1
|
Jin H, Tang M, Zhu L, Yu X, Yang Q, Fu X. Characterization of a Drought-Induced Betaine Aldehyde Dehydrogenase Gene SgBADH from Suaeda glauca. PLANTS (BASEL, SWITZERLAND) 2024; 13:2716. [PMID: 39409587 PMCID: PMC11478665 DOI: 10.3390/plants13192716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Betaine aldehyde dehydrogenases (BADHs) are key enzymes in the biosynthesis of glycine betaine, which is an important organic osmolyte that maintains cell structure and improves plant tolerance to abiotic stresses, especially in halotolerant plants. Improving the drought tolerance of crops will greatly increase their yield. In this study, a novel BADH gene named SgBADH from Suaeda glauca was induced by drought stress or abscisic acid. To explore the biological function of SgBADH, the SgBADH gene was transformed into Arabidopsis. Then, we found SgBADH-overexpressing Arabidopsis seedlings showed enhanced tolerance to drought stress. SgBADH transgenic Arabidopsis seedlings also had longer roots compared with controls under drought stress, while SgBADH-overexpressing Arabidopsis exhibited increased glycine betaine accumulation and decreased malondialdehyde (MDA) under drought stress. Our results suggest that SgBADH might be a positive regulator in plants during the response to drought.
Collapse
Affiliation(s)
- Hangxia Jin
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Min Tang
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Longmin Zhu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Xiaomin Yu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Qinghua Yang
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Xujun Fu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| |
Collapse
|
2
|
Musharaf Hossain M, Alinapon CV, Todd CD, Wei Y, Bonham-Smith PC. The Plasmodiophora brassicae Golgi-localized UPF0016 protein PbGDT1 mediates calcium but not manganese transport in yeast and Nicotiana benthamiana. Fungal Genet Biol 2024; 172:103896. [PMID: 38663635 DOI: 10.1016/j.fgb.2024.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Manganese and calcium homeostasis and signalling, in eukaryotic organisms, are regulated through membrane located pumps, channels and exchangers, including the Mn2+/Ca2+ uncharacterized protein family 0016 (UPF0016). Here we show that Plasmodiophora brassicae PbGDT1 is a member of the UPF0016 and an ortholog of Saccharomyces cerevisiae Gdt1p (GCR Dependent Translation Factor 1) protein involved in manganese homeostasis as well as the calcium mediated stress response in yeast. PbGDT1 complemented the ScGdt1p and ScPMR1 (Ca2+ ATPase) double null mutant under elevated calcium stress but not under elevated manganese conditions. In both yeast and Nicotiana benthamiana, PbGDT1 localizes to the Golgi apparatus, with additional ER association in N. benthamiana. Expression of PbGDT1 in N. benthamiana, suppresses BAX-triggered cell death, further highlighting the importance of calcium homeostasis in maintaining cell physiology and integrity in a stress environment.
Collapse
Affiliation(s)
- Md Musharaf Hossain
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | | | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | - Peta C Bonham-Smith
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada.
| |
Collapse
|
3
|
Wang X, Wu M, Yu S, Zhai L, Zhu X, Yu L, Zhang Y. Comprehensive analysis of the aldehyde dehydrogenase gene family in Phaseolus vulgaris L. and their response to saline-alkali stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1283845. [PMID: 38450406 PMCID: PMC10915231 DOI: 10.3389/fpls.2024.1283845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Background Aldehyde dehydrogenase (ALDH) scavenges toxic aldehyde molecules by catalyzing the oxidation of aldehydes to carboxylic acids. Although ALDH gene family members in various plants have been extensively studied and were found to regulate plant response to abiotic stress, reports on ALDH genes in the common bean (Phaseolus vulgaris L.) are limited. In this study, we aimed to investigate the effects of neutral (NS) and basic alkaline (AS) stresses on growth, physiological and biochemical indices, and ALDH activity, ALDH gene expression of common bean. In addition, We used bioinformatics techniques to analyze the physical and chemical properties, phylogenetic relationships, gene replication, collinearity, cis-acting elements, gene structure, motifs, and protein structural characteristics of PvALDH family members. Results We found that both NS and AS stresses weakened the photosynthetic performance of the leaves, induced oxidative stress, inhibited common bean growth, and enhanced the antioxidative system to scavenge reactive oxygen species. Furthermore, we our findings revealed that ALDH in the common bean actively responds to NS or AS stress by inducing the expression of PvALDH genes. In addition, using the established classification criteria and phylogenetic analysis, 27 PvALDHs were identified in the common bean genome, belonging to 10 ALDH families. The primary expansion mode of PvALDH genes was segmental duplication. Cis-acting elemental analysis showed that PvALDHs were associated with abiotic stress and phytohormonal responses. Gene expression analysis revealed that the PvALDH gene expression was tissue-specific. For instance, PvALDH3F1 and PvALDH3H1 were highly expressed in flower buds and flowers, respectively, whereas PvALDH3H2 and PvALDH2B4 were highly expressed in green mature pods and young pods, respectively. PvALDH22A1 and PvALDH11A2 were highly expressed in leaves and young trifoliates, respectively; PvALDH18B2 and PvALDH18B3 were highly expressed in stems and nodules, respectively; and PvALDH2C2 and PvALDH2C3 were highly expressed in the roots. PvALDHs expression in the roots responded positively to NS-AS stress, and PvALDH2C3, PvALDH5F1, and PvALDH10A1 were significantly (P < 0.05) upregulated in the roots. Conclusion These results indicate that AS stress causes higher levels of oxidative damage than NS stress, resulting in weaker photosynthetic performance and more significant inhibition of common bean growth. The influence of PvALDHs potentially modulates abiotic stress response, particularly in the context of saline-alkali stress. These findings establish a basis for future research into the potential roles of ALDHs in the common bean.
Collapse
Affiliation(s)
- Xiaoqin Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Mingxu Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Lingxia Zhai
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan, Heilongjiang, China
| | - Xuetian Zhu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
4
|
Yu Z, Niu L, Cai Q, Wei J, Shang L, Yang X, Ma R. Improved salt-tolerance of transgenic soybean by stable over-expression of AhBADH gene from Atriplex hortensis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03031-8. [PMID: 37195504 DOI: 10.1007/s00299-023-03031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE The salt-tolerance of transgenic soybean cleared for environmental release was improved by stable over-expression of AhBADH gene from Atriplex hortensis, which was demonstrated through molecular analysis and field experiments. An effective strategy for increasing the productivity of major crops under salt stress conditions is the development of transgenics that harbor genes responsible for salinity tolerance. Betaine aldehyde dehydrogenase (BADH) is a key enzyme involved in the biosynthesis of the osmoprotectant, glycine betaine (GB), and osmotic balance in plants, and several plants transformed with BADH gene have shown significant improvements in salt tolerance. However, very few field-tested transgenic cultivars have been reported, as most of the transgenic studies are limited to laboratory or green house experiments. In this study, we demonstrated through field experiments that AhBADH from Atriplex hortensis confers salt tolerance when transformed into soybean (Glycine max L.). AhBADH was successfully introduced into soybean by Agrobacterium mediated transformation. A total of 256 transgenic plants were obtained, out of which 47 lines showed significant enhancement of salt tolerance compared to non-transgenic control plants. Molecular analyses of the transgenic line TL2 and TL7 with the highest salt tolerance exhibited stable inheritance and expression of AhBADH in progenies with a single copy insertion. TL1, TL2 and TL7 exhibited stable enhanced salt tolerance and improved agronomic traits when subjected to 300mM NaCl treatment. Currently, the transgenic line TL2 and TL7 with stable enhanced salt tolerance, which have been cleared for environmental release, are under biosafety assessment. TL 2 and TL7 stably expressing AhBADH could then be applied in commercial breeding experiments to genetically improve salt tolerance in soybean.
Collapse
Affiliation(s)
- Zhijing Yu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qinan Cai
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lixia Shang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
5
|
Zhang X, Zhong J, Cao L, Ren C, Yu G, Gu Y, Ruan J, Zhao S, Wang L, Ru H, Cheng L, Wang Q, Zhang Y. Genome-wide characterization of aldehyde dehydrogenase gene family members in groundnut ( Arachis hypogaea) and the analysis under saline-alkali stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1097001. [PMID: 36875623 PMCID: PMC9978533 DOI: 10.3389/fpls.2023.1097001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Groundnut or peanut (Arachis hypogaea) is a legume crop. Its seeds are rich in protein and oil. Aldehyde dehydrogenase (ALDH, EC: 1.2.1.3) is an important enzyme involved in detoxification of aldehyde and cellular reactive oxygen species, as well as in attenuation of lipid peroxidation-meditated cellular toxicity under stress conditions. However, few studies have been identified and analyzed about ALDH members in Arachis hypogaea. In the present study, 71 members of the ALDH superfamily (AhALDH) were identified using the reference genome obtained from the Phytozome database. A systematic analysis of the evolutionary relationship, motif, gene structure, cis-acting elements, collinearity, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and expression patterns was conducted to understand the structure and function of AhALDHs. AhALDHs exhibited tissue-specific expression, and quantitative real-time PCR identified significant differences in the expression levels of AhALDH members under saline-alkali stress. The results revealed that some AhALDHs members could be involved in response to abiotic stress. Our findings on AhALDHs provide insights for further study.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- Agricultural College, Northeast Agricultural University, Harbin, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingwen Zhong
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Liang Cao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunyuan Ren
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Gaobo Yu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhua Gu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Jingwen Ruan
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Siqi Zhao
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Lei Wang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Haishun Ru
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Lili Cheng
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
6
|
Liu J, Lim SL, Zhong JY, Lim BL. Bioenergetics of pollen tube growth in Arabidopsis thaliana revealed by ratiometric genetically encoded biosensors. Nat Commun 2022; 13:7822. [PMID: 36535933 PMCID: PMC9763403 DOI: 10.1038/s41467-022-35486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pollen tube is the fastest-growing plant cell. Its polarized growth process consumes a tremendous amount of energy, which involves coordinated energy fluxes between plastids, the cytosol, and mitochondria. However, how the pollen tube obtains energy and what the biological roles of pollen plastids are in this process remain obscure. To investigate this energy-demanding process, we developed second-generation ratiometric biosensors for pyridine nucleotides which are pH insensitive between pH 7.0 to pH 8.5. By monitoring dynamic changes in ATP and NADPH concentrations and the NADH/NAD+ ratio at the subcellular level in Arabidopsis (Arabidopsis thaliana) pollen tubes, we delineate the energy metabolism that underpins pollen tube growth and illustrate how pollen plastids obtain ATP, NADPH, NADH, and acetyl-CoA for fatty acid biosynthesis. We also show that fermentation and pyruvate dehydrogenase bypass are not essential for pollen tube growth in Arabidopsis, in contrast to other plant species like tobacco and lily.
Collapse
Affiliation(s)
- Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Shey-Li Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Jia Yi Zhong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14. Int J Mol Sci 2022; 23:ijms232416088. [PMID: 36555729 PMCID: PMC9782053 DOI: 10.3390/ijms232416088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) are important molecular processes that regulate organismal responses to different stresses. Ubiquitination modification is not only involved in human health but also plays crucial roles in plant growth, development, and responses to environmental stresses. In this study, we investigated the ubiquitination proteome changes in the salt-tolerant sugar beet monomeric additional line M14 under salt stress treatments. Based on the expression of the key genes of the ubiquitination system and the ubiquitination-modified proteins before and after salt stress, 30 min of 200 mM NaCl treatment and 6 h of 400 mM NaCl treatment were selected as time points. Through label-free proteomics, 4711 and 3607 proteins were identified in plants treated with 200 mM NaCl and 400 mM NaCl, respectively. Among them, 611 and 380 proteins were ubiquitinated, with 1085 and 625 ubiquitination sites, in the two salt stress conditions, respectively. A quantitative analysis revealed that 70 ubiquitinated proteins increased and 47 ubiquitinated proteins decreased. At the total protein level, 42 were induced and 20 were repressed with 200 mM NaCl, while 28 were induced and 27 were repressed with 400 mM NaCl. Gene ontology, KEGG pathway, protein interaction, and PTM crosstalk analyses were performed using the differentially ubiquitinated proteins. The differentially ubiquitinated proteins were mainly involved in cellular transcription and translation processes, signal transduction, metabolic pathways, and the ubiquitin/26S proteasome pathway. The uncovered ubiquitinated proteins constitute an important resource of the plant stress ubiquitinome, and they provide a theoretical basis for the marker-based molecular breeding of crops for enhanced stress tolerance.
Collapse
|
8
|
Fangue-Yapseu GY, Tola AJ, Missihoun TD. Proteome-wide analysis of hydrogen peroxide-induced protein carbonylation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1049681. [PMID: 36544875 PMCID: PMC9760910 DOI: 10.3389/fpls.2022.1049681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Protein carbonylation is a non-enzymatic and irreversible post-translational modification that occurs naturally in living organisms under the direct or indirect effect of reactive oxygen species (ROS). In animals, signaling pathways involving numerous carbonylated proteins have been identified, highlighting the dual role of these molecules in ROS signal transduction. In plants, studies on phytohormone signaling (auxin, methyl jasmonate, abscisic acid) have shown that reactive carbonyl species (RCS: acrolein, malondialdehyde, 4-hydroxynonenal, etc.), derived from the action of ROS on lipids, play important roles in secondary root formation and stomatal closure. However, the carbonylated proteins involved in these signaling pathways remain to be identified. METHODS In this study, we analyzed proteins responsive to carbonylation by exogenous hydrogen peroxide (H2O2) by profiling the carbonyl proteome extracted from Arabidopsis thaliana leaves after H2O2 treatment. Carbonylated proteins were enriched at the peptide level and analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RESULTS AND DISCUSSION We identified 35 and 39 uniquely carbonylated proteins in the untreated and the H2O2-treated plant samples, respectively. In comparison to the control treatment, gene ontology enrichment analysis revealed that most of the carbonylated proteins identified in the H2O2-treated plant samples are related to sulfate adenylyl transferases and amidophosphoribosyl transferases involved in the immune system response, defense response, and external stimulus-response. These results indicated that exogenous H2O2 caused a change in the pattern of protein carbonylation in A. thaliana leaves. Protein carbonylation may thus influence the plant transcriptome and metabolism in response to H2O2 and ROS-triggering external stimuli.
Collapse
|
9
|
Guan Y, Tanwar UK, Sobieszczuk-Nowicka E, Floryszak-Wieczorek J, Arasimowicz-Jelonek M. Comparative genomic analysis of the aldehyde dehydrogenase gene superfamily in Arabidopsis thaliana - searching for the functional key to hypoxia tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1000024. [PMID: 36466248 PMCID: PMC9714362 DOI: 10.3389/fpls.2022.1000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Flooding entails different stressful conditions leading to low oxygen availability for respiration and as a result plants experience hypoxia. Stress imposed by hypoxia affects cellular metabolism, including the formation of toxic metabolites that dramatically reduce crop productivity. Aldehyde dehydrogenases (ALDHs) are a group of enzymes participating in various aspects of plant growth, development and stress responses. Although we have knowledge concerning the multiple functionalities of ALDHs in tolerance to various stresses, the engagement of ALDH in plant metabolism adjustment to hypoxia is poorly recognized. Therefore, we explored the ALDH gene superfamily in the model plant Arabidopsis thaliana. Genome-wide analyses revealed that 16 AtALDH genes are organized into ten families and distributed irregularly across Arabidopsis 5 chromosomes. According to evolutionary relationship studies from different plant species, the ALDH gene superfamily is highly conserved. AtALDH2 and ALDH3 are the most numerous families in plants, while ALDH18 was found to be the most distantly related. The analysis of cis-acting elements in promoters of AtALDHs indicated that AtALDHs participate in responses to light, phytohormones and abiotic stresses. Expression profile analysis derived from qRT-PCR showed the AtALDH2B7, AtALDH3H1 and AtALDH5F1 genes as the most responsive to hypoxia stress. In addition, the expression of AtALDH18B1, AtALDH18B2, AtALDH2B4, and AtALDH10A8 was highly altered during the post-hypoxia-reoxygenation phase. Taken together, we provide comprehensive functional information on the ALDH gene superfamily in Arabidopsis during hypoxia stress and highlight ALDHs as a functional element of hypoxic systemic responses. These findings might help develop a framework for application in the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | | |
Collapse
|
10
|
Yu M, Yu Y, Guo S, Zhang M, Li N, Zhang S, Zhou H, Wei F, Song T, Cheng J, Fan Q, Shi C, Feng W, Wang Y, Xiang J, Zhang X. Identification of TaBADH-A1 allele for improving drought resistance and salt tolerance in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:942359. [PMID: 35979074 PMCID: PMC9376607 DOI: 10.3389/fpls.2022.942359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Drought and salt stress can strongly affect the growth and development of wheat. Wheat adapts to drought and salt stress through osmotic regulation. Betaine aldehyde dehydrogenase (BADH) is a key enzyme in the synthesis of betaine, an osmotic regulator. We cloned a region of the TaBADH-A1 promoter and genomic DNA that included the introns and exons, from four Chinese wheat cultivars. Following the analysis of TaBADH-A1 genomic DNA and promoter sequence polymorphisms of 4 cloned and 15 cultivars from the database, 7 haplotypes of TaBADH-A1 gene were identified. We divided the 7 haplotypes with a 254 bp insertion or deletion (indel) into two main alleles, BADH-A1a and BADH-A1b. Meanwhile, a molecular marker was developed based on the 254 bp indel of the third intron of TaBADH-A1 gene. Expression levels of BADH-A1b were found to be significantly higher than those of BADH-A1a under drought and salt stress conditions. Betaine accumulation was significantly higher in wheat containing BADH-A1b compared to BADH-A1a under drought and salt stress. We also identified that the average relative germination and survival rates of wheat with the BADH-A1b allele were significantly higher than wheat with the BADH-A1a allele. The results reveal that wheat containing BADH-A1b has stronger drought and salt tolerance than wheat with BADH-A1a. Meanwhile, the geographic distribution and frequency of the TaBADH-A1 locus alleles indicate that BADH-A1a has been preferred in Chinese wheat breeding programs, while BADH-A1b, associated with favorable stress tolerance, has been neglected. The results of this study provide evidence for an excellent candidate allele for marker-assisted selection of new wheat cultivars with increased salt tolerance and drought resistance.
Collapse
Affiliation(s)
- Ming Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yang Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Sihai Guo
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Mingfei Zhang
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | - Nan Li
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | | | - Hongwei Zhou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Fan Wei
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jie Cheng
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qiru Fan
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Caiyin Shi
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Wenhan Feng
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yukun Wang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jishan Xiang
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
| |
Collapse
|
11
|
CsCuAOs and CsAMADH1 Are Required for Putrescine-Derived γ-Aminobutyric Acid Accumulation in Tea. Foods 2022; 11:foods11091356. [PMID: 35564078 PMCID: PMC9100525 DOI: 10.3390/foods11091356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Polyamines are a potential source of γ-aminobutyric acid (GABA) in plants under abiotic stress. However, studies on GABA enrichment in tea mostly focus on the GABA shunt, while the correlation between polyamine degradation and GABA formation in tea is largely unknown. In this study, tea plants responded to exogenous putrescine, resulting in a significant increase in GABA content, while the glutamate level did not change. At the same time, five copper-containing amine oxidase (CuAO) and eight aminoaldehyde dehydrogenase (AMADH) genes involved in the putrescine-derived GABA pathway were identified from the Tea Plant Information Archive. Expression analysis indicated that CsCuAO1, CsCuAO3 as well as CsAMADH1 were induced to play an important function in response to exogenous putrescine. Thus, the three genes were cloned and the catalytic efficiency of soluble recombinant proteins was determined. CsCuAOs and CsAMADH1 exhibited indispensable functions in the GABA production from putrescine in vitro. Subcellular localization assays indicated that CsAMADH1 was localized in plastid, while both CsCuAO1 and CsCuAO3 were localized in peroxisome. In addition, the synergistic effects of CsCuAOs and CsAMADH1 were investigated by a transient co-expression system in Nicotiana benthamiana. Our data suggest that these three genes regulate the accumulation of GABA in tea by participating in the polyamine degradation pathway and improve the content of GABA in tea to a certain extent. The results will greatly contribute to the production of GABA tea.
Collapse
|
12
|
Translational and post-translational regulation of polyamine metabolic enzymes in plants. J Biotechnol 2021; 344:1-10. [PMID: 34915092 DOI: 10.1016/j.jbiotec.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Polyamines are small organic and basic polycations that perform essential regulatory functions in all living organisms. Fluctuations in polyamine content have been observed to occur during growth, development and under stress conditions, implying that polyamines play pivotal roles in diverse cellular and physiological processes. To achieve polyamine homeostasis, the entire metabolic pathway is subjected to a fine-tuned regulation of its biosynthetic and catabolic genes and enzymes. In this review, we describe and discuss the most important mechanisms implicated in the translational and post-translational regulation of polyamine metabolic enzymes in plants. At the translational level, we emphasize the role of polyamines in the modulation of upstream open reading frame (uORF) activities that control the translation of polyamine biosynthetic and catabolic mRNAs. At the post-translational level, different aspects of the regulation of polyamine metabolic proteins are depicted, such as the proteolytic activation of enzyme precursors, the importance of dimerization in protein stability as well as in protein intracellular localization.
Collapse
|
13
|
Carmona-Molero R, Jimenez-Lopez JC, Caballo C, Gil J, Millán T, Die JV. Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. PLANTS 2021; 10:plants10112429. [PMID: 34834791 PMCID: PMC8619295 DOI: 10.3390/plants10112429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
Legumes play an important role in ensuring food security, improving nutrition and enhancing ecosystem resilience. Chickpea is a globally important grain legume adapted to semi-arid regions under rain-fed conditions. A growing body of research shows that aldehyde dehydrogenases (ALDHs) represent a gene class with promising potential for plant adaptation improvement. Aldehyde dehydrogenases constitute a superfamily of proteins with important functions as ‘aldehyde scavengers’ by detoxifying aldehydes molecules, and thus play important roles in stress responses. We performed a comprehensive study of the ALDH superfamily in the chickpea genome and identified 27 unique ALDH loci. Most chickpea ALDHs originated from duplication events and the ALDH3 gene family was noticeably expanded. Based on the physical locations of genes and sequence similarities, our results suggest that segmental duplication is a major driving force in the expansion of the ALDH family. Supported by expression data, the findings of this study offer new potential target genes for improving stress tolerance in chickpea that will be useful for breeding programs.
Collapse
Affiliation(s)
- Rocío Carmona-Molero
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, EEZ-CSIC, 18008 Granada, Spain;
- Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Cristina Caballo
- Área de Genómica y Biotecnología, IFAPA, Alameda del Obispo, 14080 Córdoba, Spain;
| | - Juan Gil
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Teresa Millán
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Jose V. Die
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
- Correspondence:
| |
Collapse
|
14
|
Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1939. [PMID: 34579473 PMCID: PMC8468876 DOI: 10.3390/plants10091939] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran;
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
15
|
Hossain MM, Pérez-López E, Todd CD, Wei Y, Bonham-Smith PC. Endomembrane-Targeting Plasmodiophora brassicae Effectors Modulate PAMP Triggered Immune Responses in Plants. Front Microbiol 2021; 12:651279. [PMID: 34276588 PMCID: PMC8282356 DOI: 10.3389/fmicb.2021.651279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodiophora brassicae is a devastating obligate, intracellular, biotrophic pathogen that causes clubroot disease in crucifer plants. Disease progression is regulated by effector proteins secreted by P. brassicae. Twelve P. brassicae putative effectors (PbPEs), expressed at various stages of disease development [0, 2, 5, 7, 14, 21, and 28 days post inoculation (DPI)] in Arabidopsis and localizing to the plant endomembrane system, were studied for their roles in pathogenesis. Of the 12 PbPEs, seven showed an inhibitory effect on programmed cell death (PCD) as triggered by the PCD inducers, PiINF1 (Phytophthora infestans Infestin 1) and PiNPP1 (P. infestans necrosis causing protein). Showing the strongest level of PCD suppression, PbPE15, a member of the 2-oxoglutarate (2OG) and Fe (II)-dependent oxygenase superfamily and with gene expression during later stages of infection, appears to have a role in tumorigenesis as well as defense signaling in plants. PbPE13 produced an enhanced PiINF1-induced PCD response. Transient expression, in Nicotiana benthamiana leaves of these PbPEs minus the signal peptide (SP) (Δsp PbPEGFPs), showed localization to the endomembrane system, targeting the endoplasmic reticulum (ER), Golgi bodies and nucleo-cytoplasm, suggesting roles in manipulating plant cell secretion and vesicle trafficking. Δsp PbPE13GFP localized to plasma membrane (PM) lipid rafts with an association to plasmodesmata, suggesting a role at the cell-to-cell communication junction. Membrane relocalization of Δsp PbPE13GFP, triggered by flagellin N-terminus of Pseudomonas aeruginosa (flg22 - known to elicit a PAMP triggered immune response in plants), supports its involvement in raft-mediated immune signaling. This study is an important step in deciphering P. brassicae effector roles in the disruption of plant immunity to clubroot disease.
Collapse
Affiliation(s)
| | - Edel Pérez-López
- Department of Plant Sciences, Laval University, CRIV, Quebec City, QC, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
16
|
Liu T, Chen Q, Zhang L, Liu X, Liu C. The toxicity of selenium and mercury in Suaeda salsa after 7-days exposure. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109022. [PMID: 33631342 DOI: 10.1016/j.cbpc.2021.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Mercury is one of the major pollutants in the ocean, selenium causes toxicity beyond a certain limit, but there are few comparative toxic studies between them in halophytes. The study was to investigate the toxic effects of selenium (Se4+) and mercury (Hg2+) in halophyte Suaeda salsa at the level of genes, proteins and metabolites after exposure for 7 days. By integrating the results of proteomics and metabolomics, the pathway changed under different treatments were revealed. In Se4+-treated group, the changed 3 proteins and 10 metabolites participated in the process of substance metabolism (amino acid, pyrimidine), citrate cycle, pentose phosphate pathway, photosynthesis, energy, and protein biosynthesis. In Hg2+-treated group, the changed 10 proteins and 10 metabolites were related to photosynthesis, glycolysis, substance metabolism (cysteine and methionine, amino acid, pyrimidine), ATP synthesis and binding, tolerance, sugar-phosphatase activity, and citrate cycle. In Se4++ Hg2+-treated group, the changed 5 proteins an 12 metabolites involved in stress defence, iron ion binding, mitochondrial respiratory chain, structural constituent of ribosome, citrate cycle, and amino acid metabolism. Furthermore, the separate and combined selenium and mercury both inhibited growth of S. salsa, enhanced activity of antioxidant enzymes (superoxide dismutase, peroxidase and catalase), and disturbed osmotic regulation through the genes of choline monoxygenase and betaine aldehyde dehydrogenase. Our experiments also showed selenium could induce synergistic effects in S. salsa. In all, we successfully characterized the effects of selenium and mercury in plant which was helpful to evaluate the toxicity and interaction of marine pollutants.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian Chen
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Linbao Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, PR China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai 264025, PR China.
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
17
|
Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu JH. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. THE NEW PHYTOLOGIST 2021; 229:2730-2750. [PMID: 33131086 DOI: 10.1111/nph.17063] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P. trifoliata. Overexpression and VIGS (virus-induced gene silencing)-mediated knockdown showed that PtrBADH-l plays a positive role in cold tolerance and GB synthesis. Yeast one-hybrid library screening using PtrBADH-l promoter as baits unraveled PtrMYC2 as an interacting candidate. PtrMYC2 was confirmed to directly bind to two G-box cis-acting elements within PtrBADH-l promoter and acts as a transcriptional activator. In addition, PtrMYC2 functions positively in cold tolerance through modulation of GB synthesis by regulating PtrBADH-l expression. Interestingly, we found that GB accumulation under cold stress was JA-dependent and that PtrMYC2 orchestrates JA-mediated PtrBADH-l upregulation and GB accumulation. This study sheds new light on the roles of MYC2 homolog in modulating GB synthesis. In particular, we propose a transcriptional regulatory module PtrMYC2-PtrBADH-l to advance the understanding of molecular mechanisms underlying the GB accumulation under cold stress.
Collapse
Affiliation(s)
- Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
18
|
Tola AJ, Jaballi A, Germain H, Missihoun TD. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling. Genes (Basel) 2020; 12:genes12010051. [PMID: 33396326 PMCID: PMC7823795 DOI: 10.3390/genes12010051] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.
Collapse
|
19
|
Jacques F, Zhao Y, Kopečná M, Končitíková R, Kopečný D, Rippa S, Perrin Y. Roles for ALDH10 enzymes in γ-butyrobetaine synthesis, seed development, germination, and salt tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7088-7102. [PMID: 32845293 DOI: 10.1093/jxb/eraa394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Plant genomes generally contain two aldehyde dehydrogenase 10 (ALDH10) genes, which encode NAD+-dependent enzymes. These oxidize various aminoaldehydes that are produced by the catabolism of amino acids and polyamines. ALDH10s are closely related to the animal and fungal trimethylaminobutyraldehyde dehydrogenases (TMABADHs) that are involved in the synthesis of γ-butyrobetaine, the precursor of carnitine. Here, we explore the ability of the Arabidopsis thaliana proteins AtALDH10A8 and AtALDH10A9 to oxidize aminoaldehydes. We demonstrate that these enzymes display high TMABADH activities in vitro. Moreover, they can complement the Candida albicans tmabadhΔ/Δ null mutant. These findings illustrate the link between AtALDH10A8 and AtALDH10A9 and γ-butyrobetaine synthesis. An analysis of single and double knockout Arabidopsis mutant lines revealed that the double mutants had reduced γ-butyrobetaine levels. However, there were no changes in the carnitine contents of these mutants. The double mutants were more sensitive to salt stress. In addition, the siliques of the double mutants had a significant proportion of seeds that failed to mature. The mature seeds contained higher amounts of triacylglycerol, facilitating accelerated germination. Taken together, these results show that ALDH10 enzymes are involved in γ-butyrobetaine synthesis. Furthermore, γ-butyrobetaine fulfils a range of physiological roles in addition to those related to carnitine biosynthesis.
Collapse
Affiliation(s)
- Florian Jacques
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| | - Yingjuan Zhao
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
- Department of Applied Chemistry, School of Science, Xi'an University of Technology, Xi'an, China
| | - Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - Sonia Rippa
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| | - Yolande Perrin
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| |
Collapse
|
20
|
Ambastha V, Sopory SK, Tripathy BC, Tiwari BS. Salt induced programmed cell death in rice: evidence from chloroplast proteome signature. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:8-27. [PMID: 32702286 DOI: 10.1071/fp19356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity, depending on its intensity, drives a challenged plant either to death, or survival with compromised productivity. On exposure to moderate salinity, plants can often survive by sacrificing some of their cells 'in target' following a route called programmed cell death (PCD). In animals, PCD has been well characterised, and involvement of mitochondria in the execution of PCD events has been unequivocally proven. In plants, mechanistic details of the process are still in grey area. Previously, we have shown that in green tissues of rice, for salt induced PCD to occur, the presence of active chloroplasts and light are equally important. In the present work, we have characterised the chloroplast proteome in rice seedlings at 12 and 24 h after salt exposure and before the time point where the signature of PCD was observed. We identified almost 100 proteins from chloroplasts, which were divided in to 11 categories based on the biological functions in which they were involved. Our results concerning the differential expression of chloroplastic proteins revealed involvement of some novel candidates. Moreover, we observed maximum phosphorylation pattern of chloroplastic proteins at an early time point (12 h) of salt exposure.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sudhir K Sopory
- Plant Molecular Biology, International Centre of Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; and Corresponding author. ; ;
| | - Budhi Sagar Tiwari
- Institute of Advanced Research, Gandhinagar, Gujrat 482007, India; and Corresponding author. ; ;
| |
Collapse
|
21
|
Ramu VS, Preethi V, Nisarga KN, Srivastava KR, Sheshshayee MS, Mysore KS, Udayakumar M. Carbonyl Cytotoxicity Affects Plant Cellular Processes and Detoxifying Enzymes Scavenge These Compounds to Improve Stress Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6237-6247. [PMID: 32401508 DOI: 10.1021/acs.jafc.0c02005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress is ubiquitous in environmental stresses and prevails over the cellular metabolic and phenotypic responses in plants. Reactive oxygen species (ROS) generated under stress affect macromolecules to form another group of toxic compounds called reactive carbonyl compounds (RCCs). These molecules have a longer half-life than ROS and cause carbonyl stress that affects cellular metabolism, cellular homeostasis, and crop productivity. The later effect of oxidative stress in terms of the generation of RCCs and glycation products and their effects on plant processes have not been explored well in plant biology. Therefore, how these molecules are produced and a few important effects of RCCs on plants have been discussed in this review article. Further, the plant adaptive detoxification mechanisms of RCCs have been discussed. The enzymes that were identified in plants to detoxify these cytotoxic compounds have broad substrate specificity and the potential for use in breeding programs. The review should provide a comprehensive understanding of the cytotoxic compounds beyond ROS and subsequently their mitigation strategies for crop improvement programs.
Collapse
Affiliation(s)
- Vemanna S Ramu
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | - V Preethi
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru 560065, India
| | - K N Nisarga
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru 560065, India
| | | | - M S Sheshshayee
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru 560065, India
| | | | - M Udayakumar
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru 560065, India
| |
Collapse
|
22
|
Zhao X, Min Z, Wei X, Ju Y, Fang Y. Using the Chou's 5-steps rule, transient overexpression technique, subcellular location, and bioinformatic analysis to verify the function of Vitis vinifera O-methyltranferase 3 (VvOMT3) protein. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:621-629. [PMID: 32335385 DOI: 10.1016/j.plaphy.2020.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
3-Isobutyl-2-methoxypyrazine (IBMP) is an important odor compound that revives unripe grapes or poor-quality wine. The biosynthesis of IBMP in grape berries is under the catalysis of Vitis vinifera O-methyltranferase 3 (VvOMT3). The homologous verification in this paper was carried out with the transient overexpression technique. The results showed that both the expression levels of the VvOMT3 gene and the IBMP concentration in 'Red globe' grapes increased significantly, which suggested that VvOMT3 could function in the biosynthesis of IBMP. Based on β-glucuronidase (GUS) staining results, blue color was only observed in grape pulp, not in grape skin, which indicated that VvOMT3 was expressed in grape pulp. The outcomes of the subcellular location examination performed on the protoplasts of Arabidopsis thaliana showed that the VvOMT3 protein was located on the inner surface of the cytoplasmic membrane. In summary, the VvOMT3 enzyme may function at the inner surface of the cytoplasmic membrane of pulp cells during grape development. These results will provide a background for future research on the catalytic mechanisms of VvOMT3.
Collapse
Affiliation(s)
- Xianfang Zhao
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China; Life School of Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
| | - Zhuo Min
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Wei
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yanlun Ju
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Yulin Fang
- College of Enology, Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Shimizu Y, Rai A, Okawa Y, Tomatsu H, Sato M, Kera K, Suzuki H, Saito K, Yamazaki M. Metabolic diversification of nitrogen-containing metabolites by the expression of a heterologous lysine decarboxylase gene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:505-521. [PMID: 31364191 PMCID: PMC6899585 DOI: 10.1111/tpj.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 05/04/2023]
Abstract
Lysine decarboxylase converts l-lysine to cadaverine as a branching point for the biosynthesis of plant Lys-derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys-derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La-L/ODC) and identified cadaverine-derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys-derived alkaloids in the transgenic lines. Moreover, we found several cadaverine-derived metabolites specifically detected in the transgenic lines compared with the non-transformed control. Among these, three specific metabolites were identified and confirmed as 5-aminopentanal, 5-aminopentanoate and δ-valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope-labeled [α-15 N]- or [ε-15 N]-l-lysine. Our results show similar 15 N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys-derived alkaloid biosynthesis.
Collapse
Affiliation(s)
- Yohei Shimizu
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Amit Rai
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| | - Yuko Okawa
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| | - Hajime Tomatsu
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- Present address:
Human Metabolome Technologies, Inc.246‐2 Mizukami, KakuganjiTsuruokaYamagata997‐0052Japan
| | - Masaru Sato
- Kazusa DNA Research Institute2‐6‐7 Kazusa‐KamatariKisarazuChiba292‐0818Japan
| | - Kota Kera
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- Present address:
Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute2‐6‐7 Kazusa‐KamatariKisarazuChiba292‐0818Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| |
Collapse
|
24
|
Desiderio A, Salzano AM, Scaloni A, Massa S, Pimpinella M, De Coste V, Pioli C, Nardi L, Benvenuto E, Villani ME. Effects of Simulated Space Radiations on the Tomato Root Proteome. FRONTIERS IN PLANT SCIENCE 2019; 10:1334. [PMID: 31708949 PMCID: PMC6821793 DOI: 10.3389/fpls.2019.01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/25/2019] [Indexed: 05/27/2023]
Abstract
Plant cultivation on spacecraft or planetary outposts is a promising and actual perspective both for food and bioactive molecules production. To this aim, plant response to ionizing radiations, as an important component of space radiation, must be assessed through on-ground experiments due to the potentially fatal effects on living systems. Hereby, we investigated the effects of X-rays and γ-rays exposure on tomato "hairy root" cultures (HRCs), which represent a solid platform for the production of pharmaceutically relevant molecules, including metabolites and recombinant proteins. In a space application perspective, we used an HRC system previously fortified through the accumulation of anthocyanins, which are known for their anti-oxidant properties. Roots were independently exposed to different photon radiations, namely X-rays (250 kV) and γ-rays (Co60, 1.25 MeV), both at the absorbed dose levels of 0.5, 5, and 10 Gy. Molecular changes induced in the proteome of HRCs were investigated by a comparative approach based on two-dimensional difference in-gel electrophoresis (2D-DIGE) technology, which allowed to highlight dynamic processes activated by these environmental stresses. Results revealed a comparable response to both photon treatments. In particular, the presence of differentially represented proteins were observed only when roots were exposed to 5 or 10 Gy of X-rays or γ-rays, while no variations were appreciated at 0.5 Gy of both radiations, when compared with unexposed control. Differentially represented proteins were identified by mass spectrometry procedures and their functional interactions were analyzed, revealing variations in the activation of stress response integrated mechanisms as well as in carbon/energy and protein metabolism. Specific results from above-mentioned procedures were validated by immunoblotting. Finally, a morphometric analysis verified the absence of significant alterations in the development of HRCs, allowing to ascribe the observed variations of protein expression to processes of acclimation to ionizing radiations. Overall results contribute to a meaningful risk evaluation for biological systems exposed to extra-terrestrial environments, in the perspective of manned interplanetary missions planned for the near future.
Collapse
Affiliation(s)
- Angiola Desiderio
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM-National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM-National Research Council, Naples, Italy
| | - Silvia Massa
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Pimpinella
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - Vanessa De Coste
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - Claudio Pioli
- Division Health Protection Technologies, ENEA, Rome, Italy
| | - Luca Nardi
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenio Benvenuto
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Elena Villani
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
25
|
Involvement of abscisic acid-responsive element-binding factors in cassava (Manihot esculenta) dehydration stress response. Sci Rep 2019; 9:12661. [PMID: 31477771 PMCID: PMC6718394 DOI: 10.1038/s41598-019-49083-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/19/2019] [Indexed: 02/04/2023] Open
Abstract
Cassava (Manihot esculenta) is a major staple food, animal feed and energy crop in the tropics and subtropics. It is one of the most drought-tolerant crops, however, the mechanisms of cassava drought tolerance remain unclear. Abscisic acid (ABA)-responsive element (ABRE)-binding factors (ABFs) are transcription factors that regulate expression of target genes involved in plant tolerance to drought, high salinity, and osmotic stress by binding ABRE cis-elements in the promoter regions of these genes. However, there is little information about ABF genes in cassava. A comprehensive analysis of Manihot esculenta ABFs (MeABFs) described the phylogeny, genome location, cis-acting elements, expression profiles, and regulatory relationship between these factors and Manihot esculenta betaine aldehyde dehydrogenase genes (MeBADHs). Here we conducted genome-wide searches and subsequent molecular cloning to identify seven MeABFs that are distributed unevenly across six chromosomes in cassava. These MeABFs can be clustered into three groups according to their phylogenetic relationships to their Arabidopsis (Arabidopsis thaliana) counterparts. Analysis of the 5′-upstream region of MeABFs revealed putative cis-acting elements related to hormone signaling, stress, light, and circadian clock. MeABF expression profiles displayed clear differences among leaf, stem, root, and tuberous root tissues under non-stress and drought, osmotic, or salt stress conditions. Drought stress in cassava leaves and roots, osmotic stress in tuberous roots, and salt stress in stems induced expression of the highest number of MeABFs showing significantly elevated expression. The glycine betaine (GB) content of cassava leaves also was elevated after drought, osmotic, or salt stress treatments. BADH1 is involved in GB synthesis. We show that MeBADH1 promoter sequences contained ABREs and that MeBADH1 expression correlated with MeABF expression profiles in cassava leaves after the three stress treatments. Taken together, these results suggest that in response to various dehydration stresses, MeABFs in cassava may activate transcriptional expression of MeBADH1 by binding the MeBADH1 promoter that in turn promotes GB biosynthesis and accumulation via an increase in MeBADH1 gene expression levels and MeBADH1 enzymatic activity. These responses protect cells against dehydration stresses by preserving an osmotic balance that enhances cassava tolerance to dehydration stresses.
Collapse
|
26
|
Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C. Comparative Proteomics Indicates That Redox Homeostasis Is Involved in High- and Low-Temperature Stress Tolerance in a Novel Wucai ( Brassica campestris L.) Genotype. Int J Mol Sci 2019; 20:ijms20153760. [PMID: 31374822 PMCID: PMC6696267 DOI: 10.3390/ijms20153760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
The genotype WS-1, previously identified from novel wucai germplasm, is tolerant to both low-temperature (LT) and high-temperature (HT) stress. However, it is unclear which signal transduction pathway or acclimation mechanisms are involved in the temperature-stress response. In this study, we used the proteomic method of tandem mass tag (TMT) coupled with liquid chromatography-mass spectrometry (LC-MS/MS) to identify 1022 differentially expressed proteins (DEPs) common to WS-1, treated with either LT or HT. Among these 1022 DEPs, 172 were upregulated in response to both LT and HT, 324 were downregulated in response to both LT and HT, and 526 were upregulated in response to one temperature stress and downregulated in response to the other. To illustrate the common regulatory pathway in WS-1, 172 upregulated DEPs were further analyzed. The redox homeostasis, photosynthesis, carbohydrate metabolism, heat-shockprotein, and chaperones and signal transduction pathways were identified to be associated with temperature stress tolerance in wucai. In addition, 35S:BcccrGLU1 overexpressed in Arabidopsis, exhibited higher reduced glutathione (GSH) content and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and less oxidative damage under temperature stress. This result is consistent with the dynamic regulation of the relevant proteins involved in redox homeostasis. These data demonstrate that maintaining redox homeostasis is an important common regulatory pathway for tolerance to temperature stress in novel wucai germplasm.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shilei Xie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Mengru Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| |
Collapse
|
27
|
Genome-wide characterization of ALDH Superfamily in Brassica rapa and enhancement of stress tolerance in heterologous hosts by BrALDH7B2 expression. Sci Rep 2019; 9:7012. [PMID: 31065035 PMCID: PMC6505040 DOI: 10.1038/s41598-019-43332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) carries out oxidation of toxic aldehydes using NAD+/NADP+ as cofactors. In the present study, we performed a genome-wide identification and expression analysis of genes in the ALDH gene family in Brassica rapa. A total of 23 ALDH genes in the superfamily have been identified according to the classification of ALDH Gene Nomenclature Committee (AGNC). They were distributed unevenly across all 10 chromosomes. All the 23 Brassica rapa ALDH (BrALDH) genes exhibited varied expression patterns during treatments with abiotic stress inducers and hormonal treatments. The relative expression profiles of ALDH genes in B. rapa showed that they are predominantly expressed in leaves and stem suggesting their function in the vegetative tissues. BrALDH7B2 showed a strong response to abiotic stress and hormonal treatments as compared to other ALDH genes; therefore, it was overexpressed in heterologous hosts, E. coli and yeast to study its possible function under abiotic stress conditions. Over-expression of BrALDH7B2 in heterologous systems, E. coli and yeast cells conferred significant tolerance to abiotic stress treatments. Results from this work demonstrate that BrALDH genes are a promising and untapped genetic resource for crop improvement and could be deployed further in the development of drought and salinity tolerance in B. rapa and other economically important crops.
Collapse
|
28
|
Xu Z, Dong M, Peng X, Ku W, Zhao Y, Yang G. New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:301-312. [PMID: 30612018 DOI: 10.1016/j.ecoenv.2018.12.084] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/15/2018] [Accepted: 12/25/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Heavy metal contamination is becoming a limitation to the utilization of soil and the distribution of vegetation. In particular, cadmium (Cd) pollution has had a serious impact on the food chain. Broussonetia papyrifera is a widely distributed pioneer tree species of heavy metal contaminated areas with important economic value. However, little is known about the genomic background of the Cd-tolerance mechanism in B. papyrifera. RESULTS The CdCl2 responsive physiology was evaluated and proved to be involved in antioxidase activity and active oxygen species (ROS) accumulation. The leaf and root transcriptomes derived from B. papyrifera grown under normal and CdCl2 stress conditions were systematically investigated using the Illumina HiSeq method. A total of 180,678,660 bp (27.1 GB) clean reads were assembled into 589,487 high-quality unigenes, of which 256,025 (43.43% of the total) and 250,251 (42.45% of the total) were aligned in Gene Ontology (GO) and Protein family (Pfam), respectively. A total of 24,414 differentially expressed genes (DEGs) were GO-annotated into 53, 23, 55, and 60 terms from the transcriptomes of root and leaf tissues under Cd stress and control conditions. A total of 117,547 Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO)-annotated DEGs were enriched in at least 47 KEGG pathway terms among the four comparisons. Many genes encoding important transcription factors (e.g., auxin/indole-3-acetic acid (AUX/IAA), basic helix-loop-helix (bHLH), DNA-binding one zinc finger (Dof), and MYB) and proteins involved in plant-pathogen interactions, phenylpropanoid biosynthesis, plant hormone signal transduction, oxidative phosphorylation, carbon fixation, peroxisomes, flavonoid biosynthesis, and glutathione metabolism, among others, were substantially upregulated under CdCl2 stress. CONCLUSIONS These genes represent important candidates for studying Cd-response mechanisms and molecular biology of B. papyrifera and related species. Our findings provide a genomic sequence resource for functional genetic assignments in B. papyrifera, which will help elucidate the molecular mechanisms of its Cd-stress responses and facilitate the bioremediation of heavy metal contaminated areas via breeding of new stress-tolerant cultivars.
Collapse
Affiliation(s)
- Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004 Changsha, Hunan Province, China; School of Material and Chemical Engineering, Hunan City University, 518 Yingbin Road, 413000 Yiyang, Hunan Province, China
| | - Meng Dong
- School of Material and Chemical Engineering, Hunan City University, 518 Yingbin Road, 413000 Yiyang, Hunan Province, China
| | - Xiaoyun Peng
- School of Material and Chemical Engineering, Hunan City University, 518 Yingbin Road, 413000 Yiyang, Hunan Province, China
| | - Wenzhen Ku
- School of Material and Chemical Engineering, Hunan City University, 518 Yingbin Road, 413000 Yiyang, Hunan Province, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004 Changsha, Hunan Province, China.
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling 712100 Shaanxi, China.
| |
Collapse
|
29
|
Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Mol Biotechnol 2019; 61:153-172. [PMID: 30600447 DOI: 10.1007/s12033-018-0144-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abiotic stresses such as extreme heat, cold, drought, and salt have brought alteration in plant growth and development, threatening crop yield and quality leading to global food insecurity. Many factors plays crucial role in regulating various plant growth and developmental processes during abiotic stresses. Ethylene response factors (ERFs) are AP2/ERF superfamily proteins belonging to the largest family of transcription factors known to participate during multiple abiotic stress tolerance such as salt, drought, heat, and cold with well-conserved DNA-binding domain. Several extensive studies were conducted on many ERF family proteins in plant species through over-expression and transgenics. However, studies on ERF family proteins with negative regulatory functions are very few. In this review article, we have summarized the mechanism and role of recently studied AP2/ERF-type transcription factors in different abiotic stress responses. We have comprehensively discussed the application of advanced ground-breaking genome engineering tool, CRISPR/Cas9, to edit specific ERFs. We have also highlighted our on-going and published R&D efforts on multiplex CRISPR/Cas9 genome editing of negative regulatory genes for multiple abiotic stress responses in plant and crop models. The overall aim of this review is to highlight the importance of CRISPR/Cas9 and ERFs in developing sustainable multiple abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Johni Debbarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Yogita N Sarki
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Banashree Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Dhanawantari L Singha
- Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India.
| | - Channakeshavaiah Chikkaputtaiah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India.
| |
Collapse
|
30
|
Zhao J, Missihoun TD, Bartels D. The ATAF1 transcription factor is a key regulator of aldehyde dehydrogenase 7B4 (ALDH7B4) gene expression in Arabidopsis thaliana. PLANTA 2018; 248:1017-1027. [PMID: 30027414 DOI: 10.1007/s00425-018-2955-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/15/2018] [Indexed: 05/16/2023]
Abstract
ALDH7B4 expression contributes to abiotic stress tolerance. The NAC transcription factor ATAF1 is a main regulator of expression of the ALDH7B4 gene in Arabidopsis thaliana as shown by ATAF1 mutants. The aldehyde dehydrogenase 7B4 (ALDH7B4) protein has important roles in detoxification of excessive aldehydes, elimination of reactive oxygen species (ROS) and inhibition of lipid peroxidation when plants are exposed to abiotic stress. However, the regulation of the expression of the ALDH7B4 gene under stress is largely unknown. Promoter studies revealed crucial cis-elements in the ALDH7B4 promoter in response to heat and stress combinations. Using a yeast one-hybrid assay, several NAC transcription factors, including ATAF1 were isolated. These transcription factors play an important role in plant adaptation to abiotic stress. ATAF1 activates the expression of the ALDH7B4 gene by directly binding to the promoter. Overexpression of ATAF1 in Arabidopsis plants results in elevated expression of ALDH7B4 in seeds, seedlings, and mature plants, whereas ATAF1 knock-out mutant plants abolished the expression of ALDH7B4. This study implies that ATAF1 may confer stress tolerance by up-regulating the target gene ALDH7B4.
Collapse
Affiliation(s)
- Junyi Zhao
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92521, USA
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
31
|
Jacques F, Rippa S, Perrin Y. Physiology of L-carnitine in plants in light of the knowledge in animals and microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:432-440. [PMID: 30080631 DOI: 10.1016/j.plantsci.2018.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 05/24/2023]
Abstract
L-carnitine is present in all living kingdoms where it acts in diverse physiological processes. It is involved in lipid metabolism in animals and yeasts, notably as an essential cofactor of fatty acid intracellular trafficking. Its physiological significance is poorly understood in plants, but L-carnitine may be linked to fatty acid metabolism among other roles. Indeed, carnitine transferases activities and acylcarnitines are measured in plant tissues. Current knowledge of fatty acid trafficking in plants rules out acylcarnitines as intermediates of the peroxisomal and mitochondrial fatty acid metabolism, unlike in animals and yeasts. Instead, acylcarnitines could be involved in plastidial exportation of de novo fatty acid, or importation of fatty acids into the ER, for synthesis of specific glycerolipids. L-carnitine also contributes to cellular maintenance though antioxidant and osmolyte properties in animals and microbes. Recent data indicate similar features in plants, together with modulation of signaling pathways. The biosynthesis of L-carnitine in the plant cell shares similar precursors as in the animal and yeast cells. The elucidation of the biosynthesis pathway of L-carnitine, and the identification of the enzymes involved, is today essential to progress further in the comprehension of its biological significance in plants.
Collapse
Affiliation(s)
- Florian Jacques
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| | - Sonia Rippa
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| | - Yolande Perrin
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| |
Collapse
|
32
|
Golestan Hashemi FS, Ismail MR, Rafii MY, Aslani F, Miah G, Muharam FM. Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1478748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Farahnaz Sadat Golestan Hashemi
- Gembloux Agro-Bio Tech, University of Liege, Leige, Belgium
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Razi Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Y. Rafii
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Gous Miah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farah Melissa Muharam
- Department of Agricultural Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
33
|
Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. Int J Mol Sci 2018; 19:ijms19051409. [PMID: 29747375 PMCID: PMC5983644 DOI: 10.3390/ijms19051409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/02/2022] Open
Abstract
In saffron, the cleavage of zeaxanthin by means of CCD2 generates crocetin dialdehyde, which is then converted by an unknown aldehyde dehydrogenase to crocetin. A proteome from saffron stigma was released recently and, based on the expression pattern and correlation analyses, five aldehyde dehydrogenases (ALDHs) were suggested as possible candidates to generate crocetin from crocetin dialdehydes. We selected four of the suggested ALDHs and analyzed their expression in different tissues, determined their activity over crocetin dialdehyde, and performed structure modeling and docking calculation to find their specificity. All the ALDHs were able to convert crocetin dialdehyde to crocetin, but two of them were stigma tissue-specific. Structure modeling and docking analyses revealed that, in all cases, there was a high coverage of residues in the models. All of them showed a very close conformation, indicated by the low root-mean-square deviation (RMSD) values of backbone atoms, which indicate a high similarity among them. However, low affinity between the enzymes and the crocetin dialdehyde were observed. Phylogenetic analysis and binding affinities calculations, including some ALDHs from Gardenia jasmonoides, Crocus sieberi, and Buddleja species that accumulate crocetin and Bixa orellana synthetizing the apocarotenoid bixin selected on their expression pattern matching with the accumulation of either crocins or bixin, pointed out that family 2 C4 members might be involved in the conversion of crocetin dialdehyde to crocetin with high specificity.
Collapse
|
34
|
Missihoun TD, Kotchoni SO, Bartels D. Aldehyde Dehydrogenases Function in the Homeostasis of Pyridine Nucleotides in Arabidopsis thaliana. Sci Rep 2018; 8:2936. [PMID: 29440669 PMCID: PMC5811564 DOI: 10.1038/s41598-018-21202-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/30/2018] [Indexed: 01/03/2023] Open
Abstract
Aldehyde dehydrogenase enzymes (ALDHs) catalyze the oxidation of aliphatic and aromatic aldehydes to their corresponding carboxylic acids using NAD+ or NADP+ as cofactors and generating NADH or NADPH. Previous studies mainly focused on the ALDH role in detoxifying toxic aldehydes but their effect on the cellular NAD(P)H contents has so far been overlooked. Here, we investigated whether the ALDHs influence the cellular redox homeostasis. We used a double T-DNA insertion mutant that is defective in representative members of Arabidopsis thaliana ALDH families 3 (ALDH3I1) and 7 (ALDH7B4), and we examined the pyridine nucleotide pools, glutathione content, and the photosynthetic capacity of the aldh mutants in comparison with the wild type. The loss of function of ALDH3I1 and ALDH7B4 led to a decrease of NAD(P)H, NAD(P)H/NAD(P) ratio, and an alteration of the glutathione pools. The aldh double mutant had higher glucose-6-phosphate dehydrogenase activity than the wild type, indicating a high demand for reduced pyridine nucleotides. Moreover, the mutant had a reduced quantum yield of photosystem II and photosynthetic capacity at relatively high light intensities compared to the wild type. Altogether, our data revealed a role of ALDHs as major contributors to the homeostasis of pyridine nucleotides in plants.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115, Bonn, Germany. .,Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92521, USA.
| | - Simeon O Kotchoni
- Department of Biology, Rutgers University, 315 Penn St., Camden, NJ, 08102, USA.,Center for Computational and Integrative Biology, Rutgers University, 315 Penn St., Camden, NJ, 08102, USA
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
35
|
Abstract
Despite of their economical and nutritional interest, the biology of fruits is still little studied in comparison with reports of other plant organs such as leaves and roots. Accordingly, research at subcellular and molecular levels is necessary not only to understand the physiology of fruits, but also to improve crop qualities. Efforts addressed to gain knowledge of the peroxisome proteome and how it interacts with the overall metabolism of fruits will provide tools to be used in breeding strategies of agricultural species with added value. In this work, special attention will be paid to peroxisomal proteins involved in the metabolism of reactive oxygen species (ROS) due to the relevant role of these compounds at fruit ripening. The proteome of peroxisomes purified from sweet pepper (Capsicum annuum L.) fruit is reported, where an iron-superoxide dismutase (Fe-SOD) was localized in these organelles, besides other antioxidant enzymes such as catalase and a Mn-SOD, as well as enzymes involved in the metabolism of carbohydrates, malate, lipids and fatty acids, amino acids, the glyoxylate cycle and in the potential organelles' movements.
Collapse
|
36
|
Gil-Monreal M, Zabalza A, Missihoun TD, Dörmann P, Bartels D, Royuela M. Induction of the PDH bypass and upregulation of the ALDH7B4 in plants treated with herbicides inhibiting amino acid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:16-28. [PMID: 28969796 DOI: 10.1016/j.plantsci.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 05/16/2023]
Abstract
Imazamox and glyphosate represent two classes of herbicides that inhibit the activity of acetohydroxyacid synthase in the branched-chain amino acid biosynthesis pathway and the activity of 5-enolpyruvylshikimate-3-phosphate synthase in the aromatic amino acid biosynthesis pathway, respectively. However, it is still unclear how imazamox and glyphosate lead to plant death. Both herbicides inhibit amino-acid biosynthesis and were found to induce ethanol fermentation in plants, but an Arabidopsis mutant deficient in alcohol dehydrogenase 1 was neither more susceptible nor more resistant than the wild-type to the herbicides. In this study, we investigated the effects of the amino acid biosynthesis inhibitors, imazamox and glyphosate, on the pyruvate dehydrogenase bypass reaction and fatty acid metabolism in A. thaliana. We found that the pyruvate dehydrogenase bypass was upregulated following the treatment by the two herbicides. Our results suggest that the Arabidopsis aldehyde dehydrogenase 7B4 gene might be participating in the pyruvate dehydrogenase bypass reaction. We evaluated the potential role of the aldehyde dehydrogenase 7B4 upon herbicide treatment in the plant defence mechanism. Plants that overexpressed the ALDH7B4 gene accumulated less soluble sugars, starch, and fatty acids and grew better than the wild-type after herbicide treatment. We discuss how the upregulation of the ALDH7B4 alleviates the effects of the herbicides, potentially through the detoxification of the metabolites produced in the pyruvate dehydrogenase bypass.
Collapse
Affiliation(s)
- Miriam Gil-Monreal
- Departamento Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Ana Zabalza
- Departamento Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, D-53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, D-53115 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, D-53115 Bonn, Germany
| | - Mercedes Royuela
- Departamento Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain.
| |
Collapse
|
37
|
Ufer G, Gertzmann A, Gasulla F, Röhrig H, Bartels D. Identification and characterization of the phosphatidic acid-binding A. thaliana phosphoprotein PLDrp1 that is regulated by PLDα1 in a stress-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:276-290. [PMID: 28755507 DOI: 10.1111/tpj.13651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 05/08/2023]
Abstract
Phospholipase D (PLD) and its cleavage product phosphatidic acid (PA) are crucial in plant stress-signalling. Although some targets of PLD and PA have been identified, the signalling pathway is still enigmatic. This study demonstrates that the phosphoprotein At5g39570, now called PLD-regulated protein1 (PLDrp1), from Arabidopsis thaliana is directly regulated by PLDα1. The protein PLDrp1 can be divided into two regions with distinct properties. The conserved N-terminal region specifically binds PA, while the repeat-rich C-terminal domain suggests interactions with RNAs. The expression of PLDrp1 depends on PLDα1 and the plant water status. Water stress triggers a pldα1-like phenotype in PLDrp1 mutants and induces the expression of PLDrp1 in pldα1 mutants. The regulation of PLDrp1 by PLDα1 and environmental stressors contributes to the understanding of the complex PLD regulatory network and presents a new member of the PA-signalling chain in plants.
Collapse
Affiliation(s)
- Guido Ufer
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Anke Gertzmann
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Francisco Gasulla
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Horst Röhrig
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
38
|
Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton. Gene 2017; 628:230-245. [PMID: 28711668 DOI: 10.1016/j.gene.2017.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
Abstract
In plants, aldehyde dehydrogenases (ALDHs) function as 'aldehyde scavengers' by removing reactive aldehydes and thus play important roles in stress responses. To date, 30 ALDHs have been identified in Gossypium raimondii, whereas ALDHs have not been studied in Gossypium arboreum or in tetraploid cotton. In this study, we identified 30, 59 and 59 aldehyde dehydrogenase (ALDH) genes from G. arboreum, G. hirsutum and G. barbadense, respectively. Gene structure analysis revealed that members of the same family exhibit similar exon-intron structures and structural domains, and all members of the ALDH18 family possess a distinct AA-kinase domain. Synteny analysis showed that segmental and tandem duplications have played an important role in the expansion and evolution of ALDHs in cotton. Phylogenetic and synteny analysis between G. arboreum and G. raimondii demonstrated that all GaALDHs and GrALDHs are orthologous and that most GaALDHs are located in syntenic blocks corresponding to those of G. raimondii, implying that these genes appeared before the divergence of G. arboreum and G. raimondii and that no expansion of the ALDH superfamily has occurred in these two cotton species. Quantitative real-time PCR analysis revealed that the majority of GaALDHs and GhALDHs are up-regulated under conditions of high salinity and drought, indicating that these genes may be stress responsive. The findings of this study, based on genome-wide identification of ALDHs in Gossypium and analysis of their evolution and expression, provide a foundation for further analysis of ALDHs and suggest potential target genes for improving stress resistance in cotton.
Collapse
|
39
|
Pan WJ, Tao JJ, Cheng T, Shen M, Ma JB, Zhang WK, Lin Q, Ma B, Chen SY, Zhang JS. Soybean NIMA-Related Kinase1 Promotes Plant Growth and Improves Salt and Cold Tolerance. PLANT & CELL PHYSIOLOGY 2017; 58:1268-1278. [PMID: 28444301 DOI: 10.1093/pcp/pcx060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/17/2017] [Indexed: 05/15/2023]
Abstract
NEK (NIMA-related kinase) is known as a family of serine/threonine kinases which mainly participate in microtubule-related mitotic events in fungi, mammals and other eukaryotes. Our previous studies found that Arabidopsis NEK6 plays an important role in plant response to abiotic stress. We further investigated roles of the NEK family in soybean and found that at least eight members can respond to abiotic stresses. Among them, only GmNEK1, a novel NEK member which is distantly related to Arabidopsis NEK6, enhanced plant growth and promoted salt and cold tolerance in transgenic Arabidopsis plants. The growth of soybean plants harboring GmNEK1-overexpressing hairy roots under saline condition was also improved. A series of stress-related genes including RH3, CORI3 and ALDH10A8 were found to be up-regulated in GmNEK1-overexpressing Arabidopsis plants and soybean hairy roots. Moreover, soybean plants with GmRH3-overexpressing hairy roots exhibited increased salt tolerance, while soybean plants with GmRH3-RNAi (RNA interference) roots were more sensitive to salt stress than the wild-type plants. Our study uncovers a novel role for GmNEK1 in promoting plant adaptive growth under adverse conditions at least partially through up-regulation of GmRH3. Manipulation of these genes in soybean or other crops may improve growth and production under stress conditions.
Collapse
Affiliation(s)
- Wen-Jia Pan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qin Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Dong Y, Liu H, Zhang Y, Hu J, Feng J, Li C, Li C, Chen J, Zhu S. Comparative genomic study of ALDH gene superfamily in Gossypium: A focus on Gossypium hirsutum under salt stress. PLoS One 2017; 12:e0176733. [PMID: 28489898 PMCID: PMC5425181 DOI: 10.1371/journal.pone.0176733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/15/2017] [Indexed: 11/19/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are a superfamily of enzymes which play important role in the scavenging of active aldehydes molecules. In present work, a comprehensive whole-genomic study of ALDH gene superfamily was carried out for an allotetraploid cultivated cotton species, G. hirsutum, as well as in parallel relative to their diploid progenitors, G. arboreum and G. raimondii. Totally, 30 and 58 ALDH gene sequences belong to 10 families were identified from diploid and allotetraploid cotton species, respectively. The gene structures among the members from same families were highly conserved. Whole-genome duplication and segmental duplication might be the major driver for the expansion of ALDH gene superfamily in G. hirsutum. In addition, the expression patterns of GhALDH genes were diverse across tissues. Most GhALDH genes were induced or repressed by salt stress in upland cotton. Our observation shed lights on the molecular evolutionary properties of ALDH genes in diploid cottons and their alloallotetraploid derivatives. It may be useful to mine key genes for improvement of cotton response to salt stress.
Collapse
Affiliation(s)
- Yating Dong
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Jiahui Hu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Jiyu Feng
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Cong Li
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Cheng Li
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Jinhong Chen
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Tardieu F, Varshney RK, Tuberosa R. Improving crop performance under drought - cross-fertilization of disciplines. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1393-1398. [PMID: 28338855 PMCID: PMC5444440 DOI: 10.1093/jxb/erx042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
| | - Rajeev K Varshney
- Research Programme - Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru-502 324, India
| | - Roberto Tuberosa
- Department of Agricultural Sciences, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
42
|
Scarpeci TE, Frea VS, Zanor MI, Valle EM. Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:673-685. [PMID: 28204526 DOI: 10.1093/jxb/erw429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transcription factor superfamily, APETALA2/ethylene response factor, is involved in plant growth and development, as well as in environmental stress responses. Here, an uncharacterized gene of this family, AtERF019, was studied in Arabidopsis thaliana under abiotic stress situations. Arabidopsis plants overexpressing AtERF019 showed a delay in flowering time of 7 days and a delay in senescence of 2 weeks when comparison with wild type plants. These plants also showed increased tolerance to water deficiency that could be explained by a lower transpiration rate, owing to their smaller stomata aperture and lower cuticle and cell wall permeability. Furthermore, using a bottom-up proteomic approach, proteins produced in response to stress, namely branched-chain-amino-acid aminotransferase 3 (BCAT3) and the zinc finger transcription factor oxidative stress 2, were only identified in plants overexpressing AtERF019. Additionally, a BCAT3 mutant was more sensitive to water-deficit stress than wild type plants. Predicted gene targets of AtERF019 were oxidative stress 2 and genes related to cell wall metabolism. These data suggest that AtERF019 could play a primary role in plant growth and development that causes an increased tolerance to water deprivation, so strengthening their chances of reproductive success.
Collapse
Affiliation(s)
- Telma E Scarpeci
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario, Argentina
| | - Vanesa S Frea
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario, Argentina
| | - María I Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario, Argentina
| | - Estela M Valle
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario, Argentina
| |
Collapse
|
43
|
Missihoun TD, Kotchoni SO, Bartels D. Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots. PLoS One 2016; 11:e0165867. [PMID: 27798665 PMCID: PMC5087895 DOI: 10.1371/journal.pone.0165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle. However, the extent to which the ALDH isoforms differ between monocotyledons and dicotyledons has rarely been accessed side-by-side. In this study, we used a phylogenetic approach to address this question. We have analysed the ALDH genes in Brachypodium distachyon, alongside those of other sequenced monocotyledon and dicotyledon species to examine traits supporting either a convergent or divergent evolution of the ALDH2C/REF1-type proteins. We found that B. distachyon, like other grasses, contains more ALDH2C/REF1 isoforms than A. thaliana and other dicotyledon species. Some amino acid residues in ALDH2C/REF1 isoforms were found as being conserved in dicotyledons but substituted by non-equivalent residues in monocotyledons. One example of those substitutions concerns a conserved phenylalanine and a conserved tyrosine in monocotyledons and dicotyledons, respectively. Protein structure modelling suggests that the presence of tyrosine would widen the substrate-binding pocket in the dicotyledons, and thereby influence substrate specificity. We discussed the importance of these findings as new hints to investigate why ferulic acid contents and cell wall digestibility differ between the dicotyledon and monocotyledon species.
Collapse
Affiliation(s)
- Tagnon D. Missihoun
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Simeon O. Kotchoni
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
44
|
Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production. Sci Rep 2016; 6:35115. [PMID: 27725774 PMCID: PMC5057122 DOI: 10.1038/srep35115] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022] Open
Abstract
Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation.
Collapse
|
45
|
A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): structure, phylogeny, and expression pattern. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0445-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Xu HH, Liu SJ, Song SH, Wang RX, Wang WQ, Song SQ. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:219-42. [PMID: 27035683 DOI: 10.1016/j.plaphy.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 05/09/2023]
Abstract
Seed germination is a complex trait which is influenced by many genetic, endogenous and environmental factors, but the key event(s) associated with seed germination are still poorly understood. In present study, the non-dormant cultivated rice Yannong S and the dormant Dongxiang wild rice seeds were used as experimental materials, we comparatively investigated the water uptake, germination time course, and the differential proteome of the effect of embryo and endosperm on germination of these two types of seeds. A total of 231 and 180 protein spots in embryo and endosperm, respectively, showed a significant change in abundance during germination. We observed that the important proteins associated with seed germination included those involved in metabolism, energy production, protein synthesis and destination, storage protein, cell growth and division, signal transduction, cell defense and rescue. The contribution of embryo and endosperm to seed germination is different. In embryo, the proteins involved in amino acid activation, sucrose cleavage, glycolysis, fermentation and protein synthesis increased; in endosperm, the proteins involved in sucrose cleavage and glycolysis decreased, and those with ATP and CoQ synthesis and proteolysis increased. Our results provide some new knowledge to understand further the mechanism of seed germination.
Collapse
Affiliation(s)
- Heng-Heng Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Rui-Xia Wang
- College of Life Science, Linyi University, Linyi 276005, China
| | - Wei-Qing Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
47
|
Yang C, Zhou Y, Fan J, Fu Y, Shen L, Yao Y, Li R, Fu S, Duan R, Hu X, Guo J. SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:377-87. [PMID: 26368017 DOI: 10.1016/j.plaphy.2015.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 05/19/2023]
Abstract
Glycine betaine (GB) accumulation is involved in abiotic stress. However, it is not known whether BADH, the key enzyme of GB synthesis, utilizes the antioxidant system to confer drought stress tolerance. In this study, a novel member of the ALDH10 gene family, SpBADH, was isolated from Sesuvium portulacastrum. The expression of this gene was up-regulated by NaCl, PEG6000, H2O2, ABA and high temperature in S. portulacastrum. SpBADH overexpression in Arabidopsis resulted in higher BADH activity and GB content and might increase tolerance to drought/osmotic stresses, specifically strong tolerance to drought stress. Transgenic lines exhibited lower MDA and H2O2 contents but higher proline, POD, SOD and CAT contents than the wild type under drought and osmotic stresses. SpBADH overexpression in Arabidopsis also enhanced the expression of ROS-related genes including AtSOD, AtPOD, AtCAT, AtAPX and Atpsb under drought and osmotic stresses. Thus, SpBADH increases plant tolerance to drought or osmotic stresses by reducing H2O2, increasing proline, and activating antioxidative enzymes to improve ROS scavenging.
Collapse
Affiliation(s)
- Chenglong Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China; Guizhou Institute of Subtropics Crops, Xingyi 562400, China
| | - Yang Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Fan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China; Agricultural College of Hainan University, 571104 Haikou, China
| | - Yuhua Fu
- Guizhou Institute of Subtropics Crops, Xingyi 562400, China
| | - Longbin Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China
| | - Ruimei Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China
| | - Shaoping Fu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China
| | - Ruijun Duan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China
| | - Xinwen Hu
- Agricultural College of Hainan University, 571104 Haikou, China.
| | - Jianchun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences &Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 570711, China.
| |
Collapse
|
48
|
Missihoun TD, Willée E, Guegan JP, Berardocco S, Shafiq MR, Bouchereau A, Bartels D. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:1798-807. [PMID: 26169197 DOI: 10.1093/pcp/pcv105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/09/2015] [Indexed: 05/11/2023]
Abstract
Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | - Eva Willée
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Present address: Botanisches Institut der Universität zu Köln Zülpicher Str.47b, D-50674 Köln, Germany
| | - Jean-Paul Guegan
- ENSCR-UMR CNRS 6226, Institute des Sciences Chimiques de Rennes, Campus de Beaulieu, 35708 Rennes, France
| | - Solenne Berardocco
- UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, 35653 Le Rheu, France
| | - Muhammad R Shafiq
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Alain Bouchereau
- UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, 35653 Le Rheu, France
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
49
|
Zarei A, Trobacher CP, Shelp BJ. NAD(+)-aminoaldehyde dehydrogenase candidates for 4-aminobutyrate (GABA) and β-alanine production during terminal oxidation of polyamines in apple fruit. FEBS Lett 2015; 589:2695-700. [PMID: 26296314 DOI: 10.1016/j.febslet.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
The last step of polyamine catabolism involves the oxidation of 3-aminopropanal or 4-aminobutanal via aminoaldehyde dehydrogenase. In this study, two apple (Malus x domestica) AMADH genes were selected (MdAMADH1 and MdAMADH2) as candidates for encoding 4-aminobutanal dehydrogenase activity. Maximal activity and catalytic efficiency were obtained with NAD(+) and 3-aminopropanal, followed by 4-aminobutanal, at pH 9.8. NAD(+) reduction was accompanied by the production of GABA and β-alanine, respectively, when 4-aminobutanal and 3-aminopropanal were utilized as substrates. MdAMADH2 was peroxisomal and MdAMADH1 cytosolic. These findings shed light on the potential role of apple AMADHs in 4-aminobutyrate and β-alanine production.
Collapse
Affiliation(s)
- Adel Zarei
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | - Barry J Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
50
|
Delgado-Gaytán MF, Hernández-Palomares MLE, Soñanez-Organis JG, Muhlia-Almazán A, Sánchez-Paz A, Stephens-Camacho NA, Valenzuela-Soto EM, Rosas-Rodríguez JA. Molecular characterization and organ-specific expression of the gene that encodes betaine aldehyde dehydrogenase from the white shrimp Litopenaeus vannamei in response to osmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2015. [PMID: 26219579 DOI: 10.1016/j.cbpb.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Crustaceans overcome osmotic disturbances by regulating their intracellular concentration of ions and osmolytes. Glycine betaine (GB), an osmolyte accumulated in response to hyperosmotic stress, is synthesized by betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) through the oxidation of betaine aldehyde. A partial BADH cDNA sequence from the white shrimp Litopenaeus vannamei was obtained and its organ-specific expression during osmotic stress (low and high salinity) was evaluated. The partial BADH cDNA sequence (LvBADH) is 1103bp long and encodes an open reading frame for 217 protein residues. The amino acid sequence of LvBADH is related to that of other BADHs, TMABA-DH and ALDH9 from invertebrate and vertebrate homologues, and includes the essential domains of their function and regulation. LvBADH activity and mRNA expression were detected in the gills, hepatopancreas and muscle with the highest levels in the hepatopancreas. LvBADH mRNA expression increased 2-3-fold in the hepatopancreas and gills after 7days of osmotic variation (25 and 40ppt). In contrast, LvBADH mRNA expression in muscle decreased 4-fold and 15-fold after 7days at low and high salinity, respectively. The results indicate that LvBADH is ubiquitously expressed, but its levels are organ-specific and regulated by osmotic stress, and that LvBADH is involved in the cellular response of crustaceans to variations in environmental salinity.
Collapse
Affiliation(s)
- María F Delgado-Gaytán
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Magally L E Hernández-Palomares
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - José G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Adriana Muhlia-Almazán
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste S. C. (CIBNOR), Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Calle Hermosa 101, Col. Los Angeles, CP 83106, Hermosillo, Sonora, Mexico
| | - Norma A Stephens-Camacho
- Licenciatura en Nutrición Humana, Universidad Estatal de Sonora UAN, Periférico Sur y Carretera a Huatabampo, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Jesús A Rosas-Rodríguez
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico.
| |
Collapse
|