1
|
Singh CK, Singh D, Sharma S, Chandra S, Tomar RSS, Kumar A, Upadhyaya KC, Pal M. Mechanistic Association of Quantitative Trait Locus with Malate Secretion in Lentil ( Lens culinaris Medikus) Seedlings under Aluminium Stress. PLANTS 2021; 10:plants10081541. [PMID: 34451586 PMCID: PMC8400473 DOI: 10.3390/plants10081541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/04/2022]
Abstract
Aluminium (Al) toxicity acts as a major delimiting factor in the productivity of many crops including lentil. To alleviate its effect, plants have evolved with Al exclusion and inclusion mechanisms. The former involves the exudation of organic acid to restrict the entry of Al3+ to the root cells while latter involves detoxification of entered Al3+ by organic acids. Al-induced secretion of organic acids from roots is a well-documented mechanism that chelates and neutralizes Al3+ toxicity. In this study, F6 recombinant inbred lines (RILs) derived from a cross between L-7903 (Al-resistant) and BM-4 (Al-sensitive) were phenotyped to assess variation in secretion levels of malate and was combined with genotypic data obtained from 10 Al-resistance linked simple sequence repeat (SSRs) markers. A major quantitative trait loci (QTL) was mapped for malate (qAlt_ma) secretion with a logarithm of odd (LOD) value of 7.7 and phenotypic variation of 60.2%.Validated SSRs associated with this major QTL will be useful in marker assisted selection programmes for improving Al resistance in lentil.
Collapse
Affiliation(s)
- Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (C.K.S.); (S.S.)
- Amity Institute of Biotechnology, Amity University, Noida 201313, India;
| | - Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (C.K.S.); (S.S.)
- Correspondence: (D.S.); (M.P.); Tel.: +91-7011180774 (D.S.); +91-9868783354 (M.P.)
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (C.K.S.); (S.S.)
| | - Shivani Chandra
- Amity Institute of Biotechnology, Amity University, Noida 201313, India;
| | - Ram Sewak Singh Tomar
- ICAR-National Institute of Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - K. C. Upadhyaya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (D.S.); (M.P.); Tel.: +91-7011180774 (D.S.); +91-9868783354 (M.P.)
| |
Collapse
|
2
|
Gallo-Franco JJ, Sosa CC, Ghneim-Herrera T, Quimbaya M. Epigenetic Control of Plant Response to Heavy Metal Stress: A New View on Aluminum Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:602625. [PMID: 33391313 PMCID: PMC7772216 DOI: 10.3389/fpls.2020.602625] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
High concentrations of heavy metal (HM) ions impact agronomic staple crop production in acid soils (pH ≤ 5) due to their cytotoxic, genotoxic, and mutagenic effects. Among cytotoxic ions, the trivalent aluminum cation (Al3+) formed by solubilization of aluminum (Al) into acid soils, is one of the most abundant and toxic elements under acidic conditions. In recent years, several studies have elucidated the different signal transduction pathways involved in HM responses, identifying complementary genetic mechanisms conferring tolerance to plants. Although epigenetics has become more relevant in abiotic stress studies, epigenetic mechanisms underlying plant responses to HM stress remain poorly understood. This review describes the main epigenetic mechanisms related to crop responses during stress conditions, specifically, the molecular evidence showing how epigenetics is at the core of plant adaptation responses to HM ions. We highlight the epigenetic mechanisms that induce Al tolerance. Likewise, we analyze the pivotal relationship between epigenetic and genetic factors associated with HM tolerance. Finally, using rice as a study case, we performed a general analysis over previously whole-genome bisulfite-seq published data. Specific genes related to Al tolerance, measured in contrasting tolerant and susceptible rice varieties, exhibited differences in DNA methylation frequency. The differential methylation patterns could be associated with epigenetic regulation of rice responses to Al stress, highlighting the major role of epigenetics over specific abiotic stress responses.
Collapse
Affiliation(s)
- Jenny Johana Gallo-Franco
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Cali, Colombia
| | - Chrystian Camilo Sosa
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Cali, Colombia
- Grupo de Investigación en Evolución, Ecología y Conservación EECO, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| | | | - Mauricio Quimbaya
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Cali, Colombia
- *Correspondence: Mauricio Quimbaya,
| |
Collapse
|
3
|
Zhang P, Zhong K, Zhong Z, Tong H. Mining candidate gene for rice aluminum tolerance through genome wide association study and transcriptomic analysis. BMC PLANT BIOLOGY 2019; 19:490. [PMID: 31718538 PMCID: PMC6852983 DOI: 10.1186/s12870-019-2036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/12/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND The genetic mechanism of aluminum (Al) tolerance in rice is great complicated. Uncovering genetic mechanism of Al tolerance in rice is the premise for Al tolerance improvement. Mining elite genes within rice landrace is of importance for improvement of Al tolerance in rice. RESULTS Genome-wide association study (GWAS) performed in EMMAX for rice Al tolerance was carried out using 150 varieties of Ting's core collection constructed from 2262 Ting's collections with more than 3.8 million SNPs. Within Ting's core collection of clear population structure and kinship relatedness as well as high rate of linkage disequilibrium (LD) decay, 17 genes relating to rice Al tolerance including cloned genes like NRAT1, ART1 and STAR1 were identified in this study. Moreover, 13 new candidate regions with high LD and 69 new candidate genes were detected. Furthermore, 20 of 69 new candidate genes were detected with significant difference between Al treatment and without Al toxicity by transcriptome sequencing. Interestingly, both qRT-PCR and sequence analysis in CDS region demonstrated that the candidate genes in present study might play important roles in rice Al tolerance. CONCLUSIONS The present study provided important information for further using these elite genes existing in Ting's core collection for improvement of rice Al tolerance.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Kaizhen Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
4
|
Transcriptomic Analysis for Indica and Japonica Rice Varieties under Aluminum Toxicity. Int J Mol Sci 2019; 20:ijms20040997. [PMID: 30823582 PMCID: PMC6412857 DOI: 10.3390/ijms20040997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Aluminum (Al) at high concentrations inhibits root growth, damage root systems, and causes significant reductions in rice yields. Indica and Japonica rice have been cultivated in distinctly different ecological environments with different soil acidity levels; thus, they might have different mechanisms of Al-tolerance. In the present study, transcriptomic analysis in the root apex for Al-tolerance in the seedling stage was carried out within Al-tolerant and -sensitive varieties belonging to different subpopulations (i.e., Indica, Japonica, and mixed). We found that there were significant differences between the gene expression patterns of Indica Al-tolerant and Japonica Al-tolerant varieties, while the gene expression patterns of the Al-tolerant varieties in the mixed subgroup, which was inclined to Japonica, were similar to the Al-tolerant varieties in Japonica. Moreover, after further GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses of the transcriptomic data, we found that eight pathways, i.e., “Terpenoid backbone biosynthesis”, “Ribosome”, “Amino sugar and nucleotide sugar metabolism”, “Plant hormone signal transduction”, “TCA cycle”, “Synthesis and degradation of ketone bodies”, and “Butanoate metabolism” were found uniquely for Indica Al-tolerant varieties, while only one pathway (i.e., “Sulfur metabolism”) was found uniquely for Japonica Al-tolerant varieties. For Al-sensitive varieties, one identical pathway was found, both in Indica and Japonica. Three pathways were found uniquely in “Starch and sucrose metabolism”, “Metabolic pathway”, and “Amino sugar and nucleotide sugar metabolism”.
Collapse
|
5
|
Identification of Quantitative Trait Loci Associated with Nutrient Use Efficiency Traits, Using SNP Markers in an Early Backcross Population of Rice ( Oryza sativa L.). Int J Mol Sci 2019; 20:ijms20040900. [PMID: 30791412 PMCID: PMC6413108 DOI: 10.3390/ijms20040900] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022] Open
Abstract
The development of rice cultivars with nutrient use efficiency (NuUE) is highly crucial for sustaining global rice production in Asia and Africa. However, this requires a better understanding of the genetics of NuUE-related traits and their relationship to grain yield. In this study, simultaneous efforts were made to develop nutrient use efficient rice cultivars and to map quantitative trait loci (QTLs) governing NuUE-related traits in rice. A total of 230 BC1F5 introgression lines (ILs) were developed from a single early backcross population involving Weed Tolerant Rice 1, as the recipient parent, and Hao-an-nong, as the donor parent. The ILs were cultivated in field conditions with a different combination of fertilizer schedule under six nutrient conditions: minus nitrogen (–N), minus phosphorus (–P), (–NP), minus nitrogen phosphorus and potassium (–NPK), 75% of recommended nitrogen (75N), and NPK. Analysis of variance revealed that significant differences (p < 0.01) were noted among ILs and treatments for all traits. A high-density linkage map was constructed by using 704 high-quality single nucleotide polymorphism (SNP) markers. A total of 49 main-effect QTLs were identified on all chromosomes, except on chromosome 7, 11 and 12, which are showing 20.25% to 34.68% of phenotypic variation. With further analysis of these QTLs, we refined them to four top hotspot QTLs (QTL harbor-I to IV) located on chromosomes 3, 5, 9, and 11. However, we identified four novel putative QTLs for agronomic efficiency (AE) and 22 QTLs for partial factor productivity (PFP) under –P and 75N conditions. These interval regions of QTLs, several transporters and genes are located that were involved in nutrient uptake from soil to plant organs and tolerance to biotic and abiotic stresses. Further, the validation of these potential QTLs, genes may provide remarkable value for marker-aided selection and pyramiding of multiple QTLs, which would provide supporting evidence for the enhancement of grain yield and cloning of NuUE tolerance-responsive genes in rice.
Collapse
|
6
|
Zhao M, Song J, Wu A, Hu T, Li J. Mining Beneficial Genes for Aluminum Tolerance Within a Core Collection of Rice Landraces Through Genome-Wide Association Mapping With High Density SNPs From Specific-Locus Amplified Fragment Sequencing. FRONTIERS IN PLANT SCIENCE 2018; 9:1838. [PMID: 30619409 PMCID: PMC6305482 DOI: 10.3389/fpls.2018.01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Trivalent Aluminum (Al3+) in acidic soils is harmful to root growth and significantly reduce crop yields. Therefore, mining beneficial genes for Al tolerance is valuable for rice production. The objective of this research is to identify some beneficial genes for Al tolerance from rice landraces with high density SNP set from SLAF-seq (Specific-Locus Amplified Fragment sequencing). A total of 67,511 SNPs were obtained from SLAF-seq and used for genome-wide association study (GWAS) for Al tolerance with the 150 accessions of rice landraces in the Ting's rice core collection. The results showed that rice landraces in the Ting's rice core collection possessed a wide-range of variation for Al tolerance, measured by relative root elongation (RRE). With the mixed linear models, GWAS identified a total of 25 associations between SNPs and Al tolerant trait with p < 0.001 and false discovery rate (FDR) <10%. The explained percentage by quantitative trait locus (QTL) to phenotypic variation was from 7.27 to 13.31%. Five of twenty five QTLs identified in this study were co-localized with the previously cloned genes or previously identified QTLs related to Al tolerance or root growth/development. These results indicated that landraces are important sources for Al tolerance in rice and the mapping results could provide important information to breed Al tolerant rice cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Minghui Zhao
- Rice Research Institute, Shenyang Agriculture University, Shenyang, China
| | - Jiayu Song
- Rice Research Institute, Shenyang Agriculture University, Shenyang, China
| | - Aiting Wu
- Rice Research Institute, Shenyang Agriculture University, Shenyang, China
| | - Tao Hu
- Rice Research Institute, Shenyang Agriculture University, Shenyang, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
7
|
Singh CK, Singh D, Tomar RSS, Karwa S, Upadhyaya KC, Pal M. Molecular mapping of aluminium resistance loci based on root re-growth and Al-induced fluorescent signals (callose accumulation) in lentil (Lens culinaris Medikus). Mol Biol Rep 2018; 45:2103-2113. [PMID: 30218353 DOI: 10.1007/s11033-018-4368-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022]
Abstract
Development of aluminium (Al) resistant genotypes through molecular breeding is a major approach for increasing seed yield under acidic conditions. There are no available reports on mapping of Al resistance loci and molecular breeding for Al resistant varieties in lentil. The present study reports a major quantitative trait loci (QTL) for Al resistance using simple sequence repeat (SSR) markers in F2 and F3 mapping populations derived from contrasting parents. Phenotypic response to Al was measured on the bases of root re-growth (RRG), fluorescent signals (callose accumulation) and Al contents in hydroponic assay. After screening 495 SSR markers to search polymorphism between two contrasting parents, 73 polymorphic markers were used for bulk segregation analysis. Two major QTLs were identified using seven trait linked markers, one each for fluorescent signals and RRG mapped on linkage group (LG) 1 under Al stress conditions in F2 mapping population of cross BM-4 × L-4602. One major QTL (qAlt_fs) was localised between PLC_88 and PBA_LC_373, covering 25.9 cM with adjacent marker PLC_88 at a distance of 0.4 cM. Another major QTL (qAlt_rrg) for RRG was in the marker interval of PBA_LC_1247 and PLC_51, covering a distance of 45.7 cM with nearest marker PBA_LC_1247 at a distance of 21.2 cM. Similarly, in F3 families of BM-4 × L-4602 and BM-4 × L-7903, LG-1 was extended to 285.9 and 216.4 cM respectively, having four newly developed genic-SSR markers. These QTLs had a logarithm of odd (LOD) value of 140.5 and 28.8 along with phenotypic variation of 52% and 11% for fluorescent signals and RRG respectively, whereas, qAlt_rrg had LOD of 36 and phenotypic variance of 25% in F3 population of BM-4 × L-4602. Two major QTLs identified in the present study can be further dissected for candidate gene discovery and development of molecular markers for breeding improved varieties with high Al resistance.
Collapse
Affiliation(s)
- Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | | | - Sourabh Karwa
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K C Upadhyaya
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Yin C, Li H, Zhao Z, Wang Z, Liu S, Chen L, Liu X, Tian Y, Ma J, Xu L, Zhang D, Zhu S, Li D, Wan J, Wang J. Genetic dissection of top three leaf traits in rice using progenies from a japonica × indica cross. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:866-880. [PMID: 28875589 DOI: 10.1111/jipb.12597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/04/2017] [Indexed: 05/17/2023]
Abstract
The size of the top three leaves of rice plants is strongly associated with yield; thus, it is important to consider quantitative traits representing leaf size (e.g., length and width) when breeding novel rice varieties. It is challenging to measure such traits on a large scale in the field, and little is known about the genetic factors that determine the size of the top three leaves. In the present study, a population of recombinant inbred lines (RILs) and reciprocal single chromosomal segment substitution lines (SSSLs) derived from the progeny of a japonica Asominori × indica IR24 cross were grown under four diverse environmental conditions. Six morphological traits associated with leaf size were measured, namely length and flag leaf, length and flag, second and third leaves. In the RIL population, 49 QTLs were identified that clustered in 30 genomic region. Twenty-three of these QTLs were confirmed in the SSSL population. A comparison with previously reported genes/QTLs revealed eight novel genomic regions that contained uncharacterized ORFs associated with leaf size. The QTLs identified in this study can be used for marker-assisted breeding and for fine mapping of novel genetic elements controlling leaf size in rice.
Collapse
Affiliation(s)
- Changbin Yin
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiquan Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Shijia Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangming Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Ma
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lidong Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Dashuang Zhang
- Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Susong Zhu
- Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Danting Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jianmin Wan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiankang Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Meng L, Wang B, Zhao X, Ponce K, Qian Q, Ye G. Association Mapping of Ferrous, Zinc, and Aluminum Tolerance at the Seedling Stage in Indica Rice using MAGIC Populations. FRONTIERS IN PLANT SCIENCE 2017; 8:1822. [PMID: 29123537 PMCID: PMC5662918 DOI: 10.3389/fpls.2017.01822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/09/2017] [Indexed: 05/23/2023]
Abstract
Excessive amounts of metal are toxic and severely affect plant growth and development. Understanding the genetic control of metal tolerance is crucial to improve rice resistance to Fe, Zn, and Al toxicity. The multi-parent advanced generation inter-cross (MAGIC) populations were genotyped using a 55 K rice SNP array and screened at the seedling stage for Fe, Zn, and Al toxicity using a hydroponics system. Association analysis was conducted by implementing a mixed linear model (MLM) for each of the five MAGIC populations double cross DC1 (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1), double cross DC2 (founders of double cross were FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127), eight parents population 8way (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1, FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127), DC12 (DC1+DC2) and rice multi-parent recombinant inbred line population RMPRIL (DC1+DC2+8way). A total of 21, 30, and 21 QTL were identified for Fe, Zn, and Al toxicity tolerance, respectively. For multi tolerance (MT) as Fe, Zn, and Al tolerance-related traits, three genomic regions, MT1.1 (chr.1: 35.4-36.3 Mb), MT1.2 (chr.1: 35.4-36.3 Mb), and MT3.2 (chr.3: 35.4-36.2 Mb) harbored QTL. The chromosomal regions MT2.1 (chr.2: 2.4-2.8 Mb), MT2.2 (chr.2: 24.5-25.8 Mb), MT4 (chr.4: 1.2 Mb Mb), MT8.1 (chr.8: 0.7-0.9 Mb), and MT8.2 (chr.8: 2.2-2.4 Mb) harbored QTL for Fe and Zn tolerance, while MT2.3 (chr.2: 30.5-31.6 Mb), MT3.1 (chr.3: 12.5-12.8 Mb), and MT6 (chr.6: 2.0-3.0 Mb) possessed QTL for Al and Zn tolerance. The chromosomal region MT9.1 (chr.9: 14.2-14.7 Mb) possessed QTL for Fe and Al tolerance. A total of 11 QTL were detected across different MAGIC populations and 12 clustered regions were detected under different metal conditions, suggesting that these genomic regions might constitute valuable regions for further marker-assisted selection (MAS) in breeding programs.
Collapse
Affiliation(s)
- Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Baoxiang Wang
- Lianyungang Institute of Agricultural Sciences in Jiangsu Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Lianyungang, China
| | - Xiangqian Zhao
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang, China
| | - Kimberly Ponce
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Qian Qian
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
10
|
Liu S, Gao H, Wu X, Fang Q, Chen L, Zhao FJ, Huang CF. Isolation and Characterization of an Aluminum-resistant Mutant in Rice. RICE (NEW YORK, N.Y.) 2016; 9:60. [PMID: 27837430 PMCID: PMC5106411 DOI: 10.1186/s12284-016-0132-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 10/27/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Aluminum (Al) toxicity represents a major constraint for crop production on acid soils. Rice is a high Al-resistant plant species among small-grain cereals, but its molecular mechanisms of Al resistance are not fully understood. We adopted a forward genetic screen strategy to uncover the Al-resistance mechanisms in rice. In this study, we screened an ethylmethylsulfone (EMS)-mutagenized library to isolate and characterize mutants with altered sensitivity to Al in rice. RESULTS Treatment of an Al-intolerant indica variety Kasalath with 20 μM Al induced root swelling. This phenotype could be suppressed by the addition of aminoethoxyvinylglycine (AVG, an ethylene synthesis inhibitor), suggesting that increased production of ethylene is responsible for the root swelling under Al stress. By utilizing the root swelling as an indicator, we developed a highly effective method to screen Al-sensitive or -resistant mutants in rice. Through screening of ~5000 M2 lines, we identified 10 Al-sensitive mutants and one Al-resistant mutant ral1 (resistance to aluminum 1). ral1 mutant showed short root phenotype under normal growth condition, which was attributed to reduced cell elongation in the mutant. A dose-response experiment revealed that ral1 mutant was more resistant to Al than wild-type (WT) at all Al concentrations tested. The mutant was also more resistant to Al when grown in an acid soil. The mutant accumulated much lower Al in the root tips (0-1 cm) than WT. The mutant contained less Al in the cell wall of root tips than WT, whereas Al concentration in the cell sap was similar between WT and the mutant. In addition to Al, the mutant was also more resistant to Cd than WT. Quantitative RT-PCR analysis showed that the expression levels of known Al-resistance genes were not increased in the mutant compared to WT. Genetic analysis indicated that the Al-resistance phenotype in ral1 mutant was controlled by a single recessive gene mapped on the long arm of chromosome 6. CONCLUSIONS We have developed a highly efficient method for the screening of rice mutants with altered Al sensitivity. We identified a novel mutant ral1 resistant to Al by this screening. The increased resistance of ral1 to Al toxicity is caused by the reduced Al binding to the cell wall of root tips and the responsible gene is mapped on the long arm of chromosome 6.
Collapse
Affiliation(s)
- Shuo Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huiling Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoyan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiu Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
11
|
Zhang P, Zhong K, Tong H, Shahid MQ, Li J. Association Mapping for Aluminum Tolerance in a Core Collection of Rice Landraces. FRONTIERS IN PLANT SCIENCE 2016; 7:1415. [PMID: 27757115 PMCID: PMC5047912 DOI: 10.3389/fpls.2016.01415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 09/05/2016] [Indexed: 05/27/2023]
Abstract
Trivalent aluminum (Al3+) has drastic effect on the rice production in acidic soils. Elite genes for aluminum (Al) tolerance might exist in rice landraces. Therefore, the purpose of this research is to mine the elite genes within rice landraces. Association mapping for Al tolerance traits [i.e., relative root elongation (RRE)] was performed by using a core collection of 150 accessions of rice landraces (i.e., Ting's rice core collection). Our results showed that the Ting's rice core collection possessed a wide-range of phenotypic variation for Al tolerance, and the index of Al tolerance (RRE) was ranged from 0.22 to 0.89. Moreover, the groups with different origins and compositions of indica and japonica rice showed different degrees of tolerance to varying levels of Al. These rice landraces were further screened with 274 simple sequence repeat markers, and association mapping was performed using a mixed linear model approach. The mapping results showed that a total of 23 significant (P < 0.05) trait-marker associations were detected for Al tolerance. Of these, three associations (13%) were identical to the quantitative trait loci reported previously, and other 20 associations were reported for the first time in this study. The proportion of phenotypic variance (R2) explained by 23 significant associations ranged from 5.03 to 20.03% for Al tolerance. We detected several elite alleles for Al tolerance based on multiple comparisons of allelic effects, which could be used to develop Al tolerant rice cultivars through marker-assisted breeding.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Kaizhen Zhong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
12
|
Sade H, Meriga B, Surapu V, Gadi J, Sunita MSL, Suravajhala P, Kavi Kishor PB. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals 2016; 29:187-210. [PMID: 26796895 DOI: 10.1007/s10534-016-9910-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
13
|
Xia J, Yamaji N, Che J, Shen RF, Ma JF. Differential expression of Nrat1 is responsible for Al-tolerance QTL on chromosome 2 in rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4297-304. [PMID: 24821956 PMCID: PMC4112633 DOI: 10.1093/jxb/eru201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although rice (Oryza sativa) is the most Al-tolerant species among small-grain cereal crops, there is wide genotypic variation in its tolerance to Al toxicity. A number of quantitative trait loci (QTLs) for Al tolerance have been detected, but the responsible genes have not been identified. By using chromosome segment substitution lines, this work found that Nrat1, a gene encoding an Al transporter, is responsible for a QTL previously detected on chromosome 2. Substitution of the chromosome segment containing Nrat1 from Koshihikari (Al-tolerant variety) by that from Kasalath (Al-sensitive variety) decreased Nrat1 expression and Al uptake and tolerance, but increased binding of Al to the cell wall. Nrat1 in Kasalath showed tissue localization similar to Koshihikari in the roots. Although Koshihikari and Kasalath differed in four amino acids in Nrat1 protein, Nrat1 from Kasalath also showed transport activity for Al. Analysis with site-directed mutagenesis revealed that these differences did not affect the Al-transport activity much. Furthermore, there was no correlation between Al tolerance and the open-reading-frame sequence differences in other rice varieties. On the other hand, there was good correlation between Nrat1 expression and Al tolerance; however, sequence comparison of the promoter region up to 2.1kb did not give a clear difference between the Al-tolerant and -sensitive varieties. Taken together, these results indicate that differential expression of Nrat1 is responsible for the QTL for Al tolerance on chromosome 2, although the mechanism controlling Nrat1 expression remains to be examined.
Collapse
Affiliation(s)
- Jixing Xia
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
14
|
Guimaraes CT, Simoes CC, Pastina MM, Maron LG, Magalhaes JV, Vasconcellos RCC, Guimaraes LJM, Lana UGP, Tinoco CFS, Noda RW, Jardim-Belicuas SN, Kochian LV, Alves VMC, Parentoni SN. Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan. BMC Genomics 2014; 15:153. [PMID: 24564817 PMCID: PMC4007696 DOI: 10.1186/1471-2164-15-153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/29/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars. RESULTS Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al(3+) specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1. CONCLUSIONS High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.
Collapse
Affiliation(s)
- Claudia T Guimaraes
- />Nucleus of Applied Biology, Embrapa Maize and Sorghum, Road MG424, km 65, Sete Lagoas, MG 35701-970 Brazil
| | - Christiano C Simoes
- />Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Maria Marta Pastina
- />Nucleus of Applied Biology, Embrapa Maize and Sorghum, Road MG424, km 65, Sete Lagoas, MG 35701-970 Brazil
| | - Lyza G Maron
- />Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY USA
| | - Jurandir V Magalhaes
- />Nucleus of Applied Biology, Embrapa Maize and Sorghum, Road MG424, km 65, Sete Lagoas, MG 35701-970 Brazil
| | - Renato CC Vasconcellos
- />Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Lauro JM Guimaraes
- />Nucleus of Applied Biology, Embrapa Maize and Sorghum, Road MG424, km 65, Sete Lagoas, MG 35701-970 Brazil
| | - Ubiraci GP Lana
- />Nucleus of Applied Biology, Embrapa Maize and Sorghum, Road MG424, km 65, Sete Lagoas, MG 35701-970 Brazil
| | - Carlos FS Tinoco
- />Departamento de Biologia, Centro Universitário de Sete Lagoas, Sete Lagoas, MG Brazil
| | - Roberto W Noda
- />Nucleus of Applied Biology, Embrapa Maize and Sorghum, Road MG424, km 65, Sete Lagoas, MG 35701-970 Brazil
| | - Silvia N Jardim-Belicuas
- />Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Leon V Kochian
- />Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture – Agriculture Research Service, Cornell University, Ithaca, NY USA
| | - Vera MC Alves
- />Nucleus of Applied Biology, Embrapa Maize and Sorghum, Road MG424, km 65, Sete Lagoas, MG 35701-970 Brazil
| | - Sidney N Parentoni
- />Nucleus of Applied Biology, Embrapa Maize and Sorghum, Road MG424, km 65, Sete Lagoas, MG 35701-970 Brazil
| |
Collapse
|
15
|
Cai S, Wu D, Jabeen Z, Huang Y, Huang Y, Zhang G. Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS One 2013; 8:e69776. [PMID: 23922796 PMCID: PMC3724880 DOI: 10.1371/journal.pone.0069776] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/05/2013] [Indexed: 11/19/2022] Open
Abstract
Tibetan wild barley (Hordeum vulgare L. ssp. spontaneum), originated and grown in harsh enviroNment in Tibet, is well-known for its rich germpalsm with high tolerance to abiotic stresses. However, the genetic variation and genes involved in Al tolerance are not totally known for the wild barley. In this study, a genome-wide association analysis (GWAS) was performed by using four root parameters related with Al tolerance and 469 DArT markers on 7 chromosomes within or across 110 Tibetan wild accessions and 56 cultivated cultivars. Population structure and cluster analysis revealed that a wide genetic diversity was present in Tibetan wild barley. Linkage disequilibrium (LD) decayed more rapidly in Tibetan wild barley (9.30 cM) than cultivated barley (11.52 cM), indicating that GWAS may provide higher resolution in the Tibetan group. Two novel Tibetan group-specific loci, bpb-9458 and bpb-8524 were identified, which were associated with relative longest root growth (RLRG), located at 2H and 7H on barely genome, and could explain 12.9% and 9.7% of the phenotypic variation, respectively. Moreover, a common locus bpb-6949, localized 0.8 cM away from a candidate gene HvMATE, was detected in both wild and cultivated barleys, and showed significant association with total root growth (TRG). The present study highlights that Tibetan wild barley could provide elite germplasm novel genes for barley Al-tolerant improvement.
Collapse
Affiliation(s)
- Shengguan Cai
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dezhi Wu
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zahra Jabeen
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuqing Huang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yechang Huang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Jin X, Yan Y, Shi W, Bi S. Density functional theory studies on the structures and water-exchange reactions of aqueous Al(III)-oxalate complexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10082-10090. [PMID: 21973197 DOI: 10.1021/es2022413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The structures and water-exchange reactions of aqueous aluminum-oxalate complexes are investigated using density functional theory. The present work includes (1) The structures of Al(C(2)O(4))(H(2)O)(4)(+) and Al(C(2)O(4))(2)(H(2)O)(2)(-) were optimized at the level of B3LYP/6-311+G(d,p). The geometries obtained suggest that the Al-OH(2) bond lengths trans to C(2)O(4)(2-) ligand in Al(C(2)O(4))(H(2)O)(4)(+) are much longer than the Al-OH(2) bond lengths cis to C(2)O(4)(2-). For Al(C(2)O(4))(2)(H(2)O)(2)(-), the close energies between cis and trans isomers imply the coexistence in aqueous solution. The (27)Al NMR and (13)C NMR chemical shifts computed with the consideration of sufficient solvent effect using HF GIAO method and 6-311+G(d,p) basis set are in agreement with the experimental values available, indicating the appropriateness of the applied models; (2) The water-exchange reactions of Al(III)-oxalate complexes were simulated at the same computational level. The results show that water exchange proceeds via dissociative pathway and the activation energy barriers are sensitive to the solvent effect. The energy barriers obtained indicate that the coordinated H(2)O cis to C(2)O(4)(2-) in Al(C(2)O(4))(H(2)O)(4)(+) is more labile than trans H(2)O. The water-exchange rate constants (k(ex)) of trans- and cis-Al(C(2)O(4))(2)(H(2)O)(2)(-) were estimated by four methods and their respective characteristics were explored; (3) The significance of the study on the aqueous aluminum-oxalate complexes to environmental chemistry is discussed. The influences of ubiquitous organic ligands in environment on aluminum chemistry behavior can be elucidated by extending this study to a series of Al(III)-organic system.
Collapse
Affiliation(s)
- Xiaoyan Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|
17
|
Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 2011; 7:e1002221. [PMID: 21829395 PMCID: PMC3150440 DOI: 10.1371/journal.pgen.1002221] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/21/2011] [Indexed: 01/22/2023] Open
Abstract
Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype-genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and demonstrates the fundamental importance of subpopulation in interpreting and manipulating the genetics of complex traits in rice.
Collapse
Affiliation(s)
- Adam N. Famoso
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Keyan Zhao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Randy T. Clark
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York, United States of America
| | - Chih-Wei Tung
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mark H. Wright
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Carlos Bustamante
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Leon V. Kochian
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York, United States of America
| | - Susan R. McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. PLANT PHYSIOLOGY 2011; 156:1202-16. [PMID: 21602323 PMCID: PMC3135926 DOI: 10.1104/pp.111.175471] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The major quantitative trait locus (QTL) Phosphorus uptake1 (Pup1) confers tolerance of phosphorus deficiency in soil and is currently one of the most promising QTLs for the development of tolerant rice (Oryza sativa) varieties. To facilitate targeted introgression of Pup1 into intolerant varieties, the gene models predicted in the Pup1 region in the donor variety Kasalath were used to develop gene-based molecular markers that are evenly distributed over the fine-mapped 278-kb QTL region. To validate the gene models and optimize the markers, gene expression analyses and partial allelic sequencing were conducted. The markers were tested in more than 80 diverse rice accessions revealing three main groups with different Pup1 allele constitution. Accessions with tolerant (group I) and intolerant (group III) Pup1 alleles were distinguished from genotypes with Kasalath alleles at some of the analyzed loci (partial Pup1; group II). A germplasm survey additionally confirmed earlier data showing that Pup1 is largely absent from irrigated rice varieties but conserved in varieties and breeding lines adapted to drought-prone environments. A core set of Pup1 markers has been defined, and sequence polymorphisms suitable for single-nucleotide polymorphism marker development for high-throughput genotyping were identified. Following a marker-assisted backcrossing approach, Pup1 was introgressed into two irrigated rice varieties and three Indonesian upland varieties. First phenotypic evaluations of the introgression lines suggest that Pup1 is effective in different genetic backgrounds and environments and that it has the potential to significantly enhance grain yield under field conditions.
Collapse
|
19
|
Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. PLANT PHYSIOLOGY 2010; 153:1678-91. [PMID: 20538888 PMCID: PMC2923895 DOI: 10.1104/pp.110.156794] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/01/2010] [Indexed: 05/18/2023]
Abstract
The genetic and physiological mechanisms of aluminum (Al) tolerance have been well studied in certain cereal crops, and Al tolerance genes have been identified in sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Rice (Oryza sativa) has been reported to be highly Al tolerant; however, a direct comparison of rice and other cereals has not been reported, and the mechanisms of rice Al tolerance are poorly understood. To facilitate Al tolerance phenotyping in rice, a high-throughput imaging system and root quantification computer program was developed, permitting quantification of the entire root system, rather than just the longest root. Additionally, a novel hydroponic solution was developed and optimized for Al tolerance screening in rice and compared with the Yoshida's rice solution commonly used for rice Al tolerance studies. To gain a better understanding of Al tolerance in cereals, comparisons of Al tolerance across cereal species were conducted at four Al concentrations using seven to nine genetically diverse genotypes of wheat, maize (Zea mays), sorghum, and rice. Rice was significantly more tolerant than maize, wheat, and sorghum at all Al concentrations, with the mean Al tolerance level for rice found to be 2- to 6-fold greater than that in maize, wheat, and sorghum. Physiological experiments were conducted on a genetically diverse panel of more than 20 rice genotypes spanning the range of rice Al tolerance and compared with two maize genotypes to determine if rice utilizes the well-described Al tolerance mechanism of root tip Al exclusion mediated by organic acid exudation. These results clearly demonstrate that the extremely high levels of rice Al tolerance are mediated by a novel mechanism, which is independent of root tip Al exclusion.
Collapse
Affiliation(s)
| | | | | | | | | | - Leon V. Kochian
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853–1901 (A.N.F., S.R.M.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853–2901 (R.T.C., J.E.S., E.C., L.V.K.)
| |
Collapse
|
20
|
Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. THE PLANT CELL 2009; 21:3339-49. [PMID: 19880795 PMCID: PMC2782276 DOI: 10.1105/tpc.109.070771] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity is the major limiting factor of crop production on acid soils, but some plant species have evolved ways of detoxifying Al. Here, we report a C2H2-type zinc finger transcription factor ART1 (for Al resistance transcription factor 1), which specifically regulates the expression of genes related to Al tolerance in rice (Oryza sativa). ART1 is constitutively expressed in the root, and the expression level is not affected by Al treatment. ART1 is localized in the nucleus of all root cells. A yeast one-hybrid assay showed that ART1 has a transcriptional activation potential and interacts with the promoter region of STAR1, an important factor in rice Al tolerance. Microarray analysis revealed 31 downstream transcripts regulated by ART1, including STAR1 and 2 and a couple of homologs of Al tolerance genes in other plants. Some of these genes were implicated in both internal and external detoxification of Al at different cellular levels. Our findings shed light on comprehensively understanding how plants detoxify aluminum to survive in an acidic environment.
Collapse
Affiliation(s)
- Naoki Yamaji
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Chao Feng Huang
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Sakiko Nagao
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Masahiro Yano
- QTL Genomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Sato
- Genome Resource Center, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoshiaki Nagamura
- Genome Resource Center, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Jian Feng Ma
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
- Address correspondence to
| |
Collapse
|
21
|
Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. THE PLANT CELL 2009; 21:655-67. [PMID: 19244140 PMCID: PMC2660611 DOI: 10.1105/tpc.108.064543] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/06/2009] [Accepted: 02/12/2009] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity is a major factor limiting crop production in acidic soil, but the molecular mechanisms of Al tolerance are poorly understood. Here, we report that two genes, STAR1 (for sensitive to Al rhizotoxicity1) and STAR2, are responsible for Al tolerance in rice. STAR1 encodes a nucleotide binding domain, while STAR2 encodes a transmembrane domain, of a bacterial-type ATP binding cassette (ABC) transporter. Disruption of either gene resulted in hypersensitivity to aluminum toxicity. Both STAR1 and STAR2 are expressed mainly in the roots and are specifically induced by Al exposure. Expression in onion epidermal cells, rice protoplasts, and yeast showed that STAR1 interacts with STAR2 to form a complex that localizes to the vesicle membranes of all root cells, except for those in the epidermal layer of the mature zone. When expressed together in Xenopus laevis oocytes, STAR1/2 shows efflux transport activity specific for UDP-glucose. Furthermore, addition of exogenous UDP-glucose rescued root growth in the star1 mutant exposed to Al. These results indicate that STAR1 and STAR2 form a complex that functions as an ABC transporter, which is required for detoxification of Al in rice. The ABC transporter transports UDP-glucose, which may be used to modify the cell wall.
Collapse
Affiliation(s)
- Chao Feng Huang
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | | | | | | | | | | |
Collapse
|