1
|
Xu D, Tang W, Ma Y, Wang X, Yang Y, Wang X, Xie L, Huang S, Qin T, Tang W, Xu Z, Li L, Tang Y, Chen M, Ma Y. Arabidopsis G-protein β subunit AGB1 represses abscisic acid signaling via attenuation of the MPK3-VIP1 phosphorylation cascade. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1615-1632. [PMID: 37988280 DOI: 10.1093/jxb/erad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gβ (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.
Collapse
Affiliation(s)
- Dongbei Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wensi Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yanan Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Xia Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Lina Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Suo Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Tengfei Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Weilin Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoshi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
2
|
Schläppi MR, Jessel AR, Jackson AK, Phan H, Jia MH, Edwards JD, Eizenga GC. Navigating rice seedling cold resilience: QTL mapping in two inbred line populations and the search for genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1303651. [PMID: 38162313 PMCID: PMC10755946 DOI: 10.3389/fpls.2023.1303651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Due to global climate change resulting in extreme temperature fluctuations, it becomes increasingly necessary to explore the natural genetic variation in model crops such as rice to facilitate the breeding of climate-resilient cultivars. To uncover genomic regions in rice involved in managing cold stress tolerance responses and to identify associated cold tolerance genes, two inbred line populations developed from crosses between cold-tolerant and cold-sensitive parents were used for quantitative trait locus (QTL) mapping of two traits: degree of membrane damage after 1 week of cold exposure quantified as percent electrolyte leakage (EL) and percent low-temperature seedling survivability (LTSS) after 1 week of recovery growth. This revealed four EL QTL and 12 LTSS QTL, all overlapping with larger QTL regions previously uncovered by genome-wide association study (GWAS) mapping approaches. Within the QTL regions, 25 cold-tolerant candidate genes were identified based on genomic differences between the cold-tolerant and cold-sensitive parents. Of those genes, 20% coded for receptor-like kinases potentially involved in signal transduction of cold tolerance responses; 16% coded for transcription factors or factors potentially involved in regulating cold tolerance response effector genes; and 64% coded for protein chaperons or enzymes potentially serving as cold tolerance effector proteins. Most of the 25 genes were cold temperature regulated and had deleterious nucleotide variants in the cold-sensitive parent, which might contribute to its cold-sensitive phenotype.
Collapse
Affiliation(s)
- Michael R. Schläppi
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Avery R. Jessel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Aaron K. Jackson
- Dale Bumpers National Rice Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Stuttgart, AR, United States
| | - Huy Phan
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Melissa H. Jia
- Dale Bumpers National Rice Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Stuttgart, AR, United States
| | - Jeremy D. Edwards
- Dale Bumpers National Rice Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Stuttgart, AR, United States
| | - Georgia C. Eizenga
- Dale Bumpers National Rice Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Stuttgart, AR, United States
| |
Collapse
|
3
|
Bilal S, Saad Jan S, Shahid M, Asaf S, Khan AL, Lubna, Al-Rawahi A, Lee IJ, AL-Harrasi A. Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress. Metabolites 2023; 13:1036. [PMID: 37887361 PMCID: PMC10608868 DOI: 10.3390/metabo13101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Rice (Oryza sativa) is a research model for monocotyledonous plants. Rice is also one of the major staple foods and the primary crop for more than half of the world's population. Increasing industrial activities and the use of different fertilizers and pesticides containing heavy metals (HMs) contribute to the contamination of agriculture fields. HM contamination is among the leading causes that affect the health of rice plants by limiting their growth and causing plant death. Phytohormones have a crucial role in stress-coping mechanisms and in determining a range of plant development and growth aspects during heavy metal stress. This review summarizes the role of different exogenous applications of phytohormones including auxin, cytokinin, gibberellins, ethylene, abscisic acid, strigolactones, jasmonates, brassinosteroids, and salicylic acids in rice plants for mitigating heavy metal stress via manipulation of their stress-related physiological and biochemical processes, and alterations of signaling and biosynthesis of genes. Exogenous administration of phytohormones and regulation of endogenous levels by targeting their biosynthesis/signaling machineries is a potential strategy for protecting rice from HM stress. The current review primarily emphasizes the key mechanistic phytohormonal-mediated strategies for reducing the adverse effects of HM toxicity in rice. Herein, we have provided comprehensive evidence for the effective role of exogenous phytohormones in employing defense responses and tolerance in rice to the phytotoxic effects of HM toxicity along with endogenous hormonal crosstalk for modulation of subcellular mechanisms and modification of stress-related signaling pathways, and uptake and translocation of metals. Altogether, this information offers a systematic understanding of how phytohormones modulate a plant's tolerance to heavy metals and may assist in directing the development of new approaches to strengthen rice plant resistance to HM toxicity.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Shahid
- Agriculture Research Institute, Khyber Pakhtunkhwa, Mingora 19130, Pakistan
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Lubna
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- Department of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed AL-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
4
|
Feng Y, Ren Y, Zhang H, Heng Y, Wang Z, Wang Y. Halostachys caspica pathogenesis-related protein 10 acts as a cytokinin reservoir to regulate plant growth and development. FRONTIERS IN PLANT SCIENCE 2023; 14:1116985. [PMID: 37180382 PMCID: PMC10169677 DOI: 10.3389/fpls.2023.1116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Pathogenesis-related class 10 (PR-10) proteins play a role in plant growth and development, but the underlying molecular mechanisms are unclear. Here, we isolated a salt-induced PR-10 gene from the halophyte Halostachys caspica and named it HcPR10. HcPR10 was constitutively expressed during development and HcPR10 localized to the nucleus and cytoplasm. HcPR10-mediated phenotypes including bolting, earlier flowering, increased branch number and siliques per plant are highly correlated with increased cytokinin levels in transgenic Arabidopsis. Meanwhile, increased levels of cytokinin in plants is temporally correlated with HcPR10 expression patterns. Although the expression of cytokinin biosynthesis genes validated was not upregulated, cytokinin-related genes including chloroplast-related genes, cytokinin metabolism and cytokinin responses genes and flowering-related genes were significantly upregulated in the transgenic Arabidopsis compared to the wild type by transcriptome deep sequencing. Analysis of the crystal structure of HcPR10 revealed a trans-zeatin riboside (a type of cytokinin) located deep in its cavity, with a conserved conformation and protein-ligand interactions, supporting HcRP10 acts as a cytokinin reservoir. Moreover, HcPR10 in Halostachys caspica predominantly accumulated in vascular tissue, the site of long-distance translocation of plant hormones. Collectively, we draw that HcPR10 as a cytokinin reservoir induces cytokinin-related signal transduction in plants, thereby promoting plant growth and development. These findings could provide intriguing insights into the role of HcPR10 proteins in phytohormone regulation in plants and advance our understanding of cytokinin-mediated plant development and could facilitate the breeding of transgenic crops with earlier mature, higher yielding agronomic traits.
Collapse
Affiliation(s)
- Yudan Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hua Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Youqiang Heng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Liu ZY, Han YT, Wang CY, Lei XJ, Wang YY, Dong WF, Xie QJ, Fu YJ, Gao CQ. The growth-regulating factor PdbGRF1 positively regulates the salt stress response in Populus davidiana × P. bolleana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111502. [PMID: 36252856 DOI: 10.1016/j.plantsci.2022.111502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Growth-regulating factor (GRF) is a transcription factor unique to plants that plays a crucial role in the growth, development and stress adaptation of plants. However, information on the GRFs related to salt stress in Populus davidiana × P. bolleana is lacking. In this study, we characterized the activity of PdbGRF1 in transgenic Populus davidiana × P. bolleana under salt stress. qRTPCR analyses showed that PdbGRF1 was highly expressed in young leaves and that the pattern of PdbGRF1 expression was significantly changed at most time points under salt stress, which suggests that PdbGRF1 expression may be related to the salt stress response. Moreover, PdbGRF1 overexpression enhanced tolerance to salt stress. A physiological parameter analysis showed that the overexpression of PdbGRF1 significantly decreased the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and increased the activities of antioxidant enzymes (SOD and POD) and the proline content. A molecular analysis showed that PdbGRF1 regulated the expression of PdbPOD17 and PdbAKT1 by binding to the DRE ('A/GCCGAC') in their respective promoters. Together, our results demonstrate that the binding of PdbGRF1 to DRE regulates genes related to stress tolerance and activates the associated physiological pathways, and these effects increase the ROS scavenging ability, reduce the degree of damage to the plasma membrane and ultimately enhance the salt stress response in Populus davidiana × P. bolleana.
Collapse
Affiliation(s)
- Zhong-Yuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ya-Ting Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chun-Yao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiao-Jin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuan-Yuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wen-Fang Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jun Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Cai-Qiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Chen M, Ni L, Chen J, Sun M, Qin C, Zhang G, Zhang A, Jiang M. Rice calcium/calmodulin-dependent protein kinase directly phosphorylates a mitogen-activated protein kinase kinase to regulate abscisic acid responses. THE PLANT CELL 2021; 33:1790-1812. [PMID: 33630095 PMCID: PMC8254507 DOI: 10.1093/plcell/koab071] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CCaMK) is an important positive regulator of abscisic acid (ABA) and abiotic stress signaling in plants and is believed to act upstream of mitogen-activated protein kinase (MAPK) in ABA signaling. However, it is unclear how CCaMK activates MAPK in ABA signaling. Here, we show that OsDMI3, a rice (Oryza sativa) CCaMK, directly interacts with and phosphorylates OsMKK1, a MAPK kinase (MKK) in rice, in vitro and in vivo. OsDMI3 was found to directly phosphorylate Thr-25 in the N-terminus of OsMKK1, and this Thr-25 phosphorylation is OsDMI3-specific in ABA signaling. The activation of OsMKK1 and its downstream kinase OsMPK1 is dependent on Thr-25 phosphorylation of OsMKK1 in ABA signaling. Moreover, ABA treatment induces phosphorylation in the activation loop of OsMKK1, and the two phosphorylations, in the N-terminus and in the activation loop, are independent. Further analyses revealed that OsDMI3-mediated phosphorylation of OsMKK1 positively regulates ABA responses in seed germination, root growth, and tolerance to both water stress and oxidative stress. Our results indicate that OsMKK1 is a direct target of OsDMI3, and OsDMI3-mediated phosphorylation of OsMKK1 plays an important role in activating the MAPK cascade and ABA signaling.
Collapse
Affiliation(s)
- Min Chen
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Ni
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Manman Sun
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Caihua Qin
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Zhang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aying Zhang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyi Jiang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China
- Author for correspondence:
| |
Collapse
|
7
|
Tajti J, Németh E, Glatz G, Janda T, Pál M. Pattern of changes in salicylic acid-induced protein kinase (SIPK) gene expression and salicylic acid accumulation in wheat under cadmium exposure. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1176-1180. [PMID: 31332893 DOI: 10.1111/plb.13032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Salicylic acid-induced protein kinase (SIPK) is known as a 'master switch' for stress responses in plants. It can be induced by salicylic acid (SA) and several stress factors. The main aim of the present study was to reveal the relationship between SA accumulation and the gene expression level of SIPK during 50 and 250 µm Cd stress in wheat plants. Quantitative real-time PCR was used for determination of the gene expression level of SIPK. Salicylic acid content measurement was performed with an HPLC system equipped with a fluorescence detector. Cadmium treatment increased the endogenous SA level and expression level of SIPK in a concentration-dependent manner. Induction of SIPK expression preceded the accumulation of endogenous SA. Although SA treatment induced dramatic endogenous SA accumulation, its SIPK-inducing effect was moderate. In roots, higher induction of SIPK was observed than in leaves. The same tendency of SIPK expression was observed in both Cd- and SA-treated plants, as decisively the highest transcript level was detected after 30 min of treatment, but thereafter the expression decreased rapidly to control level or even below. The induction of SIPK was transient in all cases, and even a very high SA level in either the leaves or roots was not able to maintain the elevated expression level of this gene. The results suggest that SIPK has a role in initiating Cd stress response and the exogenous SA-induced signalling process.
Collapse
Affiliation(s)
- J Tajti
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - E Németh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - G Glatz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - T Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - M Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
8
|
Uji Y, Kashihara K, Kiyama H, Mochizuki S, Akimitsu K, Gomi K. Jasmonic Acid-Induced VQ-Motif-Containing Protein OsVQ13 Influences the OsWRKY45 Signaling Pathway and Grain Size by Associating with OsMPK6 in Rice. Int J Mol Sci 2019; 20:ijms20122917. [PMID: 31207967 PMCID: PMC6627515 DOI: 10.3390/ijms20122917] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Jasmonic acid (JA) is a plant hormone that plays an important role in the defense response and stable growth of rice. In this study, we investigated the role of the JA-responsive valine-glutamine (VQ)-motif-containing protein OsVQ13 in JA signaling in rice. OsVQ13 was primarily located in the nucleus and cytoplasm. The transgenic rice plants overexpressing OsVQ13 exhibited a JA-hypersensitive phenotype and increased JA-induced resistance to Xanthomonas oryzae pv. oryzae (Xoo), which is the bacteria that causes rice bacterial blight, one of the most serious diseases in rice. Furthermore, we identified a mitogen-activated protein kinase, OsMPK6, as an OsVQ13-associating protein. The expression of genes regulated by OsWRKY45, an important WRKY-type transcription factor for Xoo resistance that is known to be regulated by OsMPK6, was upregulated in OsVQ13-overexpressing rice plants. The grain size of OsVQ13-overexpressing rice plants was also larger than that of the wild type. These results indicated that OsVQ13 positively regulated JA signaling by activating the OsMPK6-OsWRKY45 signaling pathway in rice.
Collapse
Affiliation(s)
- Yuya Uji
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Keita Kashihara
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Haruna Kiyama
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Susumu Mochizuki
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Kazuya Akimitsu
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| |
Collapse
|
9
|
Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1387. [PMID: 30349547 PMCID: PMC6187979 DOI: 10.3389/fpls.2018.01387] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/31/2018] [Indexed: 05/02/2023]
Abstract
Mitogen-activated protein kinase (MAPK) modules play key roles in the transduction of environmental and developmental signals through phosphorylation of downstream signaling targets, including other kinases, enzymes, cytoskeletal proteins or transcription factors, in all eukaryotic cells. A typical MAPK cascade consists of at least three sequentially acting serine/threonine kinases, a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK) and finally, the MAP kinase (MAPK) itself, with each phosphorylating, and hence activating, the next kinase in the cascade. Recent advances in our understanding of hormone signaling pathways have led to the discovery of new regulatory systems. In particular, this research has revealed the emerging role of crosstalk between the protein components of various signaling pathways and the involvement of this crosstalk in multiple cellular processes. Here we provide an overview of current models and mechanisms of hormone signaling with a special emphasis on the role of MAPKs in cell signaling networks. One-sentence summary: In this review we highlight the mechanisms of crosstalk between MAPK cascades and plant hormone signaling pathways and summarize recent findings on MAPK regulation and function in various cellular processes.
Collapse
Affiliation(s)
- Przemysław Jagodzik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Tajdel-Zielinska
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agata Ciesla
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Marczak
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agnieszka Ludwikow
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Agnieszka Ludwikow,
| |
Collapse
|
10
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 DOI: 10.3389/fpls.2016.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Kambham R Reddy
- Department of Plant and Soil Sciences, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| |
Collapse
|
11
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 PMCID: PMC4855980 DOI: 10.3389/fpls.2016.00571] [Citation(s) in RCA: 563] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/17/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K. Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| |
Collapse
|
12
|
Yi J, Lee YS, Lee DY, Cho MH, Jeon JS, An G. OsMPK6 plays a critical role in cell differentiation during early embryogenesis in Oryza sativa. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2425-37. [PMID: 26912801 PMCID: PMC4809295 DOI: 10.1093/jxb/erw052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The formation of body axes is the basis of morphogenesis during plant embryogenesis. We identified embryo-lethal mutants of rice (Oryza sativa) in which T-DNAs were inserted in OsMPK6 Embryonic organs were absent because their development was arrested at the globular stage. Similar to observations made with gle4, shootless, and organless, the osmpk6 mutations affected the initial step of cell differentiation. Expression of an apical-basal axis marker gene, OSH1, was reduced in the mutant embryos while that of the radial axes marker genes OsSCR and OsPNH1 was not detected. The signal for ROC1, a protodermal cell marker, was weak at the globular stage and gradually disappeared. Transcript levels of auxin and gibberellin biosynthesis genes were diminished in osmpk6 embryos. In addition, phytoalexin biosynthesis genes were down-regulated in osmpk6 and a major diterpene phytoalexin, momilactone A, did not accumulate in the mutant embryos. These results indicate that OsMPK6 begins to play a critical role during early embryogenesis, especially when the L1 radial axis is being formed.
Collapse
Affiliation(s)
- Jakyung Yi
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Yang-Seok Lee
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Dong-Yeon Lee
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Man-Ho Cho
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| |
Collapse
|
13
|
Ma F, Ni L, Liu L, Li X, Zhang H, Zhang A, Tan M, Jiang M. ZmABA2, an interacting protein of ZmMPK5, is involved in abscisic acid biosynthesis and functions. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:771-82. [PMID: 26096642 DOI: 10.1111/pbi.12427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 05/08/2023]
Abstract
In maize (Zea mays), the mitogen-activated protein kinase ZmMPK5 has been shown to be involved in abscisic acid (ABA)-induced antioxidant defence and to enhance the tolerance of plants to drought, salt stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, using ZmMPK5 as bait in yeast two-hybrid screening, a protein interacting with ZmMPK5 named ZmABA2, which belongs to a member of the short-chain dehydrogenase/reductase family, was identified. Pull-down assay and bimolecular fluorescence complementation analysis and co-immunoprecipitation test confirmed that ZmMPK5 interacts with ZmABA2 in vitro and in vivo. Phosphorylation of Ser173 in ZmABA2 by ZmMPK5 was shown to increase the activity of ZmABA2 and the protein stability. Various abiotic stimuli induced the expression of ZmABA2 in leaves of maize plants. Pharmacological, biochemical and molecular biology and genetic analyses showed that both ZmMPK5 and ZmABA2 coordinately regulate the content of ABA. Overexpression of ZmABA2 in tobacco plants was found to elevate the content of ABA, regulate seed germination and root growth under drought and salt stress and enhance the tolerance of tobacco plants to drought and salt stress. These results suggest that ZmABA2 is a direct target of ZmMPK5 and is involved in ABA biosynthesis and functions.
Collapse
Affiliation(s)
- Fangfang Ma
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Lan Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Libo Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xi Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aying Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Singh R, Lee JE, Dangol S, Choi J, Yoo RH, Moon JS, Shim JK, Rakwal R, Agrawal GK, Jwa NS. Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system. Proteomics 2014; 14:105-15. [PMID: 24243689 DOI: 10.1002/pmic.201300125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 10/27/2013] [Accepted: 11/06/2013] [Indexed: 11/07/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K-interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two-hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K-interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full-length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead-associated domain-containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K-interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yoo SJ, Kim SH, Kim MJ, Ryu CM, Kim YC, Cho BH, Yang KY. Involvement of the OsMKK4-OsMPK1 Cascade and its Downstream Transcription Factor OsWRKY53 in the Wounding Response in Rice. THE PLANT PATHOLOGY JOURNAL 2014; 30:168-77. [PMID: 25288999 PMCID: PMC4174855 DOI: 10.5423/ppj.oa.10.2013.0106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/21/2014] [Accepted: 02/17/2014] [Indexed: 05/04/2023]
Abstract
Plant has possessed diverse stress signals from outside and maintained its fitness. Out of such plant responses, it is well known that mitogen-activated protein kinase (MAPK) cascade plays important role in wounding and pathogen attack in most dicot plants. However, little is understood about its role in wounding response for the economically important monocot rice plant. In this study, therefore, the involvement of MAPK was investigated to understand the wounding signaling pathway in rice. The OsMPK1 was rapidly activated by wounding within 10 min, and OsMPK1 was also activated by challenge of rice blast fungus. Further analysis revealed that OsMKK4, the upstream kinase of OsMPK1, phosphorylated OsMPK1 by wounding in vivo. Furthermore, OsMPK1 directly interacted with a rice defense-related transcription factor OsWRKY53. To understand a functional link between MAPK and its target transcription factor, we showed that OsMPK1 activated by the constitutively active mutant OsMKK4(DD) phosphorylated OsWRKY53 in vitro. Taken together, components involving in the wounding signaling pathway, OsMKK4-OsMPK1-OsWRKY53, can be important players in regulating crosstalk between abiotic stress and biotic stress.
Collapse
Affiliation(s)
- Seung Jin Yoo
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Su-Hyun Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Min-Jeong Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 305-806, Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-333, Korea
| | - Young Cheol Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Baik Ho Cho
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Kwang-Yeol Yang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
- Corresponding author. Phone) +82-62-530-2076, FAX) +82-62-530-0207, E-mail)
| |
Collapse
|
16
|
Danquah A, de Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 2013; 32:40-52. [PMID: 24091291 DOI: 10.1016/j.biotechadv.2013.09.006] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023]
Abstract
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.
Collapse
Affiliation(s)
- Agyemang Danquah
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Axel de Zelicourt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Jean Colcombet
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Heribert Hirt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| |
Collapse
|
17
|
Singh R, Jwa NS. The rice MAPKK-MAPK interactome: the biological significance of MAPK components in hormone signal transduction. PLANT CELL REPORTS 2013; 32:923-31. [PMID: 23571660 DOI: 10.1007/s00299-013-1437-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK-MAPKK-MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK-MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | | |
Collapse
|
18
|
Singh R, Lee MO, Lee JE, Choi J, Park JH, Kim EH, Yoo RH, Cho JI, Jeon JS, Rakwal R, Agrawal GK, Moon JS, Jwa NS. Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. PLANT PHYSIOLOGY 2012; 160:477-87. [PMID: 22786887 PMCID: PMC3440221 DOI: 10.1104/pp.112.200071] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/08/2012] [Indexed: 05/03/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades support the flow of extracellular signals to intracellular target molecules and ultimately drive a diverse array of physiological functions in cells, tissues, and organisms by interacting with other proteins. Yet, our knowledge of the global physical MAPK interactome in plants remains largely fragmented. Here, we utilized the yeast two-hybrid system and coimmunoprecipitation, pull-down, bimolecular fluorescence complementation, subcellular localization, and kinase assay experiments in the model crop rice (Oryza sativa) to systematically map what is to our knowledge the first plant MAPK-interacting proteins. We identified 80 nonredundant interacting protein pairs (74 nonredundant interactors) for rice MAPKs and elucidated the novel proteome-wide network of MAPK interactors. The established interactome contains four membrane-associated proteins, seven MAP2Ks (for MAPK kinase), four MAPKs, and 59 putative substrates, including 18 transcription factors. Several interactors were also validated by experimental approaches (in vivo and in vitro) and literature survey. Our results highlight the importance of OsMPK1, an ortholog of tobacco (Nicotiana benthamiana) salicyclic acid-induced protein kinase and Arabidopsis (Arabidopsis thaliana) AtMPK6, among the rice MAPKs, as it alone interacts with 41 unique proteins (51.2% of the mapped MAPK interaction network). Additionally, Gene Ontology classification of interacting proteins into 34 functional categories suggested MAPK participation in diverse physiological functions. Together, the results obtained essentially enhance our knowledge of the MAPK-interacting protein network and provide a valuable research resource for developing a nearly complete map of the rice MAPK interactome.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Mi-Ok Lee
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jae-Eun Lee
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jihyun Choi
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ji Hun Park
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Eun Hye Kim
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ran Hee Yoo
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jung-Il Cho
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jong-Seong Jeon
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Randeep Rakwal
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ganesh Kumar Agrawal
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jae Sun Moon
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | | |
Collapse
|
19
|
Dombrowski JE, Martin RC. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:915-919. [PMID: 22472075 DOI: 10.1016/j.jplph.2012.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Forage and turf grasses are utilized in diverse environments that expose them to a variety of abiotic stresses, however very little is known concerning the perception or molecular responses to these various stresses. In the model grass species Lolium temulentum, a 46kDa mitogen-activated protein kinase (MAPK) was activated in the leaf within 10min of exposing the roots to salt stress. When plants were subjected cold stress, no significant activation of the MAPK was observed. However, the 46kDa MAPK was rapidly activated in the leaves of plants within 3min of exposure to heat stress. Previously, mechanical wounding has been shown to rapidly activate a 46kDa and a 44kDa MAPK in L. temulentum. The wound activation of the MAPKs was delayed and diminished in plants undergoing cold treatment. In plants subjected simultaneously to 40°C and wounding, the activation of the 46kDa MAPK was enhanced. However if plants were subjected to heat and cold stress for more than 2h or exposed to 300mM NaCl for 24h prior to wounding, the wound activation of the 46kDa and a 44kDa MAPKs were significantly inhibited. These results suggest that the 46kDa MAPK plays a role in the response to various environmental stimuli.
Collapse
Affiliation(s)
- James E Dombrowski
- USDA-ARS National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331, USA.
| | | |
Collapse
|
20
|
Characterization and functional analysis of GhRDR6, a novel RDR6 gene from cotton (Gossypium hirsutum L.). Biosci Rep 2012; 32:139-51. [PMID: 21679158 DOI: 10.1042/bsr20100086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RDR6 (RNA-dependent RNA polymerase 6) is not only involved in virus resistance but also plays an important role in natural plant development. In the present study, a novel RDR gene, named GhRDR6 (Gossypium hirsutum RDR6), was isolated from cotton (G. hirsutum L.). Alignment and evolutionary relationship analyses showed that GhRDR6 was more closely related to RDR6 than to other RDRs. Expression analysis indicated that this single-copy gene is constitutively expressed in the roots, stems and leaves. Semi-quantitative RT-PCR (reverse transcription-PCR) showed that GhRDR6 was up-regulated by the application of various phytohormones, including MeJA [methyl JA (jasmonate)], ABA (abscisic acid), JA, α-naphthylacetic acid, gibberellins and ET (ethylene). In addition, GhRDR6 expression increased in response to wounding, cold (4°C) and NaCl treatments, but not by drought. Furthermore, overexpression of GhRDR6 in transgenic Nicotiana benthamiana plants resulted in root lengths longer than the wide-type during the seeding stage. Interestingly, the GhRDR6-overexpressing plants displayed reduced tolerance to oxidative damage, resulting in reduced ABA-sensitivity, but they tolerated freezing. Moreover, resistance to potato virus Y was enhanced in transgenic N. benthamiana plants. These results suggest that GhRDR6 may play an important role in plant defence responses and a pivotal role in plant development.
Collapse
|
21
|
Liu Y. Roles of mitogen-activated protein kinase cascades in ABA signaling. PLANT CELL REPORTS 2012; 31:1-12. [PMID: 21870109 DOI: 10.1007/s00299-011-1130-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 07/23/2011] [Accepted: 07/23/2011] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA) is a universal hormone in higher plants and plays a major role in various aspects of plant stress, growth, and development. Mitogen-activated protein kinase (MAPK) cascades are key signaling modules for responding to various extracellular stimuli in plants. The available data suggest that MAPK cascades are involved in some ABA responses, including antioxidant defense, guard cell signaling, and seed germination. Some MAPK phosphatases have also been demonstrated to be implicated in ABA responses. The goal of this review is to piece together the findings concerning MAPK cascades in ABA signaling. Questions and further perspectives of the roles played by MAPK cascades in ABA signaling are also furnished.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.
| |
Collapse
|
22
|
Dombrowski JE, Hind SR, Martin RC, Stratmann JW. Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:686-693. [PMID: 21421419 DOI: 10.1016/j.plantsci.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/15/2011] [Accepted: 01/20/2011] [Indexed: 05/27/2023]
Abstract
Forage and turf grasses are continually cut and grazed by livestock, however very little is known concerning the perception or molecular responses to wounding. Mechanical wounding rapidly activated a 46 kDa and a 44 kDa mitogen-activated protein kinase (MAPK) in six different grass species. In the model grass species Lolium temulentum, the 46 kDa MAPK was rapidly activated within 5 min of wounding both locally and systemically in an adjacent unwounded tiller. This indicates that wounding generates a rapidly propagated long-distance signal that activates a MAPK in the distal portions of the plant. This 46 kDa MAPK activity was not enhanced by the addition of the pathogen-associated signal salicylic acid (SA) to the wound site nor induced when exposed to methyl jasmonate (MJ), which is a potent inducer of the wound response in dicotyledonous plants. However, pretreatment with MJ increased the wound-induced activity of the 44 kDa MAPK over the activity in control plants.
Collapse
Affiliation(s)
- James E Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|
23
|
Plant mitogen-activated protein kinases and their roles in mediation of signal transduction in abiotic stresses. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11703-011-1072-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics 2010. [PMID: 20637108 DOI: 10.1186/1471–2164–11-435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphatases are the key components of a number of signaling pathways where they modulate various cellular responses. In plants, protein phosphatases constitute a large gene family and are reportedly involved in the regulation of abiotic stress responses and plant development. Recently, the whole complement of protein phosphatases has been identified in Arabidopsis genome. While PP2C class of serine/threonine phosphatases has been explored in rice, the whole complement of this gene family is yet to be reported. RESULTS In silico investigation revealed the presence of 132-protein phosphatase-coding genes in rice genome. Domain analysis and phylogenetic studies of evolutionary relationship categorized these genes into PP2A, PP2C, PTP, DSP and LMWP classes. PP2C class represents a major proportion of this gene family with 90 members. Chromosomal localization revealed their distribution on all the 12 chromosomes, with 42 genes being present on segmentally duplicated regions and 10 genes on tandemly duplicated regions of chromosomes. The expression profiles of 128 genes under salinity, cold and drought stress conditions, 11 reproductive developmental (panicle and seed) stages along with three stages of vegetative development were analyzed using microarray expression data. 46 genes were found to be differentially expressing in 3 abiotic stresses out of which 31 were up-regulated and 15 exhibited down-regulation. A total of 82 genes were found to be differentially expressing in different developmental stages. An overlapping expression pattern was found for abiotic stresses and reproductive development, wherein 8 genes were up-regulated and 7 down-regulated. Expression pattern of the 13 selected genes was validated employing real time PCR, and it was found to be in accordance with the microarray expression data for most of the genes. CONCLUSIONS Exploration of protein phosphatase gene family in rice has resulted in the identification of 132 members, which can be further divided into different classes phylogenetically. Expression profiling and analysis indicate the involvement of this large gene family in a number of signaling pathways triggered by abiotic stresses and their possible role in plant development. Our study will provide the platform from where; the expression pattern information can be transformed into molecular, cellular and biochemical characterization of members belonging to this gene family.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| | | | | | | | | |
Collapse
|
25
|
Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics 2010; 11:435. [PMID: 20637108 PMCID: PMC3091634 DOI: 10.1186/1471-2164-11-435] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 07/16/2010] [Indexed: 11/12/2022] Open
Abstract
Background Protein phosphatases are the key components of a number of signaling pathways where they modulate various cellular responses. In plants, protein phosphatases constitute a large gene family and are reportedly involved in the regulation of abiotic stress responses and plant development. Recently, the whole complement of protein phosphatases has been identified in Arabidopsis genome. While PP2C class of serine/threonine phosphatases has been explored in rice, the whole complement of this gene family is yet to be reported. Results In silico investigation revealed the presence of 132-protein phosphatase-coding genes in rice genome. Domain analysis and phylogenetic studies of evolutionary relationship categorized these genes into PP2A, PP2C, PTP, DSP and LMWP classes. PP2C class represents a major proportion of this gene family with 90 members. Chromosomal localization revealed their distribution on all the 12 chromosomes, with 42 genes being present on segmentally duplicated regions and 10 genes on tandemly duplicated regions of chromosomes. The expression profiles of 128 genes under salinity, cold and drought stress conditions, 11 reproductive developmental (panicle and seed) stages along with three stages of vegetative development were analyzed using microarray expression data. 46 genes were found to be differentially expressing in 3 abiotic stresses out of which 31 were up-regulated and 15 exhibited down-regulation. A total of 82 genes were found to be differentially expressing in different developmental stages. An overlapping expression pattern was found for abiotic stresses and reproductive development, wherein 8 genes were up-regulated and 7 down-regulated. Expression pattern of the 13 selected genes was validated employing real time PCR, and it was found to be in accordance with the microarray expression data for most of the genes. Conclusions Exploration of protein phosphatase gene family in rice has resulted in the identification of 132 members, which can be further divided into different classes phylogenetically. Expression profiling and analysis indicate the involvement of this large gene family in a number of signaling pathways triggered by abiotic stresses and their possible role in plant development. Our study will provide the platform from where; the expression pattern information can be transformed into molecular, cellular and biochemical characterization of members belonging to this gene family.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| | | | | | | | | |
Collapse
|
26
|
You MK, Shin HY, Kim YJ, Ok SH, Cho SK, Jeung JU, Yoo SD, Kim JK, Shin JS. Novel bifunctional nucleases, OmBBD and AtBBD1, are involved in abscisic acid-mediated callose deposition in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1015-29. [PMID: 20018603 PMCID: PMC2815893 DOI: 10.1104/pp.109.147645] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/08/2009] [Indexed: 05/23/2023]
Abstract
Screening of the expressed sequence tag library of the wild rice species Oryza minuta revealed an unknown gene that was rapidly and strongly induced in response to attack by a rice fungal pathogen (Magnaporthe oryzae) and an insect (Nilaparvata lugens) and by wounding, abscisic acid (ABA), and methyl jasmonate treatments. Its recombinant protein was identified as a bifunctional nuclease with both RNase and DNase activities in vitro. This gene was designated OmBBD (for O. minuta bifunctional nuclease in basal defense response). Overexpression of OmBBD in an Arabidopsis (Arabidopsis thaliana) model system caused the constitutive expression of the PDF1.2, ABA1, and AtSAC1 genes, which are involved in priming ABA-mediated callose deposition. This activation of defense responses led to an increased resistance against Botrytis cinerea. atbbd1, the knockout mutant of the Arabidopsis ortholog AtBBD1, was susceptible to attack by B. cinerea and had deficient callose deposition. Overexpression of either OmBBD or AtBBD1 in atbbd1 plants complemented the susceptible phenotype of atbbd1 against B. cinerea as well as the deficiency of callose deposition. We suggest that OmBBD and AtBBD1 have a novel regulatory role in ABA-mediated callose deposition.
Collapse
|
27
|
Rao KP, Vani G, Kumar K, Sinha AK. Rhythmic expression of mitogen activated protein kinase activity in rice. Mol Cells 2009; 28:417-22. [PMID: 19855939 DOI: 10.1007/s10059-009-0137-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/12/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022] Open
Abstract
Mitogen activated protein kinase (MAPK) are known to get activated during various stress signals and transduce the message from the cell membrane to the nucleus for appropriate cellular reorganization. Though, a certain basal activity of MAPK is often observed in the control plants. Prolonged exposure of rice plants to lowered or elevated temperature exhibited a rhythm in the activation of MAPKs. We analyzed existence of a possible endogenous rhythm in the activity of MAPKs in rice plants. The plants growing at constant temperature entrained in 16/8 h day-night cycle showed diurnal rhythm in activity. When the activation of MAPK was tested under continuous conditions by shifting plants to continuous darkness for a period of 72 h, the periodic rhythm persisted and followed a circadian pattern. Analysis of the transcripts of group A, B and C members of MAPKs under above conditions by quantitative real time PCR revealed that the members of group C exhibit periodic rhythm. Our data indicates that the MAP kinase activity in rice follows rhythmic expression in a circadian manner.
Collapse
|
28
|
Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett 2009; 583:2734-8. [PMID: 19665023 DOI: 10.1016/j.febslet.2009.07.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 12/28/2022]
Abstract
Cytosolic thioredoxins are small conserved proteins that are involved in cellular redox regulation. Here, we report that a major and cold-induced thioredoxin h of rice, OsTrx23, has an inhibitory activity on stress-activated mitogen-activated protein kinases (MAPKs), OsMPK3 and OsMPK6 in vitro. This inhibition effects were redox-dependent and did not involve stable physical interaction. The data suggested a novel mechanism for redox regulation of MAPKs in plants.
Collapse
Affiliation(s)
- Guosheng Xie
- National Agricultural Research Center for Hokkaido Region, National Agricultural and Food Research Organization, Sapporo, Japan
| | | | | | | |
Collapse
|
29
|
Ding H, Zhang A, Wang J, Lu R, Zhang H, Zhang J, Jiang M. Identity of an ABA-activated 46 kDa mitogen-activated protein kinase from Zea mays leaves: partial purification, identification and characterization. PLANTA 2009; 230:239-251. [PMID: 19424717 DOI: 10.1007/s00425-009-0938-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/20/2009] [Indexed: 05/27/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have been shown to be important components in abscisic acid (ABA) signal transduction pathway. In this study, a 46 kDa MAPK (p46MAPK) induced by ABA was partially purified from maize (Zea mays) by Q-Sepharose FF, Phenyl-Sepharose FF, Resource Q, Mono QTM 5/50 GL, poly-L-lysine-agarose, and Superdex 75 prep-grade columns, and was identified as ZmMAPK5 (gi|4239889) by the matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. Furthermore, the kinase showed optimal activity at pH 8.0, 30 degrees C, and 10 mM MgCl(2); the K(m) for myelin basic protein (MBP) substrate and ATP were 0.13 microg microl(-1) and 62 microM, respectively. MBP was the preferred substrate, of which the threonine residue was phosphorylated. Finally, the kinase was found to respond to diverse extracellular stimuli. These results enable us to further reveal the function of the ZmMAPK5 in ABA signaling.
Collapse
Affiliation(s)
- Haidong Ding
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Cho K, Agrawal GK, Jwa NS, Shibato J, Torres NL, Kubo A, Rakwal R. Rice OsSIPK: a central component of ozone-triggered physiological responses. PLANT SIGNALING & BEHAVIOR 2009; 4:448-450. [PMID: 19816108 PMCID: PMC2676763 DOI: 10.4161/psb.4.5.8394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 06/10/2023]
Abstract
The OsSIPK expression is transcriptionally regulated in time and space by diverse environmental stresses and phytohormones. Rice OsSIPK and its orthologs in other plants are highly conserved and appear to have overlapping physiological responses. Given our interest in understanding the signaling and metabolic pathways responsible for environmental factors, we briefly discuss the role of OsSIPK in ozone-triggered physiological responses, particularly in rice. We also provide evidence on tight correlation between ozone-induced OsSIPK expression and ethylene production.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Environmental Biology Division; National Institute for Environmental Studies (NIES); Tsukuba, Ibaraki Japan
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu, Nepal
| | - Nam-Soo Jwa
- Department of Molecular Biology; Sejong University; Gunja-dong, Seoul South Korea
| | - Junko Shibato
- Health Technology Research Center (HTRC); National Institute of Advanced Industrial Science and Technology (AIST) West; Tsukuba, Ibaraki Japan
| | - Nilka Lineth Torres
- University of Panama; University Regional Center of Azuero; Chitre, Republic of Panama
| | - Akihiro Kubo
- Environmental Biology Division; National Institute for Environmental Studies (NIES); Tsukuba, Ibaraki Japan
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu, Nepal
- Health Technology Research Center (HTRC); National Institute of Advanced Industrial Science and Technology (AIST) West; Tsukuba, Ibaraki Japan
| |
Collapse
|
31
|
Cho K, Agrawal GK, Jwa NS, Kubo A, Rakwal R. Rice OsSIPK and its orthologs: A “central master switch” for stress responses. Biochem Biophys Res Commun 2009; 379:649-53. [DOI: 10.1016/j.bbrc.2008.12.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 12/18/2022]
|
32
|
Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. PLANTA 2009; 229:485-95. [PMID: 19002491 DOI: 10.1007/s00425-008-0848-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/20/2008] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in biotic and abiotic stress responses. In plants, MAPKs are classified into four groups, designated A-D. Information about group C MAPKs is limited, and, in particular, no data from maize are available. In this article, we isolated a novel group C MAPK gene, ZmMPK7, from Zea mays. Exogenous abscisic acid (ABA) and hydrogen peroxide (H(2)O(2)) induced calcium-dependant transcription of ZmMPK7. Induction of this gene in response to ABA was blocked by several reactive oxygen species (ROS) manipulators such as imidazole, Tiron, and dimethylthiourea (DMTU). This result indicates that endogenous H(2)O(2) may be required for ZmMPK7-mediated ABA signaling. Expression of ZmMPK7 in Nicotonia tobaccum caused less H(2)O(2) to accumulate and alleviated ROS-mediated injuries following submission of the plants to osmotic stress. The enhanced total peroxidase (POD) activity in transgenic tobacco plants may contribute to removal of ROS. Finally, we have shown that the ZmMPK7 protein localizes in the nucleus. These results broaden our knowledge regarding plant group C MAPK activity in response to stress signals.
Collapse
Affiliation(s)
- Xiao-juan Zong
- Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 2008; 7:2980-98. [PMID: 18517257 DOI: 10.1021/pr800128q] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ozone (O(3)), a serious air pollutant, is known to significantly reduce photosynthesis, growth, and yield and to cause foliar injury and senescence. Here, integrated transcriptomics, proteomics, and metabolomics approaches were applied to investigate the molecular responses of O(3) in the leaves of 2-week-old rice (cv. Nipponbare) seedlings exposed to 0.2 ppm O(3) for a period of 24 h. On the basis of the morphological alteration of O(3)-exposed rice leaves, transcript profiling of rice genes was performed in leaves exposed for 1, 12, and 24 h using rice DNA microarray chip. A total of 1535 nonredundant genes showed altered expression of more than 5-fold over the control, representing 8 main functional categories. Genes involved in information storage and processing (10%) and cellular processing and signaling categories (24%) were highly represented within 1 h of O(3) treatment; transcriptional factor and signal transduction, respectively, were the main subcategories. Genes categorized into information storage and processing (17, 23%), cellular processing and signaling (20, 16%) and metabolism (18, 19%) were mainly regulated at 12 and 24 h; their main subcategories were ribosomal protein, post-translational modification, and signal transduction and secondary metabolites biosynthesis, respectively. Two-dimensional gel electrophoresis-based proteomics analyses in combination with tandem mass spectrometer identified 23 differentially expressed protein spots (21 nonredundant proteins) in leaves exposed to O(3) for 24 h compared to respective control. Identified proteins were found to be involved in cellular processing and signaling (32%), photosynthesis (19%), and defense (14%). Capillary electrophoresis-mass spectrometry-based metabolomic profiling revealed accumulation of amino acids, gamma-aminobutyric acid, and glutathione in O(3) exposed leaves until 24 h over control. This systematic survey showed that O(3) triggers a chain reaction of altered gene, protein and metabolite expressions involved in multiple cellular processes in rice.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Environmental Biology Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|