1
|
Zhong R, Zhou D, Chen L, Rose JP, Wang BC, Ye ZH. Plant Cell Wall Polysaccharide O-Acetyltransferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:2304. [PMID: 39204739 PMCID: PMC11360243 DOI: 10.3390/plants13162304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Plant cell walls are largely composed of polysaccharide polymers, including cellulose, hemicelluloses (xyloglucan, xylan, mannan, and mixed-linkage β-1,3/1,4-glucan), and pectins. Among these cell wall polysaccharides, xyloglucan, xylan, mannan, and pectins are often O-acetylated, and polysaccharide O-acetylation plays important roles in cell wall assembly and disease resistance. Genetic and biochemical analyses have implicated the involvement of three groups of proteins in plant cell wall polysaccharide O-acetylation: trichome birefringence-like (TBL)/domain of unknown function 231 (DUF231), reduced wall acetylation (RWA), and altered xyloglucan 9 (AXY9). Although the exact roles of RWAs and AXY9 are yet to be identified, members of the TBL/DUF231 family have been found to be O-acetyltransferases responsible for the O-acetylation of xyloglucan, xylan, mannan, and pectins. Here, we provide a comprehensive overview of the occurrence of O-acetylated cell wall polysaccharides, the biochemical properties, structural features, and evolution of cell wall polysaccharide O-acetyltransferases, and the potential biotechnological applications of manipulations of cell wall polysaccharide acetylation. Further in-depth studies of the biochemical mechanisms of cell wall polysaccharide O-acetylation will not only enrich our understanding of cell wall biology, but also have important implications in engineering plants with increased disease resistance and reduced recalcitrance for biofuel production.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - John P. Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Leszczuk A, Kutyrieva-Nowak N, Nowak A, Nosalewicz A, Zdunek A. Low oxygen environment effect on the tomato cell wall composition during the fruit ripening process. BMC PLANT BIOLOGY 2024; 24:503. [PMID: 38840061 PMCID: PMC11155102 DOI: 10.1186/s12870-024-05226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Oxygen concentration is a key characteristic of the fruit storage environment determining shelf life and fruit quality. The aim of the work was to identify cell wall components that are related to the response to low oxygen conditions in fruit and to determine the effects of such conditions on the ripening process. Tomato (Solanum lycopersicum) fruits at different stages of the ripening process were stored in an anoxic and hypoxic environment, at 0% and 5% oxygen concentrations, respectively. We used comprehensive and comparative methods: from microscopic immunolabelling and estimation of enzymatic activities to detailed molecular approaches. Changes in the composition of extensin, arabinogalactan proteins, rhamnogalacturonan-I, low methyl-esterified homogalacturonan, and high methyl-esterified homogalacturonan were analysed. RESULTS In-depth molecular analyses showed that low oxygen stress affected the cell wall composition, i.e. changes in protein content, a significantly modified in situ distribution of low methyl-esterified homogalacturonan, appearance of callose deposits, disturbed native activities of β-1,3-glucanase, endo-β-1,4-glucanase, and guaiacol peroxidase (GPX), and disruptions in molecular parameters of single cell wall components. Taken together, the data obtained indicate that less significant changes were observed in fruit in the breaker stage than in the case of the red ripe stage. The first symptoms of changes were noted after 24 h, but only after 72 h, more crucial deviations were visible. The 5% oxygen concentration slows down the ripening process and 0% oxygen accelerates the changes taking place during ripening. CONCLUSIONS The observed molecular reset occurring in tomato cell walls in hypoxic and anoxic conditions seems to be a result of regulatory and protective mechanisms modulating ripening processes.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland.
| | | | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie- Skłodowska University, Akademicka 19, Lublin, 20-033, Poland
| | - Artur Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
3
|
Fan N, Su L, Lv A, Wen W, Gao L, You X, Zhou P, An Y. PECTIN ACETYLESTERASE12 regulates shoot branching via acetic acid and auxin accumulation in alfalfa shoots. PLANT PHYSIOLOGY 2024; 195:518-533. [PMID: 38365203 DOI: 10.1093/plphys/kiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 02/18/2024]
Abstract
Shoot branching is an important biological trait affecting alfalfa (Medicago sativa L.) production, but its development is complicated and the mechanism is not fully clear. In the present study, pectin acetylesterase 12 (MsPAE12) and NAM/ATAF/CUC-domain transcription factor gene (MsNAC73) were isolated from alfalfa. MsPAE12 was highly expressed in shoot apexes, and MsNAC73 was found to be a key transcriptional repressor of MsPAE12 by directly binding to salicylic acid (SA) and jasmonic acid (JA) elements in the MsPAE12 promoter. The biological functions of MsPAE12 and MsNAC73 were studied through overexpression (OE) and down-expression (RNAi) of the 2 genes in alfalfa. The numbers of shoot branches increased in MsPAE12-OE lines but decreased in MsPAE12-RNAi and MsNAC73-OE plants, which was negatively related to their indole-3-acetic acid (IAA) accumulation in shoot apexes. Furthermore, the contents of acetic acid (AA) in shoot apexes decreased in MsPAE12-OE plants but increased in MsPAE12-RNAi and MsNAC73-OE plants. The changes of AA contents were positively related to the expression of TRYPTOPHAN AMINOTRANSFERASE 1 (MsTAA1), TRYPTOPHAN AMINOTRANSFERASE-RELATED 2 (MsTAR2), and YUCCA flavin monooxygenase (MsYUCC4) and the contents of tryptophan (Trp), indole-3-pyruvic acid (IPA), and IAA in shoot apexes of MsPAE12-OE, MsPAE12-RNAi, and MsNAC73-OE plants. Exogenous application of AA to wild type (WT) and MsPAE12-OE plants increased Trp, IPA, and IAA contents and decreased branch number. Exogenous IAA suppressed shoot branching in MsPAE12-OE plants, but exogenous IAA inhibitors increased shoot branching in MsPAE12-RNAi plants. These results indicate that the MsNAC73-MsPAE12 module regulates auxin-modulated shoot branching via affecting AA accumulation in shoot apexes of alfalfa.
Collapse
Affiliation(s)
- Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Yulin University, Yulin 719000, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aimin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangkai You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
4
|
Lubini G, Ferreira PB, Quiapim AC, Brito MS, Cossalter V, Pranchevicius MCS, Goldman MHS. Silencing of a Pectin Acetylesterase (PAE) Gene Highly Expressed in Tobacco Pistils Negatively Affects Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:329. [PMID: 36679042 PMCID: PMC9864977 DOI: 10.3390/plants12020329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Successful plant reproduction and fruit formation depend on adequate pollen and pistil development, and pollen-pistil interactions. In Nicotiana tabacum, pollen tubes grow through the intercellular spaces of pistil-specialized tissues, stigmatic secretory zone, and stylar transmitting tissue (STT). These intercellular spaces are supposed to be formed by the modulation of cell wall pectin esterification. Previously we have identified a gene preferentially expressed in pistils encoding a putative pectin acetylesterase (PAE), named NtPAE1. Here, we characterized the NtPAE1 gene and performed genome-wide and phylogenetic analyses of PAEs. We identified 30 PAE sequences in the N. tabacum genome, distributed in four clades. The expression of NtPAE1 was assessed by RT-qPCR and in situ hybridization. We confirmed NtPAE1 preferential expression in stigmas/styles and ovaries and demonstrated its high expression in the STT. Structural predictions and comparisons between NtPAE1 and functional enzymes validated its identity as a PAE. Transgenic plants were produced, overexpressing and silencing the NtPAE1 gene. Overexpressed plants displayed smaller flowers while silencing plants exhibited collapsed pollen grains, which hardly germinate. NtPAE1 silencing plants do not produce fruits, due to impaired pollen tube growth in their STTs. Thus, NtPAE1 is an essential enzyme regulating pectin modifications in flowers and, ultimately, in plant reproduction.
Collapse
Affiliation(s)
- Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Pedro Boscariol Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Andréa Carla Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Michael Santos Brito
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Viviane Cossalter
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | | | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
5
|
Jardine KJ, Dewhirst RA, Som S, Lei J, Tucker E, Young RP, Portillo‐Estrada M, Gao Y, Su L, Fares S, Castanha C, Scheller HV, Mortimer JC. Cell wall ester modifications and volatile emission signatures of plant response to abiotic stress. PLANT, CELL & ENVIRONMENT 2022; 45:3429-3444. [PMID: 36222152 PMCID: PMC9828120 DOI: 10.1111/pce.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Growth suppression and defence signalling are simultaneous strategies that plants invoke to respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and activation of acetic acid (AA) fermentation defences. Temperature sensitive emissions dominated by MeOH (AA/MeOH <30%) were observed from physiologically active leaves, branches, detached stems, leaf cell wall isolations and whole ecosystems. In contrast, drought treatment resulted in a suppression of MeOH emissions and strong enhancement in AA emissions together with volatiles acetaldehyde, ethanol, and acetone. These drought-induced changes coincided with a reduction in stomatal conductance, photosynthesis, transpiration, and leaf water potential. The strong enhancement in AA/MeOH emission ratios during drought (400%-3500%) was associated with an increase in acetate content of whole leaf cell walls, which became significantly 13 C2 -labelled following the delivery of 13 C2 -acetate via the transpiration stream. The results are consistent with both enzymatic and nonenzymatic MeOH and AA production at high temperature in hydrated tissues associated with accelerated primary cell wall growth processes, which are downregulated during drought. While the metabolic source(s) require further investigation, the observations are consistent with drought-induced activation of aerobic fermentation driving high rates of foliar AA emissions and enhancements in leaf cell wall O-acetylation. We suggest that atmospheric AA/MeOH emission ratios could be useful as a highly sensitive signal in studies investigating environmental and biological factors influencing growth-defence trade-offs in plants and ecosystems.
Collapse
Affiliation(s)
- Kolby J. Jardine
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Rebecca A. Dewhirst
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Suman Som
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Joseph Lei
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Eliana Tucker
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Robert P. Young
- Environmental Molecular Sciences LaboratoryPacific Northwest National LabRichlandWashingtonUSA
| | - Miguel Portillo‐Estrada
- Department of Biology, Research group PLECO (Plants and Ecosystems)University of AntwerpWilrijkBelgium
| | - Yu Gao
- Lawrence Berkeley National LabJoint BioEnergy InstituteEmeryvilleCaliforniaUSA
| | | | - Silvano Fares
- Institute of BioEconomyNational Research CouncilRomeItaly
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Cristina Castanha
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Henrik V. Scheller
- Lawrence Berkeley National LabJoint BioEnergy InstituteEmeryvilleCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jenny C. Mortimer
- Lawrence Berkeley National LabJoint BioEnergy InstituteEmeryvilleCaliforniaUSA
- School of Agriculture, Food, and WineUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
| |
Collapse
|
6
|
Guo S, Wang M, Song X, Zhou G, Kong Y. The evolving views of the simplest pectic polysaccharides: homogalacturonan. PLANT CELL REPORTS 2022; 41:2111-2123. [PMID: 35986766 DOI: 10.1007/s00299-022-02909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Pectin is an important component of cell wall polysaccharides and is important for normal plant growth and development. As a major component of pectin in the primary cell wall, homogalacturonan (HG) is a long-chain macromolecular polysaccharide composed of repeated α-1,4-D-GalA sugar units. At the same time, HG is synthesized in the Golgi apparatus in the form of methyl esterification and acetylation. It is then secreted into the plasmodesmata, where it is usually demethylated by pectin methyl esterase (PME) and deacetylated by pectin acetylase (PAE). The synthesis and modification of HG are involved in polysaccharide metabolism in the cell wall, which affects the structure and function of the cell wall and plays an important role in plant growth and development. This paper mainly summarizes the recent research on the biosynthesis, modification and the roles of HG in plant cell wall.
Collapse
Affiliation(s)
- Shuaiqiang Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xinxin Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, 257092, People's Republic of China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
7
|
Rastogi L, Chaudhari AA, Sharma R, Pawar PAM. Arabidopsis GELP7 functions as a plasma membrane-localized acetyl xylan esterase, and its overexpression improves saccharification efficiency. PLANT MOLECULAR BIOLOGY 2022; 109:781-797. [PMID: 35577991 DOI: 10.1007/s11103-022-01275-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Acetyl substitution on the xylan chain is critical for stable interaction with cellulose and other cell wall polymers in the secondary cell wall. Xylan acetylation pattern is governed by Golgi and extracellular localized acetyl xylan esterase (AXE). We investigated the role of Arabidopsis clade Id from the GDSL esterase/lipase or GELP family in polysaccharide deacetylation. The investigation of the AtGELP7 T-DNA mutant line showed a decrease in stem esterase activity and an increase in stem acetyl content. We further generated overexpressor AtGELP7 transgenic lines, and these lines showed an increase in AXE activity and a decrease in xylan acetylation compared to wild-type plants. Therefore, we have named this enzyme as AtAXE1. The subcellular localization and immunoblot studies showed that the AtAXE1 enzyme is secreted out, associated with the plasma membrane and involved in xylan de-esterification post-synthesis. The cellulose digestibility was improved in AtAXE1 overexpressor lines without pre-treatment, after alkali and xylanases pre-treatment. Furthermore, we have also established that the AtGELP7 gene is upregulated in the overexpressor line of AtMYB46, a secondary cell wall specific transcription factor. This transcriptional regulation can drive AtGELP7 or AtAXE1 to perform de-esterification of xylan in a tissue-specific manner. Overall, these data suggest that AtGELP7 overexpression in Arabidopsis reduces xylan acetylation and improves digestibility properties of polysaccharides of stem lignocellulosic biomass.
Collapse
Affiliation(s)
- Lavi Rastogi
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Aniket Anant Chaudhari
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Raunak Sharma
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
8
|
Reim S, Winkelmann T, Cestaro A, Rohr AD, Flachowsky H. Identification of Candidate Genes Associated With Tolerance to Apple Replant Disease by Genome-Wide Transcriptome Analysis. Front Microbiol 2022; 13:888908. [PMID: 35615498 PMCID: PMC9125221 DOI: 10.3389/fmicb.2022.888908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Apple replant disease (ARD) is a worldwide economic risk in apple cultivation for fruit tree nurseries and fruit growers. Several studies on the reaction of apple plants to ARD are documented but less is known about the genetic mechanisms behind this symptomatology. RNA-seq analysis is a powerful tool for revealing candidate genes that are involved in the molecular responses to biotic stresses in plants. The aim of our work was to find differentially expressed genes in response to ARD in Malus. For this, we compared transcriptome data of the rootstock ‘M9’ (susceptible) and the wild apple genotype M. ×robusta 5 (Mr5, tolerant) after cultivation in ARD soil and disinfected ARD soil, respectively. When comparing apple plantlets grown in ARD soil to those grown in disinfected ARD soil, 1,206 differentially expressed genes (DEGs) were identified based on a log2 fold change, (LFC) ≥ 1 for up– and ≤ −1 for downregulation (p < 0.05). Subsequent validation revealed a highly significant positive correlation (r = 0.91; p < 0.0001) between RNA-seq and RT-qPCR results indicating a high reliability of the RNA-seq data. PageMan analysis showed that transcripts of genes involved in gibberellic acid (GA) biosynthesis were significantly enriched in the DEG dataset. Most of these GA biosynthesis genes were associated with functions in cell wall stabilization. Further genes were related to detoxification processes. Genes of both groups were expressed significantly higher in Mr5, suggesting that the lower susceptibility to ARD in Mr5 is not due to a single mechanism. These findings contribute to a better insight into ARD response in susceptible and tolerant apple genotypes. However, future research is needed to identify the defense mechanisms, which are most effective for the plant to overcome ARD.
Collapse
Affiliation(s)
- Stefanie Reim
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
- *Correspondence: Stefanie Reim,
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hanover, Germany
| | - Alessandro Cestaro
- Computational Biology Unit, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Annmarie-Deetja Rohr
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hanover, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
9
|
Xu C, Zhang S, Suo J, Chang R, Xu X, Xu Z, Yang C, Qu C, Liu G. Bioinformatics analysis of PAE family in Populus trichocarpa and responsiveness to carbon and nitrogen treatment. 3 Biotech 2021; 11:370. [PMID: 34295610 DOI: 10.1007/s13205-021-02918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
Plant Pectin acetylesterase (PAE) belongs to family CE13 of carbohydrate esterases in the CAZy database. The ability of PAE to regulate the degree of acetylation of pectin, an important polysaccharide in the cell wall, affects the structure of plant cell wall. In this study, ten PtPAE genes were identified and characterized in Populus trichocarpa genome using bioinformatics methods, and the physiochemical properties such as molecular weight, isoelectric points, and hydrophilicity, as well as the secondary and tertiary structure of the protein were predicted. According to phylogenetic analysis, ten PtPAEs can be divided into three evolutionary clades, each of which had similar gene structure and motifs. Tissue-specific expression profiles indicated that the PtPAEs had different expression patterns. Real-time quantitative PCR (RT-qPCR) analysis showed that transcription level of PtPAEs was regulated by different CO2 and nitrogen concentrations. These results provide important information for the study of the phylogenetic relationship and function of PtPAEs in Populus trichocarpa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02918-1.
Collapse
|
10
|
Roig-Oliver M, Rayon C, Roulard R, Fournet F, Bota J, Flexas J. Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. PHYSIOLOGIA PLANTARUM 2021; 172:1439-1451. [PMID: 32770751 DOI: 10.1111/ppl.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 05/06/2023]
Abstract
The cell wall is a complex and dynamic structure that determines plants' performance by constant remodeling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin remodeling enzymes (PRE), induce the rearrangement of cell wall compounds, thus, modifying wall architecture. In this work, we tested for the first time how cell wall dynamics affect photosynthetic properties in Arabidopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase atpae11.1 mutants in comparison to wild-type Col-0. Our results showed maintained PRE activities comparing mutants with wild-type and no significant differences in cellulose, but cell wall non-cellulosic neutral sugars contents changed. Particularly, the amount of galacturonic acid (GalA) - which represents to some extent the pectin cell wall proportion - was reduced in the two mutants. Additionally, physiological characterization revealed that mutants presented a decreased net CO2 assimilation (AN ) because of reductions in both stomatal (gs ) and mesophyll conductances (gm ). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall modifications due to genetic alterations could play a significant role in determining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Catherine Rayon
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Romain Roulard
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - François Fournet
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| |
Collapse
|
11
|
Soltani A, Walter KA, Wiersma AT, Santiago JP, Quiqley M, Chitwood D, Porch TG, Miklas P, McClean PE, Osorno JM, Lowry DB. The genetics and physiology of seed dormancy, a crucial trait in common bean domestication. BMC PLANT BIOLOGY 2021; 21:58. [PMID: 33482732 PMCID: PMC7821524 DOI: 10.1186/s12870-021-02837-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Physical seed dormancy is an important trait in legume domestication. Although seed dormancy is beneficial in wild ecosystems, it is generally considered to be an undesirable trait in crops due to reduction in yield and / or quality. The physiological mechanism and underlying genetic factor(s) of seed dormancy is largely unknown in several legume species. Here we employed an integrative approach to understand the mechanisms controlling physical seed dormancy in common bean (Phaseolus vulgaris L.). RESULTS Using an innovative CT scan imaging system, we were able to track water movements inside the seed coat. We found that water uptake initiates from the bean seed lens. Using a scanning electron microscopy (SEM) we further identified several micro-cracks on the lens surface of non-dormant bean genotypes. Bulked segregant analysis (BSA) was conducted on a bi-parental RIL (recombinant inbred line) population, segregating for seed dormancy. This analysis revealed that the seed water uptake is associated with a single major QTL on Pv03. The QTL region was fine-mapped to a 118 Kb interval possessing 11 genes. Coding sequence analysis of candidate genes revealed a 5-bp insertion in an ortholog of pectin acetylesterase 8 that causes a frame shift, loss-of-function mutation in non-dormant genotype. Gene expression analysis of the candidate genes in the seed coat of contrasting genotypes indicated 21-fold lower expression of pectin acetylesterase 8 in non-dormant genotype. An analysis of mutational polymorphism was conducted among wild and domesticated beans. Although all the wild beans possessed the functional allele of pectin acetylesterase 8, the majority (77%) of domesticated beans had the non-functional allele suggesting that this variant was under strong selection pressure through domestication. CONCLUSIONS In this study, we identified the physiological mechanism of physical seed dormancy and have identified a candidate allele causing variation in this trait. Our findings suggest that a 5-bp insertion in an ortholog of pectin acetylesterase 8 is likely a major causative mutation underlying the loss of seed dormancy during domestication. Although the results of current study provide strong evidences for the role of pectin acetylesterase 8 in seed dormancy, further confirmations seem necessary by employing transgenic approaches.
Collapse
Affiliation(s)
- Ali Soltani
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| | - Katelynn A Walter
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Andrew T Wiersma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - James P Santiago
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Michelle Quiqley
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Daniel Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Timothy G Porch
- USDA-ARS, Tropical Agriculture Research Station, Mayaguez, PR, USA
| | - Phillip Miklas
- USDA-ARS, Grain Legume Genetics Physiology Research Unit, Prosser, WA, USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - David B Lowry
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Li Q, Fu J, Qin X, Yang W, Qi J, Li Z, Chen S, He Y. Systematic Analysis and Functional Validation of Citrus Pectin Acetylesterases (CsPAEs) Reveals that CsPAE2 Negatively Regulates Citrus Bacterial Canker Development. Int J Mol Sci 2020; 21:E9429. [PMID: 33322321 PMCID: PMC7764809 DOI: 10.3390/ijms21249429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023] Open
Abstract
The present study was designed to serve as a comprehensive analysis of Citrus sinensis (C. sinensis) pectin acetylesterases (CsPAEs), and to assess the roles of these PAEs involved in the development of citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri (Xcc) infection. A total of six CsPAEs were identified in the genome of C. sinensis, with these genes being unevenly distributed across chromosomes 3, 6, and 9, and the unassembled scaffolds. A subset of CsPAEs were found to be involved in responses to Xcc infection. In particular, CsPAE2 was identified to be associated with such infections, as it was upregulated in CBC-susceptible variety Wanjincheng and inversely in CBC-resistant variety Calamondin. Transgenic citrus plants overexpressing CsPAE2 were found to be more susceptible to CBC, whereas the silencing of this gene was sufficient to confer CBC resistance. Together, these findings provide evolutionary insights into and functional information about the CsPAE family. This study also suggests that CsPAE2 is a potential candidate gene that negatively contributes to bacterial canker disease and can be used to breed CBC-resistant citrus plants.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Jia Fu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Wen Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China;
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (J.F.); (X.Q.); (W.Y.); (J.Q.); (S.C.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China;
| |
Collapse
|
13
|
Qaseem MF, Wu AM. Balanced Xylan Acetylation is the Key Regulator of Plant Growth and Development, and Cell Wall Structure and for Industrial Utilization. Int J Mol Sci 2020; 21:ijms21217875. [PMID: 33114198 PMCID: PMC7660596 DOI: 10.3390/ijms21217875] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Xylan is the most abundant hemicellulose, constitutes about 25–35% of the dry biomass of woody and lignified tissues, and occurs up to 50% in some cereal grains. The accurate degree and position of xylan acetylation is necessary for xylan function and for plant growth and development. The post synthetic acetylation of cell wall xylan, mainly regulated by Reduced Wall Acetylation (RWA), Trichome Birefringence-Like (TBL), and Altered Xyloglucan 9 (AXY9) genes, is essential for effective bonding of xylan with cellulose. Recent studies have proven that not only xylan acetylation but also its deacetylation is vital for various plant functions. Thus, the present review focuses on the latest advances in understanding xylan acetylation and deacetylation and explores their effects on plant growth and development. Baseline knowledge about precise regulation of xylan acetylation and deacetylation is pivotal to developing plant biomass better suited for second-generation liquid biofuel production.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
14
|
Palacio-Lopez K, Sun L, Reed R, Kang E, Sørensen I, Rose JKC, Domozych DS. Experimental Manipulation of Pectin Architecture in the Cell Wall of the Unicellular Charophyte, Penium Margaritaceum. FRONTIERS IN PLANT SCIENCE 2020; 11:1032. [PMID: 32733522 PMCID: PMC7360812 DOI: 10.3389/fpls.2020.01032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 05/21/2023]
Abstract
Pectins represent one of the main components of the plant primary cell wall. These polymers have critical roles in cell expansion, cell-cell adhesion and response to biotic stress. We present a comprehensive screening of pectin architecture of the unicellular streptophyte, Penium margaritaceum. Penium possesses a distinct cell wall whose outer layer consists of a lattice of pectin-rich fibers and projections. In this study, cells were exposed to a variety of physical, chemical and enzymatic treatments that directly affect the cell wall, especially the pectin lattice. Correlative analyses of pectin lattice perturbation using field emission scanning electron microscopy, confocal laser scanning microscopy, and transmission electron microscopy demonstrate that pectin lattice microarchitecture is both highly sensitive and malleable.
Collapse
Affiliation(s)
| | - Li Sun
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | - Reagan Reed
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | - Eric Kang
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - David S. Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| |
Collapse
|
15
|
Gigli-Bisceglia N, Engelsdorf T, Hamann T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol Life Sci 2020; 77:2049-2077. [PMID: 31781810 PMCID: PMC7256069 DOI: 10.1007/s00018-019-03388-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
The walls surrounding the cells of all land-based plants provide mechanical support essential for growth and development as well as protection from adverse environmental conditions like biotic and abiotic stress. Composition and structure of plant cell walls can differ markedly between cell types, developmental stages and species. This implies that wall composition and structure are actively modified during biological processes and in response to specific functional requirements. Despite extensive research in the area, our understanding of the regulatory processes controlling active and adaptive modifications of cell wall composition and structure is still limited. One of these regulatory processes is the cell wall integrity maintenance mechanism, which monitors and maintains the functional integrity of the plant cell wall during development and interaction with environment. It is an important element in plant pathogen interaction and cell wall plasticity, which seems at least partially responsible for the limited success that targeted manipulation of cell wall metabolism has achieved so far. Here, we provide an overview of the cell wall polysaccharides forming the bulk of plant cell walls in both monocotyledonous and dicotyledonous plants and the effects their impairment can have. We summarize our current knowledge regarding the cell wall integrity maintenance mechanism and discuss that it could be responsible for several of the mutant phenotypes observed.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Timo Engelsdorf
- Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043, Marburg, Germany
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
16
|
Stranne M, Ren Y, Fimognari L, Birdseye D, Yan J, Bardor M, Mollet JC, Komatsu T, Kikuchi J, Scheller HV, Sakuragi Y. TBL10 is required for O-acetylation of pectic rhamnogalacturonan-I in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:772-785. [PMID: 30118566 DOI: 10.1111/tpj.14067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 05/12/2023]
Abstract
O-Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O-acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O-acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock-out mutants of Arabidopsis, tbl10-1 and tbl10-2, were isolated and shown to exhibit reduced levels of wall-bound acetyl esters, equivalent of ~50% of the wild-type level in pectin-enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan-I (RG-I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O-acetylation of RG-I, possibly as an acetyltransferase, and suggest that O-acetylated RG-I plays a role in abiotic stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Maria Stranne
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| | - Yanfang Ren
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lorenzo Fimognari
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| | - Devon Birdseye
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jingwei Yan
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV, 76000, Rouen, France
| | | | - Takanori Komatsu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Henrik V Scheller
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yumiko Sakuragi
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| |
Collapse
|
17
|
Pauly M, Ramírez V. New Insights Into Wall Polysaccharide O-Acetylation. FRONTIERS IN PLANT SCIENCE 2018; 9:1210. [PMID: 30186297 PMCID: PMC6110886 DOI: 10.3389/fpls.2018.01210] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/27/2018] [Indexed: 05/19/2023]
Abstract
The extracellular matrix of plants, algae, bacteria, fungi, and some archaea consist of a semipermeable composite containing polysaccharides. Many of these polysaccharides are O-acetylated imparting important physiochemical properties to the polymers. The position and degree of O-acetylation is genetically determined and varies between organisms, cell types, and developmental stages. Despite the importance of wall polysaccharide O-acetylation, only recently progress has been made to elucidate the molecular mechanism of O-acetylation. In plants, three protein families are involved in the transfer of the acetyl substituents to the various polysaccharides. In other organisms, this mechanism seems to be conserved, although the number of required components varies. In this review, we provide an update on the latest advances on plant polysaccharide O-acetylation and related information from other wall polysaccharide O-acetylating organisms such as bacteria and fungi. The biotechnological impact of understanding wall polysaccharide O-acetylation ranges from the design of novel drugs against human pathogenic bacteria to the development of improved lignocellulosic feedstocks for biofuel production.
Collapse
Affiliation(s)
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology – Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Philippe F, Pelloux J, Rayon C. Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. BMC Genomics 2017; 18:456. [PMID: 28595570 PMCID: PMC5465549 DOI: 10.1186/s12864-017-3833-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Pectins are plant cell wall polysaccharides that can be acetylated on C2 and/or C3 of galacturonic acid residues. The degree of acetylation of pectin can be modulated by pectin acetylesterase (EC 3.1.1.6, PAE). The function and structure of plant PAEs remain poorly understood and the role of the fine-tuning of pectin acetylation on cell wall properties has not yet been elucidated. Results In the present study, a bioinformatic approach was used on 72 plant PAEs from 16 species among 611 plant PAEs available in plant genomic databases. An overview of plant PAE proteins, particularly Arabidopsis thaliana PAEs, based on phylogeny analysis, protein motif identification and modeled 3D structure is presented. A phylogenetic tree analysis using protein sequences clustered the plant PAEs into five clades. AtPAEs clustered in four clades in the plant kingdom PAE tree while they formed three clades when a phylogenetic tree was performed only on Arabidopsis proteins, due to isoform AtPAE9. Primitive plants that display a smaller number of PAEs clustered into two clades, while in higher plants, the presence of multiple members of PAE genes indicated a diversification of AtPAEs. 3D homology modeling of AtPAE8 from clade 2 with a human Notum protein showed an α/β hydrolase structure with the hallmark Ser-His-Asp of the active site. A 3D model of AtPAE4 from clade 1 and AtPAE10 from clade 3 showed a similar shape suggesting that the diversification of AtPAEs is unlikely to arise from the shape of the protein. Primary structure prediction analysis of AtPAEs showed a specific motif characteristic of each clade and identified one major group of AtPAEs with a signal peptide and one group without a signal peptide. A multiple sequence alignment of the putative plant PAEs revealed consensus sequences with important putative catalytic residues: Ser, Asp, His and a pectin binding site. Data mining of gene expression profiles of AtPAE revealed that genes from clade 2 including AtPAE7, AtPAE8 and AtPAE11, which are duplicated genes, are highly expressed during plant growth and development while AtPAEs without a signal peptide, including AtPAE2 and AtPAE4, are more regulated in response to plant environmental conditions. Conclusion Bioinformatic analysis of plant, and particularly Arabidopsis, AtPAEs provides novel insights, including new motifs that could play a role in pectin binding and catalytic sites. The diversification of AtPAEs is likely to be related to neofunctionalization of some AtPAE genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3833-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France.
| |
Collapse
|
19
|
Huang JH, Kortstee A, Dees DC, Trindade LM, Visser RG, Gruppen H, Schols HA. Evaluation of both targeted and non-targeted cell wall polysaccharides in transgenic potatoes. Carbohydr Polym 2017; 156:312-321. [DOI: 10.1016/j.carbpol.2016.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
|
20
|
Svagan AJ, Kusic A, De Gobba C, Larsen FH, Sassene P, Zhou Q, van de Weert M, Mullertz A, Jørgensen B, Ulvskov P. Rhamnogalacturonan-I Based Microcapsules for Targeted Drug Release. PLoS One 2016; 11:e0168050. [PMID: 27992455 PMCID: PMC5167381 DOI: 10.1371/journal.pone.0168050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/23/2016] [Indexed: 01/15/2023] Open
Abstract
Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract.
Collapse
Affiliation(s)
- Anna J. Svagan
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Anja Kusic
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Cristian De Gobba
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Flemming H. Larsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip Sassene
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Qi Zhou
- School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | - Anette Mullertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Modification of potato cell wall pectin by the introduction of rhamnogalacturonan lyase and β-galactosidase transgenes and their side effects. Carbohydr Polym 2016; 144:9-16. [PMID: 27083787 DOI: 10.1016/j.carbpol.2016.02.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/20/2022]
Abstract
Genes encoding pectic enzymes were introduced to wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14 mutant) or rhamnogalacturonan lyase (RGL-18 mutant). After sequential extraction, β-Gal-14 hot buffer-soluble solids (HBSS) of pectin contained 54% less galactose than Karnico HBSS, representing shorter galactan side chains. The individual pectin populations of β-Gal-14 HBSS showed different modifications extended to the two sub-populations as obtained by ion-exchange chromatography. Compared to wild-type, RGL-18 HBSS contained 27% more galacturonic acid and 55% less Gal on fresh potato weight basis, which was due to the removal of galactan-rich rhamnogalacturonan I (RG-I) segments. All pectin populations of RGL-18 showed consistently low levels of RG-I segments. Transgenic modification showed side effects on the methyl-esterification and acetyl substitution of RGL-18 HBSS (DM=53, DA=21), but not of the β-Gal-14 HBSS in comparison to wild-type (DM=29, DA=54).
Collapse
|
22
|
|
23
|
Cukrov D, Zermiani M, Brizzolara S, Cestaro A, Licausi F, Luchinat C, Santucci C, Tenori L, Van Veen H, Zuccolo A, Ruperti B, Tonutti P. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:146. [PMID: 26909091 PMCID: PMC4754620 DOI: 10.3389/fpls.2016.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/28/2016] [Indexed: 05/05/2023]
Abstract
The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest that ripe apple tissues finely and specifically modulate sensing and regulatory mechanisms in response to different hypoxic stress conditions.
Collapse
Affiliation(s)
- Dubravka Cukrov
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
| | - Monica Zermiani
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, University of PadovaPadova, Italy
| | | | - Alessandro Cestaro
- Centro Ricerca e Innovazione, Fondazione Edmund Mach di San Michele all'AdigeTrento, Italy
| | - Francesco Licausi
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
| | | | | | | | - Hans Van Veen
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
| | - Andrea Zuccolo
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
| | - Benedetto Ruperti
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, University of PadovaPadova, Italy
| | - Pietro Tonutti
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
- *Correspondence: Pietro Tonutti
| |
Collapse
|
24
|
Zhang T, Zhu M, Zhu N, Strul JM, Dufresne CP, Schneider JD, Harmon AC, Chen S. Identification of thioredoxin targets in guard cell enriched epidermal peels using cysTMT proteomics. J Proteomics 2015; 133:48-53. [PMID: 26691838 DOI: 10.1016/j.jprot.2015.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/21/2015] [Accepted: 12/04/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Thioredoxins (Trx) play central roles in cellular redox regulation. Although hundreds of Trx targets have been identified using different approaches, the capture of targets in a quantitative and efficient manner is challenging. Here we report a high-throughput method using cysteine reactive tandem mass tag (cysTMT) labeling followed by liquid chromatography (LC)-mass spectrometry (MS) to screen for Trx targets. Compared to existing methods, this approach allows for i) three replicates of pairwise comparison in a single LC-MS run to reduce run-to-run variation; ii) efficient enrichment of cysteine-containing peptides that requires low protein input; and iii) accurate quantification of the cysteine redox status and localization of the Trx targeted cysteine residues. Application of this method in guard cell-enriched epidermal peels from Brassica napus revealed 80 Trx h targets involved in a broad range of processes, including photosynthesis, stress response, metabolism and cell signaling. The adaption of this protocol in other systems will greatly improve our understanding of the Trx function in regulating cellular redox homeostasis. BIOLOGICAL SIGNIFICANCE Redox homeostasis is tightly regulated for proper cellular activities. Specific protein-protein interactions between redox active molecules such as thioredoxin (Trx) and target proteins constitute the basis for redox-regulated biological processes. The use of cysTMT quantitative proteomics for studying Trx reactions enabled identification of potential Trx targets that provide important insights into the redox regulation in guard cells, a specialized plant cell type responsible for sensing of environmental signals, gas exchange and plant productivity.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mengmeng Zhu
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ning Zhu
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Johanna M Strul
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA
| | - Craig P Dufresne
- Thermo Fisher Scientific, 1400 Northpoint Parkway, West Palm Beach, FL 33407, USA
| | - Jacqueline D Schneider
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA
| | - Alice C Harmon
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
25
|
Lindqvist-Kreuze H, Khan A, Salas E, Meiyalaghan S, Thomson S, Gomez R, Bonierbale M. Tuber shape and eye depth variation in a diploid family of Andean potatoes. BMC Genet 2015; 16:57. [PMID: 26024857 PMCID: PMC4448561 DOI: 10.1186/s12863-015-0213-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/04/2015] [Indexed: 01/27/2023] Open
Abstract
Background Tuber appearance is highly variable in the Andean cultivated potato germplasm. The diploid backcross mapping population ‘DMDD’ derived from the recently sequenced genome ‘DM’ represents a sample of the allelic variation for tuber shape and eye depth present in the Andean landraces. Here we evaluate the utility of morphological descriptors for tuber shape for identification of genetic loci responsible for the shape and eye depth variation. Results Subjective morphological descriptors and objective tuber length and width measurements were used for assessment of variation in tuber shape and eye depth. Phenotypic data obtained from three trials and male–female based genetic maps were used for quantitative trait locus (QTL) identification. Seven morphological tuber shapes were identified within the population. A continuous distribution of phenotypes was found using the ratio of tuber length to tuber width and a QTL was identified in the paternal map on chromosome 10. Using toPt-437059, the marker at the peak of this QTL, the seven tuber shapes were classified into two groups: cylindrical and non-cylindrical. In the first group, shapes classified as ‘compressed’, ‘round’, ‘oblong’, and ‘long-oblong’ mainly carried a marker allele originating from the male parent. The tubers in this group had deeper eyes, for which a strong QTL was found at the same location on chromosome 10 of the paternal map. The non-cylindrical tubers classified as ‘obovoid’, ‘elliptic’, and ‘elongated’ were in the second group, mostly lacking the marker allele originating from the male parent. The main QTL for shape and eye depth were located in the same genomic region as the previously mapped dominant genes for round tuber shape and eye depth. A number of candidate genes underlying the significant QTL markers for tuber shape and eye depth were identified. Conclusions Utilization of a molecular marker at the shape and eye depth QTL enabled the reclassification of the variation in general tuber shape to two main groups. Quantitative measurement of the length and width at different parts of the tuber is recommended to accompany the morphological descriptor classification to correctly capture the shape variation. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0213-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Awais Khan
- International Potato Center (CIP), Av. La Molina 1895, Apartado 1558, Lima 12, Peru.
| | - Elisa Salas
- International Potato Center (CIP), Av. La Molina 1895, Apartado 1558, Lima 12, Peru.
| | - Sathiyamoorthy Meiyalaghan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.
| | - Susan Thomson
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.
| | - Rene Gomez
- International Potato Center (CIP), Av. La Molina 1895, Apartado 1558, Lima 12, Peru.
| | - Merideth Bonierbale
- International Potato Center (CIP), Av. La Molina 1895, Apartado 1558, Lima 12, Peru.
| |
Collapse
|
26
|
Kakugawa S, Langton PF, Zebisch M, Howell S, Chang TH, Liu Y, Feizi T, Bineva G, O’Reilly N, Snijders AP, Jones EY, Vincent JP. Notum deacylates Wnt proteins to suppress signalling activity. Nature 2015; 519:187-192. [PMID: 25731175 PMCID: PMC4376489 DOI: 10.1038/nature14259] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 01/23/2023]
Abstract
Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.
Collapse
Affiliation(s)
- Satoshi Kakugawa
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul F. Langton
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Matthias Zebisch
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Steve Howell
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Tao-Hsin Chang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yan Liu
- Glycosciences Laboratory, Imperial College London, Department of Medicine Du Cane Road, London, W12 0NN UK
| | - Ten Feizi
- Glycosciences Laboratory, Imperial College London, Department of Medicine Du Cane Road, London, W12 0NN UK
| | - Ganka Bineva
- Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Nicola O’Reilly
- Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Ambrosius P. Snijders
- Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Hertfordshire. EN6 3LD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jean-Paul Vincent
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
27
|
de Souza AJ, Pauly M. Comparative genomics of pectinacetylesterases: Insight on function and biology. PLANT SIGNALING & BEHAVIOR 2015; 10:e1055434. [PMID: 26237162 PMCID: PMC4883895 DOI: 10.1080/15592324.2015.1055434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses.
Collapse
Affiliation(s)
- Amancio José de Souza
- Department of Plant and Microbial Biology; Energy Biosciences Institute; University of California; Berkeley, CA USA
| | - Markus Pauly
- Department of Plant and Microbial Biology; Energy Biosciences Institute; University of California; Berkeley, CA USA
- Correspondence to: Markus Pauly;
| |
Collapse
|
28
|
de Souza A, Hull PA, Gille S, Pauly M. Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants. PLANTA 2014; 240:1123-38. [PMID: 25115560 PMCID: PMC4200376 DOI: 10.1007/s00425-014-2139-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/28/2014] [Indexed: 05/20/2023]
Abstract
PAE8 and PAE9 have pectin acetylesterase activity and together remove one-third of the cell wall acetate associated with pectin formation in Arabidopsis leaves. In pae8 and pae9 mutants, substantial amounts of acetate accumulate in cell walls. In addition, the inflorescence stem height is decreased. Pectic polysaccharides constitute a significant part of the primary cell walls in dicotyledonous angiosperms. This diverse group of polysaccharides has been implicated in several physiological processes including cell-to-cell adhesion and pathogenesis. Several pectic polysaccharides contain acetyl-moieties directly affecting their physical properties such as gelling capacity, an important trait for the food industry. In order to gain further insight into the biological role of pectin acetylation, a reverse genetics approach was used to investigate the function of genes that are members of the Pectin AcetylEsterase gene family (PAE) in Arabidopsis. Mutations in two members of the PAE family (PAE8 and PAE9) lead to cell walls with an approximately 20 % increase in acetate content. High-molecular-weight fractions enriched in pectic rhamnogalacturonan I (RGI) extracted from the mutants had increased acetate content. In addition, the pae8 mutant displayed increased acetate content also in low-molecular-weight pectic fractions. The pae8/pae9-2 double mutant exhibited an additive effect by increasing wall acetate content by up to 37 %, suggesting that the two genes are not redundant and act on acetyl-substituents of different pectic domains. The pae8 and pae8/pae9-2 mutants exhibit reduced inflorescence growth underscoring the role of pectic acetylation in plant development. When heterologously expressed and purified, both gene products were shown to release acetate from the corresponding mutant pectic fractions in vitro. PAEs play a significant role in modulating the acetylation state of pectic polymers in the wall, highlighting the importance of apoplastic metabolism for the plant cell and plant growth.
Collapse
Affiliation(s)
- Amancio de Souza
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
| | - Philip A. Hull
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
- Gladstone Institute of Virology and Immunology, PO Box 419100, San Francisco, CA 94141-9100 USA
| | - Sascha Gille
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
- Bayer CropScience, Weed Control Biochemistry and Biotechnology, 65929 Frankfurt am Main, Germany
| | - Markus Pauly
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
| |
Collapse
|
29
|
Sénéchal F, Wattier C, Rustérucci C, Pelloux J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5125-60. [PMID: 25056773 PMCID: PMC4400535 DOI: 10.1093/jxb/eru272] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 05/18/2023]
Abstract
Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses.
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christopher Wattier
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christine Rustérucci
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Jérôme Pelloux
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| |
Collapse
|
30
|
Cankar K, Kortstee A, Toonen MAJ, Wolters-Arts M, Houbein R, Mariani C, Ulvskov P, Jorgensen B, Schols HA, Visser RGF, Trindade LM. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:492-502. [PMID: 24428422 DOI: 10.1111/pbi.12156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 05/06/2023]
Abstract
Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Manabe Y, Verhertbruggen Y, Gille S, Harholt J, Chong SL, Pawar PMA, Mellerowicz EJ, Tenkanen M, Cheng K, Pauly M, Scheller HV. Reduced Wall Acetylation proteins play vital and distinct roles in cell wall O-acetylation in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1107-17. [PMID: 24019426 PMCID: PMC3813637 DOI: 10.1104/pp.113.225193] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/03/2013] [Indexed: 05/17/2023]
Abstract
The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls.
Collapse
Affiliation(s)
- Yuzuki Manabe
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Yves Verhertbruggen
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | | | - Jesper Harholt
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Sun-Li Chong
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Prashant Mohan-Anupama Pawar
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Ewa J. Mellerowicz
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Maija Tenkanen
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Kun Cheng
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Markus Pauly
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | | |
Collapse
|
32
|
Pogorelko G, Lionetti V, Bellincampi D, Zabotina O. Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. PLANT SIGNALING & BEHAVIOR 2013; 8:e25435. [PMID: 23857352 PMCID: PMC4002593 DOI: 10.4161/psb.25435] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways.
Collapse
Affiliation(s)
- Gennady Pogorelko
- Roy J. Carver Department of Biochemistry; Biophysics and Molecular Biology; Iowa State University; Ames, IA USA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma; Rome, Italy
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma; Rome, Italy
| | - Olga Zabotina
- Roy J. Carver Department of Biochemistry; Biophysics and Molecular Biology; Iowa State University; Ames, IA USA
| |
Collapse
|