1
|
Feng H, Mon W, Su X, Li Y, Zhang S, Zhang Z, Zheng K. Integrated Biological Experiments and Proteomic Analyses of Nicotiana tabacum Xylem Sap Revealed the Host Response to Tomato Spotted Wilt Orthotospovirus Infection. Int J Mol Sci 2024; 25:10907. [PMID: 39456688 PMCID: PMC11507450 DOI: 10.3390/ijms252010907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The plant vascular system is not only a transportation system for delivering nutrients but also a highway transport network for spreading viruses. Tomato spotted wilt orthotospovirus (TSWV) is among the most destructive viruses that cause serious losses in economically important crops worldwide. However, there is minimal information about the long-distance movements of TSWV in the host plant vascular system. In this this study, we confirm that TSWV virions are present in the xylem as observed by transmission electron microscopy (TEM). Further, a quantitative proteomic analysis based on label-free methods was conducted to reveal the uniqueness of protein expression in xylem sap during TSWV infection. Thus, this study identified and quantified 3305 proteins in two groups. Furthermore, TSWV infection induced three viral structural proteins, N, Gn and Gc, and 315 host proteins differentially expressed in xylem (163 up-regulated and 152 down-regulated). GO enrichment analysis showed up-regulated proteins significantly enriched in homeostasis, wounding, defense response, and DNA integration terms, while down-regulated proteins significantly enriched in cell wall biogenesis/xyloglucan metabolic process-related terms. KEGG enrichment analysis showed that the differentially expressed proteins (DEPs) were most strongly associated with plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Cluster analysis of DEPs function showed the DEPs can be categorized into cell wall metabolism-related proteins, antioxidant proteins, PCD-related proteins, host defense proteins such as receptor-like kinases (RLKs), salicylic acid binding protein (SABP), pathogenesis related proteins (PR), DNA methylation, and proteinase inhibitor (PI). Finally, parallel reaction monitoring (PRM) validated 20 DEPs, demonstrating that the protein abundances were consistent between label-free and PRM data. Finally, 11 genes were selected for RT-qPCR validation of the DEPs and label-free-based proteomic analysis concordant results. Our results contribute to existing knowledge on the complexity of host plant xylem system response to virus infection and provide a basis for further study of the mechanism underlying TSWV long-distance movement in host plant vascular system.
Collapse
Affiliation(s)
- Hongping Feng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Waiwai Mon
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
- Deputy Director of Microbiology Laboratory, Department of Biotechnology Research, Ministry of Science and Technology, Tansoe Rd., Kyaukse 05151, Myanmar
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Yu Li
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Shaozhi Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| |
Collapse
|
2
|
Srivastava V, Patra K, Pai H, Aguilar-Pontes MV, Berasategui A, Kamble A, Di Pietro A, Redkar A. Molecular Dialogue During Host Manipulation by the Vascular Wilt Fungus Fusarium oxysporum. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:97-126. [PMID: 38885471 DOI: 10.1146/annurev-phyto-021722-034823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Vascular wilt fungi are a group of hemibiotrophic phytopathogens that infect diverse crop plants. These pathogens have adapted to thrive in the nutrient-deprived niche of the plant xylem. Identification and functional characterization of effectors and their role in the establishment of compatibility across multiple hosts, suppression of plant defense, host reprogramming, and interaction with surrounding microbes have been studied mainly in model vascular wilt pathogens Fusarium oxysporum and Verticillium dahliae. Comparative analysis of genomes from fungal isolates has accelerated our understanding of genome compartmentalization and its role in effector evolution. Also, advances in recent years have shed light on the cross talk of root-infecting fungi across multiple scales from the cellular to the ecosystem level, covering their interaction with the plant microbiome as well as their interkingdom signaling. This review elaborates on our current understanding of the cross talk between vascular wilt fungi and the host plant, which eventually leads to a specialized lifestyle in the xylem. We particularly focus on recent findings in F. oxysporum, including multihost associations, and how they have contributed to understanding the biology of fungal adaptation to the xylem. In addition, we discuss emerging research areas and highlight open questions and future challenges.
Collapse
Affiliation(s)
- Vidha Srivastava
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India;
| | - Kuntal Patra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India;
| | - Hsuan Pai
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | - Aileen Berasategui
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Avinash Kamble
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | | | - Amey Redkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India;
| |
Collapse
|
3
|
Kong CH, Lee JW, Jeon M, Kang WC, Kim MS, Park K, Bae HJ, Park SJ, Jung SY, Kim SN, Kleinfelter B, Kim JW, Ryu JH. D-Pinitol mitigates post-traumatic stress disorder-like behaviors induced by single prolonged stress in mice through mineralocorticoid receptor antagonism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110990. [PMID: 38467326 DOI: 10.1016/j.pnpbp.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Woo Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Seo Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Benjamin Kleinfelter
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37240, United States of America
| | - Ji-Woon Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee Univeristy, Seoul 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Walker NC, White SM, Ruiz SA, McKay Fletcher D, Saponari M, Roose T. A mathematical model of biofilm growth and spread within plant xylem: Case study of Xylella fastidiosa in olive trees. J Theor Biol 2024; 581:111737. [PMID: 38280544 DOI: 10.1016/j.jtbi.2024.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Xylem-limited bacterial pathogens cause some of the most destructive plant diseases. Though imposed measures to control these pathogens are generally ineffective, even among susceptible taxa, some hosts can limit bacterial loads and symptom expression. Mechanisms by which this resistance is achieved are poorly understood. In particular, it is still unknown how differences in vascular structure may influence biofilm growth and spread within a host. To address this, we developed a novel theoretical framework to describe biofilm behaviour within xylem vessels, adopting a polymer-based modelling approach. We then parameterised the model to investigate the relevance of xylem vessel diameters on Xylella fastidiosa resistance among olive cultivars. The functionality of all vessels was severely reduced under infection, with hydraulic flow reductions of 2-3 orders of magnitude. However, results suggest wider vessels act as biofilm incubators; allowing biofilms to develop over a long time while still transporting them through the vasculature. By contrast, thinner vessels become blocked much earlier, limiting biofilm spread. Using experimental data on vessel diameter distributions, we were able to determine that a mechanism of resistance in the olive cultivar Leccino is a relatively low abundance of the widest vessels, limiting X. fastidiosa spread.
Collapse
Affiliation(s)
- N C Walker
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - S M White
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - S A Ruiz
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - D McKay Fletcher
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK; Rural Economy Environment and Society Research Group, SRUC, Edinburgh EH9 3JG, UK
| | - M Saponari
- Istituto per la Protezione Sostenibile delle Piante, CNR, Bari, Italy
| | - T Roose
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
5
|
Ingram S, Jansen S, Schenk HJ. Lipid-Coated Nanobubbles in Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1776. [PMID: 37299679 PMCID: PMC10254470 DOI: 10.3390/nano13111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
One of the more surprising occurrences of bulk nanobubbles is in the sap inside the vascular transport system of flowering plants, the xylem. In plants, nanobubbles are subjected to negative pressure in the water and to large pressure fluctuations, sometimes encompassing pressure changes of several MPa over the course of a single day, as well as wide temperature fluctuations. Here, we review the evidence for nanobubbles in plants and for polar lipids that coat them, allowing nanobubbles to persist in this dynamic environment. The review addresses how the dynamic surface tension of polar lipid monolayers allows nanobubbles to avoid dissolution or unstable expansion under negative liquid pressure. In addition, we discuss theoretical considerations about the formation of lipid-coated nanobubbles in plants from gas-filled spaces in the xylem and the role of mesoporous fibrous pit membranes between xylem conduits in creating the bubbles, driven by the pressure gradient between the gas and liquid phase. We discuss the role of surface charges in preventing nanobubble coalescence, and conclude by addressing a number of open questions about nanobubbles in plants.
Collapse
Affiliation(s)
- Stephen Ingram
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, 00560 Helsinki, Finland
| | - Steven Jansen
- Institute of Botany, Ulm University, 89081 Ulm, Germany
| | - H. Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831-3599, USA
| |
Collapse
|
6
|
Yang Z, Tan P, Huang Z, Sun Z, Liu Z, Liu L, Zeng C, Tong J, Yan M. Metabolic profiles in the xylem sap of Brassica juncea exposed to cadmium. PHYSIOLOGIA PLANTARUM 2023; 175:e13886. [PMID: 36862032 DOI: 10.1111/ppl.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Metabolic profiles in xylem sap are considered a fundamental mechanism for Cadmium (Cd) detoxification in plants. However, the metabolic mechanism of Brassica juncea xylem sap in response to Cd is still unclear. Here, we investigated the effects on the metabolomics of B. juncea xylem sap treated with Cd at different times by utilizing a nontargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics method for further elucidating the response mechanism of Cd exposure. The findings indicated that 48 h and 7 days Cd exposure caused significant differences in metabolic profiles of the B. juncea xylem sap. Those differential metabolites are primarily involved in amino acids, organic acids, lipids, and carbohydrates, and most of them were downregulated, which played essential roles in response to Cd stress. Furthermore, B. juncea xylem sap resisted 48-h Cd exposure via regulation of glycerophospholipid metabolism, carbon metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, linoleic acid metabolism, C5-branched dibasic acid metabolism, alpha-linolenic acid metabolism, cyanoamino acid metabolism, ABC transporters, biosynthesis of amino acids, and pyrimidine metabolism; whereas alpha-linolenic acid metabolism, glycerophospholipid metabolism, photosynthesis, and oxidative phosphorylation were regulated for resisting 7-day Cd exposure.
Collapse
Affiliation(s)
- Zhen Yang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha, China
| | - Piaopiao Tan
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha, China
| | - Zhihao Huang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha, China
| | - Zhenzhen Sun
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha, China
| | - Zhixiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha, China
| | - Lili Liu
- College of Life Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Chaozhen Zeng
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
7
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
8
|
Kumar R, Hosseinzadehtaher M, Hein N, Shadmand M, Jagadish SVK, Ghanbarian B. Challenges and advances in measuring sap flow in agriculture and agroforestry: A review with focus on nuclear magnetic resonance. FRONTIERS IN PLANT SCIENCE 2022; 13:1036078. [PMID: 36426161 PMCID: PMC9679431 DOI: 10.3389/fpls.2022.1036078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Sap flow measurement is one of the most effective methods for quantifying plant water use.A better understanding of sap flow dynamics can aid in more efficient water and crop management, particularly under unpredictable rainfall patterns and water scarcity resulting from climate change. In addition to detecting infected plants, sap flow measurement helps select plant species that could better cope with hotter and drier conditions. There exist multiple methods to measure sap flow including heat balance, dyes and radiolabeled tracers. Heat sensor-based techniques are the most popular and commercially available to study plant hydraulics, even though most of them are invasive and associated with multiple kinds of errors. Heat-based methods are prone to errors due to misalignment of probes and wounding, despite all the advances in this technology. Among existing methods for measuring sap flow, nuclear magnetic resonance (NMR) is an appropriate non-invasive approach. However, there are challenges associated with applications of NMR to measure sap flow in trees or field crops, such as producing homogeneous magnetic field, bulkiness and poor portable nature of the instruments, and operational complexity. Nonetheless, various advances have been recently made that allow the manufacture of portable NMR tools for measuring sap flow in plants. The basic concept of the portal NMR tool is based on an external magnetic field to measure the sap flow and hence advances in magnet types and magnet arrangements (e.g., C-type, U-type, and Halbach magnets) are critical components of NMR-based sap flow measuring tools. Developing a non-invasive, portable and inexpensive NMR tool that can be easily used under field conditions would significantly improve our ability to monitor vegetation responses to environmental change.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mohsen Hosseinzadehtaher
- Department of Electrical & Computer Engineering, University of Illinois, Chicago, IL, United States
| | - Nathan Hein
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mohammad Shadmand
- Department of Electrical & Computer Engineering, University of Illinois, Chicago, IL, United States
| | | | - Behzad Ghanbarian
- Porous Media Research Lab, Department of Geology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
9
|
Pandi A, Sattu K, Kalappan VM, Lal V, Varikasuvu SR, Ganguly A, Prasad J. Pharmacological effects of D-Pinitol - A comprehensive review. J Food Biochem 2022; 46:e14282. [PMID: 35735162 DOI: 10.1111/jfbc.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Abstract
In recent years, the application of phytochemicals to prevent or treat diseases has received greater attention. These phytochemicals have little or no toxicity against healthy tissues and are thus considered as ideal compounds. An impressive number of modern drugs are obtained from natural sources based on their traditional value. D-Pinitol is a natural compound that is derived from soy and soy products. It is a potentially active molecule that belongs to the class of inositols. D-pinitol has been pharmacologically evaluated for its potent antioxidant, anti-diabetic, anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, renoprotective, neuroprotective, immunosuppressive, and anti-osteoporotic efficacies. This review is an attempt to validate the plausible pharmacological effects of D-pinitol using various in vivo and in vitro studies. PRACTICAL IMPLICATIONS: The consumption of plant-based products has been significantly increased all over the world. The active phytochemicals that are found in plants are stated to have numerous health promoting functions for the treatment of diabetes, cancer, inflammation, cardiac diseases, liver dysfunction, and many other. D-Pinitol is abundantly present in soybeans that possess notable therapeutic activities. Understanding the effects of D-Pinitol would potentially help in applying this compound in clinical research for the treatment of different disorders.
Collapse
Affiliation(s)
- Anandakumar Pandi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, PG Extension centre, Dharmapuri, Tamilnadu, India
| | - Vanitha M Kalappan
- Formerly, Department of Medical Biochemistry, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - Vanita Lal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| | - Seshadri R Varikasuvu
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| | - Jitender Prasad
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| |
Collapse
|
10
|
Sin WC, Lam HM, Ngai SM. Identification of Diverse Stress-Responsive Xylem Sap Peptides in Soybean. Int J Mol Sci 2022; 23:ijms23158641. [PMID: 35955768 PMCID: PMC9369194 DOI: 10.3390/ijms23158641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.
Collapse
|
11
|
Chardon F, De Marco F, Marmagne A, Le Hir R, Vilaine F, Bellini C, Dinant S. Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153707. [PMID: 35550522 DOI: 10.1016/j.jplph.2022.153707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Phloem and xylem tissues are necessary for the allocation of nutrients and photoassimilates. However, how the long-distance transport of carbon (C) and nitrogen (N) is coordinated with the central metabolism is largely unknown. To better understand how the genetic and environmental factors influence C and N transport, we analysed the metabolite profiles of phloem exudates and xylem saps of five Arabidopsis thaliana accessions grown in low or non-limiting N supply. We observed that xylem saps were composed of 46 or 56% carbohydrates, 27 or 45% amino acids, and 5 or 13% organic acids in low or non-limiting N supply, respectively. In contrast, phloem exudates were composed of 76 or 86% carbohydrates, 7 or 18% amino acids, and 5 or 6% organic acids. Variation in N supply impacted amino acid, organic acid and sugar contents. When comparing low N and non-limiting N, the most striking differences were variations of glutamine, aspartate, and succinate abundance in the xylem saps and citrate and fumarate abundance in phloem exudates. In addition, we observed a substantial variation of metabolite content between genotypes, particularly under high N. The content of several organic acids, such as malate, citrate, fumarate, and succinate was affected by the genotype alone or by the interaction between genotype and N supply. This study confirmed that the response of the transport of nutrients in the phloem and the xylem to N availability is associated with the regulation of the central metabolism and could be an adaptive trait.
Collapse
Affiliation(s)
- Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Federica De Marco
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Françoise Vilaine
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Catherine Bellini
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France; Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
12
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
13
|
Schenk HJ, Michaud JM, Mocko K, Espino S, Melendres T, Roth MR, Welti R, Kaack L, Jansen S. Lipids in xylem sap of woody plants across the angiosperm phylogeny. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1477-1494. [PMID: 33295003 DOI: 10.1111/tpj.15125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml-1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.
Collapse
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Joseph M Michaud
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Kerri Mocko
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Susana Espino
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Tatiana Melendres
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Mary R Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
14
|
Liu Y, Lin T, Valencia MV, Zhang C, Lv Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules 2021; 26:molecules26030667. [PMID: 33514014 PMCID: PMC7865979 DOI: 10.3390/molecules26030667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
Vascular bundles play important roles in transporting nutrients, growth signals, amino acids, and proteins between aerial and underground tissues. In order to understand these sophisticated processes, a comprehensive analysis of the roles of the components located in the vascular tissues is required. A great deal of data has been obtained from proteomic analyses of vascular tissues in plants, which mainly aim to identify the proteins moving through the vascular tissues. Here, different aspects of the phloem and xylem proteins are reviewed, including their collection methods, and their main biological roles in growth, and biotic and abiotic stress responses. The study of vascular proteomics shows great potential to contribute to our understanding of the biological mechanisms related to development and defense in plants.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Maria Valderrama Valencia
- Departamento Académico de Biología–Universidad Nacional de San Agustin de Arequipa Nro117, Arequipa 04000, Peru;
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (C.Z.); (Z.L.)
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
- Correspondence: (C.Z.); (Z.L.)
| |
Collapse
|
15
|
Melicherová N, Řemínek R, Foret F. Application of capillary electrophoretic methods for the analysis of plant phloem and xylem saps composition: A review. J Sep Sci 2019; 43:271-284. [PMID: 31736263 DOI: 10.1002/jssc.201900844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/13/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023]
Abstract
Plant vascular tissue is essential for the exchange of water, nutrients, metabolic products, and signals among distant organs in cormophytes. The compositions of phloem and xylem saps are highly dependent on many internal and external factors, and thus their analysis provides a valuable insight into plant physiology, growth, and development as well as nutrition status or presence of biotic or abiotic stresses. Capillary electrophoresis characterized by highly efficient separations and minuscule sample requirements represents a suitable analytical technique for this purpose because the sap constitutes a complex mixture with generally minimal availability. This review aims at providing a comprehensive overview of published capillary electrophoretic methods for the analysis of primary components present in the phloem and xylem saps of higher plants.
Collapse
Affiliation(s)
- Natália Melicherová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Roman Řemínek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
16
|
Rostaminedjad M, Askari H, Zakavi M, Nadjafabadi MS, Farrokhi N. Energy Flow from Root to Shoot: A Comprehensive In silico Analysis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e1734. [PMID: 31457040 PMCID: PMC6697854 DOI: 10.21859/ijb.1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Root to shoot connection and transfer of information seems to be taken place mostly via the transmissions of signal molecules, secondary metabolites, amino acids, hormones and proteins, through xylem sap. Examination of earlier reports is indicative of relatively high levels of conservation in xylem sap protein compositions. Apparently these protein molecules are being synthesized in roots in response to environmental changes and get transported to aerial plant parts after secretion into xylem sap. Objectives In order to comprehend this so-called passive signaling, some questions need to be answered: 1) Do these proteins have the capability to act as signals? 2) How much energy does root spend for the biosynthesis of the secreted proteins? How similar is the amount of energy that root cells spent for the biosynthesis of intra- and extra-cellular proteins? Materials and Methods Reported xylem sap proteins curated from Arabidopsis, maize and soybean. Their sequences were put under scrutiny in terms of considering their mobility, and physical and chemical properties. Metabolic energy required for their biosynthesis along with the energy hidden in their peptide bonds were calculated and compared with random non-xylem sap proteins as control. Results Xylem sap proteins were significantly smaller than the root proteins, while they were bigger in size when compared to the leaf group. Xylem protein pIs were significantly higher than the control proteins in different plants. Similarly, the protein stability was higher for xylem sap proteins in comparison with roots and leaves in all analyzed plants, except for soybean that the stability was indifferent between xylem and root. The data were suggestive a significantly lower energy consumption for the synthesis of xylem sap proteins. Conclusions Lower energy consumption may suggest an economical route of communication between roots and shoots in plants that mainly rely on symplastic signaling.
Collapse
Affiliation(s)
- Mehri Rostaminedjad
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Hossein Askari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Maryam Zakavi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Masood Soltani Nadjafabadi
- Genetic Research Department, Iranian National Plant Gene Bank, Seed and Plant Improvement Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| |
Collapse
|
17
|
Chakraborty S, Nguyen B, Wasti SD, Xu G. Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019. [PMID: 31450667 DOI: 10.3390/molecules2473081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian Nguyen
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Syed Danyal Wasti
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
18
|
Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019; 24:molecules24173081. [PMID: 31450667 PMCID: PMC6749341 DOI: 10.3390/molecules24173081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
|
19
|
Zheng T, Zhang K, Zhu X, Guan L, Jiu S, Li X, Nasim M, Jia H, Fang J. Integrated metatranscriptome and transcriptome reveals the microbial community composition and physiological function of xylem sap on grapevine during bleeding period. Genes Genomics 2019; 41:1095-1111. [PMID: 31236870 DOI: 10.1007/s13258-019-00841-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/12/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND The xylem sap of fruit trees ensures the survival during the dormant period, and its flow during the bleeding period is correlated with the start of a new life cycle. Though the simple exploration on ingredients in the sap was carried out in the early years, the specific life activities and physiology functions of the sap during bleeding period have not been reported yet and the bleeding period is still a fruit tree development period worthy of attention. OBJECTIVES In this study, the microbial community composition during bleeding period were revealed by metatranscriptome and transcriptomic data. For the first time, the microorganism genome and grape genome in xylem sap were analyzed on transcriptional level, based on which the main physiological functions of the sap were also determined. METHODS The genomic RNA in the sap was isolated and sequenced. Kyoto Encyclopedia of Gene and Genome (KEGG), Evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Carbohydrate-Active enzymes Database (CAZy) functional annotation were used to analysis the function of micro-organisms in xylem sap. DEGs were analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The genes responsive to biotic and abiotic stresses were finally screened by transcriptome screening, stress data analysis and vitro validation experiments. RESULTS The analysis exhibited 36,144,564 micro-related clean reads and 244,213 unigene. KEGG, eggNOG and CAZy functional annotation analysis indicated that signal transduction and material metabolism were the most important function of xylem sap. DEGs analysis were mainly about disease resistance, carbon source metabolism and hormone signal transduction, especially in P3 vs P1, enriched in the plant-pathogen interaction pathway. Analysis on grape genome information revealed xylem sap had little RNA with weak life activity. Metabolic pathways, biosynthesis of secondary metabolites, plant hormone signal transduction and plant-pathogen interaction were the four pathways with the largest number of enriched genes. Moreover, 16 genes responsive to biotic and abiotic stresses were screened out. CONCLUSION Promoting plant growth and resisting pathogens were the most important function of xylem sap during the bleeding period, and the function of microbial community were closely related to microorganisms growth and disease resistance. The 16 stress-related genes might be used for the future grape resistance research.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, China
| | - Kekun Zhang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, China
| | - Mazzullah Nasim
- College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
20
|
Sofo A, Fausto C, Mininni AN, Dichio B, Lucini L. Soil management type differentially modulates the metabolomic profile of olive xylem sap. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:707-714. [PMID: 31054473 DOI: 10.1016/j.plaphy.2019.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
In conventional olive growing, frequent soil tillage strongly reduces the complexity and diversity of the agro-ecosystem. Here, a metabolomic analysis was carried out on the xylem sap (XS) of olive plants (Olea europaea L.) from a grove located in Southern Italy (Basilicata region). The orchard has been divided in two plots that have been managed for 18 years with two different systems: a) 'sustainable management' (Smng), with no-tillage, fertigation and internal C-inputs (spontaneous weeds and pruning residues), and b) an adjacent rainfed 'conventional management' (Cmng), that included soil tillage and mineral fertilization. The XS was extracted from olive shoots in two sampling times (ST1: May; ST2: October) using a Sholander pressure chamber, and its metabolome analyzed by ultra-high performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole-time-of-flight mass spectrometer (QTOF-MS). The discriminating compounds were 94 at ST1 and 119 at ST2, and 35 of them were in common between the two sampling times. The majority of the discriminating metabolites (73 on 94 at ST1, and 109 on 119 at ST2) were found at higher concentration in the XS of Smng plants, compared to that of Cmng ones. Most of the discriminating metabolites found in XS (about 80%, both at ST1 and ST2) were involved in plant secondary metabolism, mainly for plant chemical defense, growth regulation and signal transduction. The most prevailing class of compounds included terpenoids, phytohormones, alkaloids, sterols/steroids, retinols/retinoids, tocopherols and carotenoids. For the first time, we have demonstrated that the XS of a tree crop significantly responds to a shift of soil management. Generally, the plants of the Smng plot showed an up-regulated secondary metabolism. The results of our study encourage the use of a set of sustainable agricultural practices in a productive orchard, in order to enhance plant physiological status, increase yield quantity/quality, safeguard the environment and ameliorate human health.
Collapse
Affiliation(s)
- Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), Università degli Studi della Basilicata, Matera, Italy.
| | - Catia Fausto
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), Università degli Studi della Basilicata, Matera, Italy
| | - Alba N Mininni
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), Università degli Studi della Basilicata, Matera, Italy
| | - Bartolomeo Dichio
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), Università degli Studi della Basilicata, Matera, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
21
|
Słupianek A, Kasprowicz-Maluśki A, Myśkow E, Turzańska M, Sokołowska K. Endocytosis acts as transport pathway in wood. THE NEW PHYTOLOGIST 2019; 222:1846-1861. [PMID: 30548617 DOI: 10.1111/nph.15637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
In trees, dead and living cells of secondary xylem (wood) function collectively, rendering cell-to-cell communication challenging. Water and solutes are transported over long distances from the roots to the above-ground organs via vessels, the main component of wood, and then radially over short distances to the neighboring cells. This enables proper functioning of trees and integrates whole-plant activity. In this study, tracer loading, immunolocalization experiments and inhibitor assays were used to decipher the mechanisms enabling transport in wood of Acer pseudoplatanus (maple), Fraxinus excelsior (ash) and Populus tremula × tremuloides (poplar) trees. We show that tracer uptake from dead water-conducting vessels, elements of the apoplasm, to living vessel-associated cells (VACs) of the xylem parenchyma of the symplasm system proceeds via the endocytic pathway, including clathrin-mediated and clathrin-independent processes. These findings enhance our understanding of the transport pathways in complex wood tissue, providing experimental evidence of the involvement of VACs and endocytosis in radial uptake from vessels.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Elżbieta Myśkow
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Magdalena Turzańska
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| |
Collapse
|
22
|
Halis Y, Benhaddya ML, Bensaha H, Senoussi MM. How do newly matured vessels start conducting water? The significance of lateral pathways for connecting newly matured vessels to the transpiration stream. TREE PHYSIOLOGY 2019; 39:641-649. [PMID: 30597081 DOI: 10.1093/treephys/tpy127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Despite the long history of research on xylem structure and function, there are no reports in the literature explaining how xylem vessel elements began conducting water just after their maturation. This study was conducted to demonstrate the anatomical arrangement of newly matured vessels, looking specifically for the first pathways connecting newly matured vessels to the transpiration stream. Using the developing stems of Paraserianthes lophantha (Willd.) I.C.Nielsen as the experimental system, the course of vessel differentiation and maturation along the developing bundles was followed by using the dye-pressure method. Water pathways from newly matured vessels to other functioning vessels were directly visualized by the technique of single-vessel dye injection. Some isolated newly matured vessels from the transpiration stream were detected using two apoplastic tracers. The results of this study converge to support the hypothesis that the movement of water in the newly matured vessels depends completely on lateral contacts with other functioning vessels via vessel-to-vessel paths or vessel relays. In cases where the lateral pathways were absent, the flow within the newly matured vessels was substantially blocked resulting in a significant hydraulic isolation of the newly matured vessels. These results might contribute to a better understanding of the pattern of water movement within the developing xylem systems, and underscore that xylem vessels start conducting water through lateral transport, although their primary function is the axial transport.
Collapse
Affiliation(s)
- Youcef Halis
- Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, Nezla, Touggourt, Algeria
| | - Mohammed L Benhaddya
- Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, Nezla, Touggourt, Algeria
| | - Hocine Bensaha
- Unité de Recherche Appliquée en Énergies Renouvelables, URAER, Centre de Développement des Énergies Renouvelables, CDER, Ghardaïa, Algeria
| | - Mohamed M Senoussi
- Laboratory of Biomolecules and Plant Amelioration, Larbi Benmhidi University of Oum El Bouaghi, Constantine Road, Algeria
| |
Collapse
|
23
|
Diab AA, Cao XQ, Chen H, Song K, Zhou L, Chen B, He YW. BDSF Is the Predominant In-Planta Quorum-Sensing Signal Used During Xanthomonas campestris Infection and Pathogenesis in Chinese Cabbage. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:240-254. [PMID: 30570452 DOI: 10.1094/mpmi-07-18-0197-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xanthomonas campestris pv. campestris uses the diffusible signal factor (DSF) family of quorum-sensing (QS) signals to coordinate virulence and adaptation. DSF family signals have been well-characterized using laboratory-based cell cultures. The in-planta QS signal used during X. campestris pv. campestris infection remains unclear. To achieve this goal, we first mimic in-planta X. campestris pv. campestris growth conditions by supplementing the previously developed XYS medium with cabbage hydrolysate and found that the dominant signal produced in these conditions was BDSF. Secondly, by using XYS medium supplemented with diverse plant-derived compounds, we examined the effects of diverse plant-derived compounds on the biosynthesis of DSF family signals. Several compounds were found to promote biosynthesis of BDSF. Finally, using an X. campestris pv. campestris ΔrpfB-Chinese cabbage infection model and an ultra-performance liquid chromatographic-time of flight-mass spectrometry-based assay, BDSF was found to comprise >70% of the DSF family signals present in infected cabbage tissue. BDSF at a concentration of 2.0 μM induced both protease activity and engXCA expression. This is the first report to directly show that BDSF is the predominant in-planta QS signal used during X. campestris pv. campestris infection. It provides a better understanding of the molecular interactions between X. campestris pv. campestris and its cruciferous hosts and also provides the logical target for designing strategies to counteract BDSF signaling and, thus, infection. Further studies are needed to get an exact idea about the DSF production dynamics of the wild-type strain inside the plant.
Collapse
Affiliation(s)
- Abdelgader Abdeen Diab
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Xue-Qiang Cao
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Hui Chen
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Kai Song
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Lian Zhou
- 2 Zhiyuan Innovation Research Centre, Student Innovation Centre, Zhiyuan College, Shanghai Jiao Tong University
| | - Bo Chen
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Ya-Wen He
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| |
Collapse
|
24
|
Vitor SC, do Amarante L, Sodek L. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean? PLANTA 2018; 248:437-449. [PMID: 29767334 DOI: 10.1007/s00425-018-2914-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
MAIN CONCLUSION A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.
Collapse
Affiliation(s)
- Simone C Vitor
- Department of Plant Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, SP, 13083-970, Brazil.
| | - Luciano do Amarante
- Department of Plant Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, SP, 13083-970, Brazil
- Department of Botany, Federal University of Pelotas, C.P. 354, Pelotas, RS, 96160-000, Brazil
| | - Ladaslav Sodek
- Department of Plant Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
25
|
Ceballos-Laita L, Gutierrez-Carbonell E, Takahashi D, Abadía A, Uemura M, Abadía J, López-Millán AF. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses. J Proteomics 2017; 170:117-129. [PMID: 28847647 DOI: 10.1016/j.jprot.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/19/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary cell wall. Cell wall modifications could affect the mechanical and permeability properties of the xylem sap vessels, and therefore ultimately affect solute transport and distribution to the leaves. Results also suggest that signaling cascades involving lipid and peptides might play a role in nutrient stress signaling and pinpoint interesting candidates for future studies. Finally, both nutrient deficiencies seem to affect phosphorylation and glycosylation processes, again following an opposite pattern.
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Elain Gutierrez-Carbonell
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Anunciación Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Javier Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Ana Flor López-Millán
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, USA.
| |
Collapse
|
26
|
Killiny N. Generous hosts: What makes Madagascar periwinkle (Catharanthus roseus) the perfect experimental host plant for fastidious bacteria? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:28-35. [PMID: 27620272 DOI: 10.1016/j.plaphy.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 05/03/2023]
Abstract
Although much attention has been paid to the metabolism and biosynthesis of monoterpene alkaloids in Catharanthus roseus, its value as an experimental host for a variety of agriculturally and economically important phytopathogenic bacteria warrants further study. In the present study, we evaluated the chemical composition of the phloem and xylem saps of C. roseus to infer the nutritional requirements of phloem- and xylem-limited phytopathogens. Periwinkle phloem sap consisted of a rich mixture of sugars, organic acids, amino acids, amines, fatty acids, sugar acids and sugar alcohols while xylem contained similar compounds in lesser concentrations. Plant sap analysis may lead to a better understanding of the biology of fastidious Mollicutes and their complex nutritional requirements, and to successful culture of phytoplasmas and other uncultured phloem-restricted bacteria such as Candidatus Liberibacter asiaticus, the causal agent of huanglongbing in citrus.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA.
| |
Collapse
|
27
|
Wang X, Komatsu S. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. J Proteomics 2016; 143:45-56. [PMID: 26808589 DOI: 10.1016/j.jprot.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. BIOLOGICAL SIGNIFICANCE Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
28
|
Carella P, Wilson DC, Kempthorne CJ, Cameron RK. Vascular Sap Proteomics: Providing Insight into Long-Distance Signaling during Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:651. [PMID: 27242852 PMCID: PMC4863880 DOI: 10.3389/fpls.2016.00651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
The plant vascular system, composed of the xylem and phloem, is important for the transport of water, mineral nutrients, and photosynthate throughout the plant body. The vasculature is also the primary means by which developmental and stress signals move from one organ to another. Due to practical and technological limitations, proteomics analysis of xylem and phloem sap has been understudied in comparison to accessible sample types such as leaves and roots. However, recent advances in sample collection techniques and mass spectrometry technology are making it possible to comprehensively analyze vascular sap proteomes. In this mini-review, we discuss the emerging field of vascular sap proteomics, with a focus on recent comparative studies to identify vascular proteins that may play roles in long-distance signaling and other processes during stress responses in plants.
Collapse
|
29
|
Rodríguez-Celma J, Ceballos-Laita L, Grusak MA, Abadía J, López-Millán AF. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:991-1002. [PMID: 27033031 DOI: 10.1016/j.bbapap.2016.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Abstract
The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in their functionalities. However, detailed information about their proteomes is only starting to arise due to the difficulties inherent to the collection methods. This review compiles the proteomic information available to date in these three plant fluids, and compares the proteomes obtained in different plant species in order to shed light into conserved functions in each plant fluid. Inter-species comparisons indicate that all these fluids contain the protein machinery for self-maintenance and defense, including proteins related to cell wall metabolism, pathogen defense, proteolysis, and redox response. These analyses also revealed that proteins may play more relevant roles in signaling in the phloem sap and apoplastic fluid than in the xylem sap. A comparison of the proteomes of the three fluids indicates that although functional categories are somewhat similar, proteins involved are likely to be fluid-specific, except for a small group of proteins present in the three fluids, which may have a universal role, especially in cell wall maintenance and defense. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Jorge Rodríguez-Celma
- University of East Anglia/John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Laura Ceballos-Laita
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain
| | - Ana-Flor López-Millán
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Zhang Y, He J, Jia LJ, Yuan TL, Zhang D, Guo Y, Wang Y, Tang WH. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast. PLoS Pathog 2016; 12:e1005485. [PMID: 26974960 PMCID: PMC4790934 DOI: 10.1371/journal.ppat.1005485] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/10/2016] [Indexed: 01/07/2023] Open
Abstract
The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen's growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36-48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum's ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk.
Collapse
Affiliation(s)
- Yan Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan He
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei-Jie Jia
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting-Lu Yuan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Guo
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yufeng Wang
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
31
|
Del Pozo-Valdivia AI, Seiter NJ, Reisig DD, Greene JK, Reay-Jones FPF, Bacheler JS. Megacopta cribraria (Hemiptera: Plataspidae) Population Dynamics in Soybeans as Influenced by Planting Date, Maturity Group, and Insecticide Use. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1141-1155. [PMID: 26896533 DOI: 10.1093/jee/tow020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Since its unintentional introduction during 2009, Megacopta cribraria (F.) has spread rapidly throughout the southeastern United States, mainly feeding and reproducing on kudzu, Pueraria montana Loureiro (Merr.) variety lobata (Willdenow), and soybeans, Glycine max (L.) Merr. Megacopta cribraria has become a serious economic pest in soybeans, forcing growers to rely solely on insecticide applications to control this insect. The main objective of this study was to investigate if variation in planting date and maturity group of soybeans had an impact on management of M. cribraria populations. Three experimental fields were located in North Carolina (2) and South Carolina (1), and the tests replicated during 2012 and 2013. Treatments consisted of three planting dates, four maturity groups, and insecticide treated versus untreated, at each location. More M. cribraria were found in untreated early planted soybeans than late planted soybeans. Generally, maturity group did not influence population densities of M. cribraria. Yield was significantly influenced by the interaction between planting date and maturity group. There was a negative linear relationship between M. cribraria populations and soybean yield. Although early planted soybeans may avoid drought conditions and potentially large populations of defoliators, these fields may be at greater risk for infestation by M. cribraria.
Collapse
|
32
|
Abeysekara NS, Swaminathan S, Desai N, Guo L, Bhattacharyya MK. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:105-14. [PMID: 26795155 DOI: 10.1016/j.plantsci.2015.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
The causal agent of the soybean sudden death syndrome (SDS), Fusarium virguliforme, remains in infected roots and secretes toxins to cause foliar SDS. In this study we investigated the xylem sap, roots, and leaves of F. virguliforme-infected and -uninfected soybean seedlings for any changes in a set of over 3,000 metabolites following pathogen infection by conducting GC/MS and LC/MS/MS, and detected 273 biochemicals. Levels of many intermediates of the TCA cycle were reduced suggesting suppression of this metabolic pathway by the pathogen. There was an increased accumulation of peroxidated lipids in leaves of F. virguliforme-infected plants suggesting possible involvement of free radicals and lipoxygenases in foliar SDS development. Levels of both isoflavone conjugates and isoflavonoid phytoalexins were decreased in infected roots suggesting degradation of these metabolites by the pathogen to promote root necrosis. The levels of the plant immunity inducer pipecolic acid (Pip) and the plant hormone salicylic acid (SA) were significantly increased in xylem sap (in case of Pip) and leaves (in case of both Pip and SA) of F. virguliforme-infected soybean plants compared to the control plants. This suggests a major signaling role of Pip in inducing host defense responses in above ground parts of the F. virguliforme-infected soybean. Increased accumulation of pipecolic acid in foliar tissues was associated with the induction of GmALD1, the soybean homolog of Arabidopsis ALD1. This metabolomics study generated several novel hypotheses for studying the mechanisms of SDS development in soybean.
Collapse
Affiliation(s)
- Nilwala S Abeysekara
- Department of Agronomy, Iowa State University, Ames, IA, USA; Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | | | | | | | | |
Collapse
|
33
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
34
|
Okamoto S, Suzuki T, Kawaguchi M, Higashiyama T, Matsubayashi Y. A comprehensive strategy for identifying long-distance mobile peptides in xylem sap. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:611-20. [PMID: 26333921 DOI: 10.1111/tpj.13015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/25/2015] [Indexed: 05/04/2023]
Abstract
There is a growing awareness that secreted pemediate organ-to-organ communication in higher plants. Xylem sap peptidomics is an effective but challenging approach for identifying long-distance mobile peptides. In this study we developed a simple, gel-free purification system that combines o-chlorophenol extraction with HPLC separation. Using this system, we successfully identified seven oligopeptides from soybean xylem sap exudate that had one or more post-transcriptional modifications: glycosylation, sulfation and/or hydroxylation. RNA sequencing and quantitative PCR analyses showed that the peptide-encoding genes are expressed in multiple tissues. We further analyzed the long-distance translocation of four of the seven peptides using gene-encoding peptides with single amino acid substitutions, and identified these four peptides as potential root-to-shoot mobile oligopeptides. Promoter-GUS analysis showed that all four peptide-encoding genes were expressed in the inner tissues of the root endodermis. Moreover, we found that some of these peptide-encoding genes responded to biotic and/or abiotic factors. These results indicate that our purification system provides a comprehensive approach for effectively identifying endogenous small peptides and reinforce the concept that higher plants employ various peptides in root-to-shoot signaling.
Collapse
Affiliation(s)
- Satoru Okamoto
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takamasa Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Japan Science and Technology Agency (JST) Exploratory Research for Advanced Technology (ERATO) Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Japan Science and Technology Agency (JST) Exploratory Research for Advanced Technology (ERATO) Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
35
|
Hu J, Rampitsch C, Bykova NV. Advances in plant proteomics toward improvement of crop productivity and stress resistancex. FRONTIERS IN PLANT SCIENCE 2015; 6:209. [PMID: 25926838 PMCID: PMC4396383 DOI: 10.3389/fpls.2015.00209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/16/2015] [Indexed: 05/14/2023]
Abstract
Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein-protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed.
Collapse
Affiliation(s)
- Junjie Hu
- Department of Biology, Memorial University of Newfoundland, St. John’sNL, Canada
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
| | - Christof Rampitsch
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
| | - Natalia V. Bykova
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
- *Correspondence: Natalia V. Bykova, Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
36
|
Abeysekara NS, Bhattacharyya MK. Analyses of the xylem sap proteomes identified candidate Fusarium virguliforme proteinacious toxins. PLoS One 2014; 9:e93667. [PMID: 24845418 PMCID: PMC4028188 DOI: 10.1371/journal.pone.0093667] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/09/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sudden death syndrome (SDS) caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development. RESULTS Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873. CONCLUSION This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS development in soybean and possible defense mechanisms that may be involved in conferring immunity against F. virguliforme and other soybean pathogens.
Collapse
Affiliation(s)
- Nilwala S. Abeysekara
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | | |
Collapse
|
37
|
Abstract
Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.
Collapse
|
38
|
Herman EM. Soybean seed proteome rebalancing. FRONTIERS IN PLANT SCIENCE 2014; 5:437. [PMID: 25232359 PMCID: PMC4153022 DOI: 10.3389/fpls.2014.00437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
The soybean seed's protein content and composition are regulated by both genetics and physiology. Overt seed protein content is specified by the genotype's genetic framework and is selectable as a breeding trait. Within the genotype-specified protein content phenotype soybeans have the capacity to rebalance protein composition to create differing proteomes. Soybeans possess a relatively standardized proteome, but mutation or targeted engineering can induce large-scale proteome rebalancing. Proteome rebalancing shows that the output traits of seed content and composition result from two major types of regulation: genotype and post-transcriptional control of the proteome composition. Understanding the underlying mechanisms that specifies the seed proteome can enable engineering new phenotypes for the production of a high-quality plant protein source for food, feed, and industrial proteins.
Collapse
Affiliation(s)
- Eliot M. Herman
- *Correspondence: Eliot M. Herman, School of Plant Sciences, BIO5 Institute, University of Arizona, BIO5 Institute Room 249, 1657 East Helen Street, Tucson, AZ 85721-0240, USA e-mail:
| |
Collapse
|
39
|
Turnbull CGN, Lopez-Cobollo RM. Heavy traffic in the fast lane: long-distance signalling by macromolecules. THE NEW PHYTOLOGIST 2013; 198:33-51. [PMID: 23398598 DOI: 10.1111/nph.12167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/21/2012] [Indexed: 05/05/2023]
Abstract
The two major vascular conduits in plants, the xylem and phloem, theoretically provide opportunities for the long-distance translocation of almost any type of water-borne molecule. This review focuses on the signalling functions conveyed by the movement of macromolecules. Here, a signal is defined as the communication of information from source to destination, where it modifies development, physiology or defence through altered gene expression or by direct influences on other cellular processes. Xylem and phloem sap both contain diverse classes of proteins; in addition, phloem contains many full-length and small RNA species. Only a few of these mobile molecules have proven functions in signalling. The transduction of signals typically depends on connection to appropriate signalling pathways. Incoming protein signals require specific detection systems, generally via receptors. Mobile RNAs require either the translation or presence of a homologous target. Given that phloem sieve elements are enucleate and lack translation machinery, RNA function requires subsequent unloading at least into adjacent companion cells. The binding of RNA by proteins in ribonucleoprotein complexes enables the translocation of some signals, with evidence for both sequence-specific and size-specific binding. Several examples of long-distance macromolecular signalling are highlighted, including the FT protein signal which regulates flowering time and other developmental switches.
Collapse
Affiliation(s)
- Colin G N Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
40
|
Kabir AH, Paltridge NG, Roessner U, Stangoulis JCR. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. PHYSIOLOGIA PLANTARUM 2013; 147:381-95. [PMID: 22913816 DOI: 10.1111/j.1399-3054.2012.01682.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/13/2012] [Indexed: 05/23/2023]
Abstract
Mechanisms of Fe-deficiency tolerance and signaling were investigated in shoots of Santi (deficiency tolerant) and Parafield (deficiency intolerant) pea genotypes using metabolomic and physiological approaches. From metabolomic studies, Fe deficiency induced significant increases in N-, S- and tricarboxylic acid cycle metabolites in Santi but not in Parafield. Elevated N metabolites reflect an increase in N-recycling processes. Increased glutathione and S-metabolites suggest better protection of pea plants from Fe-deficiency-induced oxidative stress. Furthermore, Fe-deficiency induced increases in citrate and malate in leaves of Santi suggests long-distance transport of Fe is promoted by better xylem unloading. Supporting a role of citrate in the deficiency tolerance mechanism, physiological experiments showed higher Fe and citrate in the xylem of Santi. Reciprocal-grafting experiments confirm that the Fe-deficiency signal driving root Fe reductase and proton extrusion activity is generated in the shoot. Finally, our studies show that auxin can induce increased Fe-reductase activity and proton extrusion in roots. This article identifies several mechanisms in shoots associated with the differential Fe-deficiency tolerance of genotypes within a species, and provides essential background for future efforts to improve the Fe content and deficiency tolerance in peas.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Biological Sciences, Flinders University, Bedford Park, 5042, SA, Australia.
| | | | | | | |
Collapse
|