1
|
Colpo A, Molinari A, Boldrini P, Živčak M, Brestič M, Demaria S, Baldisserotto C, Pancaldi S, Ferroni L. Thylakoid membrane appression in the giant chloroplast of Selaginella martensii Spring: A lycophyte challenges grana paradigms in shade-adapted species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111833. [PMID: 37595894 DOI: 10.1016/j.plantsci.2023.111833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/17/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In vascular plants, the thylakoid architecture is dominated by the highly structured multiple membrane layers known as grana. The structural diversity of the thylakoid system among plant species is mainly determined by the adaptation to the growth light regime, according to a paradigm stating that shade-tolerant species are featured by a high membrane extension with an enhanced number of thylakoid layers per granum. In this study, the thylakoid system was analysed in Selaginella martensii Spring, a shade-adapted rainforest species belonging to lycophytes, a diminutive plant lineage, sister clade of all other vascular plants (euphyllophytes, including ferns and seed plants). The species is characterized by giant cup-shaped chloroplasts in the upper epidermis and, quantitatively less important, disk-shaped chloroplasts in the mesophyll and lower epidermis. The study aimed at the quantitative assessment of the thylakoid appression exploiting a combination of complementary methods, including electron microscopy, selective thylakoid solubilisation, electron paramagnetic resonance, and simultaneous analysis of fast chlorophyll a fluorescence and P700 redox state. With a chlorophyll a/b ratio of 2.6 and PSI/PSII ratio of 0.31, the plant confirmed two typical hallmarks of shade-adaptation. The morphometric analysis of electron micrographs revealed a 33% fraction of non-appressed thylakoid domains. However, contrasting with the structural paradigm of thylakoid shade-adaptation in angiosperms, S. martensii privileges the increase in the granum diameter in place of the increase in the number of layers building the granum. The very wide grana diameter, 727 nm on average, largely overcame the threshold of 500 nm currently hypothesized to allow an effective diffusion of long-range electron carriers. The fraction of non-appressed membranes based on the selective solubilisation of thylakoids with digitonin was 26%, lower than the morphometric determination, indicating the presence of non-appressed domains inaccessible to the detergent, most probably because of the high three-dimensional complexity of the thylakoid system in S. martensii. Particularly, strong irregularity of grana stacks is determined by assembling thylakoid layers of variable width that tend to slide apart from each other as the number of stacked layers increases.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marek Živčak
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| | - Marian Brestič
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy.
| |
Collapse
|
2
|
Sun W, Ma N, Huang H, Wei J, Ma S, Liu H, Zhang S, Zhang Z, Sui X, Li X. Photosynthetic contribution and characteristics of cucumber stems and petioles. BMC PLANT BIOLOGY 2021; 21:454. [PMID: 34615487 PMCID: PMC8493697 DOI: 10.1186/s12870-021-03233-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/29/2021] [Indexed: 06/11/2023]
Abstract
BACKGROUND Photosynthesis in the green leafless blade tissues or organs of plants has been studied in some plants, but the photosynthetic characteristics of stems and petioles are poorly understood. Cucurbitaceous plants are climbing plants that have substantial stem and petiole biomass. Understanding the photosynthetic contribution of cucumber stems and petioles to their growth and the underlying molecular mechanisms are important for the regulating of growth in cucumber production. RESULTS In this study, the photosynthetic capacity of cucumber stems and petioles were determined by 14CO2 uptake. The total carbon fixed by the stems and petioles was approximately 4% of that fixed by one leaf blade in the cucumber seedling stage, while the proportion of the carbon accumulated in the stems and petioles that redistributed to sink organs (roots and shoot apexes) obviously increased under leafless conditions. The photosynthetic properties of cucumber stems and petioles were studied using a combination of electron microscopy and isotope tracers to compare these properties of stems and petioles with those of leaf blade using two genotypes of cucumber (dark green and light green). Compared with those of the leaf blades, the chlorophyll contents of the cucumber stems and petioles were lower, and the stems and petioles had lower chloroplast numbers and lower stoma numbers but higher thylakoid grana lamella numbers and larger stoma sizes. The Chl a/b ratios were also decreased in the petioles and stems compared with those in the leaf blades. The total photosynthetic rates of the stems and petioles were equivalent to 6 ~ 8% of that of one leaf blade, but the respiration rates were similar in all the three organs, with an almost net 0 photosynthetic rate in the stems and petioles. Transcriptome analysis showed that compared with the leaf blades, the stems and petioles has significantly different gene expression levels in photosynthesis, porphyrin and chlorophyll metabolism; photosynthetic antenna proteins; and carbon fixation. PEPC enzyme activities were higher in the stems and petioles than in the leaf blades, suggesting that the photosynthetic and respiratory mechanisms in stems and petioles are different from those in leaf blade, and these results are consistent with the gene expression data. CONCLUSIONS In this study, we confirmed the photosynthetic contribution to the growth of cucumber stems and petioles, and showed their similar photosynthetic patterns in the terms of anatomy, molecular biology and physiology, which were different from those of cucumber leaf blades.
Collapse
Affiliation(s)
- Weike Sun
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Ning Ma
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Hongyu Huang
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Kernel Cucumber Research Institute, 301 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jingwei Wei
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Si Ma
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Huan Liu
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Shi Zhang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Zhenxian Zhang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Xiaolei Sui
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China
| | - Xin Li
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops. College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2#, HaiDian District, Beijing, 100193, China.
| |
Collapse
|
3
|
Giovanardi M, Pantaleoni L, Ferroni L, Pagliano C, Albanese P, Baldisserotto C, Pancaldi S. In pea stipules a functional photosynthetic electron flow occurs despite a reduced dynamicity of LHCII association with photosystems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1025-1038. [DOI: 10.1016/j.bbabio.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
|
4
|
Chen YE, Su YQ, Mao HT, Wu N, Zhu F, Yuan M, Zhang ZW, Liu WJ, Yuan S. Terrestrial Plants Evolve Highly Assembled Photosystem Complexes in Adaptation to Light Shifts. FRONTIERS IN PLANT SCIENCE 2018; 9:1811. [PMID: 30619393 PMCID: PMC6306036 DOI: 10.3389/fpls.2018.01811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/21/2018] [Indexed: 05/13/2023]
Abstract
It has been known that PSI and PSII supercomplexes are involved in the linear and cyclic electron transfer, dynamics of light capture, and the repair cycle of PSII under environmental stresses. However, evolutions of photosystem (PS) complexes from evolutionarily divergent species are largely unknown. Here, we improved the blue native polyacrylamide gel electrophoresis (BN-PAGE) separation method and successfully separated PS complexes from all terrestrial plants. It is well known that reversible D1 protein phosphorylation is an important protective mechanism against oxidative damages to chloroplasts through the PSII photoinhibition-repair cycle. The results indicate that antibody-detectable phosphorylation of D1 protein is the latest event in the evolution of PS protein phosphorylation and occurs exclusively in seed plants. Compared to angiosperms, other terrestrial plant species presented much lower contents of PS supercomplexes. The amount of light-harvesting complexes II (LHCII) trimers was higher than that of LHCII monomers in angiosperms, whereas it was opposite in gymnosperms, pteridophytes, and bryophytes. LHCII assembly may be one of the evolutionary characteristics of vascular plants. In vivo chloroplast fluorescence measurements indicated that lower plants (bryophytes especially) showed slower changes in state transition and nonphotochemical quenching (NPQ) in response to light shifts. Therefore, the evolution of PS supercomplexes may be correlated with their acclimations to environments.
Collapse
Affiliation(s)
- Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan University, Chengdu, China
| | - Hao-Tian Mao
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Nan Wu
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wen-Juan Liu
- Center of Analysis and Testing, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Shu Yuan,
| |
Collapse
|
5
|
Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L, Goltsev V, Guidi L, Jajoo A, Li P, Losciale P, Mishra VK, Misra AN, Nebauer SG, Pancaldi S, Penella C, Pollastrini M, Suresh K, Tambussi E, Yanniccari M, Zivcak M, Cetner MD, Samborska IA, Stirbet A, Olsovska K, Kunderlikova K, Shelonzek H, Rusinowski S, Bąba W. Frequently asked questions about chlorophyll fluorescence, the sequel. PHOTOSYNTHESIS RESEARCH 2017; 132:13-66. [PMID: 27815801 PMCID: PMC5357263 DOI: 10.1007/s11120-016-0318-y] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/17/2016] [Indexed: 05/20/2023]
Abstract
Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.
Collapse
Affiliation(s)
- Hazem M. Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | | | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Filippo Bussotti
- Department of Agricultural, Food and Environmental Sciences, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Angeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5., 46113 Moncada, Valencia Spain
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr.Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, M.P. 452 001 India
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Pasquale Losciale
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria [Research Unit for Agriculture in Dry Environments], 70125 Bari, Italy
| | - Vinod K. Mishra
- Department of Biotechnology, Doon (P.G.) College of Agriculture Science, Dehradun, Uttarakhand 248001 India
| | - Amarendra N. Misra
- Centre for Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Ranchi, 835205 India
| | - Sergio G. Nebauer
- Departamento de Producción vegetal, Universitat Politècnica de València, Camino de Vera sn., 46022 Valencia, Spain
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5., 46113 Moncada, Valencia Spain
| | - Martina Pollastrini
- Department of Agricultural, Food and Environmental Sciences, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Kancherla Suresh
- ICAR – Indian Institute of Oil Palm Research, Pedavegi, West Godavari Dt., Andhra Pradesh 534 450 India
| | - Eduardo Tambussi
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata — Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, CC 327, La Plata, Argentina
| | - Marcos Yanniccari
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata — Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, CC 327, La Plata, Argentina
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Magdalena D. Cetner
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Izabela A. Samborska
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | | | - Katarina Olsovska
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Kristyna Kunderlikova
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Henry Shelonzek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia, ul. Jagiellońska 28, 40-032 Katowice, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
| | - Wojciech Bąba
- Department of Plant Ecology, Institute of Botany, Jagiellonian University, Lubicz 46, 31-512 Kraków, Poland
| |
Collapse
|
6
|
Ferroni L, Suorsa M, Aro EM, Baldisserotto C, Pancaldi S. Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems. THE NEW PHYTOLOGIST 2016; 211:554-68. [PMID: 27058989 DOI: 10.1111/nph.13939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/20/2016] [Indexed: 05/22/2023]
Abstract
Vascular plants have evolved a long-term light acclimation strategy primarily relying on the regulation of the relative amounts of light-harvesting complex II (LHCII) and of the two photosystems, photosystem I (PSI) and photosystem II (PSII). We investigated whether such a model is also valid in Selaginella martensii, a species belonging to the early diverging group of lycophytes. Selaginella martensii plants were acclimated to three natural light regimes (extremely low light (L), medium light (M) and full sunlight (H)) and thylakoid organization was characterized combining ultrastructural, biochemical and functional methods. From L to H plants, thylakoid architecture was rearranged from (pseudo)lamellar to predominantly granal, the PSII : PSI ratio changed in favour of PSI, and the photochemical capacity increased. However, regulation of light harvesting did not occur through variations in the amount of free LHCII, but rather resulted from the flexibility of the association of free LHCII with PSII and PSI. In lycophytes, the free interspersed LHCII serves a fixed proportion of reaction centres, either PSII or PSI, and the regulation of PSI-LHCII(-PSII) megacomplexes is an integral part of long-term acclimation. Free LHCII ensures photoprotection of PSII, allows regulated use of PSI as an energy quencher, and can also quench endangered PSI.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Marjaana Suorsa
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Costanza Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| |
Collapse
|
7
|
Iermak I, Vink J, Bader AN, Wientjes E, van Amerongen H. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1473-1478. [PMID: 27239747 DOI: 10.1016/j.bbabio.2016.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/09/2016] [Accepted: 05/21/2016] [Indexed: 01/09/2023]
Abstract
Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes.
Collapse
Affiliation(s)
- Ievgeniia Iermak
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands; BioSolar Cells Project Office, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Jochem Vink
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | - Arjen N Bader
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands; MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands; BioSolar Cells Project Office, P.O. Box 98, 6700 AB Wageningen, The Netherlands; MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| |
Collapse
|
8
|
Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. PHOTOSYNTHESIS RESEARCH 2014; 122:121-58. [PMID: 25119687 PMCID: PMC4210649 DOI: 10.1007/s11120-014-0024-6] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/02/2014] [Indexed: 05/18/2023]
Abstract
The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.
Collapse
Affiliation(s)
- Hazem M. Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gert Schansker
- Avenue des Amazones 2, 1226 Chêne-Bougeries, Switzerland
| | - Richard J. Ladle
- Institute of Biological and Health Sciences, Federal University of Alagoas, Praça Afrânio Jorge, s/n, Prado, Maceió, AL Brazil
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr. Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Karolina Bosa
- Department of Pomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I. Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Filippo Bussotti
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Angeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - Piotr Dąbrowski
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Nabil I. Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, Via del Borghetto, 80, 56124 Pisa, Italy
| | | | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, 452 001 M.P India
| | - Amarendra N. Misra
- Centre for Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Ranchi, 835205 India
| | - Sergio G. Nebauer
- Departamento de Producción vegetal, Universitat Politècnica de València, C de Vera sn, 46022 Valencia, Spain
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - DorothyBelle Poli
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153 USA
| | - Martina Pollastrini
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | | | - Beata Rutkowska
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - João Serôdio
- Departamento de Biologia, CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Kancherla Suresh
- Directorate of Oil Palm Research, West Godavari Dt., Pedavegi, 534 450 Andhra Pradesh India
| | - Wiesław Szulc
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Eduardo Tambussi
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marcos Yanniccari
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
9
|
Ferroni L, Angeleri M, Pantaleoni L, Pagliano C, Longoni P, Marsano F, Aro EM, Suorsa M, Baldisserotto C, Giovanardi M, Cella R, Pancaldi S. Light-dependent reversible phosphorylation of the minor photosystem II antenna Lhcb6 (CP24) occurs in lycophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:893-905. [PMID: 24450769 DOI: 10.1111/tpj.12437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 05/22/2023]
Abstract
Evolution of vascular plants required compromise between photosynthesis and photodamage. We analyzed representative species from two divergent lineages of vascular plants, lycophytes and euphyllophytes, with respect to the response of their photosynthesis and light-harvesting properties to increasing light intensity. In the two analyzed lycophytes, Selaginella martensii and Lycopodium squarrosum, the medium phase of non-photochemical quenching relaxation increased under high light compared to euphyllophytes. This was thought to be associated with the occurrence of a further thylakoid phosphoprotein in both lycophytes, in addition to D2, CP43 and Lhcb1-2. This protein, which showed light intensity-dependent reversible phosphorylation, was identified in S. martensii as Lhcb6, a minor LHCII antenna subunit of PSII. Lhcb6 is known to have evolved in the context of land colonization. In S. martensii, Lhcb6 was detected as a component of the free LHCII assemblies, but also associated with PSI. Most of the light-induced changes affected the amount and phosphorylation of the LHCII assemblies, which possibly mediate PSI-PSII connectivity. We propose that Lhcb6 is involved in light energy management in lycophytes, participating in energy balance between PSI and PSII through a unique reversible phosphorylation, not yet observed in other land plants.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d'Este 32, Ferrara, 44121, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Giovanardi M, Baldisserotto C, Ferroni L, Longoni P, Cella R, Pancaldi S. Growth and lipid synthesis promotion in mixotrophic Neochloris oleoabundans (Chlorophyta) cultivated with glucose. PROTOPLASMA 2014; 251:115-25. [PMID: 23893305 DOI: 10.1007/s00709-013-0531-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/10/2013] [Indexed: 05/21/2023]
Abstract
In the recent years, the studies concerning the cultivation of Neochloris oleoabundans for biofuel purposes have increased, in relation to its capability to accumulate lipids when grown under nutrient starvation. Unfortunately, this cultivation mode does not allow to reach high biomass densities, which are required to improve the feasibility of the process. Increasing knowledge of the microalgal physiology is necessary to obtain new useful information for the improvement of culture performance in the perspective of large-scale cultivation. In this work, the mixotrophic cultivation of N. oleoabundans in a brackish medium added with different glucose concentrations has been tested under shaking, with the aim of stimulating growth alongside lipid accumulation inside cells. Cell morphology, glucose consumption, photosynthetic pigment content and photosynthetic efficiency were also investigated. Among all tested glucose concentrations (0-30 g L(-1)), it was observed that 2.5 g L(-1) was the optimal concentration, allowing to obtain the best compromise between glucose supplement, biomass production and lipid accumulation. Growth was highly enhanced in mixotrophic cultures, linked to the release of cells from sporocysts. A unique feature characterising mixotrophy in N. oleoabundans was the promotion of the maximum quantum yield of Photosystem II. Moreover, when mixotrophic cells entered the stationary phase, high lipid accumulation was induced. This study shows that the addition of glucose to N. oleoabundans remarkably increases the production of biomass enriched in lipids and represents an advancement for the cultivation of this microalga for applied purposes.
Collapse
Affiliation(s)
- Martina Giovanardi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Ferroni L, Pantaleoni L, Baldisserotto C, Aro EM, Pancaldi S. Low photosynthetic activity is linked to changes in the organization of photosystem II in the fruit of Arum italicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:140-150. [PMID: 23262182 DOI: 10.1016/j.plaphy.2012.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
The low photosynthetic activity of fleshy green fruits is currently attributed to their special anatomy rather than to a down-regulation of photosystem II (PSII). However, it is unclear whether the organization of PSII, which is highly conserved in leaves, is also shared by non-foliar structures, such as fleshy fruits. To obtain new information on this aspect, the photosynthetic activity and the organization of PSII were investigated in the berry of Arum italicum Miller during maturation (ivory to green) and early ripening (green to yellow). The berry developed an "internal CO(2) recycling" photosynthesis; gross photosynthesis at the green stage was 25% of the leaf lamina. SDS-PAGE, BN-PAGE and 77 K spectrofluorimetry showed that the thylakoid membrane accumulated a very high amount of free LHCII trimers and only few PSII and PSI complexes. The pattern of PSII forms was similar to that of the lamina (monomers, dimers, LHCII-PSII supercomplexes), but increase in CP43-less PSII cores and low F695/F680 fluorescence ratio at room temperature indicated that PSII was less stable than in the leaf lamina. Beside effective PSII photoprotection, we propose that LHCII serves as a temporary storage of chlorophylls to provide a visual signal that fruit is not mature for seed dispersal. We conclude that the low photosynthetic activity of A. italicum berry depends on the scantiness of reaction centres and the reduced functionality of PSII.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnologies, University of Ferrara, C.so Ercole I d'Este 32, 44121 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
12
|
Timperio AM, Gevi F, Ceci LR, Zolla L. Acclimation to intense light implies changes at the level of trimeric subunits involved in the structural organization of the main light-harvesting complex of photosystem II (LHCII) and their isoforms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 50:8-14. [PMID: 22099514 DOI: 10.1016/j.plaphy.2011.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
When plants are grown under stable light conditions their photosynthetic apparatus undergoes a long-term acclimation process. Acclimation to different light intensities involves changes in the organization and/or abundance of protein complexes in the thylakoid membranes. In this study, spinach plants were exposed to differing light intensities, and the structural organization of the major light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) was investigated by analysing their trimeric subunits. Plants were exposed to three different light intensities, 100 μmol quanta m⁻² s⁻¹, 200 μmol quanta m⁻² s⁻¹ and an elevated light intensity, 400 μmol quanta m⁻² s⁻¹, sufficient to provoke a moderate stress response in the form of down regulation of PSII. "MicroRotofor" analysis showed the presence of LHCII with different pIs and revealed a clear decline in their abundance as light intensity increased from 100 to 400 μmol quanta m⁻² s⁻¹. The three subunits (Lhcb1, Lhcb2, Lhcb3) behaved differently from each other as: Lhcb1 decreased more significantly than Lhcb2, whereas Lhcb3 was reduced only at a light window at which Lhcb1 and Lhcb2 abundance has already been depleted under intense irradiation. Interestingly, we also found that isoforms of Lhcb1 subunit (Lhcb1.1; 1.2; 1.3) behaved differently in response to elevated light intensity, suggesting an essential role of these isoforms to light adaption and consequently explaining the presence of this multigenic family, often identified among higher plants.
Collapse
Affiliation(s)
- Anna Maria Timperio
- Department of Ecology and Biology, Tuscia University, Largo dell'Università Snc, 01100 Viterbo, Italy.
| | | | | | | |
Collapse
|
13
|
La Rocca N, Rascio N, Pupillo P. Variegation in Arum italicum leaves. A structural-functional study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1392-1398. [PMID: 22078376 DOI: 10.1016/j.plaphy.2011.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
The presence of pale-green flecks on leaves (speckling) is a frequent character among herbaceous species from shady places and is usually due to local loosening of palisade tissue (air space type of variegation). In the winter-green Arum italicum L. (Araceae), dark-green areas of variegated leaf blades are ca. 400 μm thick with a chlorophyll content of 1080 mg m⁻² and a palisade parenchyma consisting of a double layer of oblong cells. Pale-green areas are 25% thinner, have 26% less chlorophyll and contain a single, loose layer of short palisade cells. Full-green leaves generally present only one compact layer of cylindrical palisade cells and the same pigment content as dark-green sectors, but the leaf blade is 13% thinner. A spongy parenchyma with extensive air space is present in all leaf types. Green cells of all tissues have normal chloroplasts. Assays of photosynthetic activities by chlorophyll fluorescence imaging and O₂ exchange measurements showed that variegated pale-green and dark-green sectors as well as full-green leaves have comparable photosynthetic activities on a leaf area basis at saturating illumination. However, full-green leaves require a higher saturating light with respect to variegated sectors, and pale-green sectors support relatively higher photosynthesis rates on a chlorophyll basis. We conclude that i) variegation in this species depends on number and organization of palisade cell layers and can be defined as a "variable palisade" type, and ii) the variegated habit has no limiting effects on the photosynthetic energy budget of A. italicum, consistent with the presence of variegated plants side by side to full-green ones in natural populations.
Collapse
Affiliation(s)
- Nicoletta La Rocca
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35131 Padova, Italy.
| | | | | |
Collapse
|
14
|
Remmerie N, De Vijlder T, Laukens K, Dang TH, Lemière F, Mertens I, Valkenborg D, Blust R, Witters E. Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications. PHYTOCHEMISTRY 2011; 72:1192-218. [PMID: 21345472 DOI: 10.1016/j.phytochem.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/21/2010] [Accepted: 01/03/2011] [Indexed: 05/11/2023]
Abstract
The congruent development of computational technology, bioinformatics and analytical instrumentation makes proteomics ready for the next leap. Present-day state of the art proteomics grew from a descriptive method towards a full stake holder in systems biology. High throughput and genome wide studies are now made at the functional level. These include quantitative aspects, functional aspects with respect to protein interactions as well as post translational modifications and advanced computational methods that aid in predicting protein function and mapping these functionalities across the species border. In this review an overview is given of the current status of these aspects in plant studies with special attention to non-genomic model plants.
Collapse
Affiliation(s)
- Noor Remmerie
- Center for Proteomics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ferroni L, Baldisserotto C, Giovanardi M, Pantaleoni L, Morosinotto T, Pancaldi S. Revised assignment of room-temperature chlorophyll fluorescence emission bands in single living cells of Chlamydomonas reinhardtii. J Bioenerg Biomembr 2011; 43:163-73. [PMID: 21336619 DOI: 10.1007/s10863-011-9343-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Room temperature (RT) microspectrofluorimetry in vivo of single cells has a great potential in photosynthesis studies. In order to get new information on RT chlorophyll fluorescence bands, we analyzed the spectra of Chlamydomonas reinhardtii mutants lacking fundamental proteins of the thylakoid membrane and spectra of photoinhibited WT cells. RT spectra of single living cells were characterized thorough derivative analyses and Gaussian deconvolution. The results obtained suggest that the dynamism in LHCII assembly could be sufficient to explain the variations in amplitudes of F680 (free LHCII), F694 (LHCII-PSII) and F702 (LHCII aggregates); F686 was assigned to the PSII core. Based on the revised assignments and on the variations observed, we discuss the meaning of the two fluorescence emission ratios F680/(F686 + F694) and F702/(F686 + F694), showing that these are sensitive parameters under moderate photoinhibition. In the most photoinhibited samples, the RT spectra tended to degenerate, showing characteristics of mutants that are partly depleted in PSII.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Laboratory of Plant Cytophysiology, Department of Biology and Evolution, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|