038. [PMID: 37108199 PMCID: PMC10138994 DOI: 10.3390/ijms24087038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Heart rate variability is a useful measure for monitoring the autonomic nervous system. Heart rate variability measurements have gained significant demand not only in science, but also in the public due to the fairly low price and wide accessibility of the Internet of things. The scientific debate about one of the measures of heart rate variability, i.e., what low-frequency power is reflecting, has been ongoing for decades. Some schools reason that it represents the sympathetic loading, while an even more compelling reasoning is that it measures how the baroreflex modulates the cardiac autonomic outflow. However, the current opinion manuscript proposes that the discovery of the more precise molecular characteristics of baroreceptors, i.e., that the Piezo2 ion channel containing vagal afferents could invoke the baroreflex, may possibly resolve this debate. It is long known that medium- to high-intensity exercise diminishes low-frequency power to almost undetectable values. Moreover, it is also demonstrated that the stretch- and force-gated Piezo2 ion channels are inactivated in a prolonged hyperexcited state in order to prevent pathological hyperexcitation. Accordingly, the current author suggests that the almost undetectable value of low-frequency power at medium- to high-intensity exercise reflects the inactivation of Piezo2 from vagal afferents in the baroreceptors with some Piezo1 residual activity contribution. Consequently, this opinion paper highlights how low-frequency power of the heart rate variability could represent the activity level of Piezo2 in baroreceptors.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| |
Collapse
|
35
|
Xie L, Wang X, Ma Y, Ma H, Shen J, Chen J, Wang Y, Su S, Chen K, Xu L, Xie Y, Xiang M. Piezo1 (Piezo-Type Mechanosensitive Ion Channel Component 1)-Mediated Mechanosensation in Macrophages Impairs Perfusion Recovery After Hindlimb Ischemia in Mice. Arterioscler Thromb Vasc Biol 2023; 43:504-518. [PMID: 36756881 DOI: 10.1161/atvbaha.122.318625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Angiogenesis is a promising strategy for those with peripheral artery disease. Macrophage-centered inflammation is intended to govern the deficiency of the angiogenic response after hindlimb ischemia. However, little is known about the mechanism of macrophage activation beyond signals from cytokines and chemokines. We sought to identify a novel mechanical signal from the ischemic microenvironment that provokes macrophages and the subsequent inflammatory cascade and to investigate the potential role of Piezo-type mechanosensitive ion channels (Piezo) on macrophages during this process. METHODS Myeloid cell-specific Piezo1 (Piezo-type mechanosensitive ion channel component 1) knockout (Piezo1ΔMΦ) mice were generated by crossing Piezo1fl/fl (LysM-Cre-/-; Piezo1 flox/flox) mice with LysM-Cre transgenic mice to assess the roles of Piezo1 in macrophages after hindlimb ischemia. Furthermore, in vitro studies were carried out in bone marrow-derived macrophages to decipher the underlying mechanism. RESULTS We found that tissue stiffness gradually increased after hindlimb ischemia, as indicated by Young's modulus. Compared to Piezo2, Piezo1 expression and activation were markedly upregulated in macrophages from ischemic tissues in concurrence with increased tissue stiffness. Piezo1ΔMΦ mice exhibited improved perfusion recovery by enhancing angiogenesis. Matrigel tube formation assays revealed that Piezo1 deletion promoted angiogenesis by enhancing FGF2 (fibroblast growth factor-2) paracrine signaling in macrophages. Conversely, activation of Piezo1 by increased stiffness or the agonist Yoda1 led to reduced FGF2 production in bone marrow-derived macrophages, which could be blocked by Piezo1 silencing. Mechanistically, Piezo1 mediated extracellular Ca2+ influx and activated Ca2+-dependent CaMKII (calcium/calmodulin-dependent protein kinase II)/ETS1 (ETS proto-oncogene 1) signaling, leading to transcriptional inactivation of FGF2. CONCLUSIONS This study uncovers a crucial role of microenvironmental stiffness in exacerbating the macrophage-dependent deficient angiogenic response. Deletion of macrophage Piezo1 promotes perfusion recovery after hindlimb ischemia through CaMKII/ETS1-mediated transcriptional activation of FGF2. This provides a promising therapeutic strategy to enhance angiogenesis in ischemic diseases.
Collapse
Affiliation(s)
- Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiying Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuankun Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng'an Su
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijie Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingxiao Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Carrisoza-Gaytan R, Kroll KT, Hiratsuka K, Gupta NR, Morizane R, Lewis JA, Satlin LM. Functional maturation of kidney organoid tubules: PIEZO1-mediated Ca 2+ signaling. Am J Physiol Cell Physiol 2023; 324:C757-C768. [PMID: 36745528 PMCID: PMC10027089 DOI: 10.1152/ajpcell.00288.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
Kidney organoids cultured on adherent matrices in the presence of superfusate flow generate vascular networks and exhibit more mature podocyte and tubular compartments compared with static controls (Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. Nat Methods 16: 255-262, 2019; Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Nature 526: 564-568, 2015.). However, their physiological function has yet to be systematically investigated. Here, we measured mechano-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in tubules isolated from organoids cultured for 21-64 days, microperfused in vitro or affixed to the base of a specimen chamber, and loaded with fura-2 to measure [Ca2+]i. A rapid >2.5-fold increase in [Ca2+]i from a baseline of 195.0 ± 22.1 nM (n = 9; P ≤ 0.001) was observed when microperfused tubules from organoids >40 days in culture were subjected to luminal flow. In contrast, no response was detected in tubules isolated from organoids <30 days in culture. Nonperfused tubules (41 days) subjected to a 10-fold increase in bath flow rate also exhibited a threefold increase in [Ca2+]i from baseline (P < 0.001). Mechanosensitive PIEZO1 channels contribute to the flow-induced [Ca2+]i response in mouse distal tubule (Carrisoza-Gaytan R, Dalghi MG, Apodaca GL, Kleyman TR, Satlin LM. The FASEB J 33: 824.25, 2019.). Immunodetectable apical and basolateral PIEZO1 was identified in tubular structures by 21 days in culture. Basolateral PIEZO1 appeared to be functional as basolateral exposure of nonperfused tubules to the PIEZO1 activator Yoda 1 increased [Ca2+]i (P ≤ 0.001) in segments from organoids cultured for >30 days, with peak [Ca2+]i increasing with advancing days in culture. These results are consistent with a maturational increase in number and/or activity of flow/stretch-sensitive Ca2+ channels, including PIEZO1, in tubules of static organoids in culture.
Collapse
Affiliation(s)
- Rolando Carrisoza-Gaytan
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Katharina T Kroll
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
| | - Ken Hiratsuka
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Navin R Gupta
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Ryuji Morizane
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
| | - Jennifer A Lewis
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
37
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
38
|
Collins MN, Mesce KA. A review of the bioeffects of low-intensity focused ultrasound and the benefits of a cellular approach. Front Physiol 2022; 13:1047324. [PMID: 36439246 PMCID: PMC9685663 DOI: 10.3389/fphys.2022.1047324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
This review article highlights the historical developments and current state of knowledge of an important neuromodulation technology: low-intensity focused ultrasound. Because compelling studies have shown that focused ultrasound can modulate neuronal activity non-invasively, especially in deep brain structures with high spatial specificity, there has been a renewed interest in attempting to understand the specific bioeffects of focused ultrasound at the cellular level. Such information is needed to facilitate the safe and effective use of focused ultrasound to treat a number of brain and nervous system disorders in humans. Unfortunately, to date, there appears to be no singular biological mechanism to account for the actions of focused ultrasound, and it is becoming increasingly clear that different types of nerve cells will respond to focused ultrasound differentially based on the complement of their ion channels, other membrane biophysical properties, and arrangement of synaptic connections. Furthermore, neurons are apparently not equally susceptible to the mechanical, thermal and cavitation-related consequences of focused ultrasound application-to complicate matters further, many studies often use distinctly different focused ultrasound stimulus parameters to achieve a reliable response in neural activity. In this review, we consider the benefits of studying more experimentally tractable invertebrate preparations, with an emphasis on the medicinal leech, where neurons can be studied as unique individual cells and be synaptically isolated from the indirect effects of focused ultrasound stimulation on mechanosensitive afferents. In the leech, we have concluded that heat is the primary effector of focused ultrasound neuromodulation, especially on motoneurons in which we observed a focused ultrasound-mediated blockade of action potentials. We discuss that the mechanical bioeffects of focused ultrasound, which are frequently described in the literature, are less reliably achieved as compared to thermal ones, and that observations ascribed to mechanical responses may be confounded by activation of synaptically-coupled sensory structures or artifacts associated with electrode resonance. Ultimately, both the mechanical and thermal components of focused ultrasound have significant potential to contribute to the sculpting of specific neural outcomes. Because focused ultrasound can generate significant modulation at a temperature <5°C, which is believed to be safe for moderate durations, we support the idea that focused ultrasound should be considered as a thermal neuromodulation technology for clinical use, especially targeting neural pathways in the peripheral nervous system.
Collapse
Affiliation(s)
- Morgan N. Collins
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
39
|
Liu Y, Fang F, Xiong Y, Wu J, Li X, Li G, Bai T, Hou X, Song J. Reprogrammed fecal and mucosa-associated intestinal microbiota and weakened mucus layer in intestinal goblet cell- specific Piezo1-deficient mice. Front Cell Infect Microbiol 2022; 12:1035386. [PMID: 36425784 PMCID: PMC9679152 DOI: 10.3389/fcimb.2022.1035386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
Dysfunction of the mucus layer allows commensal and pathogenic microorganisms to reach the intestinal epithelium, thereby leading to infection and inflammation. This barrier is synthesized and secreted by host goblet cells. Many factors that influence the function of goblet cells (GCs) have been studied. However, how the microenvironment surrounding GCs influences the mucus layer and microbiota of the colon is unclear. To explore the effect of GC Piezo1 on the mucus layer and microbiota in the colon, we generated an intestinal epithelial Piezo1 conditional knockout mouse model. The fecal-associated microbiota (FAM) and mucosa-associated microbiota (MAM) of the two groups were characterized based on amplicon sequencing of the 16S rRNA gene. Our results showed that GC Piezo1-/- mice developed decreased GC numbers, thinner mucus layer, and increased inflammatory cytokines (e.g., CXCL1, CXCL2, IL-6) on the 7th day. In addition, decreased Spdef and increased DOCK4 were discovered in KO mice. Meanwhile, the diversity and richness were increased in MAM and decreased in FAM in the GC Piezo1-/- group compared with the GC Piezo1+/+ group. We also observed increased abundances of Firmicutes and decreased abundances of Verrucomicrobiota and Actinobacteriota in the MAM of the GC Piezo1-/- group. Additionally, BugBase predicts that potentially pathogenic bacteria may have increased in the inner mucus layer, which is consistent with the higher abundance of Helicobacter hepaticus, Lactobacillus johnsonii, Escherichia-Shigella and Oscillospiraceae in MAM. These results further support the hypothesis that the role of Piezo1 in GCs is important for maintaining the function of the mucus layer and intestinal microbiota balance in the mouse colon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Sonkodi B. Psoriasis, Is It a Microdamage of Our "Sixth Sense"? A Neurocentric View. Int J Mol Sci 2022; 23:11940. [PMID: 36233237 PMCID: PMC9569707 DOI: 10.3390/ijms231911940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Psoriasis is considered a multifactorial and heterogeneous systemic disease with many underlying pathologic mechanisms having been elucidated; however, the pathomechanism is far from entirely known. This opinion article will demonstrate the potential relevance of the somatosensory Piezo2 microinjury-induced quad-phasic non-contact injury model in psoriasis through a multidisciplinary approach. The primary injury is suggested to be on the Piezo2-containing somatosensory afferent terminals in the Merkel cell−neurite complex, with the concomitant impairment of glutamate vesicular release machinery in Merkel cells. Part of the theory is that the Merkel cell−neurite complex contributes to proprioception; hence, to the stretch of the skin. Piezo2 channelopathy could result in the imbalanced control of Piezo1 on keratinocytes in a clustered manner, leading to dysregulated keratinocyte proliferation and differentiation. Furthermore, the author proposes the role of mtHsp70 leakage from damaged mitochondria through somatosensory terminals in the initiation of autoimmune and autoinflammatory processes in psoriasis. The secondary phase is harsher epidermal tissue damage due to the primary impaired proprioception. The third injury phase refers to re-injury and sensitization with the derailment of healing to a state when part of the wound healing is permanently kept alive due to genetical predisposition and environmental risk factors. Finally, the quadric damage phase is associated with the aging process and associated inflammaging. In summary, this opinion piece postulates that the primary microinjury of our “sixth sense”, or the Piezo2 channelopathy of the somatosensory terminals contributing to proprioception, could be the principal gateway to pathology due to the encroachment of our preprogrammed genetic encoding.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Sciences, 1123 Budapest, Hungary
| |
Collapse
|
41
|
Delayed Onset Muscle Soreness and Critical Neural Microdamage-Derived Neuroinflammation. Biomolecules 2022; 12:biom12091207. [PMID: 36139045 PMCID: PMC9496513 DOI: 10.3390/biom12091207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023] Open
Abstract
Piezo2 transmembrane excitatory mechanosensitive ion channels were identified as the principal mechanotransduction channels for proprioception. Recently, it was postulated that Piezo2 channels could be acutely microdamaged on an autologous basis at proprioceptive Type Ia terminals in a cognitive demand-induced acute stress response time window when unaccustomed or strenuous eccentric contractions are executed. One consequence of this proposed transient Piezo2 microinjury could be a VGLUT1/Ia synaptic disconnection on motoneurons, as we can learn from platinum-analogue chemotherapy. A secondary, harsher injury phase with the involvement of polymodal Aδ and nociceptive C-fibers could follow the primary impairment of proprioception of delayed onset muscle soreness. Repetitive reinjury of these channels in the form of repeated bout effects is proposed to be the tertiary injury phase. Notably, the use of proprioception is associated with motor learning and memory. The impairment of the monosynaptic static phase firing sensory encoding of the affected stretch reflex could be the immediate consequence of the proposed Piezo2 microdamage leading to impaired proprioception, exaggerated contractions and reduced range of motion. These transient Piezo2 channelopathies in the primary afferent terminals could constitute the critical gateway to the pathophysiology of delayed onset muscle soreness. Correspondingly, fatiguing eccentric contraction-based pathological hyperexcitation of the Type Ia afferents induces reactive oxygen species production-associated neuroinflammation and neuronal activation in the spinal cord of delayed onset muscle soreness.
Collapse
|
42
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
43
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
44
|
Hashimura H, Morimoto YV, Hirayama Y, Ueda M. Calcium responses to external mechanical stimuli in the multicellular stage of Dictyostelium discoideum. Sci Rep 2022; 12:12428. [PMID: 35859163 PMCID: PMC9300675 DOI: 10.1038/s41598-022-16774-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Calcium acts as a second messenger to regulate many cellular functions, including cell motility. In Dictyostelium discoideum, the cytosolic calcium level oscillates synchronously, and calcium waves propagate through the cell population during the early stages of development, including aggregation. In the unicellular phase, the calcium response through Piezo channels also functions in mechanosensing. However, calcium dynamics during multicellular morphogenesis are still unclear. Here, live imaging of cytosolic calcium revealed that calcium wave propagation, depending on cAMP relay, disappeared at the onset of multicellular body (slug) formation. Later, other forms of occasional calcium bursts and their propagation were observed in both anterior and posterior regions of migrating slugs. This calcium signaling also occurred in response to mechanical stimuli. Two pathways—calcium release from the endoplasmic reticulum via IP3 receptor and calcium influx from outside the cell—were involved in calcium signals induced by mechanical stimuli. These data suggest that calcium signaling is involved in mechanosensing in both the unicellular and multicellular phases of Dictyostelium development using different molecular mechanisms.
Collapse
Affiliation(s)
- Hidenori Hashimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.,Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yusuke V Morimoto
- RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan. .,Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan. .,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yusei Hirayama
- Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
45
|
Sonkodi B, Resch MD, Hortobágyi T. Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy. J Mol Neurosci 2022; 72:1598-1608. [PMID: 35507012 PMCID: PMC9374789 DOI: 10.1007/s12031-022-02015-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
Abstract
Dry eye disease (DED) is a multifactorial disorder with recognized pathology, but not entirely known pathomechanism. It is suggested to represent a continuum with neuropathic corneal pain with the paradox that DED is a pain-free disease in most cases, although it is regarded as a pain condition. The current paper puts into perspective that one gateway from physiology to pathophysiology could be a Piezo2 channelopathy, opening the pathway to a potentially quad-phasic non-contact injury mechanism on a multifactorial basis and with a heterogeneous clinical picture. The primary non-contact injury phase could be the pain-free microinjury of the Piezo2 ion channel at the corneal somatosensory nerve terminal. The secondary non-contact injury phase involves harsher corneal tissue damage with C-fiber contribution due to the lost or inadequate intimate cross-talk between somatosensory Piezo2 and peripheral Piezo1. The third injury phase of this non-contact injury is the neuronal sensitization process with underlying repeated re-injury of the Piezo2, leading to the proposed chronic channelopathy. Notably, sensitization may evolve in certain cases in the absence of the second injury phase. Finally, the quadric injury phase is the lingering low-grade neuroinflammation associated with aging, called inflammaging. This quadric phase could clinically initiate or augment DED, explaining why increasing age is a risk factor. We highlight the potential role of the NGF-TrkA axis as a signaling mechanism that could further promote the microinjury of the corneal Piezo2 in a stress-derived hyperexcited state. The NGF-TrkA-Piezo2 axis might explain why female sex represents a risk factor for DED.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, Budapest, Hungary.
| | - Miklós D Resch
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Insitute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.,Center for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
46
|
Chuang YC, Chen CC. Force From Filaments: The Role of the Cytoskeleton and Extracellular Matrix in the Gating of Mechanosensitive Channels. Front Cell Dev Biol 2022; 10:886048. [PMID: 35586339 PMCID: PMC9108448 DOI: 10.3389/fcell.2022.886048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The senses of proprioception, touch, hearing, and blood pressure on mechanosensitive ion channels that transduce mechanical stimuli with high sensitivity and speed. This conversion process is usually called mechanotransduction. From nematode MEC-4/10 to mammalian PIEZO1/2, mechanosensitive ion channels have evolved into several protein families that use variant gating models to convert different forms of mechanical force into electrical signals. In addition to the model of channel gating by stretching from lipid bilayers, another potent model is the opening of channels by force tethering: a membrane-bound channel is elastically tethered directly or indirectly between the cytoskeleton and the extracellular molecules, and the tethering molecules convey force to change the channel structure into an activation form. In general, the mechanical stimulation forces the extracellular structure to move relative to the cytoskeleton, deforming the most compliant component in the system that serves as a gating spring. Here we review recent studies focusing on the ion channel mechanically activated by a tethering force, the mechanotransduction-involved cytoskeletal protein, and the extracellular matrix. The mechanosensitive channel PIEZO2, DEG/ENaC family proteins such as acid-sensing ion channels, and transient receptor potential family members such as NompC are discussed. State-of-the-art techniques, such as polydimethylsiloxane indentation, the pillar array, and micropipette-guided ultrasound stimulation, which are beneficial tools for exploring the tether model, are also discussed.
Collapse
Affiliation(s)
- Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic, BioTReC, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Cheng Chen,
| |
Collapse
|
47
|
Zhang S, Cao S, Gong M, Zhang W, Zhang W, Zhu Z, Wu S, Yue Y, Qian W, Ma Q, Wang S, Wang Z. Mechanically activated ion channel Piezo1 contributes to melanoma malignant progression through AKT/mTOR signaling. Cancer Biol Ther 2022; 23:336-347. [PMID: 36112948 PMCID: PMC9037449 DOI: 10.1080/15384047.2022.2060015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Melanoma is a highly aggressive cancer that can metastasize at early stage. The aim of this study is to clarify the role of Piezo1 and its potential mechanism in regulating the malignant phenotypes of melanoma. In the present study, we first showed that Piezo1 was abnormally expressed in melanoma, which accelerated the malignant progression by activating AKT/mTOR signaling. Firstly, we found that Piezo1 was upregulated in melanoma and associated with poor survival. Additionally, Piezo1 knockdown significantly weakened intracellular calcium signal and viability of melanoma cells. Furthermore, Piezo1 knockdown inhibited the transendothelial migration and invasion in vitro, as well as metastasis in vivo. Mechanistically, we found that Piezo1 activated AKT/mTOR signaling to maintain malignant phenotypes of melanoma. Therefore, Piezo1 acts as an oncogene in melanoma cells and provides a novel candidate for melanoma diagnosis and treatment.
Collapse
Affiliation(s)
- Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuang Cao
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin, Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mengyuan Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wunai Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuai Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yangyang Yue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shengpeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
48
|
Becchetti A, Duranti C, Arcangeli A. Dynamics and physiological meaning of complexes between ion channels and integrin receptors: the case of Kv11.1. Am J Physiol Cell Physiol 2022; 322:C1138-C1150. [PMID: 35442831 DOI: 10.1152/ajpcell.00107.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cellular functions are regulated by a complex interplay of diffuse and local signals. Experimental work in cell physiology has led to recognize that understanding a cell's dynamics requires a deep comprehension of local fluctuations of cytosolic regulators. Macromolecular complexes are major determinants of local signaling. Multi-enzyme assemblies limit the diffusion restriction to reaction kinetics by direct exchange of metabolites. Likewise, close coupling of ion channels and transporters modulate the ion concentration around a channel mouth or transporter binding site. Extreme signal locality is brought about by conformational coupling between membrane proteins, as is typical of mechanotransduction. A paradigmatic case is integrin-mediated cell adhesion. Sensing the extracellular microenvironment and providing an appropriate response is essential in growth and development and has innumerable pathological implications. The process involves bidirectional signal transduction by complex supra-molecular structures that link integrin receptors to ion channels and transporters, growth factor receptors, cytoskeletal elements and other regulatory elements. The dynamics of such complexes is only beginning to be understood. A thoroughly studied example is the association between integrin receptors and the voltage-gated K+ channels Kv11.1. These channels are widely expressed in early embryos, where their physiological roles are poorly understood and apparently different from the shaping of action potential firing in the adult. Hints about these roles come from studies in cancer cells, where Kv11.1 is often overexpressed and appears to re-assume functions, such as controlling cell proliferation/differentiation, apoptosis and migration. Kv11.1 is implicated in these processes through its linking to integrin subunits.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| |
Collapse
|
49
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
50
|
Zhao X, Kong Y, Liang B, Xu J, Lin Y, Zhou N, Li J, Jiang B, Cheng J, Li C, Wang W. Mechanosensitive Piezo1 channels mediate renal fibrosis. JCI Insight 2022; 7:152330. [PMID: 35230979 PMCID: PMC9057604 DOI: 10.1172/jci.insight.152330] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney fibrosis is the final common pathway of progressive kidney diseases, the underlying mechanisms of which is not fully understood. The purpose of the current study is to investigate a role of Piezo1, a mechanosensitive nonselective cation channel, in kidney fibrosis. In human fibrotic kidneys, Piezo1 protein expression was markedly upregulated. The abundance of Piezo1 protein in kidneys of mice with UUO or with folic-acid treatment was significantly increased. Inhibition of Piezo1 with GsMTx4 markedly ameliorated UUO or folic acid-induced kidney fibrosis. Mechanical stretch, compression or stiffness induced Piezo1 activation and pro-fibrotic responses in human HK2 cells and primary cultured mouse proximal tubular cells (mPTCs), which were greatly prevented by inhibition or silence of Piezo1. TGFβ-1 induced increased Piezo1 expression and pro-fibrotic phenotypic alterations in HK2 cells and mPTCs, which was again markedly prevented by inhibition of Piezo1. Activation of Piezo1 by Yoda1, a Piezo1 agonist, caused calcium influx and profibrotic responses in HK2 cells and induced calpain2 activation, followed by talin1 cleavage and upregulation of integrinβ1. Also, Yoda1 promoted the link between ECM and integrinβ1. In conclusion, Piezo1 is involved in the progression of kidney fibrosis and pro-fibrotic alterations in renal proximal tubular cells, likely through activating calcium-calpain2-integrinβ1 pathway.
Collapse
Affiliation(s)
- Xiaoduo Zhao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baien Liang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinhai Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospital, Guangzhou, China
| | - Nan Zhou
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Jiang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|