1
|
Guo Y, Liu C, Chen S, Tian Z. GmHXK2 promotes the salt tolerance of soybean seedlings by mediating AsA synthesis, and auxin synthesis and distribution. BMC PLANT BIOLOGY 2024; 24:613. [PMID: 38937682 PMCID: PMC11210165 DOI: 10.1186/s12870-024-05301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Salt is an important factor that affects crop productivity. Plant hexokinases (HXKs) are key enzymes in the glycolytic pathway and sugar signaling transduction pathways of plants. In previous studies, we identified and confirmed the roles of GmHXK2 in salt tolerance. RESULTS In this study, we analyzed the tissue-specific expression of GmHXK2 at different growth stages throughout the plant's life cycle. The results showed that GmHXK2 was expressed significantly in all tissues at vegetative stages, including germination and seedling. However, no expression was detected in the pods, and there was little expression in flowers during the later mature period. Arabidopsis plants overexpressing the GmHXK2 (OE) had more lateral roots. The OE seedlings also produced higher levels of auxin and ascorbic acid (AsA). Additionally, the expression levels of genes PMM, YUC4/YUC6/YUC8, and PIN/LAX1,LAX3, which are involved respectively in the synthesis of AsA and auxin, as well as polar auxin transport, were upregulated in OE plants. This upregulation occurred specifically under exogenous glucose treatment. AtHKT1, AtSOS1, and AtNHX1 were up-regulated in OE plants under salt stress, suggesting that GmHXK2 may modulate salt tolerance by maintaining ion balance within the cells and alleviating damage caused by salt stress. Additionally, we further confirmed the interaction between GmHXK2 and the protein GmPMM through yeast two-hybridization and bimolecular fluorescence complementation assays, respectively. CONCLUSION The expression of GmHXK2 gene in plants is organ-specific and developmental stage specific. GmHXK2 not only regulates the synthesis of AsA and the synthesis and distribution of auxin, but also promotes root elongation and induces lateral root formation, potentially enhancing soil water absorption. This study reveals the crosstalk between sugar signaling and hormone signaling in plants, where GmHXK2 acts as a glucose sensor through its interaction with GmPMM, and sheds light on the molecular mechanism by which GmHXK2 gene is involved in salt tolerance in plants.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shuai Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
2
|
Yin YG, Sanuki A, Goto Y, Suzui N, Kawachi N, Matsukura C. ADP-glucose pyrophosphorylase genes are differentially regulated in sugar-dependent or -independent manners in tomato ( Solanum lycopersicum L.) fruit. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:345-351. [PMID: 38434118 PMCID: PMC10905566 DOI: 10.5511/plantbiotechnology.23.1004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 03/05/2024]
Abstract
In early developing tomato (Solanum lycopersicum L.) fruit, starch accumulates at high levels and is used by various primary metabolites in ripening fruits. ADP-glucose pyrophosphorylase is responsible for the first key step of starch biosynthesis. Although it has been reported that AgpL1 and AgpS1 isoforms are mainly expressed in early developing fruit, their regulatory mechanism has not been elucidated. The present study investigated the transcriptional response of AgpL1 and AgpS1 to various metabolizable sugars, nonmetabolizable sugar analogues, hexokinase inhibitors and proline by an experimental system using half-cut fruits. AgpL1 was upregulated in response to sucrose and constituted hexoses such glucose, whereas the AgpS1 gene almost did not exhibit a prominent sugar response. Further analyses revealed that other disaccharides such maltose and trehalose did not show a remarkable effect on both AgpL1 and AgpS1 expressions. These results indicate that there are two distinct regulatory mechanisms, namely, sugar metabolism-dependent and -independent, for the regulation of AGPase gene expression. Interestingly, the ADP treatment, a hexokinase inhibitors, cancelled the sugar response of AgpL1, indicating that hexokinase-mediated sugar signaling should be involved in the sugar response of AgpL1. These results suggest that sugar-dependent (AgpL1) and sugar-independent (AgpS1) pathways coordinatively regulate starch biosynthesis in immature tomato fruit.
Collapse
Affiliation(s)
- Yong-Gen Yin
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Atsuko Sanuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yukihisa Goto
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Nobuo Suzui
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Naoki Kawachi
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Chiaki Matsukura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
3
|
Zhang S, Wang W, Chang R, Yu J, Yan J, Yu W, Li C, Xu Z. Structure and Expression Analysis of PtrSUS, PtrINV, PtrHXK, PtrPGM, and PtrUGP Gene Families in Populus trichocarpa Torr. and Gray. Int J Mol Sci 2023; 24:17277. [PMID: 38139109 PMCID: PMC10743687 DOI: 10.3390/ijms242417277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Exogenous nitrogen and carbon can affect plant cell walls, which are composed of structural carbon. Sucrose synthase (SUS), invertase (INV), hexokinase (HXK), phosphoglucomutase (PGM), and UDP-glucose pyrophosphorylase (UGP) are the key enzymes of sucrose metabolism involved in cell wall synthesis. To understand whether these genes are regulated by carbon and nitrogen to participate in structural carbon biosynthesis, we performed genome-wide identification, analyzed their expression patterns under different carbon and nitrogen treatments, and conducted preliminary functional verification. Different concentrations of nitrogen and carbon were applied to poplar (Populus trichocarpa Torr. and Gray), which caused changes in cellulose, lignin, and hemicellulose contents. In poplar, 6 SUSs, 20 INVs, 6 HXKs, 4 PGMs, and 2 UGPs were identified. Moreover, the physicochemical properties, collinearity, and tissue specificity were analyzed. The correlation analysis showed that the expression levels of PtrSUS3/5, PtrNINV1/2/3/5/12, PtrCWINV3, PtrVINV2, PtrHXK5/6, PtrPGM1/2, and PtrUGP1 were positively correlated with the cellulose content. Meanwhile, the knockout of PtrNINV12 significantly reduced the cellulose content. This study could lay the foundation for revealing the functions of SUSs, INVs, HXKs, PGMs, and UGPs, which affected structural carbon synthesis regulated by nitrogen and carbon, proving that PtrNINV12 is involved in cell wall synthesis.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Junxin Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China;
| | - Wenxi Yu
- Heilongjiang Forestry Academy of Science, Harbin 150081, China;
| | - Chunming Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Zhiru Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
4
|
Jiao F, Chen Y, Zhang D, Wu J. Genome-Wide Characterization of Soybean Hexokinase Genes Reveals a Positive Role of GmHXK15 in Alkali Stress Response. PLANTS (BASEL, SWITZERLAND) 2023; 12:3121. [PMID: 37687370 PMCID: PMC10490225 DOI: 10.3390/plants12173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Hexokinase (HXK) proteins catalyze hexose phosphorylation and are important for the sensing and signaling of sugar. In order to determine the roles played by HXKs in soybean growth and stress responsiveness, seventeen HXK genes (GmHXK1-17) were isolated and analyzed. The phylogenic analysis and subcellular location prediction showed that GmHXKs were clearly classified into type A (GmHXK1-4) and type B (GmHXK5-17). There were similar protein structures and conserved regions in GmHXKs to the HXKs of other plants. An expression analysis of the GmHXK genes in soybean organs or tissues demonstrated that GmHXK3 and GmHXK12, 15, and 16 were the dominant HXKs in all the examined tissues. In addition, salt, osmotic, and alkaline stress treatments dramatically increased the activity and transcripts of GmHXKs. There is the possibility that a type-B isoform (GmHXK15) plays a crucial role in soybean adaptation to alkali, as the expression levels of this isoform correlate well with the HXK enzyme activity. Based on an enzyme assay performed on recombinant plant HXK15 proteins expressed in Escherichia coli, we found that GmHXK15 had functional HXK activities. A further analysis indicated that GmHXK15 specifically targeted the mitochondria, and the overexpression of the GmHXK15 gene could significantly enhance the resistance of transgenic soybean to alkali stress. The present findings will serve as a basis for a further analysis of the function of the GmHXK gene family.
Collapse
Affiliation(s)
| | | | | | - Jinhua Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (F.J.); (Y.C.); (D.Z.)
| |
Collapse
|
5
|
Yi JW, Ge HT, Abbas F, Zhao JT, Huang XM, Hu GB, Wang HC. Function of a non-enzymatic hexokinase LcHXK1 as glucose sensor in regulating litchi fruit abscission. TREE PHYSIOLOGY 2023; 43:130-141. [PMID: 35951668 DOI: 10.1093/treephys/tpac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Fruit abscission is a severe hindrance to commercial crop production, and a lack of carbohydrates causes fruit abscission to intensify in a variety of plant species. However, the precise mechanism by which carbohydrates affect fruit setting potential has yet to be determined. In the current study, we noticed negative correlation between hexose level and fruit setting by comparing different cultivars, bearing shoots of varying diameters, and girdling and defoliation treatments. The cumulative fruit-dropping rate was significantly reduced in response to exogenous glucose dipping. These results suggested that hexose, especially glucose, is the key player in lowering litchi fruit abscission. Moreover, five putative litchi hexokinase genes (LcHXKs) were isolated and the subcellular localization as well as activity of their expressed proteins in catalyzing hexose phosphorylation were investigated. LcHXK2 was only found in mitochondria and expressed catalytic protein, whereas the other four HXKs were found in both mitochondria and nuclei and had no activity in catalyzing hexose phosphorylation. LcHXK1 and LcHXK4 were found in the same cluster as previously reported hexose sensors AtHXK1 and MdHXK1. Furthermore, VIGS-mediated silencing assay confirms that LcHXK1 suppression increases fruit abscission. These findings revealed that LcHXK1 functions as hexose sensor, negatively regulating litchi fruit abscission.
Collapse
Affiliation(s)
- Jun-Wen Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Han-Tao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Farhat Abbas
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jie-Tang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xu-Ming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Cong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling 408100, China
| |
Collapse
|
6
|
Chen S, Tian Z, Guo Y. Characterization of hexokinase gene family members in Glycine max and functional analysis of GmHXK2 under salt stress. Front Genet 2023; 14:1135290. [PMID: 36911414 PMCID: PMC9996050 DOI: 10.3389/fgene.2023.1135290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Hexokinase (HXK) is a bifunctional enzyme involved in carbohydrate metabolism and sugar signal sensing. HXK gene family has been extensively discussed in many species, while the detailed investigations of the family in Glycine max have yet to be reported. In this study, 17 GmHXK genes (GmHXKs) were identified in the G. max genome and the features of their encoded proteins, conserved domains, gene structures, and cis-acting elements were systematically characterized. The GmHXK2 gene isolated from G. max was firstly constructed into plant expression vector pMDC83 and then transformed with Agrobacterium tumefaciens into Arabidopsis thaliana. The expression of integrated protein was analyzed by Western Blotting. Subcellular localization analysis showed that the GmHXK2 was located on both vacuolar and cell membrane. Under salt stress, seedlings growth was significantly improved in Arabidopsis overexpressing GmHXK2 gene. Furthermore, physiological indicators and expression of salt stress responsive genes involved in K+ and Na+ homeostasis were significantly lower in GmHXK2-silenced soybean seedlings obtained by virus-induced gene silencing (VIGS) technique under salt stress compared with the control plants. Our study showed that GmHXK2 gene played an important role in resisting salt stress, which suggested potential value for the genetic improvement of abiotic resistant crops.
Collapse
Affiliation(s)
- Shuai Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Wu M, Su H, Li C, Fu Z, Wu F, Yang J, Wang L. Effects of foliar application of single-walled carbon nanotubes on carbohydrate metabolism in crabapple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:214-222. [PMID: 36427383 DOI: 10.1016/j.plaphy.2022.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes (CNTs) regulate growth in many plants. Carbohydrates provide energy and carbon skeleton for cell growth. However, how CNTs influence plant carbohydrate metabolism remains largely unknown. For a comprehensive understanding the response of carbohydrate metabolism and accumulation in leaves of crabapple (Malus hupehensis Rehd) to single-walled carbon nanotubes (SWCNTs), the expression of key enzymes and genes involved in apple sugar metabolism was investigated. In this report, TEM showed that SWCNTs particles were absorbed in apple leaf. Foliar application of 10 and 20 mg/L SWCNTs promoted chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. SWCNTs up-regulate the activity of aldose-6-phosphate reductase (A6PR), accompanied by increased concentration of photosynthetic assimilate‒sorbitol. However, the activities of sucrose phosphate synthase (SPS) and the accumulation of sucrose did not change significantly in SWCNTs-sprayed apple leaves compared with the control. In addition, the activities of photoassimilate degradation enzyme (sorbitol dehydrogenase, SDH; sucrose synthase, SUSY; neutral invertase, NINV) and hexose degradation enzyme (fructokinase, FRK; hexokinase, HK) were higher in SWCNTs-treated apple leaves than that in the control leaves. Quantitative real-time polymerase chain reaction (qRT‒PCR) results indicated that the expression of genes associated with sugar metabolism changed significantly after SWCNTs application. Taken together, we propose that spraying apple leaves with 10 and 20 mg/L SWCNTs can improve photosynthetic activity and accelerate carbohydrate metabolism in apple leaves. Our results provide insight into understanding the biological effects of CNTs in plants and are valuable for continued use of SWCNTs in agri-nanotechnology.
Collapse
Affiliation(s)
- Mingqi Wu
- College of life Sciences, Ludong Universtiy, Yantai, 264025, PR China
| | - Hongyan Su
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China; The Institute of Ecological Garden, Ludong University, Yantai, 264025, PR China
| | - Chuanshou Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Zhishun Fu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Fanlin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Jingjing Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China.
| | - Lei Wang
- College of life Sciences, Ludong Universtiy, Yantai, 264025, PR China.
| |
Collapse
|
8
|
Peng J, Du J, Wuqiang M, Chen T, Shui X, Liao H, Lin X, Zhou K. Transcriptomics-based analysis of the causes of sugar receding in Feizixiao litchi ( Litchi chinensis Sonn.) pulp. FRONTIERS IN PLANT SCIENCE 2022; 13:1083753. [PMID: 36618655 PMCID: PMC9814114 DOI: 10.3389/fpls.2022.1083753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
To investigate the causes of the "sugar receding" in 'Feizixiao' litchi (Litchi chinensis Sonn.) pulp, the main sugar contents and sucrose metabolism enzyme activities were measured in pulp obtained in 2020 and 2021. Pulp RNA obtained in 2020 was extracted at 35, 63, and 69 days after anthesis (DAA) for transcriptome sequencing analysis. The differential expression of genes was verified by real-time PCR for both years. The results showed that after 63 DAA, the contents of soluble sugars and sucrose decreased, and the contents of fructose and glucose increased in both years. The dynamic changes in sucrose metabolism enzyme activities were similar in both years. After 63 DAA, except for acid invertase (AI) in 2021, the activities of other enzymes decreased significantly, and the net activity of sucrose metabolism enzymes showed a strong sucrose cleavage activity. There were 18061, 19575, and 985 differentially expressed genes in 35 d vs. 63 d, 35 d vs. 69 d, and 63 d vs. 69 d, respectively. Ninety-one sugar metabolism genes were screened out, including sucrose synthase (SS), sucrose phosphate synthase (SPS), AI, neutral invertase (NI), hexokinase (HK), glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), phosphofructokinase (PFK), and pyruvate kinase (PK) genes. In 63 d vs. 69 d, seventy-five percent of sucrose metabolism genes were downregulated, seventy-seven percent of genes in glycolysis (EMP) were upregulated and the PFK genes were significantly upregulated. There was a significant linear correlation between the expression of 15 genes detected by real-time PCR and the transcriptome sequencing results (r2020 = 0.9139, r2021 = 0.8912). These results suggest that the upregulated expression of PFK genes at maturity may enhance PFK activity and promote the degradation of soluble sugar in pulp through the EMP pathway, resulting in decreased soluble sugar and sucrose contents and "sugar receding" in pulp. Moreover, the downregulated expression of sucrose metabolism genes in pulp decreased the activities of these enzymes, but the net activity of these enzymes resulted in cleaved sucrose and replenished levels of reducing sugars, resulting in a stable reducing sugar content.
Collapse
Affiliation(s)
- Junjie Peng
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Jingjia Du
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Ma Wuqiang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Tiantian Chen
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Xian Shui
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Haizhi Liao
- College of Horticulture, Hainan University, Haikou, China
| | - Xiaokai Lin
- College of Horticulture, Hainan University, Haikou, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
9
|
Yun P, Li Y, Wu B, Zhu Y, Wang K, Li P, Gao G, Zhang Q, Li X, Li Z, He Y. OsHXK3 encodes a hexokinase-like protein that positively regulates grain size in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3417-3431. [PMID: 35941236 DOI: 10.1007/s00122-022-04189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice. Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.
Collapse
Affiliation(s)
- Peng Yun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiyue Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Li N, Wang J, Wang B, Huang S, Hu J, Yang T, Asmutola P, Lan H, Qinghui Y. Identification of the Carbohydrate and Organic Acid Metabolism Genes Responsible for Brix in Tomato Fruit by Transcriptome and Metabolome Analysis. Front Genet 2021; 12:714942. [PMID: 34539743 PMCID: PMC8446636 DOI: 10.3389/fgene.2021.714942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Background Sugar and organic acids not only contribute to the formation of soluble solids (Brix) but also are an essential factor affecting the overall flavor intensity. However, the possible metabolic targets and molecular synthesis mechanisms remain to be further clarified. Methods UHPLC-HRMS (ultrahigh-performance liquid chromatography and high-resolution mass spectrometry) combined with comparative transcriptome analysis were performed in fruits at green ripe (S1), turning-color (S2), and red ripe (S3) stages of two tomato genotypes TM-1 (Solanum galapagense L., LA0436) and TM-38 (S. lycopersicum L. cultivar M82, LA3475) that vary in fruit Brix. Results The fruit Brix of TM-1 was nearly twice that of TM-38 at S3. Nevertheless, TM-1 accumulated 1.84- and 2.77-fold the L-malic acid and citric acid in red ripe fruit (S3) compared with TM-38, respectively. D-glucose and D-fructose in TM-1 and TM-38 fruits tended to be similar at S3. Concomitantly, the sugar/organic acid ratio of TM-38 fruits were 23. 08-, 4. 38-, and 2.59-fold higher than that of TM-1 fruits at S1, S2, and S3, respectively. Among starch and sucrose (carbohydrate, CHO) metabolism (ko00500) genes, SUS (Solyc07g042550.3) and BAM (Solyc08g077530.3) were positively (r = 0.885–0.931) correlated with the sugar/organic acid ratio. Besides, INV (Solyc09g010080.3 and Solyc09g010090.5.1), AAM (Solyc04g082090.3), 4-α-GTase (Solyc02g020980.2.1), BGL2 (Solyc06g073750.4, Solyc06g073760.3, and Solyc01g081170.3), TPS (Solyc01g005210.2 and Solyc07g006500.3), and TPP (Solyc08g079060.4) were negatively (r = −0.823 to −0.918) correlated with the sugar/organic acid ratio. The organic acid (TCA cycle) metabolism (ko00020) gene ALMT (Solyc01g096140.3) was also negatively (r = −0.905) correlated with the sugar/organic acid ratio. Conclusion Citric acid may play a more dominant role in the sugar/organic acid ratio of the tomato fruit, and the contribution of both L-malic acid and citric acid to the fruit Brix was much greater than that of D-glucose and D-fructose. Genes involved in CHO and TCA metabolism, which have a significant correlation with the sugar/organic acid ratio were considered to be the contributing factors of fruit Brix.
Collapse
Affiliation(s)
- Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shaoyong Huang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Patiguli Asmutola
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yu Qinghui
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
11
|
Pérez-Díaz J, Batista-Silva W, Almada R, Medeiros DB, Arrivault S, Correa F, Bastías A, Rojas P, Beltrán MF, Pozo MF, Araújo WL, Sagredo B. Prunus Hexokinase 3 genes alter primary C-metabolism and promote drought and salt stress tolerance in Arabidopsis transgenic plants. Sci Rep 2021; 11:7098. [PMID: 33782506 PMCID: PMC8007757 DOI: 10.1038/s41598-021-86535-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
Hexokinases (HXKs) and fructokinases (FRKs) are the only two families of enzymes in plants that have been identified as able to phosphorylate Glucose (Glc) and Fructose (Fru). Glc can only be phosphorylated in plants by HXKs, while Fru can be phosphorylated by either HXKs or FRKs. The various subcellular localizations of HXKs in plants indicate that they are involved in diverse functions, including anther dehiscence and pollen germination, stomatal closure in response to sugar levels, stomatal aperture and reducing transpiration. Its association with modulating programmed cell death, and responses to oxidative stress and pathogen infection (abiotic and biotic stresses) also have been reported. To extend our understanding about the function of HXK-like genes in the response of Prunus rootstocks to abiotic stress, we performed a detailed bioinformatic and functional analysis of hexokinase 3-like genes (HXK3s) from two Prunus rootstock genotypes, 'M.2624' (Prunus cerasifera Ehrh × P. munsoniana W.Wight & Hedrick) and 'M.F12/1' (P. avium L.), which are tolerant and sensitive to hypoxia stress, respectively. A previous large-scale transcriptome sequencing of roots of these rootstocks, showed that this HXK3-like gene that was highly induced in the tolerant genotype under hypoxia conditions. In silico analysis of gene promoters from M.2624 and M.F12/1 genotypes revealed regulatory elements that could explain differential transcriptional profiles of HXK3 genes. Subcellular localization was determinates by both bioinformatic prediction and expression of their protein fused to the green fluorescent protein (GFP) in protoplasts and transgenic plants of Arabidopsis. Both approaches showed that they are expressed in plastids. Metabolomics analysis of Arabidopsis plants ectopically expressing Prunus HXK3 genes revealed that content of several metabolites including phosphorylated sugars (G6P), starch and some metabolites associated with the TCA cycle were affected. These transgenic Arabidopsis plants showed improved tolerance to salt and drought stress under growth chamber conditions. Our results suggest that Prunus HXK3 is a potential candidate for enhancing tolerance to salt and drought stresses in stone fruit trees and other plants.
Collapse
Affiliation(s)
- Jorge Pérez-Díaz
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Willian Batista-Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Rubén Almada
- Centro de Estudios Avanzados en Fruticultura, CEAF, Camino Las Parcelas 882, Sector Los Choapinos, Rengo, Chile
| | - David B Medeiros
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Francisco Correa
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Adriana Bastías
- Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Pamela Rojas
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - María Francisca Beltrán
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - María Francisca Pozo
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile.
| |
Collapse
|
12
|
Li J, Chen G, Zhang J, Shen H, Kang J, Feng P, Xie Q, Hu Z. Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110544. [PMID: 32771157 DOI: 10.1016/j.plantsci.2020.110544] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 05/18/2023]
Abstract
Sugars are the key regulatory molecules that impact diverse biological processes in plants. Hexokinase, the key rate-limiting enzyme in hexose metabolism, takes part in the first step of glycolytic pathway. Acting as a sensor that mediates sugar regulation, hexokinase has been proved to play significant roles in regulating plant growth and development. Here, we isolated a hexokinase gene SlHXK1 from tomato. Its transcript levels were higher in flowers and leaves than in other organs and decreased during leaf and petiole development. SlHXK1-RNAi lines displayed advanced leaf senescence and stunted plant growth. Physiological features including plant height, leaf length, thickness and size, the contents of chlorophyll, starch and MDA, and hexokinase activity were dramatically altered in SlHXK1-RNAi plants. Dark-induced leaf senescence were advanced and the transcripts of senescence-related genes after darkness treatment were markedly increased in SlHXK1-RNAi plants. RNA-seq and qRT-PCR analyses showed that the transcripts of genes related to plant hormones, photosynthesis, chloroplast development, chlorophyll synthesis and metabolism, cellular process, starch and sucrose metabolism, and senescence were significantly altered in SlHXK1-RNAi plants. Taken together, our data demonstrate that SlHXK1 is a significant gene involved in leaf senescence and plant growth and development in tomato through affecting starch turnover.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jing Kang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
13
|
Zheng W, Zhang Y, Zhang Q, Wu R, Wang X, Feng S, Chen S, Lu C, Du L. Genome-Wide Identification and Characterization of Hexokinase Genes in Moso Bamboo ( Phyllostachys edulis). FRONTIERS IN PLANT SCIENCE 2020; 11:600. [PMID: 32508863 PMCID: PMC7248402 DOI: 10.3389/fpls.2020.00600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/20/2020] [Indexed: 05/18/2023]
Abstract
Plant hexokinases (HXKs) are a class of multifunctional proteins that not only act as the enzymes required for hexose phosphorylation but also serve as sugar sensors that repress the expression of some photosynthetic genes when internal glucose level increases and regulators of cell metabolism and some sugar-related signaling pathways independent on their catalytic actives. The HXKs have been studied in many plants; however, limited information is available on HXKs of moso bamboo (Phyllostachys edulis). In this study, we identified and characterized 12 hexokinase genes in moso bamboo. Phylogenetic analysis revealed that the moso bamboo hexokinases (PeHXKs) were classifiable into five subfamilies which represented the three types of hexokinases in plants. Gene structure and conserved motif analysis showed that the PeHXK genes contained diverse numbers of introns and exons and that the encoded proteins showed similar motif organization within each subfamily. Multiple sequence alignment revealed that the PeHXK proteins contained conserved domains, such as phosphate 1 (P1), phosphate 2 (P2), adenosine, and a sugar-binding domain. Evolutionary divergence analysis indicated that the PeHXK, OsHXK, and BdHXK families underwent negative selection and experienced a large-scale duplication event approximately 19-319 million years ago. Expression analysis of the PeHXK genes in the leaf, stem, root, and rhizome of moso bamboo seedlings indicated that the PeHXKs perform pivotal functions in the development of moso bamboo. A protein subcellular localization assay showed that PeHXK5a, PeHXK8, and PeHXK3b were predominantly localized in mitochondria, and PeHXK8 protein was also detected in the nucleus. The HXK activity of the PeHXK5a, PeHXK8, and PeHXK3b was verified by a functional complementation assay using the HXK-deficient triple-mutant yeast strain YSH7.4-3C (hxk1, hxk2, and glk1), and the results showed that the three PeHXKs had the plant HXK-specific enzyme traits. The present findings would provide a foundation for further functional analysis of the PeHXK gene family.
Collapse
Affiliation(s)
- Wenqing Zheng
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuan Zhang
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qian Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shengnian Feng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cunfu Lu
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Zhang C, Zhang L, Fu J, Dong L. Isolation and characterization of hexokinase genes PsHXK1 and PsHXK2 from tree peony (Paeonia suffruticosa Andrews). Mol Biol Rep 2019; 47:327-336. [PMID: 31677036 DOI: 10.1007/s11033-019-05135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Hexokinase (HXK) plays important roles in hexose phosphorylation and sugar signaling. HXK regulates the glucose-induced accumulation of anthocyanin in many species. Little is known about the biological function of the HXK gene family in Paeonia suffruticosa. cDNA sequences of two hexokinase genes PsHXK1 and PsHXK2 were isolated using RACE-PCR and RT-PCR from P. suffruticosa. PsHXK1 encodes 498 amino acids with a 1497-bp open reading frame (ORF), and PsHXK2 contains 493 amino acids with a 1482-bp ORF. Sequence and phylogenetic analyses suggest that PsHXK1 and PsHXK2 belong to type-B HXK and may function as glucose sensors. PsHXK1 and PsHXK2 mRNA were detected in all tested tissues. PsHXK1 is highly expressed in petals and stamens, while PsHXK2 is highly expressed in stamens. At the former stages of flower opening, PsHXK1 and PsHXK2 show higher expression levels in on-tree flowers compared with cut flowers. Overexpressing PsHXK1 and PsHXK2 in Arabidopsis enhances glucose sensitivity, inhibits plant growth in response to glucose, and induces anthocyanin accumulation in response to the high level of glucose. Overall, our results primarily reveal the biological function of PsHXK1 and PsHXK2, especially their involvement in glucose-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Chao Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.,Department of Ornamental Horticulture, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Lili Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jianxin Fu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.,Department of Ornamental Horticulture, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Zhao B, Qi K, Yi X, Chen G, Liu X, Qi X, Zhang S. Identification of hexokinase family members in pear (Pyrus × bretschneideri) and functional exploration of PbHXK1 in modulating sugar content and plant growth. Gene 2019; 711:143932. [DOI: 10.1016/j.gene.2019.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
16
|
Wang H, Xin H, Guo J, Gao Y, Liu C, Dai D, Tang L. Genome-wide screening of hexokinase gene family and functional elucidation of HXK2 response to cold stress in Jatropha curcas. Mol Biol Rep 2019; 46:1649-1660. [PMID: 30756333 DOI: 10.1007/s11033-019-04613-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022]
Abstract
Hexokinase, the key rate-limiting enzyme of plant respiration and glycolysis metabolism, has been found to play a vital role in plant sugar sensing and sugar signal transduction. Using Jatropha curcas genome database and bioinformatics method, J. curcas HXK gene family (JcHXK) was identified and its phylogenetic evolution, functional domain, signal peptide at the N-terminal, and expression analysis were conducted. The results showed that a total of 4 HXK genes (JcHXK1, JcHXK2, JcHXK3, and JcHKL1) with 9 exons were systematically identified from J. curcas. JcHXK1, JcHXK3, and JcHKL1 with putative transmembrane domain at the N-terminal belonged to the type of secretory pathway protein, and JcHXK2 contained putative chloroplast targeting peptide. Quantitative real-time PCR (qRT-PCR) analysis revealed that all the four JcHXKs were expressed in different tissues of the leaves, roots, and seeds; however, JcHXK1 and JcHKL1 expression were higher in the roots, whereas JcHXK2 and JcHXK3 showed over-expression in the leaves and seeds, respectively. Furthermore, all the four JcHXKs were up-regulated in the leaves after cold stress at 12 °C; however, only JcHXK3 remarkably demonstrated cold-induced expression in the roots, which reached the highest expression level at 12 h (2.28-fold). According to the cis-acting element analysis results, JcHXK2 contained the most low temperature responsive elements, which was closely related to the cold resistance in J. curcas. A pET-28a-JcHXK2 prokaryotic recombinant expression vector was successfully constructed and a 57.0 kDa protein was obtained, JcHXK2 revealed catalytic activity towards glucose and fructose, with a higher affinity for glucose than fructose. The subcellular localization assays revealed that JcHXK2 was localized in the chloroplast. The results of this study might provide theoretical foundation for further studies on gene cloning and functional verification of HXK family in J. curcas.
Collapse
Affiliation(s)
- Haibo Wang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Hu Xin
- Academy of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Junyun Guo
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Yong Gao
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Dongqin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Lizhou Tang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, Yunnan, China. .,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, 655011, Yunnan, China.
| |
Collapse
|
17
|
Aguilera-Alvarado GP, Guevara-García ÁA, Estrada-Antolín SA, Sánchez-Nieto S. Biochemical properties and subcellular localization of six members of the HXK family in maize and its metabolic contribution to embryo germination. BMC PLANT BIOLOGY 2019; 19:27. [PMID: 30646852 PMCID: PMC6332545 DOI: 10.1186/s12870-018-1605-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Seed germination is a crucial process in the plant life cycle when a dramatic variation of type and sugar content occurs just as the seed is hydrated. The production of hexose 6 phosphate is a key node in different pathways that are required for a successful germination. Hexokinase (HXK) is the only plant enzyme that phosphorylates glucose (Glc), so it is key to fueling several metabolic pathways depending on their substrate specificity, metabolite regulatory responses and subcellular localization. In maize, the HXK family is composed of nine genes, but only six of them (ZmHXK4-9) putatively encode catalytically active enzymes. Here, we cloned and functionally characterized putative catalytic enzymes to analyze their metabolic contribution during germination process. RESULTS From the six HXKs analyzed here, only ZmHXK9 has minimal hexose phosphorylating activity even though enzymatic function of all isoforms (ZmHXK4-9) was confirmed using a yeast complementation approach. The kinetic parameters of recombinant proteins showed that ZmHXK4-7 have high catalytic efficiency for Glc, fructose (Fru) and mannose (Man), ZmHXK7 has a lower Km for ATP, and together with ZmHXK8 they have lower sensitivity to inhibition by ADP, G6P and N-acetylglucosamine than ZmHXK4-6 and ZmHXK9. Additionally, we demonstrated that ZmHXK4-6 and ZmHXK9 are located in the mitochondria and their location relies on the first 30 amino acids of the N-terminal domain. Otherwise, ZmHXK7-8 are constitutively located in the cytosol. HXK activity was detected in cytosolic and mitochondrial fractions and high Glc and Fru phosphorylating activities were found in imbibed embryos. CONCLUSIONS Considering the biochemical characteristics, location and the expression of ZmHXK4 at onset of germination, we suggest that it is the main contributor to mitochondrial activity at early germination times, at 24 h other ZmHXKs also contribute to the total activity. While in the cytosol, ZmHXK7 could be responsible for the activity at the onset of germination, although later, ZmHXK8 also contributes to the total HXK activity. Our observations suggest that the HXKs may be redundant proteins with specific roles depending on carbon and ATP availability, metabolic needs, or sensor requirements. Further investigation is necessary to understand their specific or redundant physiological roles.
Collapse
Affiliation(s)
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E., Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
18
|
Yang J, Zhu L, Cui W, Zhang C, Li D, Ma B, Cheng L, Ruan YL, Ma F, Li M. Increased activity of MdFRK2, a high-affinity fructokinase, leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves. HORTICULTURE RESEARCH 2018; 5:71. [PMID: 30534388 PMCID: PMC6269498 DOI: 10.1038/s41438-018-0099-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 05/10/2023]
Abstract
To investigate the functions of fructokinase (FRK) in apple (Malus domestica) carbohydrate metabolism, we cloned the coding sequences of MdFRK1 and MdFRK2 from the 'Royal Gala' apple. The results showed that MdFRK2 expression was extremely high in shoot tips and young fruit. Analyses of heterologously expressed proteins revealed that MdFRK2 had a higher affinity for fructose than did MdFRK1, with Km values of 0.1 and 0.62 mM for MdFRK2 and MdFRK1, respectively. The two proteins, however, exhibited similar Vmax values when their activities were significantly inhibited by high concentrations of fructose. MdFRK2 ectopic expression was associated with a general decrease in fructose concentration in transgenic lines. In leaves, increased FRK activity similarly resulted in reduced concentrations of glucose and sucrose but no alterations in sorbitol concentration. When compared with those in the untransformed control, genes involved in sorbitol synthesis (A6PR) and the degradation pathway (SDH1/2) were significantly upregulated in transgenic lines, whereas those involved in sucrose synthesis (SPS1) and other degradation processes (SUSY4, NINV1/2, and HxK2) were downregulated. The activity of enzymes participating in carbohydrate metabolism was proportional to the level of gene expression. However, the growth performance and photosynthetic efficiency did not differ between the transgenic and wild-type plants. These results provide new genetic evidence to support the view that FRK plays roles in regulating sugar and sorbitol metabolism in Rosaceae plants.
Collapse
Affiliation(s)
- Jingjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Weifang Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Chen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Dongxia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
19
|
Fedosejevs ET, Feil R, Lunn JE, Plaxton WC. The signal metabolite trehalose-6-phosphate inhibits the sucrolytic activity of sucrose synthase from developing castor beans. FEBS Lett 2018; 592:2525-2532. [PMID: 30025148 DOI: 10.1002/1873-3468.13197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023]
Abstract
In plants, trehalose 6-phosphate (T6P) is a key signaling metabolite that functions as both a signal and negative feedback regulator of sucrose levels. The mode of action by which T6P senses and regulates sucrose is not fully understood. Here, we demonstrate that the sucrolytic activity of RcSUS1, the dominant sucrose synthase isozyme expressed in developing castor beans, is allosterically inhibited by T6P. The feedback inhibition of SUS by T6P may contribute to the control of sink strength and sucrolytic flux in heterotrophic plant tissues.
Collapse
Affiliation(s)
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
20
|
Wang J, Wang X, Geng S, Singh SK, Wang Y, Pattanaik S, Yuan L. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization. PLANTA 2018; 248:171-182. [PMID: 29644447 DOI: 10.1007/s00425-018-2888-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Genome-wide identification, expression analysis, and functional characterization of previously uncharacterized hexokinase family of oil crop, Brassica napus, underscore the importance of this gene family in plant growth and development. In plants, the multi-gene family of dual-function hexokinases (HXKs) plays important roles in sugar metabolism and sensing that affect growth and development. Rapeseed (Brassica napus L.) is an important oil crop; however, little is known about the B. napus HXK gene family. We identified 19 putative HXKs in B. napus genome. B. rapa and B. oleracea, the two diploid progenitors of B. napus, contributed almost equally to the BnHXK genes. Phylogenetic analysis divided the 19 BnHXKs into four groups. The exon-intron structures of BnHXKs share high similarity to those of HXKs in Arabidopsis and rice. The group III and IV BnHXKs are highly expressed in roots, whereas group I members preferentially express in leaves. Analysis of seed transcriptomes at different developmental stages showed that most of group I and IV HXKs are highly expressed 2-weeks after pollination (2WAP), compared to 4WAP for group III. BnHKXs are differentially expressed in susceptible and tolerant B. napus cultivars after fungal infection, suggesting the possible involvement in defense response. We generated rapeseed RNAi lines for BnHXK9, a member of relatively less characterized group IV, by pollen-mediated gene transformation. The seedlings of BnHXK9-RNAi lines showed delayed growth compared to the wild type. The RNAi plants were dwarf with curly leaves, suggesting the involvement of BnHXK9 in plant development. Collectively, our findings provides a comprehensive account of BnHXK gene family in an important crop and a starting point for further elucidation of their roles in sugar metabolism and sensing, as well as plant growth and development.
Collapse
Affiliation(s)
- Jingxue Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Xiaomin Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Siyu Geng
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Sanjay K Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Yaohui Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Ling Yuan
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China.
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
21
|
Gago C, Drosou V, Paschalidis K, Guerreiro A, Miguel G, Antunes D, Hilioti Z. Targeted gene disruption coupled with metabolic screen approach to uncover the LEAFY COTYLEDON1-LIKE4 (L1L4) function in tomato fruit metabolism. PLANT CELL REPORTS 2017; 36:1065-1082. [PMID: 28391527 DOI: 10.1007/s00299-017-2137-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/24/2017] [Indexed: 05/22/2023]
Abstract
Functional analysis of tomato L1L4 master transcription factor resulted in important metabolic changes affecting tomato fruit quality. Tomato fruits from mutant lines bearing targeted disruption of the heterotrimeric nuclear transcription factor Y (NF-Y) transcription factor (TF) gene LEAFY-COTYLEDON1-LIKE4 (L1L4, NF-YB6), a master regulator of biosynthesis for seed storage proteins and fatty acids, were evaluated for metabolites content and morphology. Metabolic screens using LC-MS/MS-based analysis and physico-chemical methods in different L1L4 mutants of the fourth generation allowed a comparative assessment of the effects of the TF disruption. Mutagenesis resulted in fruits phenotypically similar to wild-type with subtle shape differences in the distal end protrusion and symmetry. Conversely, mutant fruits from independent lines had significant variation in moisture content, titratable acidity and overall metabolite profiles including oxalic and citric acid, fructose, β-carotene, total polyphenols and antioxidants. Lines 6, 7 and 9 were the richest in β-carotene and antioxidant activity, line 4 in ascorbic acid and lines 4 and 8 in succinic acid. The reduced content of the anti-nutrient oxalic acid in several mutant fruits suggests that L1L4 gene may regulate the accumulation of this compound during fruit development. Detailed LC-MS/MS analysis of mutant seeds showed substantial differences in bioactive compounds compared to wild-type seeds. Taken together, the results suggest that the L1L4 TF is a significant regulator of metabolites both in tomato fruit and seeds providing a molecular target for crop improvement. Elucidation of the candidate genes encoding key enzymes in the affected metabolic pathways aimed to facilitate the L1L4 gene network exploration and eventually lead to systems biology approaches in tomato fruit quality.
Collapse
Affiliation(s)
- Custódia Gago
- Meditbio, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
| | - Victoria Drosou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 6th klm Charilaou-Thermi Rd., 57001, Thessaloniki, Thermi, Greece
| | - Konstantinos Paschalidis
- Department of Agriculture, Technological Educational Institution of Crete, 710 04, Heraklion, Crete, Greece
| | - Adriana Guerreiro
- Meditbio, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
| | - Graça Miguel
- Meditbio, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
| | - Dulce Antunes
- Meditbio, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
- CEOT, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zoe Hilioti
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 6th klm Charilaou-Thermi Rd., 57001, Thessaloniki, Thermi, Greece.
| |
Collapse
|
22
|
Aguilera-Alvarado GP, Sánchez-Nieto S. Plant Hexokinases are Multifaceted Proteins. PLANT & CELL PHYSIOLOGY 2017; 58:1151-1160. [PMID: 28449056 DOI: 10.1093/pcp/pcx062] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 05/09/2023]
Abstract
Sugars are the main carbon and energy source in cells, but they can also act as signaling molecules that affect the whole plant life cycle. Certain tissues can produce sugars and supply them to others, and this plant tissue heterogeneity makes sugar signaling a highly complex process that requires elements capable of perceiving changes in sugar concentrations among different tissues, cell compartments and developmental stages. In plants, the regulatory effects of glucose (Glc) have been the most studied to date. The first Glc sensor identified in plants was hexokinase (HXK), which is currently recognized as a dual-function protein. In addition to its catalytic activity, this enzyme can also repress the expression of some photosynthetic genes in response to high internal Glc concentrations. Additionally, the catalytic activity of HXKs has a profound impact on cell metabolism and other sugar signaling pathways that depend on phosphorylated hexoses and intermediate glycolytic products. HXKs are the only proteins that are able to phosphorylate Glc in plants, since no evidence has been provided to date concerning the existence of a glucokinase. Moreover, the intracellular localization of HXKs seems to be crucial to their activity and sensor functions. Recently, two new and surprising functions have been described for HXKs. In this review, we discuss the versatility of HXKs in regard to their catalytic and glucose sensor activities, intracellular location, protein-protein and hormone interactions, as well as how these HXK characteristics influence plant growth and development, in an effort to understand this enzyme's role in improving plant productivity.
Collapse
Affiliation(s)
- G Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| |
Collapse
|
23
|
Geng MT, Yao Y, Wang YL, Wu XH, Sun C, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Int J Mol Sci 2017; 18:E1041. [PMID: 28498327 PMCID: PMC5454953 DOI: 10.3390/ijms18051041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
Hexokinase (HXK) proteins play important roles in catalyzing hexose phosphorylation and sugar sensing and signaling. To investigate the roles of HXKs in cassava tuber root development, seven HXK genes (MeHXK1-7) were isolated and analyzed. A phylogenetic analysis revealed that the MeHXK family can be divided into five subfamilies of plant HXKs. MeHXKs were clearly divided into type A (MeHXK1) and type B (MeHXK2-7) based on their N-terminal sequences. MeHXK1-5 all had typical conserved regions and similar protein structures to the HXKs of other plants; while MeHXK6-7 lacked some of the conserved regions. An expression analysis of the MeHXK genes in cassava organs or tissues demonstrated that MeHXK2 is the dominant HXK in all the examined tissues (leaves, stems, fruits, tuber phloems, and tuber xylems). Notably, the expression of MeHXK2 and the enzymatic activity of HXK were higher at the initial and expanding tuber stages, and lower at the mature tuber stage. Furthermore, the HXK activity of MeHXK2 was identified by functional complementation of the HXK-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). The gene expression and enzymatic activity of MeHXK2 suggest that it might be the main enzyme for hexose phosphorylation during cassava tuber root development, which is involved in sucrose metabolism to regulate the accumulation of starch.
Collapse
Affiliation(s)
- Meng-Ting Geng
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yun-Lin Wang
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xiao-Hui Wu
- Prisys Biotechnologies Company Limited, Shanghai 201203, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Rui-Mei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
24
|
Zhang W, Lunn JE, Feil R, Wang Y, Zhao J, Tao H, Guo Y, Zhao Z. Trehalose 6-phosphate signal is closely related to sorbitol in apple ( Malus domestica Borkh. cv. Gala). Biol Open 2017; 6:260-268. [PMID: 28069587 PMCID: PMC5312103 DOI: 10.1242/bio.022301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Trehalose-6-phosphate (Tre6P) is a precursor of trehalose, which is widespread in nature and greatly influences plant growth and development. Tre6P acts as a signal of carbon availability in many plants, but little is known about the function of Tre6P in rosaceous plants, which have specific sorbitol biosynthesis and transportation pathways. In the present study, Tre6P levels and Sorbitol:Tre6P ratios were analyzed in apple (Malus domestica, Borkh. cv. Gala). Tre6P levels were positively correlated with sorbitol content but negatively correlated with sucrose, glucose, and fructose content in developing fruit. However, under sorbitol-limited conditions, Tre6P levels were positively correlated with both sorbitol and sucrose. In the presence of different exogenous sugar supply, Tre6P levels increased corresponding with sorbitol, but this was not the case with sucrose. In addition, Tre6P content and sorbitol:Tre6P ratios were more highly correlated with ADP-glucose levels under sorbitol-limited conditions and fruit development stages, respectively. These results suggest that Tre6P is more closely related to sorbitol than other soluble sugars and has an important role in influencing carbon metabolism in apple. Summary: Metabolite analysis of the Tre6P pathway in apple fruit, Malus domestica, reveals that Tre6P levels were highly and positively correlated with sorbitol content, but not with sucrose content.
Collapse
Affiliation(s)
- Wen Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Metabolic Networks Group, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Metabolic Networks Group, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Yufei Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Zhao
- Key Laboratory of Horticulture Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongxia Tao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.,Key Laboratory of Horticulture Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China .,Key Laboratory of Horticulture Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengyang Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.,Shaanxi Engineering Research Center for Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
25
|
Li NN, Qian WJ, Wang L, Cao HL, Hao XY, Yang YJ, Wang XC. Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). JOURNAL OF PLANT PHYSIOLOGY 2017; 209:95-104. [PMID: 28013175 DOI: 10.1016/j.jplph.2016.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Hexokinases (HXKs, EC 2.7.1.1) and fructokinases (FRKs, EC 2.7.1.4) play important roles in carbohydrate metabolism and sugar signaling during the growth and development of plants. However, the HXKs and FRKs in the tea plant (Camellia sinensis) remain largely unknown. In this manuscript, we present the molecular characterization, phylogenetic relationships, conserved domains and expression profiles of four HXK and seven FRK genes of the tea plant. The 11 deduced CsHXK and CsFRK proteins were grouped into six main classes. All of the deduced proteins, except for CsFKR7, possessed putative ATP-binding motifs and a sugar recognition region. These genes exhibited tissue-specific expression patterns, which suggests that they play different roles in the metabolism and development of source and sink tissues in the tea plant. There were variations in CsHXKs and CsFRKs transcript abundance in response to four abiotic stresses: cold, salt, drought and exogenous abscisic acid (ABA). Remarkably, CsHXK3 and CsHXK4 were significantly induced in the leaves and roots under cold conditions, CsHXK1 was apparently up-regulated in the leaves and roots under salt and drought stresses, and CsHXK3 was obviously stimulated in the leaves and roots under short-term treatment with exogenous ABA. These findings demonstrate that CsHXKs play critical roles in response to abiotic stresses in the tea plant. Our research provides a fundamental understanding of the CsHXK and CsFRK genes of the tea plant and important information for the breeding of stress-tolerant tea cultivars.
Collapse
Affiliation(s)
- Na-Na Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Wen-Jun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hong-Li Cao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin-Yuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Ya-Jun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Xin-Chao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
26
|
Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple. PLoS Genet 2016; 12:e1006273. [PMID: 27560976 PMCID: PMC4999241 DOI: 10.1371/journal.pgen.1006273] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 08/02/2016] [Indexed: 01/03/2023] Open
Abstract
Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants.
Collapse
Affiliation(s)
- Da-Gang Hu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
27
|
Feng Y, Zhang L, Fu J, Li F, Wang L, Tan X, Mo W, Cao H. Characterization of Glycolytic Pathway Genes Using RNA-Seq in Developing Kernels of Eucommia ulmoides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3712-3731. [PMID: 27074598 DOI: 10.1021/acs.jafc.5b05918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eucommia ulmoides Oliver, the only member of the Eucommiaceae family, is a rare and valuable tree used to produce a highly valued traditional Chinese medicine and contains α-linolenic acid (ALA) up to 60% of the total fatty acids in the kernels (embryos). Glycolysis provides both cellular energy and the intermediates for other biosynthetic processes. However, nothing was known about the molecular basis of the glycolytic pathway in E. ulmoides kernels. The purposes of this study were to identify novel genes of E. ulmoides related to glycolytic metabolism and to analyze the expression patterns of selected genes in the kernels. Transcriptome sequencing based on the Illumina platform generated 96,469 unigenes in four cDNA libraries constructed using RNAs from 70 and 160 days after flowering kernels of both low- and high-ALA varieties. We identified and characterized the digital expression of 120 unigenes coding for 24 protein families involved in kernel glycolytic pathway. The expression levels of glycolytic genes were generally higher in younger kernels than in more mature kernels. Importantly, several unigenes from kernels of the high-ALA variety were expressed more than those from the low-ALA variety. The expression of 10 unigenes encoding key enzymes in the glycolytic pathway was validated by qPCR using RNAs from six kernel stages of each variety. The qPCR data were well consistent with their digital expression in transcriptomic analyses. This study identified a comprehensive set of genes for glycolytic metabolism and suggests that several glycolytic genes may play key roles in ALA accumulation in the kernels of E. ulmoides.
Collapse
Affiliation(s)
- Yanzhi Feng
- Paulownia Research and Development Center, State Forestry Administration , Zhengzhou, Henan 450003, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology , Changsha, Hunan 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology , Changsha, Hunan 410004, China
| | - Jianmin Fu
- Paulownia Research and Development Center, State Forestry Administration , Zhengzhou, Henan 450003, China
| | - Fangdong Li
- Paulownia Research and Development Center, State Forestry Administration , Zhengzhou, Henan 450003, China
| | - Lu Wang
- Paulownia Research and Development Center, State Forestry Administration , Zhengzhou, Henan 450003, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology , Changsha, Hunan 410004, China
| | - Wenjuan Mo
- Forestry Experiment Center of North China, Chinese Academy of Forestry , Beijing 102300, China
| | - Heping Cao
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , New Orleans, Louisiana 70124, United States
| |
Collapse
|
28
|
Schattat MH, Barton KA, Mathur J. The myth of interconnected plastids and related phenomena. PROTOPLASMA 2015; 252:359-71. [PMID: 24965372 DOI: 10.1007/s00709-014-0666-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/12/2014] [Indexed: 05/08/2023]
Abstract
Studies spread over nearly two and a half centuries have identified the primary plastid in autotrophic algae and plants as a pleomorphic, multifunctional organelle comprising of a double-membrane envelope enclosing an organization of internal membranes submerged in a watery stroma. All plastid units have been observed extending and retracting thin stroma-filled tubules named stromules sporadically. Observations on living plant cells often convey the impression that stromules connect two or more independent plastids with each other. When photo-bleaching techniques were used to suggest that macromolecules such as the green fluorescent protein could flow between already interconnected plastids, for many people this impression changed to conviction. However, it was noticed only recently that the concept of protein flow between plastids rests solely on the words "interconnected plastids" for which details have never been provided. We have critically reviewed botanical literature dating back to the 1880s for understanding this term and the phenomena that have become associated with it. We find that while meticulously detailed ontogenic studies spanning nearly 150 years have established the plastid as a singular unit organelle, there is no experimental support for the idea that interconnected plastids exist under normal conditions of growth and development. In this review, while we consider several possibilities that might allow a single elongated plastid to be misinterpreted as two or more interconnected plastids, our final conclusion is that the concept of direct protein flow between plastids is based on an unfounded assumption.
Collapse
Affiliation(s)
- Martin H Schattat
- Martin-Luther-Universität Halle-Wittenberg Pflanzenphysiologie, Weinbergweg 10, 06120, Halle (Saale), Germany,
| | | | | |
Collapse
|
29
|
Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family. Mol Biol Rep 2014; 41:6157-66. [PMID: 24962048 DOI: 10.1007/s11033-014-3495-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/17/2014] [Indexed: 12/26/2022]
Abstract
Hexokinases (HXKs, EC 2.7.1.1) play important roles in metabolism, glucose (Glc) signaling, and phosphorylation of Glc and fructose and are ubiquitous in all organisms. Despite their physiological importance, the maize HXK (ZmHXK) genes have not been analyzed systematically. We isolated and characterized nine members of the ZmHXK gene family which were distributed on 3 of the 10 maize chromosomes. A multiple sequence alignment and motif analysis revealed that the maize ZmHXK proteins share three conserved domains. Phylogenetic analysis revealed that the ZmHXK family can be divided into four subfamilies. We identified putative cis-elements in the ZmHXK promoter sequences potentially involved in phytohormone and abiotic stress responses, sugar repression, light and circadian rhythm regulation, Ca(2+) responses, seed development and germination, and CO2-responsive transcriptional activation. To study the functions of maize HXK isoforms, we characterized the expression of the ZmHXK5 and ZmHXK6 genes, which are evolutionarily related to the OsHXK5 and OsHXK6 genes from rice. Analysis of tissue-specific expression patterns using quantitative real time-PCR showed that ZmHXK5 was highly expressed in tassels, while ZmHXK6 was expressed in both tassels and leaves. ZmHXK5 and ZmHXK6 expression levels were upregulated by phytohormones and by abiotic stress.
Collapse
|
30
|
Sheen J. Master Regulators in Plant Glucose Signaling Networks. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2014; 57:67-79. [PMID: 25530701 PMCID: PMC4270195 DOI: 10.1007/s12374-014-0902-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks.
Collapse
Affiliation(s)
- Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
31
|
Granot D, Kelly G, Stein O, David-Schwartz R. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:809-19. [PMID: 24293612 DOI: 10.1093/jxb/ert400] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic requirements for plant growth are light, CO2, water, and minerals. However, the absorption and utilization of each of these requires investment on the part of the plant. The primary products of plants are sugars, and the hexose sugars glucose and fructose are the raw material for most of the metabolic pathways and organic matter in plants. To be metabolized, hexose sugars must first be phosphorylated. Only two families of enzymes capable of catalysing the essential irreversible phosphorylation of glucose and fructose have been identified in plants, hexokinases (HXKs) and fructokinases (FRKs). These hexose-phosphorylating enzymes appear to coordinate sugar production with the abilities to absorb light, CO2, water, and minerals. This review describes the long- and short-term effects mediated by HXK and FRK in various tissues, as well as the role of these enzymes in the coordination of sugar production with the absorption of light, CO2, water, and minerals.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | |
Collapse
|
32
|
Kim YM, Heinzel N, Giese JO, Koeber J, Melzer M, Rutten T, Von Wirén N, Sonnewald U, Hajirezaei MR. A dual role of tobacco hexokinase 1 in primary metabolism and sugar sensing. PLANT, CELL & ENVIRONMENT 2013; 36:1311-27. [PMID: 23305564 DOI: 10.1111/pce.12060] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 05/09/2023]
Abstract
Hexokinase (HXK) is present in all virtually living organisms and is central to carbohydrate metabolism catalysing the ATP-dependent phosphorylation of hexoses. In plants, HXKs are supposed to act as sugar sensors and/or to interact with other enzymes directly supplying metabolic pathways such as glycolysis, the nucleotide phosphate monosaccharide (NDP-glucose) pathway and the pentose phosphate pathway. We identified nine members of the tobacco HXK gene family and observed that among RNAi lines of these nine NtHXKs, only RNAi lines of NtHXK1 showed an altered phenotype, namely stunted growth and leaf chlorosis. NtHXK1 was also the isoform with highest relative expression levels among all NtHXKs. GFP-tagging and immunolocalization indicated that NtHXK1 is associated with mitochondrial membranes. Overexpression of NtHXK1 resulted in elevated glucose phosphorylation activity in leaf extracts or chloroplasts. Moreover, NtHXK1 was able to complement the glucose-insensitive Arabidopsis mutant gin2-1 suggesting that NtHXK1 can take over glucose sensing functions. RNAi lines of NtHXK1 showed severely damaged leaf and chloroplast structure, coinciding with an excess accumulation of starch. We conclude that NtHXK1 is not only essential for maintaining glycolytic activity during respiration but also for regulating starch turnover, especially during the night.
Collapse
Affiliation(s)
- Young-Min Kim
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research IPK, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Nicolas Heinzel
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Jens-Otto Giese
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Julia Koeber
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Michael Melzer
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Twan Rutten
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Nicolaus Von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich-Alexander-Universität, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Mohammad-Reza Hajirezaei
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
33
|
Granot D, David-Schwartz R, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:44. [PMID: 23487525 PMCID: PMC3594732 DOI: 10.3389/fpls.2013.00044] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/20/2013] [Indexed: 05/18/2023]
Abstract
Hexose sugars, such as glucose and fructose produced in plants, are ubiquitous in most organisms and are the origin of most of the organic matter found in nature. To be utilized, hexose sugars must first be phosphorylated. The central role of hexose-phosphorylating enzymes has attracted the attention of many researchers, leading to novel discoveries. Only two families of enzymes capable of phosphorylating glucose and fructose have been identified in plants; hexokinases (HXKs), and fructokinases (FRKs). Intensive investigations of these two families in numerous plant species have yielded a wealth of knowledge regarding the genes number, enzymatic characterization, intracellular localization, and developmental and physiological roles of several HXKs and FRKs. The emerging picture indicates that HXK and FRK enzymes found at specific intracellular locations play distinct roles in plant metabolism and development. Individual HXKs were shown for the first time to be dual-function enzymes - sensing sugar levels independent of their catalytic activity and controlling gene expression and major developmental pathways, as well as hormonal interactions. FRK, on the other hand, seems to play a central metabolic role in vascular tissues, controlling the amounts of sugars allocated for vascular development. While a clearer picture of the roles of these two types of enzymes is emerging, many questions remain unsolved, such as the specific tissues and types of cells in which these enzymes function, the roles of individual HXK and FRK genes, and how these enzymes interact with hormones in the regulation of developmental processes. It is anticipated that ongoing efforts will broaden our knowledge of these important plant enzymes and their potential uses in the modification of plant traits.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Gilor Kelly
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| |
Collapse
|
34
|
O'Hara LE, Paul MJ, Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. MOLECULAR PLANT 2013; 6:261-74. [PMID: 23100484 DOI: 10.1093/mp/sss120] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant growth and development are tightly controlled in response to environmental conditions that influence the availability of photosynthetic carbon in the form of sucrose. Trehalose-6-phosphate (T6P), the precursor of trehalose in the biosynthetic pathway, is an important signaling metabolite that is involved in the regulation of plant growth and development in response to carbon availability. In addition to the plant's own pathway for trehalose synthesis, formation of T6P or trehalose by pathogens can result in the reprogramming of plant metabolism and development. Developmental processes that are regulated by T6P range from embryo development to leaf senescence. Some of these processes are regulated in interaction with phytohormones, such as auxin. A key interacting factor of T6P signaling in response to the environment is the protein kinase sucrose non-fermenting related kinase-1 (SnRK1), whose catalytic activity is inhibited by T6P. SnRK1 is most likely involved in the adjustment of metabolism and growth in response to starvation. The transcription factor bZIP11 has recently been identified as a new player in the T6P/SnRK1 regulatory pathway. By inhibiting SnRK1, T6P promotes biosynthetic reactions. This regulation has important consequences for crop production, for example, in the developing wheat grain and during the growth of potato tubers.
Collapse
Affiliation(s)
- Liam E O'Hara
- Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
35
|
|
36
|
Wingler A, Delatte TL, O'Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. PLANT PHYSIOLOGY 2012; 158:1241-51. [PMID: 22247267 PMCID: PMC3291265 DOI: 10.1104/pp.111.191908] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/12/2012] [Indexed: 05/17/2023]
Abstract
Trehalose 6-phosphate (T6P) is an important regulator of plant metabolism and development. T6P content increases when carbon availability is high, and in young growing tissue, T6P inhibits the activity of Snf1-related protein kinase (SnRK1). Here, strong accumulation of T6P was found in senescing leaves of Arabidopsis (Arabidopsis thaliana), in parallel with a rise in sugar contents. To determine the role of T6P in senescence, T6P content was altered by expressing the bacterial T6P synthase gene, otsA (to increase T6P), or the T6P phosphatase gene, otsB (to decrease T6P). In otsB-expressing plants, T6P accumulated less strongly during senescence than in wild-type plants, while otsA-expressing plants contained more T6P throughout. Mature otsB-expressing plants showed a similar phenotype as described for plants overexpressing the SnRK1 gene, KIN10, including reduced anthocyanin accumulation and delayed senescence. This was confirmed by quantitative reverse transcription-polymerase chain reaction analysis of senescence-associated genes and genes involved in anthocyanin synthesis. To analyze if the senescence phenotype was due to decreased sugar sensitivity, the response to sugars was determined. In combination with low nitrogen supply, metabolizable sugars (glucose, fructose, or sucrose) induced senescence in wild-type and otsA-expressing plants but to a smaller extent in otsB-expressing plants. The sugar analog 3-O-methyl glucose, on the other hand, did not induce senescence in any of the lines. Transfer of plants to and from glucose-containing medium suggested that glucose determines senescence during late development but that the effects of T6P on senescence are established by the sugar response of young plants.
Collapse
Affiliation(s)
- Astrid Wingler
- Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
37
|
Newell CA, Natesan SKA, Sullivan JA, Jouhet J, Kavanagh TA, Gray JC. Exclusion of plastid nucleoids and ribosomes from stromules in tobacco and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:399-410. [PMID: 21951134 DOI: 10.1111/j.1365-313x.2011.04798.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Stromules are stroma-filled tubules that extend from the surface of plastids and allow the transfer of proteins as large as 550 kDa between interconnected plastids. The aim of the present study was to determine if plastid DNA or plastid ribosomes are able to enter stromules, potentially permitting the transfer of genetic information between plastids. Plastid DNA and ribosomes were marked with green fluorescent protein (GFP) fusions to LacI, the lac repressor, which binds to lacO-related sequences in plastid DNA, and to plastid ribosomal proteins Rpl1 and Rps2, respectively. Fluorescence from GFP-LacI co-localised with plastid DNA in nucleoids in all tissues of transgenic tobacco (Nicotiana tabacum L.) examined and there was no indication of its presence in stromules, not even in hypocotyl epidermal cells, which contain abundant stromules. Fluorescence from Rpl1-GFP and Rps2-GFP was also observed in a punctate pattern in chloroplasts of tobacco and Arabidopsis [Arabidopsis thaliana (L.) Heynh.], and fluorescent stromules were not detected. Rpl1-GFP was shown to assemble into ribosomes and was co-localised with plastid DNA. In contrast, in hypocotyl epidermal cells of dark-grown Arabidopsis seedlings, fluorescence from Rpl1-GFP was more evenly distributed in plastids and was observed in stromules on a total of only four plastids (<0.02% of the plastids observed). These observations indicate that plastid DNA and plastid ribosomes do not routinely move into stromules in tobacco and Arabidopsis, and suggest that transfer of genetic information by this route is likely to be a very rare event, if it occurs at all.
Collapse
Affiliation(s)
- Christine A Newell
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | | | | | | |
Collapse
|
38
|
Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M, Carmi N, Zhang G, Diber A, Pollock S, Karchi H, Yeselson Y, Petreikov M, Shen S, Sahar U, Hovav R, Lewinsohn E, Tadmor Y, Granot D, Ophir R, Sherman A, Fei Z, Giovannoni J, Burger Y, Katzir N, Schaffer AA. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. PLANT MOLECULAR BIOLOGY 2011; 76:1-18. [PMID: 21387125 DOI: 10.1007/s11103-011-9757-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 02/16/2011] [Indexed: 05/06/2023]
Abstract
The sweet melon fruit is characterized by a metabolic transition during its development that leads to extensive accumulation of the disaccharide sucrose in the mature fruit. While the biochemistry of the sugar metabolism pathway of the cucurbits has been well studied, a comprehensive analysis of the pathway at the transcriptional level allows for a global genomic view of sugar metabolism during fruit sink development. We identified 42 genes encoding the enzymatic reactions of the sugar metabolism pathway in melon. The expression pattern of the 42 genes during fruit development of the sweet melon cv Dulce was determined from a deep sequencing analysis performed by 454 pyrosequencing technology, comprising over 350,000 transcripts from four stages of developing melon fruit flesh, allowing for digital expression of the complete metabolic pathway. The results shed light on the transcriptional control of sugar metabolism in the developing sweet melon fruit, particularly the metabolic transition to sucrose accumulation, and point to a concerted metabolic transition that occurs during fruit development.
Collapse
Affiliation(s)
- Nir Dai
- Institute of Plant Science, Agricultural Research Organization, Bet Dagan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Troncoso-Ponce MA, Rivoal J, Dorion S, Moisan MC, Garcés R, Martínez-Force E. Cloning, biochemical characterization and expression of a sunflower (Helianthus annuus L.) hexokinase associated with seed storage compounds accumulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:299-308. [PMID: 20889232 DOI: 10.1016/j.jplph.2010.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 05/09/2023]
Abstract
A full-length hexokinase cDNA, HaHXK1, was cloned and characterized from Helianthus annuus L. developing seeds. Based on its sequence and phylogenetic relationships, HaHXK1 is a membrane-associated (type-B) hexokinase. The predicted structural model resembles known hexokinase structures, folding into two domains of unequal size: a large and a small one separated by a deep cleft containing the residues involved in the enzyme active site. A truncated version, without the 24 N-terminal residues, was heterologously expressed in Escherichia coli, purified to electrophoretic homogeneity using immobilized metal ion affinity chromatography and biochemically characterized. The purified enzyme behaved as a monomer on size exclusion chromatography and had a specific activity of 19.3 μmol/min/mg protein, the highest specific activity ever reported for a plant hexokinase. The enzyme had higher affinity for glucose and mannose relative to fructose, but the enzymatic efficiency was higher with glucose. Recombinant HaHXK1 was inhibited by ADP and was insensitive either to glucose-6-phosphate or to trehalose-6-phosphate. Its expression profile showed higher levels in heterotrophic tissues, developing seeds and roots, than in photosynthetic ones. A time course of HXK activity and expression in seeds showed that the highest HXK levels are found at the early stages of reserve compounds, lipids and proteins accumulation.
Collapse
Affiliation(s)
- M A Troncoso-Ponce
- Instituto de la Grasa, CSIC, Avenida Padre Garcia Tejero 4, Seville, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Nilsson A, Olsson T, Ulfstedt M, Thelander M, Ronne H. Two novel types of hexokinases in the moss Physcomitrella patens. BMC PLANT BIOLOGY 2011; 11:32. [PMID: 21320325 PMCID: PMC3045890 DOI: 10.1186/1471-2229-11-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/14/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Hexokinase catalyzes the phosphorylation of glucose and fructose, but it is also involved in sugar sensing in both fungi and plants. We have previously described two types of hexokinases in the moss Physcomitrella. Type A, exemplified by PpHxk1, the major hexokinase in Physcomitrella, is a soluble protein that localizes to the chloroplast stroma. Type B, exemplified by PpHxk2, has an N-terminal membrane anchor. Both types are found also in vascular plants, and localize to the chloroplast stroma and mitochondrial membranes, respectively. RESULTS We have now characterized all 11 hexokinase encoding genes in Physcomitrella. Based on their N-terminal sequences and intracellular localizations, three of the encoded proteins are type A hexokinases and four are type B hexokinases. One of the type B hexokinases has a splice variant without a membrane anchor, that localizes to the cytosol and the nucleus. However, we also found two new types of hexokinases with no obvious orthologs in vascular plants. Type C, encoded by a single gene, has neither transit peptide nor membrane anchor, and is found in the cytosol and in the nucleus. Type D hexokinases, encoded by three genes, have membrane anchors and localize to mitochondrial membranes, but their sequences differ from those of the type B hexokinases. Interestingly, all moss hexokinases are more similar to each other in overall sequence than to hexokinases from other plants, even though characteristic sequence motifs such as the membrane anchor of the type B hexokinases are highly conserved between moss and vascular plants, indicating a common origin for hexokinases of the same type. CONCLUSIONS We conclude that the hexokinase gene family is more diverse in Physcomitrella, encoding two additional types of hexokinases that are absent in vascular plants. In particular, the presence of a cytosolic and nuclear hexokinase (type C) sets Physcomitrella apart from vascular plants, and instead resembles yeast, where all hexokinases localize to the cytosol. The fact that all moss hexokinases are more similar to each other than to hexokinases from vascular plants, even though both type A and type B hexokinases are present in all plants, further suggests that the hexokinase gene family in Physcomitrella has undergone concerted evolution.
Collapse
Affiliation(s)
- Anders Nilsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | - Tina Olsson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Mikael Ulfstedt
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | - Mattias Thelander
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Hans Ronne
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| |
Collapse
|
41
|
Prudent M, Lecomte A, Bouchet JP, Bertin N, Causse M, Génard M. Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:907-19. [PMID: 21036926 PMCID: PMC3022390 DOI: 10.1093/jxb/erq318] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 05/18/2023]
Abstract
A mechanistic model predicting the accumulation of tomato fruit sugars was developed in order (i) to dissect the relative influence of three underlying processes: assimilate supply (S), metabolic transformation of sugars into other compounds (M), and dilution by water uptake (D); and (ii) to estimate the genetic variability of S, M, and D. The latter was estimated in a population of 20 introgression lines derived from the introgression of a wild tomato species (Solanum chmielewskii) into S. lycopersicum, grown under two contrasted fruit load conditions. Low load systematically decreased D in the whole population, while S and M were targets of genotype × fruit load interactions. The sugar concentration positively correlated to S and D when the variation was due to genetic introgressions, while it positively correlated to S and M when the variation was due to changes in fruit load. Co-localizations between quantitative trait loci (QTLs) for sugar concentration and QTLs for S, M, and D allowed hypotheses to be proposed on the processes putatively involved at the QTLs. Among the five QTLs for sugar concentration, four co-localized with QTLs for S, M, and D with similar allele effects. Moreover, the processes underlying QTLs for sugar accumulation changed according to the fruit load condition. Finally, for some genotypes, the processes underlying sugar concentration compensated in such a way that they did not modify the sugar concentration. By uncoupling genetic from physiological relationships between processes, these results provide new insights into further understanding of tomato fruit sugar accumulation.
Collapse
Affiliation(s)
- Marion Prudent
- INRA, UR1115 Plantes et Systèmes de culture Horticoles, F-84000 Avignon, France.
| | | | | | | | | | | |
Collapse
|
42
|
Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W. Sugar signalling and antioxidant network connections in plant cells. FEBS J 2010; 277:2022-37. [PMID: 20412056 DOI: 10.1111/j.1742-4658.2010.07633.x] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sugars play important roles as both nutrients and regulatory molecules throughout plant life. Sugar metabolism and signalling function in an intricate network with numerous hormones and reactive oxygen species (ROS) production, signalling and scavenging systems. Although hexokinase is well known to fulfil a crucial role in glucose sensing processes, a scenario is emerging in which the catalytic activity of mitochondria-associated hexokinase regulates glucose-6-phosphate and ROS levels, stimulating antioxidant defence mechanisms and the synthesis of phenolic compounds. As a new concept, it can be hypothesized that the synergistic interaction of sugars (or sugar-like compounds) and phenolic compounds forms part of an integrated redox system, quenching ROS and contributing to stress tolerance, especially in tissues or organelles with high soluble sugar concentrations.
Collapse
|
43
|
Karve R, Lauria M, Virnig A, Xia X, Rauh BL, Moore BD. Evolutionary lineages and functional diversification of plant hexokinases. MOLECULAR PLANT 2010; 3:334-46. [PMID: 20145006 DOI: 10.1093/mp/ssq003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sequencing data from 10 species show that a plant hexokinase (HXK) family contains 5-11 genes. Functionally, a given family can include metabolic catalysts, glucose signaling proteins, and non-catalytic, apparent regulatory enzyme homologs. This study has two goals. The first aim is to develop a predictive method to determine which HXK proteins within a species have which type of function. The second aim is to determine whether HXK-dependent glucose signaling proteins occur among more primitive plants, as well as among angiosperms. Using a molecular phylogeny approach, combined with selective experimental testing, we found that non-catalytic HXK homologs might occur in all plants, including the relatively primitive Selaginella moellendorffi. We also found that different lineages of angiosperm HXKs have apparent conserved features for catalytic activity and for sub-cellular targeting. Most higher-plant HXKs are expressed predominantly at mitochondria, with HXKs of one lineage occurring in the plastid, and HXKs of one monocot lineage occurring in the cytosol. Using protoplast transient expression assays, we found that HXK glucose signaling proteins occur likely in all higher plants and in S. moellendorffi as well. Thus, the use of glucose by plant HXK isoforms in metabolism and/or as a regulatory metabolite occurs as widespread, conserved processes.
Collapse
Affiliation(s)
- Rucha Karve
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
44
|
Cho JI, Ryoo N, Eom JS, Lee DW, Kim HB, Jeong SW, Lee YH, Kwon YK, Cho MH, Bhoo SH, Hahn TR, Park YI, Hwang I, Sheen J, Jeon JS. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. PLANT PHYSIOLOGY 2009; 149:745-59. [PMID: 19010999 PMCID: PMC2633841 DOI: 10.1104/pp.108.131227] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 11/10/2008] [Indexed: 05/17/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) hexokinase 1 (AtHXK1) is recognized as an important glucose (Glc) sensor. However, the function of hexokinases as Glc sensors has not been clearly demonstrated in other plant species, including rice (Oryza sativa). To investigate the functions of rice hexokinase isoforms, we characterized OsHXK5 and OsHXK6, which are evolutionarily related to AtHXK1. Transient expression analyses using GFP fusion constructs revealed that OsHXK5 and OsHXK6 are associated with mitochondria. Interestingly, the OsHXK5DeltamTP-GFP and OsHXK6DeltamTP-GFP fusion proteins, which lack N-terminal mitochondrial targeting peptides, were present mainly in the nucleus with a small amount of the proteins seen in the cytosol. In addition, the OsHXK5NLS-GFP and OsHXK6NLS-GFP fusion proteins harboring nuclear localization signals were targeted predominantly in the nucleus, suggesting that these OsHXKs retain a dual-targeting ability to mitochondria and nuclei. In transient expression assays using promoterluciferase fusion constructs, these two OsHXKs and their catalytically inactive alleles dramatically enhanced the Glc-dependent repression of the maize (Zea mays) Rubisco small subunit (RbcS) and rice alpha-amylase genes in mesophyll protoplasts of maize and rice. Notably, the expression of OsHXK5, OsHXK6, or their mutant alleles complemented the Arabidopsis glucose insensitive2-1 mutant, thereby resulting in wild-type characteristics in seedling development, Glc-dependent gene expression, and plant growth. Furthermore, transgenic rice plants overexpressing OsHXK5 or OsHXK6 exhibited hypersensitive plant growth retardation and enhanced repression of the photosynthetic gene RbcS in response to Glc treatment. These results provide evidence that rice OsHXK5 and OsHXK6 can function as Glc sensors.
Collapse
Affiliation(s)
- Jung-Il Cho
- Plant Metabolism Research Center and Graduate School of Biotechnology, Department of Horticultural Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Granot D. Putting plant hexokinases in their proper place. PHYTOCHEMISTRY 2008; 69:2649-54. [PMID: 18922551 DOI: 10.1016/j.phytochem.2008.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 08/28/2008] [Indexed: 05/08/2023]
Abstract
Hexokinases (HXKs), catalysts of the first essential step in glucose metabolism, have emerged as important enzymes that mediate sugar sensing in many organisms, including plants. The presence of several types of plant HXK isozymes, located in different intracellular locations, has been suggested. However, recent studies have indicated that most plants have only two types of HXKs, a plastidic stromal isozyme and membrane-associated isozymes located mainly adjacent to the mitochondria, but also in the nucleus. The membrane-associated isozymes are involved in sugar sensing and regulate gene expression. The central role of HXKs in plant development and the increasing interest in their role necessitate the correction of inaccuracies that have spread concerning the substrate specificity and intracellular localization of HXK isozymes, as these inaccuracies are affecting the hypothesized roles presented for these isozymes and shaping future research in this active field.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
46
|
Abstract
Plants, restricted by their environment, need to integrate a wide variety of stimuli with their metabolic activity, growth and development. Sugars, generated by photosynthetic carbon fixation, are central in coordinating metabolic fluxes in response to the changing environment and in providing cells and tissues with the necessary energy for continued growth and survival. A complex network of metabolic and hormone signaling pathways are intimately linked to diverse sugar responses. A combination of genetic, cellular and systems analyses have uncovered nuclear HXK1 (hexokinase1) as a pivotal and conserved glucose sensor, directly mediating transcription regulation, while the KIN10/11 energy sensor protein kinases function as master regulators of transcription networks under sugar and energy deprivation conditions. The involvement of disaccharide signals in the regulation of specific cellular processes and the potential role of cell surface receptors in mediating sugar signals add to the complexity. This chapter gives an overview of our current insight in the sugar sensing and signaling network and describes some of the molecular mechanisms involved.
Collapse
Affiliation(s)
- Matthew Ramon
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Filip Rolland
- Department of Biology, Institute of Botany and Microbiology, K.U. Leuven, Kasteelpark Arenberg 31, 3001, Heverlee, Belgium
| | - Jen Sheen
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
47
|
Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, Sheen J, Moore BD. Expression and evolutionary features of the hexokinase gene family in Arabidopsis. PLANTA 2008; 228:411-25. [PMID: 18481082 PMCID: PMC2953952 DOI: 10.1007/s00425-008-0746-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 05/17/2023]
Abstract
Arabidopsis hexokinase1 (HXK1) is a moonlighting protein that has separable functions in glucose signaling and in glucose metabolism. In this study, we have characterized expression features and glucose phosphorylation activities of the six HXK gene family members in Arabidopsis thaliana. Three of the genes encode catalytically active proteins, including a stromal-localized HXK3 protein that is expressed mostly in sink organs. We also show that three of the genes encode hexokinase-like (HKL) proteins, which are about 50% identical to AtHXK1, but do not phosphorylate glucose or fructose. Expression studies indicate that both HKL1 and HKL2 transcripts occur in most, if not all, plant tissues and that both proteins are targeted within cells to mitochondria. The HKL1 and HKL2 proteins have 6-10 amino acid insertions/deletions (indels) at the adenosine binding domain. In contrast, HKL3 transcript was detected only in flowers, the protein lacks the noted indels, and the protein has many other amino acid changes that might compromise its ability even to bind glucose or ATP. Activity measurements of HXKs modified by site-directed mutagenesis suggest that the lack of catalytic activities in the HKL proteins might be attributed to any of numerous existing changes. Sliding windows analyses of coding sequences in A. thaliana and A. lyrata ssp. lyrata revealed a differential accumulation of nonsynonymous changes within exon 8 of both HKL1 and HXK3 orthologs. We further discuss the possibility that the non-catalytic HKL proteins have regulatory functions instead of catalytic functions.
Collapse
Affiliation(s)
- Abhijit Karve
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Bradley L. Rauh
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Xiaoxia Xia
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | - Jen Sheen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brandon d. Moore
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
48
|
Abstract
Trehalose metabolism and signaling is an area of emerging significance. In less than a decade our views on the importance of trehalose metabolism and its role in plants have gone through something of a revolution. An obscure curiosity has become an indispensable regulatory system. Mutant and transgenic plants of trehalose synthesis display wide-ranging and unprecedented phenotypes for the perturbation of a metabolic pathway. Molecular physiology and genomics have provided a glimpse of trehalose biology that had not been possible with conventional techniques, largely because the products of the synthetic pathway, trehalose 6-phosphate (T6P) and trehalose, are in trace abundance and difficult to measure in most plants. A consensus is emerging that T6P plays a central role in the coordination of metabolism with development. The discovery of trehalose metabolism has been one of the most exciting developments in plant metabolism and plant science in recent years. The field is fast moving and this review highlights the most recent insights.
Collapse
Affiliation(s)
- Matthew J Paul
- Center for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | | | | | | |
Collapse
|
49
|
Balasubramanian R, Karve A, Kandasamy M, Meagher RB, Moore BD. A role for F-actin in hexokinase-mediated glucose signaling. PLANT PHYSIOLOGY 2007; 145:1423-34. [PMID: 17965176 PMCID: PMC2151701 DOI: 10.1104/pp.107.108704] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/22/2007] [Indexed: 05/17/2023]
Abstract
HEXOKINASE1 (HXK1) from Arabidopsis (Arabidopsis thaliana) has dual roles in glucose (Glc) signaling and in Glc phosphorylation. The cellular context, though, for HXK1 function in either process is not well understood. Here we have shown that within normal experimental detection limits, AtHXK1 is localized continuously to mitochondria. Two mitochondrial porin proteins were identified as capable of binding to overexpressed HXK1 protein, both in vivo and in vitro. We also found that AtHXK1 can be associated with its structural homolog, F-actin, based on their coimmunoprecipitation from transgenic plants that overexpress HXK1-FLAG or from transient expression assays, and based on their localization in leaf cells after cryofixation. This association might be functionally important because Glc signaling in protoplast transient expression assays is compromised by disruption of F-actin. We also demonstrate that Glc treatment of Arabidopsis seedlings rapidly and reversibly disrupts fine mesh actin filaments. The possible roles of actin in HXK-dependent Glc signaling are discussed.
Collapse
|
50
|
Damari-Weissler H, Ginzburg A, Gidoni D, Mett A, Krassovskaya I, Weber APM, Belausov E, Granot D. Spinach SoHXK1 is a mitochondria-associated hexokinase. PLANTA 2007; 226:1053-8. [PMID: 17530285 DOI: 10.1007/s00425-007-0546-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 05/06/2007] [Indexed: 05/08/2023]
Abstract
Hexokinase, a hexose-phosphorylating enzyme, has emerged as a central enzyme in sugar-sensing processes. A few HXK isozymes have been identified in various plant species. These isozymes have been classified into two major groups; plastidic (type A) isozymes located in the plastid stroma and those containing a membrane anchor domain (type B) located mainly adjacent to the mitochondria, but also found in the nucleus. Of all the hexokinases that have been characterized to date, the only exception to this rule is a spinach type B HXK (SoHXK1) that, by means of subcellular fractionation, has been localized to the outer membrane of plastids. However, SoHXK1 has a membrane anchor domain that is almost identical to that of the other type B HXKs. To determine the localization of SoHXK1 enzyme by other means, we expressed SoHXK1::GFP fusion protein in tobacco and Arabidopsis protoplasts and compared its localization with that of the Arabidopsis AtHXK1::GFP fusion protein that shares a similar N-terminal membrane anchor domain. SoHXK1::GFP is localized adjacent to the mitochondria, similar to AtHXK1::GFP and all other previously examined type B HXKs. Proteomic analysis had previously identified AtHXK1 on the outside of the mitochondrial membrane. We, therefore, suggest that SoHXK1 enzyme is located adjacent to the mitochondria like the other type B HXKs that share the same N-terminal membrane anchor domain.
Collapse
Affiliation(s)
- Hila Damari-Weissler
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|