1
|
Quellec J, Piro-Megy C, Cannac M, Nisole S, Marty FH, Gosselet F, Shimizu F, Kanda T, Cêtre-Sossah C, Salinas S. Rift Valley fever virus is able to cross the human blood-brain barrier in vitro by direct infection with no deleterious effects. J Virol 2024; 98:e0126724. [PMID: 39345143 PMCID: PMC11494904 DOI: 10.1128/jvi.01267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Rift Valley fever (RVF) is a zoonotic arboviral disease that causes recurrent epidemics in Africa that may trigger fatal neurological disorders. However, the mechanisms of neuroinvasion by which the RVF virus (RVFV) reaches the human central nervous system (CNS) remain poorly characterized. In particular, it is not clear how RVFV is able to cross the human blood-brain barrier (hBBB), which is a neurovascular endothelium that protects the brain by regulating brain and blood exchanges. To explore these mechanisms, we used an in vitro hBBB model to mimic in vivo hBBB selectiveness and apicobasal polarity. Our results highlight the ability of RVFV to cross the hBBB by direct infection in a non-structural protein S (NSs)-independent but strain-dependent manner, leading to astrocyte and pericyte infections. Interestingly, RVFV infection did not induce hBBB disruption and was associated with progressive elimination of infected cells with no impairment of the tight junction protein scaffold and barrier function. Our work also shows that NSs, a well described RVFV virulence factor, limited the establishment of the hBBB-induced innate immune response and subsequent lymphocyte recruitment. These results provide in vitro confirmation of the ability of RVFV to reach human CNS by direct infection of the hBBB without altering its barrier function, and provide new directions to explore human RVFV neurovirulence and neuroinvasion mechanisms.IMPORTANCEThe RVF virus (RVFV) is capable of infecting humans and inducing severe and fatal neurological disorders. Neuropathogenesis and human central nervous system (CNS) invasion mechanisms of RVFV are still unknown, with only historical studies of autopsy data from fatal human cases in the 1980s and exploration studies in rodent models. One of the gaps in understanding RVFV human pathogenesis is how RVFV is able to cross the blood-brain barrier (BBB) in order to reach the human CNS. For the first time, we show that RVFV is able to directly infect cells of the human BBB in vitro to release viral particles into the human CNS, a well-characterized neuroinvasion mechanism of pathogens. Furthermore, we demonstrate strain-dependent variability of this neuroinvasion mechanism, identifying possible viral properties that could be explored to prevent neurological disorders during RVFV outbreaks.
Collapse
Affiliation(s)
- Jordan Quellec
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | | | - Marion Cannac
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Florent H. Marty
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Sara Salinas
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
2
|
Sait AM, Day PJR. Interconnections between the Gut Microbiome and Alzheimer's Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:8619. [PMID: 39201303 PMCID: PMC11354889 DOI: 10.3390/ijms25168619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is known to accumulate amyloid-β (Aβ) and tau protein. Clinical studies have not identified pathogenesis mechanisms or produced an effective cure for AD. The Aβ monoclonal antibody lecanemab reduces Aβ plaque formation for the treatment of AD, but more studies are required to increase the effectiveness of drugs to reduce cognitive decline. The lack of AD therapy targets and evidence of an association with an acute neuroinflammatory response caused by several bacteria and viruses in some individuals has led to the establishment of the infection hypothesis during the last 10 years. How pathogens cross the blood-brain barrier is highly topical and is seen to be pivotal in proving the hypothesis. This review summarizes the possible role of the gut microbiome in the pathogenesis of AD and feasible therapeutic approaches and current research limitations.
Collapse
Affiliation(s)
- Ahmad M. Sait
- Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Philip J. R. Day
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
3
|
Qu X, Yang R, Tan C, Chen H, Wang X. Astrocytes-Secreted WNT5B Disrupts the Blood-Brain Barrier Via ROR1/JNK/c-JUN Cascade During Meningitic Escherichia Coli Infection. Mol Neurobiol 2024:10.1007/s12035-024-04303-4. [PMID: 38896157 DOI: 10.1007/s12035-024-04303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The blood-brain barrier (BBB) is a complex structure that separates the central nervous system (CNS) from the peripheral blood circulation. Effective communication between different cell types within the BBB is crucial for its proper functioning and maintenance of homeostasis. In this study, we demonstrate that meningitic Escherichia coli (E. coli)-induced WNT5B plays a role in facilitating intercellular communication between astrocytes and brain microvascular endothelial cells (BMECs). We discovered that astrocytes-derived WNT5B activates the non-canonical WNT signaling pathway JNK/c-JUN in BMECs through its receptor ROR1, leading to inhibition of ZO-1 expression and impairment of the tight junction integrity in BMECs. Notably, our findings reveal that c-JUN, a transcription factor, directly regulates ZO-1 expression. By employing a dual luciferase reporting system and chromatin immunoprecipitation techniques, we identified specific binding sites of c-JUN on the ZO-1 promoter region. Overall, our study highlights the involvement of WNT5B in mediating intercellular communication between astrocytes and BMECs, provides insights into the role of WNT5B in meningitic E. coli-induced disruption of BBB integrity, and suggests potential therapeutic targeting of WNT5B as a strategy to address BBB dysfunction.
Collapse
Affiliation(s)
- Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
4
|
Aydogan Avşar P, Akkuş M. ZO-1 Serum Levels as a Potential Biomarker for Psychotic Disorder. Clin Neuropharmacol 2024; 47:67-71. [PMID: 38743599 DOI: 10.1097/wnf.0000000000000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE There are limited studies in the literature on the relationship between intestinal and blood-brain barrier permeability and the etiology of schizophrenia. We hypothesized that the difference in serum ZO-1 levels in patients with schizophrenia may affect the severity of the disease. The aim of this study was to investigate the role of changes in serum ZO-1 concentrations in the etiopathogenesis of patients with schizophrenia. METHODS A total of 46 patients, 34 with schizophrenia, 12 with a first psychotic attack, and 37 healthy controls, were included in the study. Symptom severity was determined by applying the Positive and Negative Syndrome Scale and the Clinical Global Impression-Severity Scale. Serum ZO-1 levels were measured from venous blood samples. RESULTS Serum ZO-1 levels were higher in patients with psychotic disorder compared to healthy controls. There was no statistically significant difference between the groups in the first psychotic attack group and the schizophrenia patients. There was a statistically significant positive correlation between serum ZO-1 levels and Positive and Negative Syndrome Scale positive symptom score. CONCLUSIONS These findings regarding ZO-1 levels suggest that dysregulation of the blood-brain barrier in psychotic disorder may play a role in the etiology of the disorder.
Collapse
Affiliation(s)
- Pinar Aydogan Avşar
- Department of Child and Adolescent Psychiatry, Alanya Alaaddin Keykubat University Training and Research Hospital, Alanya, Turkey
| | - Merve Akkuş
- Department of Psychiatry, Kütahya Health Sciences University, Evliya Celebi Education and Research Hospital, Kütahya, Turkey
| |
Collapse
|
5
|
Yamada S, Hashita T, Yanagida S, Sato H, Yasuhiko Y, Okabe K, Noda T, Nishida M, Matsunaga T, Kanda Y. SARS-CoV-2 causes dysfunction in human iPSC-derived brain microvascular endothelial cells potentially by modulating the Wnt signaling pathway. Fluids Barriers CNS 2024; 21:32. [PMID: 38584257 PMCID: PMC11000354 DOI: 10.1186/s12987-024-00533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.
Collapse
Affiliation(s)
- Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, 210-9501, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, 210-9501, Japan
| | - Hiroyuki Sato
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yukuto Yasuhiko
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, 210-9501, Japan
| | - Kaori Okabe
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Brain Bioregulatory Science, The Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, 210-9501, Japan.
| |
Collapse
|
6
|
Shah H, Paul G, Yadav AK. Surface-Tailored Nanoplatform for the Diagnosis and Management of Stroke: Current Strategies and Future Outlook. Mol Neurobiol 2024; 61:1383-1403. [PMID: 37707740 DOI: 10.1007/s12035-023-03635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Stroke accounts for one of the top leading reasons for neurological mortality and morbidity around the globe. Both ischemic and hemorrhagic strokes lead to local hypoxia and are brought about by the occlusion or rupturing of the blood vessels. The events taking place after the onset of a stroke include membrane ion pump failure, calcium and glutamate-mediated excitotoxicity, increased ROS production causing DNA damage, mitochondrial dysfunction, oxidative stress, development of brain edema, and microvascular dysfunction. To date, tissue plasminogen activator (tPA) therapy and mechanical removal of blood clots are the only clinically available stroke therapies, approved by Food and Drug Administration (FDA). But because of the narrow therapeutic window of around 4.5 h for tPA therapy and complications like systemic bleeding and anaphylaxis, more clinical trials are ongoing in the same field. Therefore, using nanocarriers with diverse physicochemical properties is a promising strategy in treating and diagnosing stroke as they can efficiently bypass the tight blood-brain barrier (BBB) through mechanisms like receptor-mediated transcytosis and help achieve controlled and targeted drug delivery. In this review, we will mainly focus on the pathophysiology of stroke, BBB alterations following stroke, strategies to target BBB for stroke therapies, different types of nanocarriers currently being used for therapeutic intervention of stroke, and biomarkers as well as imaging techniques used for the detection and diagnosis of stroke.
Collapse
Affiliation(s)
- Hinal Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Gajanan Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
7
|
Luo L, Wang S, Liu W, Zhang Z, Zhao M, Liu A. Narirutin Attenuates Cerebral Ischemia-Reperfusion Injury by Suppressing the TXNIP/NLRP3 Pathway. Neurochem Res 2024; 49:692-705. [PMID: 38047987 DOI: 10.1007/s11064-023-04062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/07/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Narirutin (Nar) is a flavonoid that is abundantly present in citrus fruits and has attracted considerable attention because of its diverse pharmacological activities and low toxicity. Here, we evaluated the preventive effects of Nar in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen-glucose deprivation/reperfusion (OGD/R)-injured bEnd.3 cells. Pretreatment with Nar (150 mg/kg) for 7 days effectively reduced infarct volume, improved neurological deficits, and significantly inhibited neuronal death in the hippocampus and cortex in MCAO/R-injured mice. Moreover, anti-apoptotic effects of Nar (50 µM) were observed in OGD/R-injured bEnd.3 cells. In addition, Nar pre-administration regulated blood-brain barrier function by increasing tight junction-related protein expression after MCAO/R and OGD/R injury. Nar also inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation by reducing the expression of thioredoxin-interacting protein (TXNIP) in vivo and in vitro. Taken together, these results provide new evidence for the use of Nar in the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Luo
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Saiying Wang
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenna Liu
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zimei Zhang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Minggao Zhao
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - An Liu
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
8
|
Levine AA, Liktor-Busa E, Balasubramanian S, Palomino SM, Burtman AM, Couture SA, Lipinski AA, Langlais PR, Largent-Milnes TM. Depletion of Endothelial-Derived 2-AG Reduces Blood-Endothelial Barrier Integrity via Alteration of VE-Cadherin and the Phospho-Proteome. Int J Mol Sci 2023; 25:531. [PMID: 38203706 PMCID: PMC10778805 DOI: 10.3390/ijms25010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence supports the role of the endocannabinoid system in neurophysiology, including blood-brain barrier (BBB) function. Recent work has demonstrated that activation of endocannabinoid receptors can mitigate insults to the BBB during neurological disorders like traumatic brain injury, cortical spreading depression, and stroke. As alterations to the BBB are associated with worsening clinical outcomes in these conditions, studies herein sought to examine the impact of endocannabinoid depletion on BBB integrity. Barrier integrity was investigated in vitro via bEnd.3 cell monolayers to assess endocannabinoid synthesis, barrier function, calcium influx, junctional protein expression, and proteome-wide changes. Inhibition of 2-AG synthesis using DAGLα inhibition and siRNA inhibition of DAGLα led to loss of barrier integrity via altered expression of VE-cadherin, which could be partially rescued by exogenous application of 2-AG. Moreover, the deleterious effects of DAGLα inhibition on BBB integrity showed both calcium and PKC (protein kinase C)-dependency. These data indicate that disruption of 2-AG homeostasis in brain endothelial cells, in the absence of insult, is sufficient to disrupt BBB integrity thus supporting the role of the endocannabinoid system in neurovascular disorders.
Collapse
Affiliation(s)
- Aidan A. Levine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Shreya Balasubramanian
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Seph M. Palomino
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Anya M. Burtman
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Sarah A. Couture
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Austin A. Lipinski
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (P.R.L.)
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (P.R.L.)
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| |
Collapse
|
9
|
Gao HM, Chen H, Cui GY, Hu JX. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke. Cell Biosci 2023; 13:196. [PMID: 37915036 PMCID: PMC10619327 DOI: 10.1186/s13578-023-01126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
The blood-brain barrier (BBB) serves as a defensive line protecting the central nervous system, while also maintaining micro-environment homeostasis and inhibiting harmful materials from the peripheral blood. However, the BBB's unique physiological functions and properties make drug delivery challenging for patients with central nervous system diseases. In this article, we briefly describe the cell structure basis and mechanism of action of the BBB, as well as related functional proteins involved. Additionally, we discuss the various mechanisms of BBB damage following the onset of an ischemic stroke, and lastly, we mention several therapeutic strategies accounting for impairment mechanisms. We hope to provide innovative ideas for drug delivery research via the BBB.
Collapse
Affiliation(s)
- Hui-Min Gao
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Gui-Yun Cui
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Jin-Xia Hu
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China.
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China.
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
10
|
Zhu G, Song X, Sun Y, Xu Y, Xiao L, Wang Z, Sun Y, Zhang L, Zhang X, Geng Z, Qi Q, Wang Y, Wang L, Li J, Zuo L, Hu J. Esculentoside A ameliorates BSCB destruction in SCI rat by attenuating the TLR4 pathway in vascular endothelial cells. Exp Neurol 2023; 369:114536. [PMID: 37690527 DOI: 10.1016/j.expneurol.2023.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIMS Overexpressed MMP-9 in vascular endothelial cells is involved in blood spinal cord barrier (BSCB) dysfunction in spinal cord injury (SCI). Esculentoside A (EsA) has anti-inflammatory and cell protective effects. This study aimed to evaluate its effects on neuromotor function in SCI rats, as well as the potential mechanisms. METHODS The therapeutic effect of EsA in SCI rats was investigated using Basso-Beattie-Bresnahan (BBB) scores, a grid walk test and histological analyses. To assess the protective role of EsA in the BSCB and in oxygen glucose deprivation/reoxygenation (OGD/R)-induced hBMECs, the BSCB function, tight junctions (TJ) protein (ZO-1 and claudin-5) expression, structure of the BSCB and Matrix metalloproteinase-9 (MMP-9) expression were observed via Evans blue (EB) detection, immunofluorescence analyses and western blotting. Molecular docking simulations and additional experiments were performed to explore the potential mechanisms by which EsA maintains the function of the BSCB in vivo and in vitro. RESULTS EsA treatment improved BBB scores, reduced cavity formation and the loss of neuronal cells, demonstrating an improvement in motor function in SCI rats. In vivo experiments showed that EsA decreased the infiltration of blood cells and inflammatory mediators (IL-1β, IL-6 and TNF-α) and protected the structure of TJs in the rat spinal cord and in OGD/R-induced hBMECs. EsA inhibited the activation of Toll-like receptor 4 (TLR4) signalling, which may be related to the protective effect of EsA against MMP-9-induced BSCB damage. CONCLUSIONS EsA downregulated MMP-9 expression in vascular endothelial cells, protected BSCB function in SCI rats and attenuated TLR4 signalling and thus provide new options for the treatment of SCI.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Sun
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yibo Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Linyu Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | | | - Yijie Sun
- Bengbu Medical College, Bengbu, Anhui, China
| | | | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Bengbu Medical College, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
11
|
Kong G, Xiong W, Li C, Xiao C, Wang S, Li W, Chen X, Wang J, Chen S, Zhang Y, Gu J, Fan J, Jin Z. Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861. J Nanobiotechnology 2023; 21:364. [PMID: 37794487 PMCID: PMC10552208 DOI: 10.1186/s12951-023-02089-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.
Collapse
Affiliation(s)
- Guang Kong
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Xiong
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenyu Xiao
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siming Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangjun Chen
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Chen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yongjie Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhengshuai Jin
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Zhang RB, Ren L, Ding DP, Wang HD, Peng J, Zheng K. Protective Effect of the SIRT1-Mediated NF-κB Signaling Pathway against Necrotizing Enterocolitis in Neonatal Mice. Eur J Pediatr Surg 2023; 33:386-394. [PMID: 36379465 DOI: 10.1055/s-0042-1758157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To discover the mechanism of the sirtuin 1 (SIRT1)-mediated nuclear factor-κB (NF-κB) pathway in the protection against necrotizing enterocolitis (NEC) in neonatal mice. MATERIALS AND METHODS Neonatal mice were treated with EX527 (an inhibitor of SIRT1) and/or pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB). The survival rate of the mice was recorded. Hematoxylin and eosin (HE) staining was performed to observe the pathological changes in the intestines. Furthermore, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction were conducted to measure the protein and gene expression, while corresponding kits were used to detect the levels of oxidative stress indicators. RESULTS PDTC increased the survival rate of NEC mice. When compared with the NEC+ EX527 + PDTC group, the histological NEC score was higher in the NEC + EX527 group but lower in the NEC + PDTC group. SIRT1 expression in the intestines of NEC mice was downregulated, with an increase in p65 nuclear translocation. Additionally, malondialdehyde increased and glutathione peroxidase decreased in the intestines of NEC mice, with the upregulation of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, as well as the downregulation of ZO-1, occludin, and claudin-4 in the intestines. However, the above changes could be improved by PDTC, which could be further reversed by EX527. CONCLUSION SIRT1 can mitigate inflammation and the oxidative stress response and improve intestinal permeability by mediating the NF-κB pathway, playing an important role in the alleviation of NEC.
Collapse
Affiliation(s)
- Rui-Bo Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Lan Ren
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - De-Ping Ding
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Heng-Dong Wang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Juan Peng
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Kun Zheng
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
13
|
Bangari DS, Lanigan LG, Cramer SD, Grieves JL, Meisner R, Rogers AB, Galbreath EJ, Bolon B. Toxicologic Neuropathology of Novel Biotherapeutics. Toxicol Pathol 2023; 51:414-431. [PMID: 38380881 DOI: 10.1177/01926233241230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - René Meisner
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | |
Collapse
|
14
|
Xie Y, Sun Y, Liu Y, Zhao J, Liu Q, Xu J, Qin Y, He R, Yuan F, Wu T, Duan C, Jiang L, Lu H, Hu J. Targeted Delivery of RGD-CD146 +CD271 + Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood-Spinal Cord Barrier Repair after Spinal Cord Injury. ACS NANO 2023; 17:18008-18024. [PMID: 37695238 DOI: 10.1021/acsnano.3c04423] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.
Collapse
Affiliation(s)
- Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Quanbo Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
15
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Santifort KM, Glass EN, Pumarola M, Aige Gil V. Microanatomical findings with relevance to trigeminal ganglion enhancement on post-contrast T1-weighted magnetic resonance images in dogs. Front Vet Sci 2023; 10:1256947. [PMID: 37781281 PMCID: PMC10533922 DOI: 10.3389/fvets.2023.1256947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Trigeminal ganglion contrast enhancement (TGCE) is reported to be a normal and a common finding on magnetic resonance imaging studies of dogs, cats and humans. The intent of the present study was to describe the anatomical characteristics of the trigeminal ganglion, its surrounding structures, and histological features that are relevant to explain or hypothesize on the reason for TGCE on T1-weighted post-contrast MRI studies of the brain in dogs. Methods Eight dog cadavers were dissected to study the anatomy of the trigeminal ganglion. The presence and anatomy of vessels was studied by dissection and by histological techniques. Two trigeminal ganglia were isolated and stained with hematoxylin-eosin (HE). Two other trigeminal ganglia included in the trigeminal canal and trigeminal cavity were decalcified with formic acid/formalin for 12 weeks and stained with HE to study the related vessels. Additionally, a corrosion cast was obtained from a separate canine specimen. Results Leptomeninges and a subarachnoid space were identified at the level of the trigeminal nerve roots and the trigeminal ganglion. No subarachnoid space was identified and leptomeninges were no longer present at the level of the three trigeminal nerve branches. Small arterial vessels ran to and supplied the trigeminal ganglion, passing through the dura mater. No venous plexus was visualized at the level of the trigeminal ganglion in the dissections. A complex arterial vascular network was identified within the leptomeningeal covering of the trigeminal ganglion and was best appreciated in the corrosion cast. Histological examination revealed small-to moderate-sized blood vessels located in the epineurium around the ganglion; from there a multitude of arterioles penetrated into the perineurium. Small endoneurial branches and capillaries penetrated the ganglion and the trigeminal nerve branches. Discussion Limitations to this study include the limited number of canine specimens included and the lack of electron microscopy to further support current hypotheses included in our discussion. In conclusion, this study provides further support to the theory that TGCE in dogs may be due an incomplete blood-nerve barrier or blood-ganglion barrier at the interface between the central nervous system and the peripheral nervous system.
Collapse
Affiliation(s)
- Koen M. Santifort
- IVC Evidensia Small Animal Referral Hospital Arnhem, Neurology, Arnhem, Netherlands
- IVC Evidensia Small Animal Referral Hospital Hart van Brabant, Neurology, Waalwijk, Netherlands
| | - Eric N. Glass
- Section of Neurology and Neurosurgery, Red Bank Veterinary Hospital, Tinton Falls, NJ, United States
| | - Marti Pumarola
- Unit of Compared and Murine Pathology, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicente Aige Gil
- Department of Sanitat i Anatomía Animal, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. The neurovascular unit in healthy and injured spinal cord. J Cereb Blood Flow Metab 2023; 43:1437-1455. [PMID: 37190756 PMCID: PMC10414016 DOI: 10.1177/0271678x231172008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
The neurovascular unit (NVU) reflects the close temporal and spatial link between neurons and blood vessels. However, the understanding of the NVU in the spinal cord is far from clear and largely based on generalized knowledge obtained from the brain. Herein, we review the present knowledge of the NVU and highlight candidate approaches to investigate the NVU, particularly focusing on the spinal cord. Several unique features maintain the highly regulated microenvironment in the NVU. Autoregulation and neurovascular coupling ensure regional blood flow meets the metabolic demand according to the blood supply or local neural activation. The blood-central nervous system barrier partitions the circulating blood from neural parenchyma and facilitates the selective exchange of substances. Furthermore, we discuss spinal cord injury (SCI) as a common injury from the perspective of NVU dysfunction. Hopefully, this review will help expand the understanding of the NVU in the spinal cord and inspire new insights into SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Zhao W, Ma L, Deng D, Zhang T, Han L, Xu F, Huang S, Ding Y, Chen X. M2 macrophage polarization: a potential target in pain relief. Front Immunol 2023; 14:1243149. [PMID: 37705982 PMCID: PMC10497114 DOI: 10.3389/fimmu.2023.1243149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Pain imposes a significant urden on patients, affecting them physically, psychologically, and economically. Despite numerous studies on the pathogenesis of pain, its clinical management remains suboptimal, leading to the under-treatment of many pain patients. Recently, research on the role of macrophages in pain processes has been increasing, offering potential for novel therapeutic approaches. Macrophages, being indispensable immune cells in the innate immune system, exhibit remarkable diversity and plasticity. However, the majority of research has primarily focused on the contributions of M1 macrophages in promoting pain. During the late stage of tissue damage or inflammatory invasion, M1 macrophages typically transition into M2 macrophages. In recent years, growing evidence has highlighted the role of M2 macrophages in pain relief. In this review, we summarize the mechanisms involved in M2 macrophage polarization and discuss their emerging roles in pain relief. Notably, M2 macrophages appear to be key players in multiple endogenous pathways that promote pain relief. We further analyze potential pathways through which M2 macrophages may alleviate pain.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| |
Collapse
|
19
|
van Vliet EF, Knol MJ, Schiffelers RM, Caiazzo M, Fens MHAM. Levodopa-loaded nanoparticles for the treatment of Parkinson's disease. J Control Release 2023; 360:212-224. [PMID: 37343725 DOI: 10.1016/j.jconrel.2023.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) resulting in dopamine (DA) deficiency, which manifests itself in motor symptoms including tremors, rigidity and bradykinesia. Current PD treatments aim at symptom reduction through oral delivery of levodopa (L-DOPA), a precursor of DA. However, L-DOPA delivery to the brain is inefficient and increased dosages are required as the disease progresses, resulting in serious side effects like dyskinesias. To improve PD treatment efficacy and to reduce side effects, recent research focuses on the encapsulation of L-DOPA into polymeric- and lipid-based nanoparticles (NPs). These formulations can protect L-DOPA from systemic decarboxylation into DA and improve L-DOPA delivery to the central nervous system. Additionally, NPs can be modified with proteins, peptides and antibodies specifically targeting the blood-brain barrier (BBB), thereby reducing required dosages and free systemic DA. Alternative delivery approaches for NP-encapsulated L-DOPA include intravenous (IV) administration, transdermal delivery using adhesive patches and direct intranasal administration, facilitating increased therapeutic DA concentrations in the brain. This review provides an overview of the recent advances for NP-mediated L-DOPA delivery to the brain, and debates challenges and future perspectives on the field.
Collapse
Affiliation(s)
- Emile F van Vliet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Maarten J Knol
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | | | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
20
|
Höfling C, Roßner S, Flachmeyer B, Krueger M, Härtig W, Michalski D. Tricellulin, α-Catenin and Microfibrillar-Associated Protein 5 Exhibit Concomitantly Altered Immunosignals along with Vascular, Extracellular and Cytoskeletal Elements after Experimental Focal Cerebral Ischemia. Int J Mol Sci 2023; 24:11893. [PMID: 37569268 PMCID: PMC10418498 DOI: 10.3390/ijms241511893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Along with initiatives to understand the pathophysiology of stroke in detail and to identify neuroprotective targets, cell-stabilizing elements have gained increasing attention. Although cell culture experiments have indicated that tricellulin, α-catenin and microfibrillar-associated protein 5 (MFAP5) contribute to cellular integrity, these elements have not yet been investigated in the ischemic brain. Applying immunofluorescence labeling, this study explored tricellulin, MFAP5 and α-catenin in non-ischemic and ischemic brain areas of mice (24, 4 h of ischemia) and rats (4 h of ischemia), along with collagen IV and fibronectin as vascular and extracellular matrix constituents and microtubule-associated protein 2 (MAP2) and neurofilament light chain (NF-L) as cytoskeletal elements. Immunosignals of tricellulin and notably MFAP5 partially appeared in a fiber-like pattern, and α-catenin appeared more in a dotted pattern. Regional associations with vascular and extracellular constituents were found for tricellulin and α-catenin, particularly in ischemic areas. Due to ischemia, signals of tricellulin, MFAP5 and α-catenin decreased concomitantly with MAP2 and NF-L, whereby MFAP5 provided the most sensitive reaction. For the first time, this study demonstrated ischemia-related alterations in tricellulin, MFAP5 and α-catenin along with the vasculature, extracellular matrix and cytoskeleton. Confirmatory studies are needed, also exploring their role in cellular integrity and the potential for neuroprotective approaches in stroke.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Bianca Flachmeyer
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (B.F.); (M.K.)
| | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (B.F.); (M.K.)
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Bao T, Li N, Chen H, Zhao Z, Fan J, Tao Y, Chen C, Wan M, Yin G, Mao C. Drug-Loaded Zwitterion-Based Nanomotors for the Treatment of Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:32762-32771. [PMID: 37389863 DOI: 10.1021/acsami.3c05866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Spinal cord injury (SCI) treatment requires a nanosystem for drug delivery that can effectively penetrate the blood-spinal cord barrier (BSCB). Herein, we designed poly(2-methacryloyloxyethyl phosphorylgallylcholine) (PMPC)/l-arginine (PMPC/A)-based nanomotors that can release nitric oxide (NO). The nanomotors were loaded with the inducible NO synthase inhibitor 1400W and nerve growth factor (NGF). PMPC with a zwitterionic structure not only provided good biocompatibility for the nanomotors but also facilitated their passage through the BSCB owing to the assistance of a large number of choline transporters on the BSCB. Additionally, the l-arginine loaded on the nanomotors was able to react with reactive oxygen species in the microenvironment of the injured nerve to produce NO, thereby conferring the ability of autonomic movement to the nanomotors, which facilitated the uptake of drugs by cells in damaged areas and penetration in pathological tissues. Moreover, in vivo animal experiments indicated that the PMPC/A/1400W/NGF nanomotors could effectively pass through the BSCB and restore the motion function of a rat SCI model by regulating its internal environment as well as the release of therapeutic drugs. Thus, the drug delivery system based on nanomotor technology offers a promising strategy for treating central nervous system diseases.
Collapse
Affiliation(s)
- Tianyi Bao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Orthopaedics, Nanjing Central Hospital, Nanjing 210018, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zinan Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yingfang Tao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chenglong Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
22
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
23
|
Hecker K, Grüner J, Hartmannsberger B, Appeltshauser L, Villmann C, Sommer C, Doppler K. Different binding and pathogenic effect of neurofascin and contactin-1 autoantibodies in autoimmune nodopathies. Front Immunol 2023; 14:1189734. [PMID: 37388725 PMCID: PMC10300411 DOI: 10.3389/fimmu.2023.1189734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction IgG4 autoantibodies against paranodal proteins are known to induce acute-onset and often severe sensorimotor autoimmune neuropathies. How autoantibodies reach their antigens at the paranode in spite of the myelin barrier is still unclear. Methods We performed in vitro incubation experiments with patient sera on unfixed and unpermeabilized nerve fibers and in vivo intraneural and intrathecal passive transfer of patient IgG to rats, to explore the access of IgG autoantibodies directed against neurofascin-155 and contactin-1 to the paranodes and their pathogenic effect. Results We found that in vitro incubation resulted in weak paranodal binding of anti-contactin-1 autoantibodies whereas anti-neurofascin-155 autoantibodies bound to the nodes more than to the paranodes. After short-term intraneural injection, no nodal or paranodal binding was detectable when using anti-neurofascin-155 antibodies. After repeated intrathecal injections, nodal more than paranodal binding could be detected in animals treated with anti-neurofascin-155, accompanied by sensorimotor neuropathy. In contrast, no paranodal binding was visible in rats intrathecally injected with anti-contactin-1 antibodies, and animals remained unaffected. Conclusion These data support the notion of different pathogenic mechanisms of anti-neurofascin-155 and anti-contactin-1 autoantibodies and different accessibility of paranodal and nodal structures.
Collapse
Affiliation(s)
- Katharina Hecker
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Julia Grüner
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Beate Hartmannsberger
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Department of Anesthesiology, University Hospital Würzburg, Würzburg, Germany
| | | | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer S, Crawford LK, Engelhardt JA, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Points to Consider: Sampling, Processing, Evaluation, Interpretation, and Reporting of Test Article-Related Ganglion Pathology for Nonclinical Toxicity Studies. Toxicol Pathol 2023; 51:176-204. [PMID: 37489508 DOI: 10.1177/01926233231179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Certain biopharmaceutical products consistently affect dorsal root ganglia, trigeminal ganglia, and/or autonomic ganglia. Product classes targeting ganglia include antineoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, and anti-nerve growth factor agents. This article outlines "points to consider" for sample collection, processing, evaluation, interpretation, and reporting of ganglion findings; these points are consistent with published best practices for peripheral nervous system evaluation in nonclinical toxicity studies. Ganglion findings often occur as a combination of neuronal injury (e.g., degeneration, necrosis, and/or loss) and/or glial effects (e.g., increased satellite glial cell cellularity) with leukocyte accumulation (e.g., mononuclear cell infiltration or inflammation). Nerve fiber degeneration and/or glial reactions may be seen in nerves, dorsal spinal nerve roots, spinal cord, and occasionally brainstem. Interpretation of test article (TA)-associated effects may be confounded by incidental background changes or experimental procedure-related changes and limited historical control data. Reports should describe findings at these sites, any TA relationship, and the criteria used for assigning severity grades. Contextualizing adversity of ganglia findings can require a weight-of-evidence approach because morphologic changes of variable severity occur in ganglia but often are not accompanied by observable overt in-life functional alterations detectable by conventional behavioral and neurological testing techniques.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Gene Therapy Program, Philadelphia, Pennsylvania, USA
| | | | - LaTasha K Crawford
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA
| | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
25
|
Stone D, Aubert M, Jerome KR. Adeno-associated virus vectors and neurotoxicity-lessons from preclinical and human studies. Gene Ther 2023:10.1038/s41434-023-00405-1. [PMID: 37165032 PMCID: PMC11247785 DOI: 10.1038/s41434-023-00405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Over 15 years after hepatotoxicity was first observed following administration of an adeno-associated virus (AAV) vector during a hemophilia B clinical trial, recent reports of treatment-associated neurotoxicity in animals and humans have brought the potential impact of AAV-associated toxicity back to prominence. In both pre-clinical studies and clinical trials, systemic AAV administration has been associated with neurotoxicity in peripheral nerve ganglia and spinal cord. Neurological signs have also been seen following direct AAV injection into the brain, both in non-human primates and in a clinical trial for late infantile Batten disease. Neurotoxic events appear variable across species, and preclinical animal studies do not fully predict clinical observations. Accumulating data suggest that AAV-associated neurotoxicity may be underdiagnosed and may differ between species in terms of frequency and/or severity. In this review, we discuss the different animal models that have been used to demonstrate AAV-associated neurotoxicity, its potential causes and consequences, and potential approaches to blunt AAV-associated neurotoxicity.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Sharma A, Behl T, Sharma L, Shah OP, Yadav S, Sachdeva M, Rashid S, Bungau SG, Bustea C. Exploring the molecular pathways and therapeutic implications of angiogenesis in neuropathic pain. Biomed Pharmacother 2023; 162:114693. [PMID: 37062217 DOI: 10.1016/j.biopha.2023.114693] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Recently, much attention has been paid to chronic neuro-inflammatory condition underlying neuropathic pain. It is generally linked with thermal hyperalgesia and tactile allodynia. It results due to injury or infection in the nervous system. The neuropathic pain spectrum covers a variety of pathophysiological states, mostly involved are ischemic injury viral infections associated neuropathies, chemotherapy-induced peripheral neuropathies, autoimmune disorders, traumatic origin, hereditary neuropathies, inflammatory disorders, and channelopathies. In CNS, angiogenesis is evident in inflammation of neurons and pain in bone cancer. The role of chemokines and cytokines is dualistic; their aggressive secretion produces detrimental effects, leading to neuropathic pain. However, whether the angiogenesis contributes and exists in neuropathic pain remains doubtful. In the present review, we elucidated summary of diverse mechanisms of neuropathic pain associated with angiogenesis. Moreover, an overview of multiple targets that have provided insights on the VEGF signaling, signaling through Tie-1 and Tie-2 receptor, erythropoietin pathway promoting axonal growth are also discussed. Because angiogenesis as a result of these signaling, results in inflammation, we focused on the mechanisms of neuropathic pain. These factors are mainly responsible for the activation of post-traumatic regeneration of the PNS and CNS. Furthermore, we also reviewed synthetic and herbal treatments targeting angiogenesis in neuropathic pain.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, 248007 Dehradun, Uttarakhand, India.
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain 00000, United Arab Emirates
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania
| |
Collapse
|
27
|
Wijeweera G, Wijekoon N, Gonawala L, Imran Y, Mohan C, De Silva KRD. Therapeutic Implications of Some Natural Products for Neuroimmune Diseases: A Narrative of Clinical Studies Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5583996. [PMID: 37089709 PMCID: PMC10118888 DOI: 10.1155/2023/5583996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/24/2023] [Accepted: 02/11/2023] [Indexed: 04/25/2023]
Abstract
Neuroimmune diseases are a group of disorders that occur due to the dysregulation of both the nervous and immune systems, and these illnesses impact tens of millions of people worldwide. However, patients who suffer from these debilitating conditions have very few FDA-approved treatment options. Neuroimmune crosstalk is important for controlling the immune system both centrally and peripherally to maintain tissue homeostasis. This review aims to provide readers with information on how natural products modulate neuroimmune crosstalk and the therapeutic implications of natural products, including curcumin, epigallocatechin-3-gallate (EGCG), ginkgo special extract, ashwagandha, Centella asiatica, Bacopa monnieri, ginseng, and cannabis to mitigate the progression of neuroimmune diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, depression, and anxiety disorders. The majority of the natural products based clinical studies mentioned in this study have yielded positive results. To achieve the expected results from natural products based clinical studies, researchers should focus on enhancing bioavailability and determining the synergistic mechanisms of herbal compounds and extracts, which will lead to the discovery of more effective phytomedicines while averting the probable negative effects of natural product extracts. Therefore, future studies developing nutraceuticals to mitigate neuroimmune diseases that incorporate phytochemicals to produce synergistic effects must analyse efficacy, bioavailability, gut-brain axis function safety, chemical modifications, and encapsulation with nanoparticles.
Collapse
Affiliation(s)
- Gayathri Wijeweera
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nalaka Wijekoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Lakmal Gonawala
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Yoonus Imran
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - K. Ranil D. De Silva
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| |
Collapse
|
28
|
Sun Y, Zabihi M, Li Q, Li X, Kim BJ, Ubogu EE, Raja SN, Wesselmann U, Zhao C. Drug Permeability: From the Blood-Brain Barrier to the Peripheral Nerve Barriers. ADVANCED THERAPEUTICS 2023; 6:2200150. [PMID: 37649593 PMCID: PMC10465108 DOI: 10.1002/adtp.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/20/2023]
Abstract
Drug delivery into the peripheral nerves and nerve roots has important implications for effective local anesthesia and treatment of peripheral neuropathies and chronic neuropathic pain. Similar to drugs that need to cross the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) to gain access to the central nervous system (CNS), drugs must cross the peripheral nerve barriers (PNB), formed by the perineurium and blood-nerve barrier (BNB) to modulate peripheral axons. Despite significant progress made to develop effective strategies to enhance BBB permeability in therapeutic drug design, efforts to enhance drug permeability and retention in peripheral nerves and nerve roots are relatively understudied. Guided by knowledge describing structural, molecular and functional similarities between restrictive neural barriers in the CNS and peripheral nervous system (PNS), we hypothesize that certain CNS drug delivery strategies are adaptable for peripheral nerve drug delivery. In this review, we describe the molecular, structural and functional similarities and differences between the BBB and PNB, summarize and compare existing CNS and peripheral nerve drug delivery strategies, and discuss the potential application of selected CNS delivery strategies to improve efficacious drug entry for peripheral nerve disorders.
Collapse
Affiliation(s)
- Yifei Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mahmood Zabihi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Xiaosi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Brandon J. Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa AL 35487, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| | - Eroboghene E. Ubogu
- Division of Neuromuscular Disease, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Srinivasa N. Raja
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ursula Wesselmann
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, and Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Consortium for Neuroengineering and Brain-Computer Interfaces, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| |
Collapse
|
29
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
30
|
Koueik J, Wesley UV, Dempsey RJ. Pathophysiology, cellular and molecular mechanisms of large and small vessel diseases. Neurochem Int 2023; 164:105499. [PMID: 36746322 DOI: 10.1016/j.neuint.2023.105499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/07/2023]
Abstract
Cerebrovascular disease (CVD) is the second most common cause of cognitive impairment and dementia in aged population. CVD presents in a myriad number of clinical ways based on the functional location of pathology. While primary clinical emphasis has been placed on motor, speech and visual deficits, vascular cognitive decline is a vastly under recognized and devastating condition afflicting millions of Americans. CVD, a disease of the blood vessels that supply blood to brain involves an integration between small and large vessels. Cerebral large vessel diseases (LVD) are associated with atherosclerosis, artery-to-artery embolism, intracardiac embolism and a large vessel stroke leading to substantial functional disability. Cerebral small vessel disease (SVD) is critically involved in stroke, brain hemorrhages, cognitive decline and functional loss in elderly patients. An evolving understanding of cellular and molecular mechanisms emphasizes that inflammatory vascular changes contribute to systemic pathologic conditions of the central nervous systems (CNS), with specific clinical presentations including, cognitive decline. Advances in an understanding of pathophysiology of disease processes and therapeutic interventions may help improve outcomes. This review will focus on large and small vessels diseases and their relationship to vascular cognitive decline, atherosclerosis, stroke, and inflammatory neurodegeneration. We will also emphasize the molecular and cellular mechanisms, as well as genetic and epigenetic factors associated with LVD and SVD.
Collapse
Affiliation(s)
- Joyce Koueik
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Umadevi V Wesley
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA.
| |
Collapse
|
31
|
Reyes-Long S, Cortés-Altamirano JL, Bandala C, Avendaño-Ortiz K, Bonilla-Jaime H, Bueno-Nava A, Ávila-Luna A, Sánchez-Aparicio P, Clavijo-Cornejo D, Dotor-LLerena AL, Cabrera-Ruiz E, Alfaro-Rodríguez A. Role of the MicroRNAs in the Pathogenic Mechanism of Painful Symptoms in Long COVID: Systematic Review. Int J Mol Sci 2023; 24:3574. [PMID: 36834984 PMCID: PMC9963913 DOI: 10.3390/ijms24043574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The ongoing pandemic of COVID-19 has caused more than 6.7 million tragic deaths, plus, a large percentage of people who survived it present a myriad of chronic symptoms that last for at least 6 months; this has been named as long COVID. Some of the most prevalent are painful symptoms like headache, joint pain, migraine, neuropathic-like pain, fatigue and myalgia. MicroRNAs are small non-coding RNAs that regulate genes, and their involvement in several pathologies has been extensively shown. A deregulation of miRNAs has been observed in patients with COVID-19. The objective of the present systematic review was to show the prevalence of chronic pain-like symptoms of patients with long COVID and based on the expression of miRNAs in patients with COVID-19, and to present a proposal on how they may be involved in the pathogenic mechanisms of chronic pain-like symptoms. A systematic review was carried out in online databases for original articles published between March 2020 to April 2022; the systematic review followed the PRISMA guidelines, and it was registered in PROSPERO with registration number CRD42022318992. A total of 22 articles were included for the evaluation of miRNAs and 20 regarding long COVID; the overall prevalence of pain-like symptoms was around 10 to 87%, plus, the miRNAs that were commonly up and downregulated were miR-21-5p, miR-29a,b,c-3p miR-92a,b-3p, miR-92b-5p, miR-126-3p, miR-150-5p, miR-155-5p, miR-200a, c-3p, miR-320a,b,c,d,e-3p, and miR-451a. The molecular pathways that we hypothesized to be modulated by these miRNAs are the IL-6/STAT3 proinflammatory axis and the compromise of the blood-nerve barrier; these two mechanisms could be associated with the prevalence of fatigue and chronic pain in the long COVID population, plus they could be novel pharmacological targets in order to reduce and prevent these symptoms.
Collapse
Affiliation(s)
- Samuel Reyes-Long
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Jose Luis Cortés-Altamirano
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
- Research Department, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos 55210, Mexico
| | - Cindy Bandala
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karina Avendaño-Ortiz
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Herlinda Bonilla-Jaime
- Reproductive Biology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico
| | - Antonio Bueno-Nava
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Alberto Ávila-Luna
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Pedro Sánchez-Aparicio
- Pharmacology Department, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, Toluca 56900, Mexico
| | - Denise Clavijo-Cornejo
- División de Reumatología, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Ana Lilia Dotor-LLerena
- Neurociencias Clínicas, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Elizabeth Cabrera-Ruiz
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | | |
Collapse
|
32
|
Schepici G, Silvestro S, Mazzon E. Regenerative Effects of Exosomes-Derived MSCs: An Overview on Spinal Cord Injury Experimental Studies. Biomedicines 2023; 11:biomedicines11010201. [PMID: 36672709 PMCID: PMC9855467 DOI: 10.3390/biomedicines11010201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition usually induced by the initial mechanical insult that can lead to permanent motor and sensory deficits. At present, researchers are investigating potential therapeutic strategies to ameliorate the neuro-inflammatory cascade that occurs post-injury. Although the use of mesenchymal stromal/stem (MSCs) as a potential therapy in application to regenerative medicine promoted anti-inflammatory and neuroprotective effects, several disadvantages limit their use. Therefore, recent studies have reported the effects of exosomes-derived MSCs (MSC-EXOs) as an innovative therapeutic option for SCI patients. It is noteworthy that MSC-EXOs can maintain the integrity of the blood-spinal cord barrier (BSCB), promoting angiogenic, proliferative, and anti-oxidant effects, as well as immunomodulatory, anti-inflammatory, and antiapoptotic properties. Therefore, in this study, we summarized the preclinical studies reported in the literature that have shown the effects of MSC-EXOs as a new molecular target to counteract the devastating effects of SCI.
Collapse
|
33
|
Luo Y, Yao F, Shi Y, Zhu Z, Xiao Z, You X, Liu Y, Yu S, Tian D, Cheng L, Zheng M, Jing J. Tocilizumab promotes repair of spinal cord injury by facilitating the restoration of tight junctions between vascular endothelial cells. Fluids Barriers CNS 2023; 20:1. [PMID: 36624478 PMCID: PMC9830903 DOI: 10.1186/s12987-022-00399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Our previous study demonstrated that M1 macrophages could impair tight junctions (TJs) between vascular endothelial cells by secreting interleukin-6 (IL-6) after spinal cord injury (SCI). Tocilizumab, as a humanized IL-6 receptor (IL-6R) monoclonal antibody approved for the clinic, has been applied in the treatment of neurological diseases in recent years, but the treatment effect of Tocilizumab on the TJs restoration of the blood-spinal cord barrier (BSCB) after SCI remains unclear. This study aimed to explore the effect of Tocilizumab on the restoration of TJs between vascular endothelial cells and axon regeneration after SCI. METHODS In this study, the mouse complete spinal cord crush injury model was used, and Tocilizumab was continuously injected intrathecally until the day of sample collection. A PBS injection in the same location was included as a control. At 14 days postinjury (dpi) and 28 dpi, spinal cord tissue sections were examined via tissue immunofluorescence. The Basso Mouse Scale (BMS) scores and footprint analysis were used to verify the effect of Tocilizumab on the recovery of motor function in mice after SCI. RESULTS We demonstrated that depletion of macrophages has no effect on axon regeneration and motor functional recovery after SCI, but mice subjected to Tocilizumab showed a significant increase in axon regeneration and a better recovery in motor function during the chronic phase after SCI. Moreover, our study demonstrated that at 14 and 28 dpi, the expression of claudin-5 (CLDN5) and zonula occludens-1 (ZO-1) between vascular endothelial cells was significantly increased and the leakage of BSCB was significantly reduced in the injured core after daily intrathecal injection of Tocilizumab. Notably, the infiltration of CD68+ macrophages/microglia and the formation of fibrotic scar were decreased in the injured core after Tocilizumab treatment. Tocilizumab treatment could effectively reduce the IL-6 expression in macrophages in the injured core. CONCLUSION The application of Tocilizumab to antagonize IL-6R can effectively reduce the expression of IL-6 in macrophages and facilitate TJs restoration of the BSCB, which is beneficial for axon regeneration and motor functional recovery after SCI. Hence, Tocilizumab treatment is a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Yang Luo
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.412679.f0000 0004 1771 3402Department of Orthopedic Disease and Oncology Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Fei Yao
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Yi Shi
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Zhenyu Zhu
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Zhaoming Xiao
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Xingyu You
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Yanchang Liu
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Shuisheng Yu
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Dasheng Tian
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Li Cheng
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Meige Zheng
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Juehua Jing
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| |
Collapse
|
34
|
Mani S, Dubey R, Lai IC, Babu MA, Tyagi S, Swargiary G, Mody D, Singh M, Agarwal S, Iqbal D, Kumar S, Hamed M, Sachdeva P, Almutary AG, Albadrani HM, Ojha S, Singh SK, Jha NK. Oxidative Stress and Natural Antioxidants: Back and Forth in the Neurological Mechanisms of Alzheimer's Disease. J Alzheimers Dis 2023; 96:877-912. [PMID: 37927255 DOI: 10.3233/jad-220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Deepansh Mody
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| |
Collapse
|
35
|
Kim D, Woo J, Jeong J, Kim S. The sound stimulation method and EEG change analysis for development of digital therapeutics that can stimulate the nervous system: Cortical activation and drug substitution potential. CNS Neurosci Ther 2023; 29:402-411. [PMID: 36377425 PMCID: PMC9804039 DOI: 10.1111/cns.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The purpose of this study is to propose a treatment method and the effect on the nervous system of digital therapeutics, which is a new treatment method to replace surgery and drug prescription for the treatment and prevention of diseases. METHODS The 20 subjects who participated in the experiment, including men and women, had an average age of 26 ± 2.40 years. The proposed treatment method used three types of sound stimulation and air or bone conduction sound transmission methods to induce total of 6-time EEG electroencephalogram(EEG) changes. EEG was measured with 200 sampling rate each in the P4, Cz, F8 and T7 channel located in the parietal, central, frontal and temporal lobes, respectively, according to the 10/10 system. A total of 2 min of data were created by extracting EEG signals with less noise from the measured data and the extracted data were applied with a 1-40 Hz Butterworth filter and a 50 Hz notch filter with a quality factor of 30. After that, EEG are subdivided into delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz) bands. Finally, EEG changes in response to sound stimuli were analyzed using power spectral density and T-test validation in the frequency band. RESULTS When a sound stimulus of less than 1 KHz was stimulated by air conduction, brainstem activation was induced and the reticular activation system was activated. In addition, a great potential for replacing drugs was confirmed by inducing changes in the nervous system similar to drugs used for sedation. CONCLUSION These results will be able to expand the concept of digital therapeutics, and it is expected that it will be developed as a safer treatment method that can replace surgery and drugs.
Collapse
Affiliation(s)
- Deachang Kim
- Department of Medical BiotechnologyDongguk University‐Bio Medi CampusSouth Korea
| | - JaeHyun Woo
- Department of R&D SupportResearch Institute for Commercialization of Biomedical Convergence TechnologySeoulSouth Korea
| | - Jeahoon Jeong
- Research Institute for Commercialization of Biomedical Convergence TechnologyDongguk UniversitySouth Korea
| | - Sungmin Kim
- Department of Medical BiotechnologyDongguk University‐Bio Medi CampusSouth Korea
| |
Collapse
|
36
|
Wei S, Leng B, Yan G. Targeting autophagy process in center nervous trauma. Front Neurosci 2023; 17:1128087. [PMID: 36950126 PMCID: PMC10025323 DOI: 10.3389/fnins.2023.1128087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The central nervous system (CNS) is the primary regulator of physiological activity, and when CNS is compromised, its physical functions are affected. Spinal cord injury (SCI) and traumatic brain injury (TBI) are common trauma in CNS that are difficult to recover from, with a higher global disability and mortality rate. Autophagy is familiar to almost all researchers due to its role in regulating the degradation and recycling of cellular defective or incorrect proteins and toxic components, maintaining body balance and regulating cell health and function. Emerging evidence suggests it has a broad and long-lasting impact on pathophysiological process such as oxidative stress, inflammation, apoptosis, and angiogenesis, involving the alteration of autophagy marker expression and function recovery. Changes in autophagy level are considered a potential therapeutic strategy and have shown promising results in preclinical studies for neuroprotection following traumatic brain injury. However, the relationship between upward or downward autophagy and functional recovery following SCI or TBI is debatable. This article reviews the regulation and role of autophagy in repairing CNS trauma and the intervention effects of autophagy-targeted therapeutic agents to find more and better treatment options for SCI and TBI patients.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Genquan Yan,
| |
Collapse
|
37
|
Xie C, Wang Y, Wang J, Xu Y, Liu H, Guo J, Zhu L. Perlecan Improves Blood Spinal Cord Barrier Repair Through the Integrin β1/ROCK/MLC Pathway After Spinal Cord Injury. Mol Neurobiol 2023; 60:51-67. [PMID: 36216996 DOI: 10.1007/s12035-022-03041-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
Spinal cord injury (SCI) can lead to the destruction of the blood-spinal cord barrier (BSCB), causing various inflammatory cytokines, neutrophils, and macrophages to infiltrate the lesion area, resulting in secondary injury. Basement membranes (BMs) are maintained by all types of cells in the BSCB and contribute to BSCB maintenance. Perlecan is an important constituent of vascular BMs, maintaining vascular integrity and neuroprotection. However, it is not clear whether Perlecan is involved in BSCB repair after SCI. In this study, we found that Perlecan was specifically expressed in the BMs in the spinal cord and underwent degradation/remodeling after SCI. Subsequently, a CRISPR/Cas9-based SAM system was used to overexpress Perlecan in the injured spinal cord, resulting in significantly enhanced locomotor recovery and neural regeneration. Overexpression of Perlecan reduced BSCB permeability along with the neuroinflammatory response. Interestingly, Perlecan inhibited stress fiber formation by interacting with integrin β1 and inhibiting downstream ROCK/MLC signaling, resulting in reduced tight junctions (TJs) disassembly and improved BSCB integrity. Furthermore, the integrin receptor antagonist GRGDSP abolished the effects of Perlecan overexpression on BSCB permeability and TJs integrity. Overall, our findings suggest that Perlecan reduces BSCB permeability and the neuroinflammatory response by interacting with integrin β1 and inhibiting the downstream ROCK/MLC pathway to promote neurological recovery after SCI.
Collapse
Affiliation(s)
- Changnan Xie
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinfeng Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yizhou Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, 510515, China
| | - Haining Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiasong Guo
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Department of Histology and Embryology, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, 510515, China.
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
38
|
Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. SMART MEDICINE 2022; 1:e20220017. [PMID: 39188731 PMCID: PMC11235943 DOI: 10.1002/smmd.20220017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health. The regeneration process of the spinal cord is hampered by a series of events that occur following SCI like edema, hemorrhage, formation of cystic cavities, and ischemia. An effective strategy for the treatment of SCI and functional recovery still has not been discovered; however, recent advances have been made in bioengineering fields that therapies based on cells, biomaterials, and biomolecules have proved effective in the repair of the spinal cord. In the light of worldwide importance of treatments for SCI, this article aims to provide a review of recent advances by first introducing the physiology, etiology, epidemiology, and mechanisms of SCI. We then put emphasis on the widely used clinical treatments and bioengineering strategies (cell-based, biomaterial-based, and biomolecule-based) for the functional regeneration of the spinal cord as well as challenges faced by scientists currently. This article provides scientists and clinicians with a comprehensive outlook on the recent advances of preclinical and clinical treatments of SCI, hoping to help them find keys to the functional regeneration of SCI.
Collapse
Affiliation(s)
- Yingbo Shen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minli Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - David A. Posner
- Molecular Immunity UnitCambridge Institute of Therapeutic Immunology and Infectious DiseasesDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
39
|
Chen J, Zhou D, Miao J, Zhang C, Li X, Feng H, Xing Y, Zhang Z, Bao C, Lin Z, Chen Y, Yuan JXJ, Sun D, Yang K, Wang J. Microbiome and metabolome dysbiosis of the gut-lung axis in pulmonary hypertension. Microbiol Res 2022; 265:127205. [DOI: 10.1016/j.micres.2022.127205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
40
|
Li F, Zhou F, Yang B. MicroRNA152-3p Protects Against Ischemia/Reperfusion-Induced Bbb Destruction Possibly Targeting the MAP3K2/JNK/c-Jun Pathway. Neurochem Res 2022; 48:1293-1304. [PMID: 36445489 PMCID: PMC10066145 DOI: 10.1007/s11064-022-03828-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
AbstractIn the current study, we reported that overexpression of miR-152-3p effectively ameliorated neurological deficits and protected blood-brain barrier(BBB) integrity in middle cerebral artery occlusion (MCAO) rats. In an in vitro model, the level of miR-152-3p was significantly decreased in bEnd.3 cells after oxygen–glucose deprivation/reperfusion (OGD/R) insult. miR-152-3p overexpressing bEnd.3 cell monolayers were protected from OGD/R-induced microvascular hyperpermeability. The miR-152-3p-mediated protective effect was associated with lower apoptosis of endothelia by negatively modulating the MAP3K2/JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Fei Li
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
41
|
4-Hydroxynonenal Modulates Blood-Brain Barrier Permeability In Vitro through Changes in Lipid Composition and Oxidative Status of Endothelial Cells and Astrocytes. Int J Mol Sci 2022; 23:ijms232214373. [PMID: 36430852 PMCID: PMC9698020 DOI: 10.3390/ijms232214373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Blood brain barrier (BBB) is a dynamic interface responsible for proper functioning of brain, but also a major obstacle for effective treatment of neurological diseases. Increased levels of free radicals, in high ferrous and high lipid content surrounding, induce lipid peroxidation, leading to production of 4-hydroxynonenal (HNE). HNE modifies all key proteins responsible for proper brain functioning thus playing a major role in the onset of neurological diseases. To investigate HNE effects on BBB permeability, we developed two in vitro BBB models-'physiological' and 'pathological'. The latter mimicked HNE modified extracellular matrix under oxidative stress conditions in brain pathologies. We showed that exogenous HNE induce activation of antioxidative defense systems by increasing catalase activity and glutathione content as well as reducing lipid peroxide levels in endothelial cells and astrocytes of 'physiological' model. While in 'pathological' model, exogenous HNE further increased lipid peroxidation levels of endothelial cells and astrocytes, followed by increase in Nrf2 and glutathione levels in endothelial cells. At lipid composition level, HNE caused increase in ω3 polyunsaturated fatty acid (PUFA) level in endothelial cells, followed by decrease in ω3 PUFA level and increase in monounsaturated fatty acid level in astrocytes. Using these models, we showed for the first time that HNE in 'pathological' model can reduce BBB permeability.
Collapse
|
42
|
Chu XL, Song XZ, Li Q, Li YR, He F, Gu XS, Ming D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res 2022; 17:2185-2193. [PMID: 35259827 PMCID: PMC9083151 DOI: 10.4103/1673-5374.335823] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies on the mechanisms of peripheral nerve injury (PNI) have mainly focused on the pathophysiological changes within a single injury site. However, recent studies have indicated that within the central nervous system, PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels. Therefore, the basic mechanisms of PNI have not been comprehensively understood. Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI, as well as to alleviate neuropathic pain, the specific mechanisms of successful PNI treatment are unclear. We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation. After PNI, activity in the central nervous system (spinal cord) is altered, which can limit regeneration of the damaged nerve. For example, cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration. The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI. This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission. The injured site of the peripheral nerve is also an important factor affecting post-PNI repair. After PNI, the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site. A slow speed of axon regeneration leads to low nerve regeneration. Therefore, it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site. From the perspective of target organs, long-term denervation can cause atrophy of the corresponding skeletal muscle, which leads to abnormal sensory perception and hyperalgesia, and finally, the loss of target organ function. The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping, addressing the excessive excitability of the dorsal root ganglion, alleviating neuropathic pain, improving neurological function, and accelerating nerve regeneration. Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function. Findings from the included studies confirm that after PNI, a series of physiological and pathological changes occur in the spinal cord, injury site, and target organs, leading to dysfunction. Electrical stimulation may address the pathophysiological changes mentioned above, thus promoting nerve regeneration and ameliorating dysfunction.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Xi-Zi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Yu-Ru Li
- College of Exercise & Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Feng He
- College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiao-Song Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine; College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
43
|
Gao Y, Yoon KA, Lee JH, Kim JH, Lee SH. Overexpression of glutamate-gated chloride channel in the integument is mainly responsible for emamectin benzoate resistance in the western flower thrips Frankliniella occidentalis. PEST MANAGEMENT SCIENCE 2022; 78:4140-4150. [PMID: 35686450 DOI: 10.1002/ps.7032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Western flower thrips Frankliniella occidentalis is a serious polyphagous pest worldwide. In this study, we investigated the potential mechanisms of resistance including enhanced metabolism and target site insensitivity in an emamectin benzoate (EB)-resistant (EB-R) strain. RESULTS The EB-R strain of F. occidentalis showed 356-fold increased resistance compared to a susceptible RDA strain. Analysis of cross-resistance to four other insecticides confirmed that EB resistance is highly specific to the contact toxicity of EB. Synergistic bioassay and quantitative PCR of cytochrome P450 monooxygenase (CYP) genes revealed that three overexpressed Cyps were likely involved in resistance. Among three putative glutamate-gated chloride channel (GluCl) genes identified, FoGluClc showed four radical amino acid substitutions and 3.8-fold and 31-fold transcription level in the head and integument in the EB-R strain when compared to the RDA strain. Backcrossing analysis and RNA interference confirmed that both amino acid substitution and overexpression of FoGluClc are responsible for EB resistance. In situ hybridization revealed that FoGluClc is mainly distributed in the integument in the EB-R strain. Cross-comparison of known genomes and transcriptomes of thrips species revealed that FoGluClc is unique to the Frankliniella genus. CONCLUSION While mutations and overexpression of FoGluClc play major roles in EB resistance, the overexpressed Cyps are partially involved as metabolic factors. Higher expression of FoGluClc in the integument may suggest its role in the first-line defense against EB in the EB-R strain. Unique distribution of FoGluClc in the Frankliniella genus but not in other thrips species further suggests that FoGluClc may be a surplus channel not having an essential endogenous function and is thus recruited as a defense barrier against xenobiotics. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Gao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Kyungjae Andrew Yoon
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jong Hyeok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyeon Kim
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
44
|
de Oliveira Marques C, Sesterheim P, Gayger Dias V, da Silva VF, Rodrigues L, Gonçalves CA. Hypothesizing that the intranasal administration of streptozotocin would be a valid model of Alzheimer’s disease-like dementia. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Reinhold AK, Krug SM, Salvador E, Sauer RS, Karl-Schöller F, Malcangio M, Sommer C, Rittner HL. MicroRNA-21-5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury. Ann N Y Acad Sci 2022; 1515:184-195. [PMID: 35716075 DOI: 10.1111/nyas.14816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both nerve injury and complex regional pain syndrome (CRPS) can result in chronic pain. In traumatic neuropathy, the blood nerve barrier (BNB) shielding the nerve is impaired-partly due to dysregulated microRNAs (miRNAs). Upregulation of microRNA-21-5p (miR-21) has previously been documented in neuropathic pain, predominantly due to its proinflammatory features. However, little is known about other functions. Here, we characterized miR-21 in neuropathic pain and its impact on the BNB in a human-murine back translational approach. MiR-21 expression was elevated in plasma of patients with CRPS as well as in nerves of mice after transient and persistent nerve injury. Mice presented with BNB leakage, as well as loss of claudin-1 in both injured and spared nerves. Moreover, the putative miR-21 target RECK was decreased and downstream Mmp9 upregulated, as was Tgfb. In vitro experiments in human epithelial cells confirmed a downregulation of CLDN1 by miR-21 mimics via inhibition of the RECK/MMP9 pathway but not TGFB. Perineurial miR-21 mimic application in mice elicited mechanical hypersensitivity, while local inhibition of miR-21 after nerve injury reversed it. In summary, the data support a novel role for miR-21, independent of prior inflammation, in elicitation of pain and impairment of the BNB via RECK/MMP9.
Collapse
Affiliation(s)
- Ann Kristin Reinhold
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ellaine Salvador
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Würzburg, Germany.,Section Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Reine S Sauer
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | | | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| |
Collapse
|
46
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
47
|
Reinhold AK, Salvador E, Förster CY, Birklein F, Rittner HL. Microvascular Barrier Protection by microRNA-183 via FoxO1 Repression: A Pathway Disturbed in Neuropathy and Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2022; 23:967-980. [PMID: 34974173 DOI: 10.1016/j.jpain.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Blood nerve barrier disruption and edema are common in neuropathic pain as well as in complex regional pain syndrome (CRPS). MicroRNAs (miRNA) are epigenetic multitarget switches controlling neuronal and non-neuronal cells in pain. The miR-183 complex attenuates hyperexcitability in nociceptors, but additional non-neuronal effects via transcription factors could contribute as well. This study explored exosomal miR-183 in CRPS and murine neuropathy, its effect on the microvascular barrier via transcription factor FoxO1 and tight junction protein claudin-5, and its antihyperalgesic potential. Sciatic miR-183 decreased after CCI. Substitution with perineural miR-183 mimic attenuated mechanical hypersensitivity and restored blood nerve barrier function. In vitro, serum from CCI mice und CRPS patients weakened the microvascular barrier of murine cerebellar endothelial cells, increased active FoxO1 and reduced claudin-5, concomitant with a lack of exosomal miR-183 in CRPS patients. Cellular stress also compromised the microvascular barrier which was rescued either by miR-183 mimic via FoxO1 repression or by prior silencing of Foxo1. PERSPECTIVE: Low miR-183 leading to barrier impairment via FoxO1 and subsequent claudin-5 suppression is a new aspect in the pathophysiology of CRPS and neuropathic pain. This pathway might help untangle the wide symptomatic range of CRPS and nurture further research into miRNA mimics or FoxO1 inhibitors.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | - Ellaine Salvador
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany; University Hospital Würzburg, Department of Neurosurgery, Tumorbiology Laboratory, Würzburg, Germany
| | - Carola Y Förster
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | - Frank Birklein
- Mainz University Hospitals, Department of Neurology, Mainz, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany.
| |
Collapse
|
48
|
Fan X, Chen H, Xu C, Wang Y, Yin P, Li M, Tang Z, Jiang F, Wei W, Song J, Li G, Zhong D. S1PR3, as a Core Protein Related to Ischemic Stroke, is Involved in the Regulation of Blood–Brain Barrier Damage. Front Pharmacol 2022; 13:834948. [PMID: 35685645 PMCID: PMC9173650 DOI: 10.3389/fphar.2022.834948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is the most common stroke incident. Sphingosine-1-phosphate (S1P) receptor 3 (S1PR3) is a member of the downstream G protein-coupled receptor family of S1P. The effect of S1PR3 on ischemic stroke remains elusive. Methods: We downloaded two middle cerebral artery occlusion (MCAO) microarray datasets from the Gene Expression Omnibus (GEO) database and screened differentially expressed genes (DEGs). Then, we performed a weighted gene coexpression network analysis (WGCNA) and identified the core module genes related to ischemic stroke. We constructed a protein–protein interaction (PPI) network for the core genes in which DEGs and WGCNA intersected. Finally, we discovered that S1PR3 was involved as the main member of the red proteome. Then, we explored the mechanism of S1PR3 in the mouse tMCAO model. The S1PR3-specific inhibitor CAY10444 was injected into the abdominal cavity of mice after cerebral ischemia/reperfusion (I/R) injury, and changes in the expression of blood–brain barrier-related molecules were measured using PCR, western blotting, and immunofluorescence staining. Results: Both GEO datasets showed that S1PR3 was upregulated during cerebral I/R in mice. WGCNA revealed that the light yellow module had the strongest correlation with the occurrence of IS. We determined the overlap with DEGs, identified 146 core genes that are potentially related to IS, and constructed a PPI network. Finally, S1PR3 was found to be the main member of the red proteome. In the mouse cerebral I/R model, S1PR3 expression increased 24 h after ischemia. After the administration of CAY10444, brain edema and neurological deficits in mice were ameliorated. CAY10444 rescued the decreased expression of the tight junction (TJ) proteins zonula occludens 1 (ZO1) and occludin after ischemia induced by transient MCAO (tMCAO) and reduced the increase in aquaporin 4 (AQP4) levels after tMCAO, preserving the integrity of the BBB. Finally, we found that S1PR3 is involved in regulating the mitogen-activated protein kinase (MAPK) and (phosphatidylinositol-3 kinase/serine-threonine kinase) PI3K-Akt signaling pathways. Conclusion: S1PR3 participates in the regulation of blood–brain barrier damage after cerebral I/R. S1PR3 is expected to be an indicator and predictor of cerebral ischemia, and drugs targeting S1PR3 may also provide new ideas for clinical medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Di Zhong
- *Correspondence: Guozhong Li, ; Di Zhong,
| |
Collapse
|
49
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
50
|
Facciolongo N, Bonacini M, Galeone C, Ruggiero P, Menzella F, Ghidoni G, Piro R, Scelfo C, Catellani C, Zerbini A, Croci S. Bronchial thermoplasty in severe asthma: a real-world study on efficacy and gene profiling. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:39. [PMID: 35534846 PMCID: PMC9087992 DOI: 10.1186/s13223-022-00680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022]
Abstract
Background Bronchial thermoplasty (BT) is an effective treatment in severe asthma. How to select patients who more likely benefit from BT is an unmet clinical need. Moreover, mechanisms of BT efficacy are still largely unknown. We sought to determine BT efficacy and to identify potential mechanisms of response. Methods This retrospective cohort study evaluated clinical outcomes in 27 patients with severe asthma: 13 with T2-high and 14 with T2-low endotype. Expression levels of 20 genes were compared by real-time PCR in bronchial biopsies performed at the third BT session versus baseline. Clinical response was measured based on Asthma Control Questionnaire (ACQ) score < 1.5, asthma exacerbations < 2, oral corticosteroids reduction of at least 50% at 12 months post-BT. Patients were classified as responders when they had at least 2 of 3 outcome measures. Results 81% of patients were defined as responders. BT induced a reduction in alpha smooth muscle actin (ACTA2) and an increase in CD68, fibroblast activation protein-alpha (FAP), alpha-1 and alpha-2 type I collagen (COL1A1, COL1A2) gene expression in the majority of patients. A higher reduction in ubiquitin carboxy-terminal-hydrolase L1 (PGP9.5) mRNA correlated with a better response based on Asthma Quality of Life Questionnaire (AQLQ). Lower changes in CD68 and FAP mRNAs correlated with a better response based on ACQ. Lower levels of occludin (OCLN), CD68, connective tissue growth factor (CTGF), higher levels of secretory leukocyte protease inhibitor (SLPI) and lower changes in CD68 and CTGF mRNAs were observed in patients who had less than 2 exacerbations post-BT. Lower levels of COL1A2 at baseline were observed in patients who had ACQ < 1.5 at 12 months post-BT. Conclusions BT is effective irrespective of the asthma endotypes and seems associated with airway remodelling. Quantification of OCLN, CD68, CTGF, SLPI, COL1A2 mRNAs could be useful to identify patients with better results. Trial registration: The study protocol was approved by the Local Ethics Committee (Azienda USL-IRCCS of Reggio Emilia—Comitato Etico Area Vasta Nord of Emilia Romagna; protocol number: 2019/0014076) and all the patients provided written informed consent before participating in the study. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00680-4.
Collapse
Affiliation(s)
- Nicola Facciolongo
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Carla Galeone
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Patrizia Ruggiero
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Menzella
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy. .,Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS, 42123, Reggio Emilia, Italy.
| | - Giulia Ghidoni
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Piro
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Scelfo
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Catellani
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|