1
|
Sands M, Zhang X, Irudayaraj J. Kidney toxicology of a novel compound Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI, ie. HQ-115) used in energy applications: An epigenetic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177019. [PMID: 39447891 DOI: 10.1016/j.scitotenv.2024.177019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Exposure to emerging energy-based environmental contaminants such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, trade name HQ-115), poses a significant threat to human health, yet its impact on kidney function and epigenetic regulation remains poorly understood. Here, we investigated the effects of LiTFSI exposure on kidney-related biochemical indicators, renal injuries, and epigenetic alterations in male CD-1 mice under both 14-day and 30-day exposure durations. Our study revealed that LiTFSI exposure led to changes in kidney-related markers, notably affecting serum bicarbonate levels, while relative kidney weight remained unaffected. Histological analysis revealed tubule dilation, inflammation, and loss of kidney structure in LiTFSI-exposed mice, alongside dysregulated expression of genes associated with inflammation, renal function, and uric acid metabolism. Epigenetic analysis further identified widespread DNA methylation changes in the two exposure regimes. Functional analysis revealed that differentially methylated regions are implicated in cell apoptosis and cancer-related pathways and are enriched with development-related transcription factor binding motifs, suggesting a potential mechanism of action underlying exposure induced kidney damage. These findings underscore the intricate interplay between environmental exposures, epigenetic modulation, and kidney health, emphasizing the need for additional research to unravel precise mechanisms and develop targeted interventions to mitigate the adverse effects of LiTFSI and exposure of similar clean energy compounds on human health.
Collapse
Affiliation(s)
- Mia Sands
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Xing Zhang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, Beckman Institute, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Liu X, Zhang L, Lai B, Li J, Zang J, Ma L. Harnessing Protein Hydrolysates and Peptides for Hyperuricemia Management: Insights into Sources, Mechanisms, Techniques, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18758-18773. [PMID: 39161084 DOI: 10.1021/acs.jafc.4c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by an imbalance in uric acid production and excretion, frequently leading to gout and various chronic conditions. Novel bioactive compounds offer effective alternatives for managing HUA, reducing side effects of traditional medications. Recent studies have highlighted the therapeutic potential of protein hydrolysates and peptides in managing HUA. This review focuses on preparing and applying protein hydrolysates to treat HUA and explores peptides for xanthine oxidase inhibition. Particularly, we discuss their origins, enzymatic approaches, and mechanisms of action in detail. The review provides an updated understanding of HUA pathogenesis, current pharmacological interventions, and methodologies for the preparation, purification, identification, and assessment of these compounds. Furthermore, to explore the application of protein hydrolysates and peptides in the food industry, we also address challenges and propose solutions related to the safety, bitterness, oral delivery, and the integration of artificial intelligence in peptide discovery. Bridging traditional pharmacological approaches and innovative dietary interventions, this study paves the way for future research and development in HUA management, contributing to the utilization of proteins from different food sources. In conclusion, protein hydrolysates and peptides show significant promise as safe agents and dietary interventions for preventing and treating HUA.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boyin Lai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liyan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Zhang SH, Feng Y, Zhong MM, Xie JH, Xu W. Association between oxidative stress and chronic orofacial pain and potential druggable targets: Evidence from a Mendelian randomization study. J Oral Rehabil 2024; 51:970-981. [PMID: 38414129 DOI: 10.1111/joor.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Oxidative stress indicators affect chronic orofacial pain (COFP), but how to reduce these effects is uncertain. OBJECTIVES 11 oxidative stress biomarkers were collected as exposures, while four forms of COFP were chosen as outcomes for Mendelian randomization (MR) study. METHODS The effect estimates between oxidative stress and COFP were calculated using inverse variance-weighted MR (IVW-MR). Then, functional mapping and annotation (FUMA) was utilized in order to carry out SNP-based functional enrichment analyses. In addition, the IVW-MR method was applied to combine effect estimates when using genetic variants associated with oxidative stress biomarkers as an instrument for exploring potential druggable targets. RESULTS The results indicated that oxidative stress biomarkers (causal OR of uric acid (UA), 0.998 for myofascial pain, 95% CI 0.996-1.000, p < .05; and OR of glutathione transferase (GST), 1.002 for dentoalveolar pain, 95% CI 1.000-1.003, p < .05) were significantly linked with the probability of COFP. Functional analysis also demonstrated that UA and myofascial pain genes were prominent in nitrogen and uracil metabolism, while GST and dentoalveolar pain genes were enriched in glutathione metabolism. Also, the study provided evidence that solute carrier family 2 member 9 (SLC2A9) and glutathione S-transferase alpha 2 (GSTA2) cause discomfort in the myofascial pain (OR = 1.003, 95% CI 1.000-1.006; p < .05) and dentoalveolar region (OR = 1.001, 95% CI 1.000-1.002; p < .05), respectively. CONCLUSIONS In conclusion, this MR study indicates that genetically predicted myofascial pain was significantly associated with decreased UA and dentoalveolar pain was significantly associated with increased GST level. SLC2A9 inhibitor and GSTA2 inhibitor were novel chronic orofacial pain therapies and biomarkers, but clinical trials are called to examine if these oxidative biomarkers have the protective effect against orofacial pain, and further research are needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Shao-Hui Zhang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Hao Xie
- Institute of Artificial Intelligence & Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, China
| | - Wei Xu
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
4
|
Chen Y, Liu Q, Meng X, Zhao L, Zheng X, Feng W. Catalpol ameliorates fructose-induced renal inflammation by inhibiting TLR4/MyD88 signaling and uric acid reabsorption. Eur J Pharmacol 2024; 967:176356. [PMID: 38325797 DOI: 10.1016/j.ejphar.2024.176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Accumulating evidence suggests that excess fructose uptake induces metabolic syndrome and kidney injury. Here, we primarily investigated the influence of catalpol on fructose-induced renal inflammation in mice and explored its potential mechanism. Treatment with catalpol improved insulin sensitivity and hyperuricemia in fructose-fed mice. Hyperuricemia induced by high-fructose diet was associated with increases in the expressions of urate reabsorptive transporter URAT1 and GLUT9. Treatment with catalpol decreased the expressions of URAT1 and GLUT9. Futhermore, treatment with catalpol ameliorated renal inflammatory cell infiltration and podocyte injury, and these beneficial effects were associated with inhibiting the production of inflammatory cytokines including IL-1β, IL-18, IL-6 and TNF-α. Moreover, fructose-induced uric acid triggers an inflammatory response by activiting NLRP3 inflammasome, which then processes pro-inflammatory cytokines. Treatment with catalpol could inhibit the activation of NLRP3 inflammasome as well. Additionally, TLR4/MyD88 signaling was activated in fructose-fed mice, while treatment with catalpol inhibited this activation along with promoting NF-κB nuclear translocation in fructose-fed mice. Thus, our study demonstrated that catalpol could ameliorate renal inflammation in fructose-fed mice, attributing its beneficial effects to promoting uric acid excretion and inhibit the activation of TLR4/MyD88 signaling.
Collapse
Affiliation(s)
- Yan Chen
- College of Pharmacy, Henan University of Chinese Medicine, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, China
| | - Qingpu Liu
- College of Pharmacy, Henan University of Chinese Medicine, China; The Engineering and Technology Research Center of Quality Control and Evaluation for Chinese Medicine Development of Henan Province, China
| | - Xinyu Meng
- College of Pharmacy, Henan University of Chinese Medicine, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, China
| | - Liqin Zhao
- College of Pharmacy, Henan University of Chinese Medicine, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, China.
| |
Collapse
|
5
|
Quinlivan R, Murphy E, Pula S, Pain A, Brain H, Scopes G, Gjika F, Ahmadouk N, Manole A, Houlden H. Raised CK and acute kidney injury following intense exercise in three patients with a history of exercise intolerance due to homozygous mutations in SLC2A9. Neuromuscul Disord 2024; 34:49-53. [PMID: 38150892 DOI: 10.1016/j.nmd.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Acute rhabdomyolysis (AR) leading to acute kidney injury has many underlying etiologies, however, when the primary trigger is exercise, the most usual underlying cause is either a genetic muscle disorder or unaccustomed intense exercise in a healthy individual. Three adult men presented with a history of exercise intolerance and episodes of acute renal impairment following intense exercise, thought to be due to AR in the case of two, and dehydration in one. The baseline serum CK was mildly raised between attacks in all three patients and acutely raised during attacks in two of the three patients. Following referral to a specialized neuromuscular centre, further investigation identified very low serum urate (<12 umol/L). In all three men, genetic studies confirmed homozygous mutations in SLC2A9, which encodes for facilitated glucose transporter member 9 (GLUT9), a major regulator of urate homeostasis. Hereditary hypouricaemia should be considered in people presenting with acute kidney injury related to intense exercise. Serum urate evaluation is a useful screening test best undertaken after recovery.
Collapse
Affiliation(s)
- Ros Quinlivan
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square London, UK
| | - Shpresa Pula
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexandra Pain
- Department of Acute and General Medicine, Stoke Mandeville Hospital, Mandeville Road, Aylesbury UK
| | - Henrietta Brain
- Department of Acute and General Medicine, Stoke Mandeville Hospital, Mandeville Road, Aylesbury UK
| | - Grace Scopes
- University of Buckingham, Stoke Mandeville, Aylesbury, UK
| | - Frenki Gjika
- University of Buckingham, Stoke Mandeville, Aylesbury, UK
| | - Naim Ahmadouk
- Department of Acute and General Medicine, Stoke Mandeville Hospital, Mandeville Road, Aylesbury UK
| | - Andreea Manole
- Department of neurogenetics, UCL Institute of Neurology, National hospital for Neurology and Neurosurgery, UK
| | - Henry Houlden
- Department of neurogenetics, UCL Institute of Neurology, National hospital for Neurology and Neurosurgery, UK
| |
Collapse
|
6
|
Zhang Y, Li Y, Li C, Zhao Y, Xu L, Ma S, Lin F, Xie Y, An J, Wang S. Paeonia × suffruticosa Andrews leaf extract and its main component apigenin 7-O-glucoside ameliorate hyperuricemia by inhibiting xanthine oxidase activity and regulating renal urate transporters. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154957. [PMID: 37478683 DOI: 10.1016/j.phymed.2023.154957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Hyperuricemia is an important pathological basis of gout and a distinct hazard factor for metabolic syndromes and cardiovascular and chronic renal disease, but lacks safe and effective treatments currently. Paeonia × suffruticosa Andrews leaf effectively reduced serum uric acid in gout patients; however, the material foundation and the mechanism remain unclear. PURPOSE To determine the primary active components and mechanism of P. suffruticosa leaf in hyperuricemic mice. METHODS The chemical constituents of P. suffruticosa leaf was identified using high-performance liquid chromatographic analysis. The anti-hyperuricemic activity of P. suffruticosa leaf extract (12.5, 25, 50, 100, and 200 mg/kg) and its components was evaluated in hyperuricemic mice induced by a high purine diet for 14 days. Then, the urate-lowering effects of apigenin 7-O-glucoside (0.09, 0.18, and 0.36 mg/kg) were assessed in another hyperuricemic mice model built by administrating potassium oxonate and adenine for 4 weeks. The inhibitory effect of apigenin 7-O-glucoside on uric acid production was elucidated by investigating xanthine oxidase activity in vitro and in serum and the liver and through molecular docking. Immunofluorescence and western blot analyses of the expression of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporters 1 (OAT1), and ATP-binding cassette G member 2 (ABCG2) proteins elucidated how apigenin 7-O-glucoside promoted uric acid excretion. RESULTS Six compounds were identified in P. suffruticosa leaf: gallic acid, methyl gallate, oxypaeoniflorin, paeoniflorin, galloylpaeoniflorin, and apigenin 7-O-glucoside. P. suffruticosa leaf extract significantly attenuated increased serum uric acid, creatinine, and xanthine oxidase activity in hyperuricemic mice. Apigenin 7-O-glucoside from P. suffruticosa leaf reduced uric acid, creatinine, and malondialdehyde serum levels, increased superoxide dismutase activity, and partially restored the spleen coefficient in hyperuricemic mice. Apigenin 7-O-glucoside inhibited xanthine oxidase activity in vitro and decreased serum and liver xanthine oxidase activity and liver xanthine oxidase protein expression in hyperuricemic mice. Molecular docking revealed that apigenin 7-O-glucoside bound to xanthine oxidase. Apigenin 7-O-glucoside facilitated uric acid excretion by modulating the renal urate transporters URAT1, GLUT9, OAT1, and ABCG2. Apigenin 7-O-glucoside protected against renal damage and oxidative stress caused by hyperuricemia by reducing serum creatinine, blood urea nitrogen, malondialdehyde, and renal reactive oxygen species levels; increasing serum and renal superoxide dismutase activity; restoring the renal coefficient; and reducing renal pathological injury. CONCLUSION Apigenin 7-O-glucoside is the main urate-lowering active component of P. suffruticosa leaf extract in the hyperuricemic mice. It suppressed liver xanthine oxidase activity to decrease uric acid synthesis and modulated renal urate transporters to stimulate uric acid excretion, alleviating kidney damage caused by hyperuricemia.
Collapse
Affiliation(s)
- Yan Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Chang Li
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yani Zhao
- Xi'an Encephalopathy Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710000, China
| | - Lu Xu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shanbo Ma
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Fen Lin
- Research and Development Department, Shaanxi Fengdan Zhengyuan Biotechnology Limited Company, Xi'an, Shaanxi 710076, China
| | - Yanhua Xie
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junming An
- Department of Acupuncture, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, China.
| | - Siwang Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
7
|
Ikhsan I, Idroes R, Azharuddin A, Nasution R, Yusnaini R, Iqhrammullah M. Fatty Acid-Rich Extract from Holothuria atra for Hyperuricemia via Expressions Modulation of GLUT9a and GLUT9b in Rat Model. Molecules 2023; 28:molecules28103981. [PMID: 37241722 DOI: 10.3390/molecules28103981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
An edible sea cucumber Holothuria atra has been hypothesized to have medicinal benefits against hyperuricemia owing to its bioactive compounds, including mono- and poly-unsaturated fatty acids. Herein, we aimed to investigate the fatty acids-rich extract produced from H. atra to treat hyperuricemic rats (Rattus novergicus). The extraction was carried out using n-hexane solvent and then administered to potassium oxonate-induced hyperuricemic rats, with allopurinol acting as a positive control. The extract (50, 100, 150 mg/kg body weight) and allopurinol (10 mg/kg) were administered QD through an oral route using a nasogastric tube. Serum uric acid, creatinine, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and blood urea nitrogen of the abdominal aortic blood were investigated. Our results suggested that the extract was rich in polyunsaturated (arachidonic acid) and monounsaturated fatty acids (oleic acid), in which its administration of 150 mg/kg could significantly reduce serum uric acid (p < 0.001), AST (p = 0.001), and ALT (p = 0.0302). The anti-hyperuricemic activity could be associated with the modulation of GLUT9 by the H. atra extract. In conclusion, the n-hexane extract from H. atra is a potential serum uric acid-lowering agent targeting GLUT9, where further investigations are crucially warranted.
Collapse
Affiliation(s)
- Ikhsan Ikhsan
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Surgery, Tgk. Chik Di Tiro General Hospital, Sigli 24116, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Azharuddin Azharuddin
- Department of Orthopedic and Traumatology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Orthopedic and Traumatology, Dr. Zainoel Abidin Hospital, Banda Aceh 24415, Indonesia
| | - Rosnani Nasution
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rika Yusnaini
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Psychology and Nursing, Faculty of Medicine, Malikussaleh University, Lhokseumawe 24351, Indonesia
| | - Muhammad Iqhrammullah
- Faculty of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh 23245, Indonesia
| |
Collapse
|
8
|
Sui Y, Xu D, Sun X. Identification of anti-hyperuricemic components from Coix seed. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
The Molecular Pharmacology of Phloretin: Anti-Inflammatory Mechanisms of Action. Biomedicines 2023; 11:biomedicines11010143. [PMID: 36672652 PMCID: PMC9855955 DOI: 10.3390/biomedicines11010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The isolation of phlorizin from the bark of an apple tree in 1835 led to a flurry of research on its inhibitory effect on glucose transporters in the intestine and kidney. Using phlorizin as a prototype drug, antidiabetic agents with more selective inhibitory activity towards glucose transport at the kidney have subsequently been developed. In contrast, its hydrolysis product in the body, phloretin, which is also found in the apple plant, has weak antidiabetic properties. Phloretin, however, displays a range of pharmacological effects including antibacterial, anticancer, and cellular and organ protective properties both in vitro and in vivo. In this communication, the molecular basis of its anti-inflammatory mechanisms that attribute to its pharmacological effects is scrutinised. These include inhibiting the signalling pathways of inflammatory mediators' expression that support its suppressive effect in immune cells overactivation, obesity-induced inflammation, arthritis, endothelial, myocardial, hepatic, renal and lung injury, and inflammation in the gut, skin, and nervous system, among others.
Collapse
|
10
|
Soetikno V, Murwantara A, Jusuf AA, Louisa M. Alpha-mangostin counteracts hyperuricemia and renal dysfunction by inhibiting URAT1 renal transporter in insulin resistance rat model. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alpha-mangostin (AM) has been shown to have hypoglycemic activity. This study aimed to analyze the effects of AM at a dose of 100 mg/kg and 200 mg/kg to alleviate hyperuricemia and renal dysfunction on high-fat/high-glucose diet and low dose streptozotocin (HF/HG/STZ) injection-induced IR rat model. IR was induced in male Wistar rats by giving a HF/HG diet for 11 weeks and single injection of STZ (35 mg/kg, i.p.), then divided randomly into IR rats, IR rats treated with AM 100 and 200 mg/kgBW given by gavage for 8 weeks. At the end of the 11th week, all rats were killed, and the kidneys were taken to be analyzed for urate transporters 1 (URAT1) and glucose transporters 9 (GLUT9). We also assessed serum uric acid, proteinuria, BUN, creatinine clearance, HOMA-IR, and fasting blood glucose (FBG).
Results
We have found the significant increase in HOMA-IR and FBG levels of the IR rats, in comparison with its control groups, which were decreased significantly after AM administration at both doses. URAT1 and GLUT9 mRNA and protein expressions in kidney in the IR + AM at both doses groups also decreased compared those in the IR without treatment group, though the decrease in GLUT9 did not appear to be statistically significant. Consequently, hyperuricemia and renal dysfunction were attenuated by AM treatment at both doses.
Conclusion
After considering all findings, AM might be a potential candidate to ameliorate IR-induced hyperuricemia and renal dysfunction at least in part by modulating the renal URAT1.
Collapse
|
11
|
Park JW, Noh JH, Kim JM, Lee HY, Kim KA, Park JY. Gene Dose-Dependent and Additive Effects of ABCG2 rs2231142 and SLC2A9 rs3733591 Genetic Polymorphisms on Serum Uric Acid Levels. Metabolites 2022; 12:metabo12121192. [PMID: 36557230 PMCID: PMC9781553 DOI: 10.3390/metabo12121192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to evaluate whether the single nucleotide polymorphisms of ATP-binding cassette subfamily G member 2 (ABCG2) and solute carrier family 2 member 9 (SLC2A9) affect individual blood uric acid levels using pyrosequencing. ABCG2 (rs2231142, rs72552713, rs2231137), SLC2A9 (rs3734553, rs3733591, rs16890979), and individual uric acid levels were prospectively analyzed in 250 healthy young Korean male participants. Prominent differences in uric acid levels of the alleles were observed in the SLC2A9 rs3733591 polymorphism: wild-type (AA) vs. heterozygote (AG), 0.7 mg/dL (p < 0.0001); AA vs. mutant type (GG), 1.32 mg/dL (p < 0.0001); and AG vs. GG, 0.62 mg/dL (p < 0.01). In ABCG2 single nucleotide polymorphisms (SNPs), the statistically significant differences in uric acid levels were only found in rs2231142 between CC vs. AA (1.06 mg/dL; p < 0.001), and CC vs. CA (0.59 mg/dL; p < 0.01). Serum uric acid levels based on the ABCG2 and SLC2A9 diplotype groups were also compared. The uric acid levels were the lowest in the CC/AA diplotype and highest in the AA/AG diplotype. In addition, the SNP SLC2A9 rs3733591 tended to increase the uric acid levels when the ABCG2 rs2231142 haplotypes were fixed. In conclusion, both the ABCG2 rs2231142 and SLC2A9 rs3733591 polymorphisms may additively elevate blood uric acid levels.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
- Department of Neurology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Ji-Hyeon Noh
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
| | - Jong-Min Kim
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
| | - Hwa-Young Lee
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-2-920-6288
| |
Collapse
|
12
|
Nian YL, You CG. Susceptibility genes of hyperuricemia and gout. Hereditas 2022; 159:30. [PMID: 35922835 PMCID: PMC9351246 DOI: 10.1186/s41065-022-00243-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Gout is a chronic metabolic disease that seriously affects human health. It is also a major challenge facing the world, which has brought a heavy burden to patients and society. Hyperuricemia (HUA) is the most important risk factor for gout. In recent years, with the improvement of living standards and the change of dietary habits, the incidence of gout in the world has increased dramatically, and gradually tends to be younger. An increasing number of studies have shown that gene mutations may play an important role in the development of HUA and gout. Therefore, we reviewed the existing literature and summarized the susceptibility genes and research status of HUA and gout, in order to provide reference for the early diagnosis, individualized treatment and the development of new targeted drugs of HUA and gout.
Collapse
Affiliation(s)
- Yue-Li Nian
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
13
|
Zhao ZA, Jiang Y, Chen YY, Wu T, Lan QS, Li YM, Li L, Yang Y, Lin CT, Cao Y, Zhou PZ, Guo JY, Tian YX, Pang JX. CDER167, a dual inhibitor of URAT1 and GLUT9, is a novel and potent uricosuric candidate for the treatment of hyperuricemia. Acta Pharmacol Sin 2022; 43:121-132. [PMID: 33767379 PMCID: PMC8724292 DOI: 10.1038/s41401-021-00640-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) are important targets for the development of uric acid-lowering drugs. We previously showed that the flexible linkers of URAT1 inhibitors could enhance their potency. In this study we designed and synthesized CDER167, a novel RDEA3710 analogue, by introducing a linker (methylene) between the naphthalene and pyridine rings to increase flexibility, and characterized its pharmacological and pharmacokinetics properties in vitro and in vivo. We showed that CDER167 exerted dual-target inhibitory effects on both URAT1 and GLUT9: CDER167 concentration-dependently inhibited the uptake of [14C]-uric acid in URAT1-expressing HEK293 cells with an IC50 value of 2.08 ± 0.31 μM, which was similar to that of RDEA3170 (its IC50 value was 1.47 ± 0.23 μM). Using site-directed mutagenesis, we demonstrated that CDER167 might interact with URAT1 at S35 and F365. In GLUT9-expressing HEK293T cells, CDER167 concentration-dependently inhibited GLUT9 with an IC50 value of 91.55 ± 15.28 μM, whereas RDEA3170 at 100 μM had no effect on GLUT9. In potassium oxonate-induced hyperuricemic mice, oral administration of CDER167 (10 mg·kg-1 · d-1) for 7 days was more effective in lowering uric acid in blood and significantly promoted uric acid excretion in urine as compared with RDEA3170 (20 mg·kg-1 · d-1) administered. The animal experiment proved the safety of CDER167. In addition, CDER167 displayed better bioavailability than RDEA3170, better metabolic stability and no hERG toxicity at 100 μM. These results suggest that CDER167 deserves further investigation as a candidate antihyperuricemic drug targeting URAT1 and GLUT9.
Collapse
Affiliation(s)
- Ze-An Zhao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu Jiang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Yu Chen
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qun-Sheng Lan
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Mei Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Cui-Ting Lin
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ping-Zheng Zhou
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Yin Guo
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuan-Xin Tian
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Xin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Abstract
Circulation of urate levels is determined by the balance between urate production and excretion, homeostasis regulated by the function of urate transporters in key epithelial tissues and cell types. Our understanding of these physiological processes and identification of the genes encoding the urate transporters has advanced significantly, leading to a greater ability to predict risk for urate-associated diseases and identify new therapeutics that directly target urate transport. Here, we review the identified urate transporters and their organization and function in the renal tubule, the intestinal enterocytes, and other important cell types to provide a fuller understanding of the complicated process of urate homeostasis and its role in human diseases. Furthermore, we review the genetic tools that provide an unbiased catalyst for transporter identification as well as discuss the role of transporters in determining the observed significant gender differences in urate-associated disease risk.
Collapse
Affiliation(s)
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Wei L, Ji H, Song W, Peng S, Zhan S, Qu Y, Chen M, Zhang D, Liu S. Hypouricemic, hepatoprotective and nephroprotective roles of oligopeptides derived from Auxis thazard protein in hyperuricemic mice. Food Funct 2021; 12:11838-11848. [PMID: 34746942 DOI: 10.1039/d1fo02539b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The oligopeptides derived from Auxis thazard protein (ATO) are a class of small peptides with molecular weight <1 kDa and good bioactivity. This paper aimed to explore the hypouricemic, hepatoprotective, and nephroprotective effects of ATO and its potential mechanisms in hyperuricemia in mice induced by potassium oxonate. The results showed that ATO significantly reduced serum UA, serum creatinine levels, inhibited XOD and ADA activities in the liver (p < 0.05), and accelerated UA excretion by downregulating the gene expression of renal mURAT1 and mGLUT9 and upregulating the gene expression of mABCG2 and mOAT1. ATO could also reduce the levels of liver MDA, increase the activities of SOD and CAT, and reduce the levels of IL-1β, MCP-1 and TNF-α. Histological analysis also showed that ATO possessed hepatoprotective and nephroprotective activities in hyperuricemic mice. Thus, ATO could reduce the serum UA level in hyperuricemic mice by decreasing UA production and promoting UA excretion from the kidney, suggesting that ATO could be developed as a dietary supplement for hyperuricemia treatment.
Collapse
Affiliation(s)
- Liuyi Wei
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China. .,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.,Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, P.R. China.,Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, P.R. China.,Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, P.R. China
| | - Wenkui Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Shuo Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Suhong Zhan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Yushan Qu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Ming Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China. .,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.,Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, P.R. China.,Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, P.R. China.,Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
16
|
Sun C, Lin S, Li Z, Liu H, Liu Y, Wang K, Zhu T, Li G, Yin B, Wan R. iTRAQ-based quantitative proteomic analysis reveals the toxic mechanism of diclofenac sodium on the kidney of broiler chicken. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109129. [PMID: 34229076 DOI: 10.1016/j.cbpc.2021.109129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
Diclofenac sodium (DS) is one of the nonsteroidal anti-inflammatory drugs (NSAIDs), which exhibits potent toxicity to birds. To search the molecular mechanism of DS induced nephrotoxicity in broiler chicken, 20 apparently healthy 30-day old broiler chickens were separated randomly into two groups (n = 10): Group A was kept as control while DS was administered at the dose rate of 10 mg/kg body weight in group B through oral gavage. Kidney samples were collected, and the proteins were identified and quantified by iTRAQ. 434 differentially expressed proteins (DEPs) were screened, including 277 up-regulated DEPs and 157 down-regulated DEPs. The functional annotation and classification results indicated that DEPs were significantly enriched in apoptosis and metabolism-related pathways via GO and KEGG analysis. Compared with the control group, the most significant enrichment pathways are "ribosome", "metabolic pathways" and "protein processing in endoplasmic reticulum". Based on the proteomic results and relevant literature, some DEPs that potentially related to the toxicity of DS were screened. The mRNA transcript levels of these DEPs were characterized by qRT-PCR, and the results showed that Slc22a7, Gatm, Glud1, Agxt2 and Gldc were significantly down-regulated, while Gsl, Gpt2 and Asns were significantly up-regulated. We speculate that the toxic mechanism of DS to chicken might be that it induces kidney cell apoptosis, interferes with purine metabolism and inhibits the expression of OAT2. The current study provides a reference for elucidating the nephrotoxic mechanism of diclofenac sodium to broiler chicken from the molecular perspective.
Collapse
Affiliation(s)
- Chuanxi Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China; Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China; Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, Shandong, China
| | - Zhen Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China; Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Huazheng Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China
| | - Yixin Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China
| | - Keke Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China
| | - Tianyi Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China; Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, Shandong, China
| | - Bin Yin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China; Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, Shandong, China.
| | - Renzhong Wan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China.
| |
Collapse
|
17
|
Rice peptide and collagen peptide prevented potassium oxonate-induced hyperuricemia and renal damage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Brechbühl J, Lopes AC, Wood D, Bouteiller S, de Vallière A, Verdumo C, Broillet MC. Age-dependent appearance of SARS-CoV-2 entry sites in mouse chemosensory systems reflects COVID-19 anosmia-ageusia symptoms. Commun Biol 2021; 4:880. [PMID: 34267318 PMCID: PMC8282876 DOI: 10.1038/s42003-021-02410-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 pandemic has given rise to a collective scientific effort to study its viral causing agent SARS-CoV-2. Research is focusing in particular on its infection mechanisms and on the associated-disease symptoms. Interestingly, this environmental pathogen directly affects the human chemosensory systems leading to anosmia and ageusia. Evidence for the presence of the cellular entry sites of the virus, the ACE2/TMPRSS2 proteins, has been reported in non-chemosensory cells in the rodent’s nose and mouth, missing a direct correlation between the symptoms reported in patients and the observed direct viral infection in human sensory cells. Here, mapping the gene and protein expression of ACE2/TMPRSS2 in the mouse olfactory and gustatory cells, we precisely identify the virus target cells to be of basal and sensory origin and reveal the age-dependent appearance of viral entry-sites. Our results propose an alternative interpretation of the human viral-induced sensory symptoms and give investigative perspectives on animal models. Brechbühl et al characterise the gene and protein expression of ACE2/TMPRSS2 in the mouse olfactory and gustatory cells, which reveals that SARS-CoV-2 target cells are of basal and sensory origin. They also demonstrate an age-dependent appearance of viral entry-sites, which could inform the use of mouse models in the investigation of SARS-CoV-2 effects on olfaction.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ana Catarina Lopes
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dean Wood
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sofiane Bouteiller
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aurélie de Vallière
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chantal Verdumo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
Sun HL, Wu YW, Bian HG, Yang H, Wang H, Meng XM, Jin J. Function of Uric Acid Transporters and Their Inhibitors in Hyperuricaemia. Front Pharmacol 2021; 12:667753. [PMID: 34335246 PMCID: PMC8317579 DOI: 10.3389/fphar.2021.667753] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Disorders of uric acid metabolism may be associated with pathological processes in many diseases, including diabetes mellitus, cardiovascular disease, and kidney disease. These diseases can further promote uric acid accumulation in the body, leading to a vicious cycle. Preliminary studies have proven many mechanisms such as oxidative stress, lipid metabolism disorders, and rennin angiotensin axis involving in the progression of hyperuricaemia-related diseases. However, there is still lack of effective clinical treatment for hyperuricaemia. According to previous research results, NPT1, NPT4, OAT1, OAT2, OAT3, OAT4, URAT1, GLUT9, ABCG2, PDZK1, these urate transports are closely related to serum uric acid level. Targeting at urate transporters and urate-lowering drugs can enhance our understanding of hyperuricaemia and hyperuricaemia-related diseases. This review may put forward essential references or cross references to be contributed to further elucidate traditional and novel urate-lowering drugs benefits as well as provides theoretical support for the scientific research on hyperuricemia and related diseases.
Collapse
Affiliation(s)
- Hao-Lu Sun
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Yi-Wan Wu
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - He-Ge Bian
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Hui Yang
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Heng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Wang YZ, Zhou C, Zhu LJ, He XLS, Li LZ, Zheng X, Xu WF, Dong YJ, Li B, Yu QX, Lv GY, Chen SH. Effects of Macroporous Resin Extract of Dendrobium officinale Leaves in Rats with Hyperuricemia Induced by Fructose and Potassium Oxonate. Comb Chem High Throughput Screen 2021; 25:1294-1303. [PMID: 34053424 DOI: 10.2174/1386207324666210528114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Fructose, as a ubiquitous monosaccharide, can promote ATP consumption and elevate circulating uric acid (UA) levels. Our previous studies confirmed that the macroporous resin extract of Dendrobium officinale leaves (DoMRE) could reduce the UA level of rats with hyperuricemia induced by a high-purine diet. This study aimed to investigate whether DoMRE had a UA-lowering effect on rats with hyperuricemia caused by fructose combined with potassium oxonate, so as to further clarify the UA-lowering effect of DoMRE, and to explore the UA-lowering effect of DoMRE on both UA production and excretion. MATERIALS AND METHODS Rats with hyperuricemia induced by fructose and potassium oxonate were administered with DoMRE and vehicle control, respectively, to compare the effects of the drugs. At the end of the experiment, the serum uric acid (SUA) and creatinine (Cr) levels were measured using an automatic biochemical analyzer, the activities of xanthine oxidase (XOD) were measured using an assay kit, and the protein expression of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette superfamily G member 2 (ABCG2) were assessed using immunohistochemical and western blot analyses. Hematoxylin and eosin staining was used to assess the histological changes in the kidney, liver, and intestine. RESULTS Rats with hyperuricemia were induced by fructose and potassiumFructose and potassium induced hyperuricemia in rats. Meanwhile, the activities of XOD were markedly augmented, the expression of URAT1 and GLUT9 was promoted, and the expression of ABCG2 was reduced, which were conducive to the elevation of UA. However, exposure to DoMRE reversed these fructose- and potassium oxonate-induced negative alternations in rats. The activities of XOD were recovered to the normal level, reducing UA formation; the expression of URAT1, ABCG2, and GLUT9 returned to the normal level, resulting in an increase in renal urate excretion. CONCLUSION DoMRE reduces UA levels in rats with hyperuricemia induced by fructose combined with potassium oxonate by inhibiting XOD activity and regulating the expression of ABCG2, URAT1, and GLUT9. DoMRE is a potential therapeutic agent for treating hyperuricemia through inhibiting UA formation and promoting UA excretion.
Collapse
Affiliation(s)
- Yu-Zhi Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Cong Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Li-Jie Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Lin-Zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wan-Feng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiao-Xian Yu
- Zhejiang Senyu Co., Ltd, Yiwu, Zhejiang, 322099, China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
21
|
Takata T, Isomoto H. Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Renoprotective Mechanisms beyond Glycemic Control. Int J Mol Sci 2021; 22:ijms22094374. [PMID: 33922132 PMCID: PMC8122753 DOI: 10.3390/ijms22094374] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus is a major cause of chronic kidney disease and end-stage renal disease. However, the management of chronic kidney disease, particularly diabetes, requires vast improvements. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for the treatment of diabetes, have been shown to protect against kidney injury via glycemic control, as well as various other mechanisms, including blood pressure and hemodynamic regulation, protection from lipotoxicity, and uric acid control. As such, regulation of these mechanisms is recommended as an effective multidisciplinary approach for the treatment of diabetic patients with kidney disease. Thus, SGLT2 inhibitors are expected to become key drugs for treating diabetic kidney disease. This review summarizes the recent clinical evidence pertaining to SGLT2 inhibitors as well as the mechanisms underlying their renoprotective effects. Hence, the information contained herein will advance the current understanding regarding the pleiotropic effects of SGLT2 inhibitors, while promoting future research in the field.
Collapse
|
22
|
Ding X, Peng C, Li S, Li M, Li X, Wang Z, Li Y, Wang X, Li J, wu J. Chicken serum uric acid level is regulated by glucose transporter 9. Anim Biosci 2021; 34:670-679. [PMID: 32810934 PMCID: PMC7961270 DOI: 10.5713/ajas.20.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 11/27/2022] Open
Abstract
Objective: Glucose transporter 9 (GLUT9) is a uric acid transporter that is associated with uric absorption in mice and humans; but it is unknown whether GLUT9 involves in chicken uric acid regulation. This experiment aimed to investigate the chicken GLUT9 expression and serum uric acid (SUA) level.Methods: Sixty chickens were divided into 4 groups (n = 15): a control group (NC); a sulfonamide-treated group (SD) supplemented with sulfamonomethoxine sodium via drinking water (8 mg/L); a fishmeal group (FM) supplemented with 16% fishmeal in diet; and a uric acid-injection group (IU), where uric acid (250 mg/kg) was intraperitoneally injected once a day. The serum was collected weekly to detect the SUA level. Liver, kidney, jejunum, and ileum tissues were collected to detect the GLUT9 mRNA and protein expression.Results: The results showed in the SD and IU groups, the SUA level increased and GLUT9 expression increased in the liver, but decreased in the kidney, jejunum, and ileum. In the FM group, the SUA level decreased slightly and GLUT9 expression increased in the kidney, but decreased in the liver, jejunum, and ileum. Correlation analysis revealed that liver GLUT9 expression correlated positively, and renal GLUT9 expression correlated negatively with the SUA level.Conclusion: These results demonstrate that there may be a feedback regulation of GLUT9 in the chicken liver and kidney to maintain the SUA balance; however, the underlying mechanism needs to be investigated in future studies.
Collapse
|
23
|
Kang L, Miao JX, Cao LH, Miao YY, Miao MS, Liu HJ, Xiang LL, Song YG. Total glucosides of herbaceous peony (Paeonia lactiflora Pall.) flower attenuate adenine- and ethambutol-induced hyperuricaemia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113054. [PMID: 32534113 DOI: 10.1016/j.jep.2020.113054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbaceous peony (Paeonia lactiflora Pall.) flower has been used widely in dietotherapy in China and other countries. It has good ethnopharmacological value in the treatment of various metabolic diseases. However, the molecular mechanisms by which it lowers serum uric acid are unknown. The development of pharmaceutical resources is very important. Here, we sought to elucidate the mode of action of herbaceous peony in terms of reducing uric acid levels. AIM OF THE STUDY In the present research, the effects of the total glucosides of herbaceous peony flower were investigated in a rat hyperuricaemia model. Another aim of the study was to clarify the mechanism by which herbaceous peony flower (TGPF) lowers serum uric acid levels. MATERIALS AND METHODS A hyperuricaemic rat model was induced via intragastric administration of 100 mg/kg adenine and 250 mg/kg ethambutol hydrochloride (EH) for 23 d. Then TongFengShu 600 mg/kg, allopurinol 42 mg/kg, or TGPF (50 mg/kg, 100 mg/kg, or 200 mg/kg) was administered 1 h after the adenine and EH treatments. RESULTS TGPF improved weight loss and decreased serum UA, XOD, MCP-1, TNF-α, Cr, and BUN in the rats with hyperuricaemic nephropathy. TGPF downregulated renal URAT1 and GLUT9, upregulated renal OAT1, and ameliorated histopathological changes in the thymus, spleen, and kidney. CONCLUSION TGPF is promising as a therapeutic agent against hyperuricaemia. It regulates the uric acid transporters and diminished serum uric acid levels, and alleviates renal pathology associated with hyperuricaemia.
Collapse
Affiliation(s)
- Le Kang
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Jin-Xin Miao
- Immunopharmacology Laboratory of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Li-Hua Cao
- Immunopharmacology Laboratory of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yan-Yan Miao
- College of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ming-San Miao
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Hui-Juan Liu
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Li-Ling Xiang
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ya-Gang Song
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
24
|
Xu YT, Leng YR, Liu MM, Dong RF, Bian J, Yuan LL, Zhang JG, Xia YZ, Kong LY. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int Immunopharmacol 2020; 87:106842. [DOI: 10.1016/j.intimp.2020.106842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
|
25
|
Tubular effects of sodium-glucose cotransporter 2 inhibitors: intended and unintended consequences. Curr Opin Nephrol Hypertens 2020; 29:523-530. [PMID: 32701600 DOI: 10.1097/mnh.0000000000000632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antihyperglycemic drugs that act by inhibiting renal sodium-glucose cotransport. Here we present new insights into 'off target', or indirect, effects of SGLT2 inhibitors. RECENT FINDINGS SGLT2 inhibition causes an acute increase in urinary glucose excretion. In addition to lowering blood glucose, there are several other effects that contribute to the overall beneficial renal and cardiovascular effects. Reabsorption of about 66% of sodium is accomplished in the proximal tubule and dependent on the sodium-hydrogen exchanger isoform 3 (NHE3). SGLT2 colocalizes with NHE3, and high glucose levels reduce NHE3 activity. The proximal tubule is also responsible for the majority of phosphate (Pi) reabsorption. SGLT2 inhibition is associated with increases in plasma Pi, fibroblast growth factor 23 and parathyroid hormone levels in nondiabetics and type 2 diabetes mellitus. Studies in humans identified a urate-lowering effect by SGLT2 inhibition which is possibly mediated by urate transporter 1 (URAT1) and/or glucose transporter member 9 in the proximal tubule. Of note, magnesium levels were also found to increase under SGLT2 inhibition, an effect that was preserved in nondiabetic patients with hypomagnesemia. SUMMARY Cardiorenal effects of SGLT2 inhibition might involve, in addition to direct effects on glucose homeostasis, effects on NHE3, phosphate, urate, and magnesium homeostasis.
Collapse
|
26
|
The Time-Feature of Uric Acid Excretion in Hyperuricemia Mice Induced by Potassium Oxonate and Adenine. Int J Mol Sci 2020; 21:ijms21155178. [PMID: 32707836 PMCID: PMC7432283 DOI: 10.3390/ijms21155178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperuricemia is an important risk factor of chronic kidney disease, metabolic syndrome and cardiovascular disease. We aimed to assess the time-feature relationship of hyperuricemia mouse model on uric acid excretion and renal function. A hyperuricemia mouse model was established by potassium oxonate (PO) and adenine for 21 days. Ultra Performance Liquid Chromatography was used to determine plasma uric acid level. Hematoxylin-eosin staining was applied to observe kidney pathological changes, and Western blot was used to detect renal urate transporters’ expression. In hyperuricemia mice, plasma uric acid level increased significantly from the 3rd day, and tended to be stable from the 7th day, and the clearance rate of uric acid decreased greatly from the 3rd day. Further study found that the renal organ of hyperuricemia mice showed slight damage from the 3rd day, and significantly deteriorated renal function from the 10th day. In addition, the expression levels of GLUT9 and URAT1 were upregulated from the 3rd day, while ABCG2 and OAT1 were downregulated from the 3rd day, and NPT1 were downregulated from the 7th day in hyperuricemia mice kidney. This paper presents a method suitable for experimental hyperuricemia mouse model, and shows the time-feature of each index in a hyperuricemia mice model.
Collapse
|
27
|
Anti-hyperuricemic effects of three theaflavins isolated from black tea in hyperuricemic mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Lu J, Dalbeth N, Yin H, Li C, Merriman TR, Wei WH. Mouse models for human hyperuricaemia: a critical review. Nat Rev Rheumatol 2020; 15:413-426. [PMID: 31118497 DOI: 10.1038/s41584-019-0222-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyperuricaemia (increased serum urate concentration) occurs mainly in higher primates, including in humans, because of inactivation of the gene encoding uricase during primate evolution. Individuals with hyperuricaemia might develop gout - a painful inflammatory arthritis caused by monosodium urate crystal deposition in articular structures. Hyperuricaemia is also associated with common chronic diseases, including hypertension, chronic kidney disease, type 2 diabetes and cardiovascular disease. Many mouse models have been developed to investigate the causal mechanisms for hyperuricaemia. These models are highly diverse and can be divided into two broad categories: mice with genetic modifications (genetically induced models) and mice exposed to certain environmental factors (environmentally induced models; for example, pharmaceutical or dietary induction). This Review provides an overview of the mouse models of hyperuricaemia and the relevance of these models to human hyperuricaemia, with an emphasis on those models generated through genetic modifications. The challenges in developing and comparing mouse models of hyperuricaemia and future research directions are also outlined.
Collapse
Affiliation(s)
- Jie Lu
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.,Shandong Provincial Key Laboratory of Metabolic Diseases, Department of Endocrinology and Metabolic Diseases, the Affiliated Hospital of Qingdao University, Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Huiyong Yin
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), CAS, Shanghai, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Diseases, Department of Endocrinology and Metabolic Diseases, the Affiliated Hospital of Qingdao University, Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Wen-Hua Wei
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
29
|
Edwards A, Auberson M, Ramakrishnan SK, Bonny O. A model of uric acid transport in the rat proximal tubule. Am J Physiol Renal Physiol 2019; 316:F934-F947. [DOI: 10.1152/ajprenal.00603.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The objective of the present study was to theoretically investigate the mechanisms underlying uric acid transport in the proximal tubule (PT) of rat kidneys, and their modulation by factors, including Na+, parathyroid hormone, ANG II, and Na+-glucose cotransporter-2 inhibitors. To that end, we incorporated the transport of uric acid and its conjugate anion urate in our mathematical model of water and solute transport in the rat PT. The model accounts for parallel urate reabsorption and secretion pathways on apical and basolateral membranes and their coupling to lactate and α-ketoglutarate transport. Model results agree with experimental findings at the segment level. Net reabsorption of urate by the rat PT is predicted to be ~70% of the filtered load, with a rate of urate removal from the lumen that is 50% higher than the rate of urate secretion. The model suggests that apical URAT1 deletion significantly reduces net urate reabsorption across the PT, whereas ATP-binding cassette subfamily G member 2 dysfunction affects it only slightly. Inactivation of basolateral glucose transporter-9 raises fractional urate excretion above 100%, as observed in patients with renal familial hypouricemia. Furthermore, our results suggest that reducing Na+ reabsorption across Na+/H+ exchangers or Na+-glucose cotransporters augments net urate reabsorption. The model predicts that parathyroid hormone reduces urate excretion, whereas ANG II increases it. In conclusion, we have developed the first model of uric acid transport in the rat PT; this model provides a framework to gain greater insight into the numerous solutes and coupling mechanisms that affect the renal handing of uric acid.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Muriel Auberson
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Suresh K. Ramakrishnan
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|