1
|
Zupin L, Gianoncelli A, Celsi F, Bonanni V, Kourousias G, Parisse P, Salomé M, Crovella S, Barbi E, Ricci G, Pascolo L. The effect of near-infrared Photobiomodulation therapy on the ion content of 50B11 sensory neurons measured through XRF analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113019. [PMID: 39217730 DOI: 10.1016/j.jphotobiol.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief. In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis. Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation. Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume. These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy.
| | | | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy.
| | | | | | - Pietro Parisse
- Elettra Sincrotrone Trieste, Basovizza, 34149, Trieste, Italy; CNR-IOM, Basovizza, 34149 Trieste, Italy
| | - Murielle Salomé
- ESRF, European Synchrotron Radiation Facility, Cedex 9, F-38043 Grenoble, France
| | - Sergio Crovella
- Laboratory of Animal Research (LARC), Qatar University, 2713, Doha, Qatar
| | - Egidio Barbi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; Department of Medical, Surgical and Health Science, University of Trieste, 34100, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; Department of Medical, Surgical and Health Science, University of Trieste, 34100, Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
2
|
Adamek M, Kavčič A, Debeljak M, Šala M, Grdadolnik J, Vogel-Mikuš K, Kroflič A. Toxicity of nitrophenolic pollutant 4-nitroguaiacol to terrestrial plants and comparison with its non-nitro analogue guaiacol (2-methoxyphenol). Sci Rep 2024; 14:2198. [PMID: 38272996 PMCID: PMC10811240 DOI: 10.1038/s41598-024-52610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Phenols, and especially their nitrated analogues, are ubiquitous pollutants and known carcinogens which have already been linked to forest decline. Although nitrophenols have been widely recognized as harmful to different aquatic and terrestrial organisms, we could not find any literature assessing their toxicity to terrestrial plants. Maize (monocot) and sunflower (dicot) were exposed to phenolic pollutants, guaiacol (GUA) and 4-nitroguaiacol (4NG), through a hydroponics system under controlled conditions in a growth chamber. Their acute physiological response was studied during a two-week root exposure to different concentrations of xenobiotics (0.1, 1.0, and 10 mM). The exposure visibly affected plant growth and the effect increased with increasing xenobiotic concentration. In general, 4NG affected plants more than GUA. Moreover, sunflower exhibited an adaptive response, especially to low and moderate GUA concentrations. The integrity of both plant species deteriorated during the exposure: biomass and photochemical pigment content were significantly reduced, which reflected in the poorer photochemical efficiency of photosystem II. Our results imply that 4NG is taken up by sunflower plants, where it could enter a lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Maksimiljan Adamek
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Anja Kavčič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Marta Debeljak
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Jože Grdadolnik
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Ana Kroflič
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Indore NS, Karunakaran C, Jayas DS, Bondici VF, Vu M, Tu K, Muir D. Mapping biochemical and nutritional changes in durum wheat due to spoilage during storage. Heliyon 2023; 9:e22139. [PMID: 38045167 PMCID: PMC10692805 DOI: 10.1016/j.heliyon.2023.e22139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Synchrotron X-ray imaging and spectroscopy techniques were used for studying changes during post-harvest storage of food grains. Three varieties (AAC Spitfire, CDC Defy, and AAC Stronghold) of the Canada Western Amber Durum (CWAD) wheat class were stored for five weeks at 17 % moisture content (wb). Control (dry) and stored moistened seeds were analyzed for biochemical and nutritional changes using synchrotron bulk X-ray fluorescence spectroscopy (SR-XRF), X-ray fluorescence imaging (SR-XFI), and mid-infrared (mid-IR) spectroscopy at the Canadian Light Source (CLS), Saskatoon, SK. All varieties of durum wheat were spoiled at the end of five week, and AAC Spitfire and CDC Defy varieties were most affected in nutritional composition and their distribution than AAC Stronghold. Variable response to changes in biochemical and nutrition were found in all three spoiled varieties of the same durum wheat class.
Collapse
Affiliation(s)
- Navnath S. Indore
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Chithra Karunakaran
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Digvir S. Jayas
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- President's Office, A762 University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada
| | | | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - David Muir
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
4
|
Wang X, Guo Z, Hui X, Wang R, Wang S, Kopittke PM, Wang Z, Shi M. Improved Zn bioavailability by its enhanced colocalization and speciation with S in wheat grain tissues after N addition. Food Chem 2023; 404:134582. [DOI: 10.1016/j.foodchem.2022.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/25/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
|
5
|
Deng G, Vu M, Korbas M, Bondici VF, Karunakaran C, Christensen D, Bart Lardner HA, Yu P. Distribution of Micronutrients in Arborg Oat (Avena sativa L.) Using Synchrotron X-ray Fluorescence Imaging. Food Chem 2023; 421:135661. [PMID: 37094404 DOI: 10.1016/j.foodchem.2023.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
It is important to know the mineral distribution in cereal grains for nutritional improvement or genetic biofortification. Distributions and intensities of micro-elements (Mn, Fe, Cu, and Zn) and macro-elements (P, S, K and Ca) in Arborg oat were investigated using synchrotron-based on X-ray fluorescence imaging (XFI). Arborg oat provided by the Crop Development Center (CDC, Aaron Beattie) of the University of Saskatchewan for 2D X-ray fluorescence scans were measured at the BioXAS-Imaging beamline at the Canadian Light Source. The results show that the Ca and Mn were mainly localized in the aleurone layer and scutellum. P, K, Fe, Cu, and Zn were mainly accumulated in the aleurone layer and embryo. Particularly the intensities of P, K, Cu, and Zn in the scutellum were higher compared to other areas. S was also distributed in each tissue and its abundance in the sub-aleurone was the highest. In addition, the intensities of S and Cu were highest in the nucellar projection of the crease region. All these elements were also found in the pericarp but they were at lower levels than other tissues. Overall, the details of these experimental results can provide important information for micronutrient biofortification and processing strategies on oat through elemental mapping in Arborg oat.
Collapse
Affiliation(s)
- Ganqi Deng
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Miranda Vu
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Malgorzata Korbas
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Viorica F Bondici
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Chithra Karunakaran
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - David Christensen
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - H A Bart Lardner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
6
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
7
|
Kamaral C, Neate SM, Gunasinghe N, Milham PJ, Paterson DJ, Kopittke PM, Seneweera S. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading. PHYSIOLOGIA PLANTARUM 2022; 174:e13612. [PMID: 34970752 DOI: 10.1111/ppl.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron-X-ray-fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat.
Collapse
Affiliation(s)
- Chandima Kamaral
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Stephen M Neate
- School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Urrbrae, South Australia, Australia
| | - Niroshini Gunasinghe
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Paul J Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David J Paterson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
- Department of Agriculture and Food Systems, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Vogel-Mikuš K, Pongrac P. Imaging of Potassium and Calcium Distribution in Plant Tissues and Cells to Monitor Stress Response and Programmed Cell Death. Methods Mol Biol 2022; 2447:233-246. [PMID: 35583786 DOI: 10.1007/978-1-0716-2079-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In plants, the response to stress, such as salinity, pathogen attack, drought, high concentration of metals, hyperthermia, and hypothermia, is usually accompanied by potassium ion (K+) leakage from the cytosol to the cell wall, mediated by plasma membrane cation conductivity. Stress-induced electrolyte leakage co-occurs with accumulation of reactive oxygen species (ROS) and calcium ions (Ca2+) and often results in programmed cell death (PCD). The development of X-ray and mass spectrometry (MS) based imaging techniques has enabled insight into the spatial tissue and cell-specific redistribution of major and trace elements during the stress response. In this chapter a workflow for sample preparation, imaging, and image analysis by X-ray and MS based techniques is presented.
Collapse
Affiliation(s)
- Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
- Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Paula Pongrac
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
9
|
Guo Z, Zhang X, Wang L, Wang X, Wang R, Hui X, Wang S, Wang Z, Shi M. Selecting High Zinc Wheat Cultivars Increases Grain Zinc Bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11196-11203. [PMID: 34528796 DOI: 10.1021/acs.jafc.1c03166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Improving the concentration and bioavailability of zinc (Zn) in cereal grains is an important way to solve the problem of Zn deficiency in human body. The bioavailability of Zn is related to both its distribution and speciation in grains. In the current study, we examined the differences of Zn concentration, distribution, and speciation within grains among wheat cultivars with similar high grain yield but contrasting grain Zn concentration using synchrotron micro X-ray fluorescence (μ-XRF) and X-ray absorption near-edge structure (XANES). Results showed that compared to the low-Zn cultivar, the Zn concentration was 103, 50, 76, 33, and 64% higher in the crease region, aleurone layer, scutellum, embryonic axis, and endosperm of the high-Zn cultivar, respectively. Zinc mainly colocalized with phosphorus (P) in the aleurone layer and the scutellum, but less colocalization of Zn with P and a much lower concentration ratio of P/Zn were found in the high-Zn cultivar. Sulfur (S) is present in the form of scattered spots in the endosperm in accord with Zn, but the colocalization of Zn with S was predominant in the modified aleurone layer and the nucellar projection of the high-Zn cultivar. XANES results showed the lower proportion of Zn-phytate in the high-Zn cultivar. Findings indicated that it is possible to select the high-yield wheat cultivar with both high grain Zn concentration and high bioavailability, which provide a new perspective for genetic Zn biofortification.
Collapse
Affiliation(s)
- Zikang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuemei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingshu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Runze Wang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xiaoli Hui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sen Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Zhaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Aiqing Z, Zhang L, Ning P, Chen Q, Wang B, Zhang F, Yang X, Zhang Y. Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Crit Rev Food Sci Nutr 2021; 62:7917-7928. [PMID: 34224281 DOI: 10.1080/10408398.2021.1920883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zinc (Zn) is an essential micro-nutrient for humans, and Zn deficiency is of global concern. In addition to inherited and pathological Zn deficiencies, insufficient dietary intake is leading cause, especially in those consuming cereal grains as a stable food, in which Zn concentration and bioavailability are relatively low. To improve Zn levels in the human body, it is important to understand the accumulation and bioavailability of Zn in cereal grains. In recent years, knowledge on the molecular mechanisms underlying Zn uptake, transport, homeostasis, and deposition within cereal crops has been accumulating, paving the way for a more targeted approach to improving the nutrient status of crop plants. In this paper, we briefly review existing studies on the distribution and transport pathways of Zn in major small-grained cereals, using wheat as a case study. The findings confirm that Zn transport in plants is a complex physiological process mainly governed by Zn transporters and metal chelators. This work reviews studies on Zn uptake, transport, and deposition in wheat plants, summarizes the possible barriers impairing Zn deposition in wheat grains, and describes strategies for increasing Zn concentration in wheat grains.
Collapse
Affiliation(s)
- Zhao Aiqing
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Liansheng Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Peng Ning
- National Academy of Agriculture Green Development, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions (Ministry of Education), China Agricultural University, Beijing, China
| | - Qin Chen
- Northwest Land and Resources Research Center, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Youlin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| |
Collapse
|
11
|
Xiao T, Boada R, Llugany M, Valiente M. Co-application of Se and a biostimulant at different wheat growth stages: Influence on grain development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:184-192. [PMID: 33513465 DOI: 10.1016/j.plaphy.2021.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
An appropriate selenium intake can be beneficial for human health. Se-biofortified food in Se-deficient regions is becoming an increasingly common practice but there are still issues to be addressed regarding the observed Se-induced toxicity to the plant. In this respect, plant biostimulants are used to enhance nutrition efficiency, abiotic stress tolerance and crop quality. In this work, the efficacy of a plant biostimulant to counteract the Se-induced stress in wheat plants is experimentally assessed. The co-application of different Se-biofortification treatments and the biostimulant at different growth stages (tillering or heading stage) was investigated. The use of micro focused X-ray spectroscopy allows us to confirm organic Se species to be the main Se species found in wheat grain and that the proportion of organic Se species is only slightly affected by the Se application stage. Our study proves that the biostimulant had a key role in the enhancement of both the amount of grains produced per spike and their dry biomass without hindering Se enrichment process, neither diminishing the Se concentration nor massively disrupting the Se species present. This information will be useful to minimize both plant toxicity and economic cost towards a more effective and plant healthy selenium supplementation.
Collapse
Affiliation(s)
- Tingting Xiao
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Roberto Boada
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autonòma de Barcelona, 08193, Bellaterra, Spain.
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
12
|
Pongrac P, Arčon I, Castillo-Michel H, Vogel-Mikuš K. Mineral Element Composition in Grain of Awned and Awnletted Wheat ( Triticum aestivum L.) Cultivars: Tissue-Specific Iron Speciation and Phytate and Non-Phytate Ligand Ratio. PLANTS 2020; 9:plants9010079. [PMID: 31936205 PMCID: PMC7020463 DOI: 10.3390/plants9010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
In wheat (Triticum aestivum L.), the awns—the bristle-like structures extending from lemmas—are photosynthetically active. Compared to awned cultivars, awnletted cultivars produce more grains per unit area and per spike, resulting in significant reduction in grain size, but their mineral element composition remains unstudied. Nine awned and 11 awnletted cultivars were grown simultaneously in the field. With no difference in 1000-grain weight, a larger calcium and manganese—but smaller iron (Fe) concentrations—were found in whole grain of awned than in awnletted cultivars. Micro X-ray absorption near edge structure analysis of different tissues of frozen-hydrated grain cross-sections revealed that differences in total Fe concentration were not accompanied by differences in Fe speciation (64% of Fe existed as ferric and 36% as ferrous species) or Fe ligands (53% were phytate and 47% were non-phytate ligands). In contrast, there was a distinct tissue-specificity with pericarp containing the largest proportion (86%) of ferric species and nucellar projection (49%) the smallest. Phytate ligand was predominant in aleurone, scutellum and embryo (72%, 70%, and 56%, respectively), while nucellar projection and pericarp contained only non-phytate ligands. Assuming Fe bioavailability depends on Fe ligands, we conclude that Fe bioavailability from wheat grain is tissue specific.
Collapse
Affiliation(s)
- Paula Pongrac
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (I.A.); (K.V.-M.)
- Correspondence: ; Tel.: +386-51-222-963; Fax: +386-477-31-51
| | - Iztok Arčon
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (I.A.); (K.V.-M.)
- Laboratory for quantum optics, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | | | - Katarina Vogel-Mikuš
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (I.A.); (K.V.-M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Kavčič A, Budič B, Vogel-Mikuš K. The effects of selenium biofortification on mercury bioavailability and toxicity in the lettuce-slug food chain. Food Chem Toxicol 2020; 135:110939. [PMID: 31697969 DOI: 10.1016/j.fct.2019.110939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/26/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
The effects of foliar Se biofortification (Se+) of the lettuce on the transfer and toxicity of Hg from soil contaminated with HgCl2 (H) and soil collected near the former Hg smelter in Idrija (I), to terrestrial food chain are explored, with Spanish slug as a primary consumer. Foliar application of Se significantly increased Se content in the lettuce, with no detected toxic effects. Mercury exerted toxic effects on plants, decreasing plant biomass, photochemical efficiency of the photosystem II (Fv/Fm) and the total chlorophyll content. Selenium biofortification (Se+ test group) had no effect on Hg bioaccumulation in plants. In slugs, different responses were observed in H and I groups; the I/Se+ subgroup was the most strongly affected by Hg toxicity, exhibiting lower biomass, feeding and growth rate and a higher hepatopancreas/ muscle Hg translocation, pointing to a higher Hg mobility in comparison to H group. Selenium increased Hg bioavailability for slugs, but with opposite physiological responses: alleviating stress in H/Se+ and inducing it in I/Se+ group, indicating different mechanisms of Hg-Se interactions in the food chain under HgCl2 and Idrija soil exposures that can be mainly attributed to different Hg speciation and ligand environment in the soil.
Collapse
Affiliation(s)
- Anja Kavčič
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Bojan Budič
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Kavčič A, Mikuš K, Debeljak M, Teun van Elteren J, Arčon I, Kodre A, Kump P, Karydas AG, Migliori A, Czyzycki M, Vogel-Mikuš K. Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes-caprae mushrooms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109623. [PMID: 31518823 DOI: 10.1016/j.ecoenv.2019.109623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 05/22/2023]
Abstract
This study provides information on mercury (Hg) localization, speciation and ligand environment in edible mushrooms: Boletus edulis, B. aereus and Scutiger pes-caprae collected at non-polluted and Hg polluted sites, by LA-ICP-MS, SR-μ-XRF and Hg L3-edge XANES and EXAFS. Mushrooms (especially young ones) collected at Hg polluted sites can contain more than 100 μg Hg g-1 of dry mass. Imaging of the element distribution shows that Hg accumulates mainly in the spore-forming part (hymenium) of the cap. Removal of hymenium before consumption can eliminate more than 50% of accumulated Hg. Mercury is mainly coordinated to di-thiols (43-82%), followed by di-selenols (13-35%) and tetra-thiols (12-20%). Mercury bioavailability, as determined by feeding the mushrooms to Spanish slugs (known metal bioindicators owing to accumulation of metals in their digestive gland), ranged from 4% (S. pes-caprae) to 30% (B. aereus), and decreased with increasing selenium (Se) levels in the mushrooms. Elevated Hg levels in mushrooms fed to the slugs induced toxic effects, but these effects were counteracted with increasing Se concentrations in the mushrooms, pointing to a protective role of Se against Hg toxicity through HgSe complexation. Nevertheless, consumption of the studied mushroom species from Hg polluted sites should be avoided.
Collapse
Affiliation(s)
- Anja Kavčič
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Klemen Mikuš
- Biotechnical Educational Centre Ljubljana, Cesta V Mestni Log 47, SI-1000, Ljubljana, Slovenia
| | - Marta Debeljak
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | | | - Iztok Arčon
- Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia; University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Alojz Kodre
- Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia; University of Ljubljana, Faculty for Mathematics and Physics, Jadranska 19, SI-1000, Ljubljana, Slovenia
| | - Peter Kump
- Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Andreas Germanos Karydas
- Institute of Nuclear and Particle Physics, National Centre for Scientific Research 'Demokritos', Patr. Grigoriou E' & 27 Neapoleos St, 153 41, Agia Paraskevi, Greece
| | - Alessandro Migliori
- Nuclear Science and Instrumentation Laboratory, International Atomic Energy Agency (IAEA) Laboratories, A-2444, Seibersdorf, Austria
| | - Mateusz Czyzycki
- Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Laboratory for Applications of Synchrotron Radiation, Kaiserstrasse 12, 76131, Karlsruhe, Germany; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Katarina Vogel-Mikuš
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Steeping and germination of wheat (Triticum aestivum L.). II. Changes in spatial distribution and speciation of iron and zinc elements using pearling, synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure imaging. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Eroglu S, Karaca N, Vogel-Mikus K, Kavčič A, Filiz E, Tanyolac B. The Conservation of VIT1-Dependent Iron Distribution in Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:907. [PMID: 31354774 PMCID: PMC6640190 DOI: 10.3389/fpls.2019.00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/26/2019] [Indexed: 05/31/2023]
Abstract
One third of people suffer from anemia, with iron (Fe) deficiency being the most common reason. The human diet includes seeds of staple crops, which contain Fe that is poorly bioavailable. One reason for low bioavailability is that these seeds store Fe in cellular compartments that also contain antinutrients, such as phytate. Thus, several studies have focused on decreasing phytate concentrations. In theory, as an alternative approach, Fe reserves might be directed to cellular compartments that are free of phytate, such as plastids. However, it is not known if seed plastid can represent a major Fe storage compartment in nature. To discover distinct types of Fe storage in nature, we investigated metal localizations in the seeds of more than twenty species using histochemical or X-ray based techniques. Results showed that in Rosids, the largest clade of eudicots, Fe reserves were primarily confined to the embryo of the seeds. Furthermore, inside the embryos, Fe accumulated specifically in the endodermal cell layer, a well-known feature that is mediated by VACUOLAR IRON TRANSPORTER1 (VIT1) in model plant Arabidopsis thaliana. In rice, Fe enrichment is lost around the provasculature in the mutants of VIT1 orthologs. Finally, in Carica papaya, Fe accumulated in numerous organelles resembling plastids; however, these organelles accumulated reserve proteins but not ferritin, failing to prove to be plastids. By investigating Fe distribution in distinct plant lineages, this study failed to discover distinct Fe storage patterns that can be useful for biofortification. However, it revealed Fe enrichment is widely conserved in the endodermal cell layer in a VIT1-dependent manner in the plant kingdom.
Collapse
Affiliation(s)
- Seckin Eroglu
- Department of Genetics and Bioengineering, Izmir University of Economics, Izmir, Turkey
| | - Nur Karaca
- Department of Bioengineering, Ege University, Izmir, Turkey
| | - Katarina Vogel-Mikus
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| | - Anja Kavčič
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Duzce, Turkey
| | | |
Collapse
|
17
|
Fourati E, Vogel-Mikuš K, Bettaieb T, Kavčič A, Kelemen M, Vavpetič P, Pelicon P, Abdelly C, Ghnaya T. Physiological response and mineral elements accumulation pattern in Sesuvium portulacastrum L. subjected in vitro to nickel. CHEMOSPHERE 2019; 219:463-471. [PMID: 30551113 DOI: 10.1016/j.chemosphere.2018.12.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Sesuvium portulacastrum, a halophyte with high tolerance to heavy metals like Cd, Pb and Ni is considered for phytoremediation of metal contaminated saline soils. The tolerance to a selected metal ion could, by hypothesis, be stimulated through in vitro adaptation and regeneration of the plant. Seedlings obtained by in vitro micro-propagation, were exposed to 0, 25 and 50 μM Ni, as NiCl2, in agar-based medium for 30 days. Growth parameters, plant water content, the concentration of photosynthetic pigments, proline and malondialdehyde (MDA) concentrations were determined. Nickel and nutrients distribution in leaves was studied by micro-Proton-Induced-X-ray-Emission (μ-PIXE). The results showed that Ni was mainly accumulated in vascular bundles, next in water storage tissues and chlorenchyma. Ni concentrations in chlorenchyma increased with increasing Ni in culturing medium, in direct relation to decrease of photosynthetic pigments and increase of oxidative stress. As compared to control plants, Ni induced substantial increase in MDA and proline accumulation. Plants exposed to 50 μM Ni accumulated up to 650 μg g-1 of Ni in the shoots, exhibiting chlorosis and necrosis and a drastically reduced plant growth. Perturbations in uptake and distribution of nutrients were observed, inducing mineral deficiency, probably through membrane leakage. The mineral nutrient disturbances induced by Ni could be highly implicated in the restriction of S. portulacastrum development under the acute 50 μM Ni level.
Collapse
Affiliation(s)
- Emna Fourati
- Université de Tunis El Manar, Tunisia; Centre de Biotechnologie de Borj Cedria (LR15CBBC02), Laboratoire des Plantes Extrèmophiles, BP 901 2050 Hammam-Lif, Tunisia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101, SI-1000 Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101, SI-1000 Ljubljana, Slovenia; Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Taoufik Bettaieb
- Département Agronomie et Biotechnologies Végétales, Institut National Agronomique de Tunisie, 43 Avenue Charles Nicolle, 1082 Tunis, Tunisia
| | - Anja Kavčič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101, SI-1000 Ljubljana, Slovenia
| | - Mitja Kelemen
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Vavpetič
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Pelicon
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Chedly Abdelly
- Centre de Biotechnologie de Borj Cedria (LR15CBBC02), Laboratoire des Plantes Extrèmophiles, BP 901 2050 Hammam-Lif, Tunisia
| | - Tahar Ghnaya
- Centre de Biotechnologie de Borj Cedria (LR15CBBC02), Laboratoire des Plantes Extrèmophiles, BP 901 2050 Hammam-Lif, Tunisia.
| |
Collapse
|
18
|
Cheah ZX, Kopittke PM, Harper SM, O’Hare TJ, Wang P, Paterson DJ, de Jonge MD, Bell MJ. In situ analyses of inorganic nutrient distribution in sweetcorn and maize kernels using synchrotron-based X-ray fluorescence microscopy. ANNALS OF BOTANY 2019; 123:543-556. [PMID: 30357312 PMCID: PMC6377104 DOI: 10.1093/aob/mcy189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/09/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Understanding the spatial distribution of inorganic nutrients within edible parts of plant products helps biofortification efforts to identify and focus on specific uptake pathways and storage mechanisms. METHODS Kernels of sweetcorn (Zea mays) variety 'High zeaxanthin 103146' and maize inbred line 'Thai Floury 2' were harvested at two different maturity stages, and the distributions of K, P, S, Ca, Zn, Fe and Mn were examined in situ using synchrotron-based X-ray fluorescence microscopy. KEY RESULTS The distribution of inorganic nutrients was largely similar between maize and sweetcorn, but differed markedly depending upon the maturity stage after further embryonic development. The micronutrients Zn, Fe and Mn accumulated primarily in the scutellum of the embryo during early kernel development, while trace amounts of these were found in the aleurone layer at the mature stage. Although P accumulated in the scutellum, there was no direct relationship between the concentrations of P and those of the micronutrients, compared with the linear trend between Zn and Fe concentrations. CONCLUSIONS This study highlights the important role of the embryo as a micronutrient reserve for sweetcorn and maize kernels, and the need to understand how biofortification efforts can further increase the inorganic nutrient concentration of the embryo for human consumption.
Collapse
Affiliation(s)
- Zhong Xiang Cheah
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Queensland, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Queensland, Australia
| | - Stephen M Harper
- Department of Agriculture and Fisheries Gatton, Queensland, Australia
| | - Tim J O’Hare
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, Queensland, Australia
| | - Peng Wang
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Queensland, Australia
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, China
| | | | | | - Michael J Bell
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
19
|
Debeljak M, van Elteren JT, Špruk A, Izmer A, Vanhaecke F, Vogel-Mikuš K. The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize. CHEMOSPHERE 2018; 212:1076-1084. [PMID: 30286537 DOI: 10.1016/j.chemosphere.2018.08.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
This work aimed to study the role of arbuscular mycorrhizal fungi (AMF) in Hg and major mineral nutrient uptake and tissue localization of these elements in the roots of maize plants. Maize plants were grown in pots filled with non- and Hg-contaminated substrate (50 μg Hg g-1 as HgCl2) and inoculated with two types of AMF inocula: a) Glomus sp. originating from Hg-polluted soil of a former Hg smelting site in Idrija, Slovenia, and b) commercial AM inoculum Symbivit. Controls were inoculated by corresponding bacterial extracts only. Tissue localization of Hg and major mineral nutrients was performed by laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) on cryofixed and freeze-dried root cross-sections. AMF colonization increased plant biomass in non-contaminated substrate, while this effect was not seen in Hg-contaminated substrate. Hg increased total plant biomass more than AMF inoculation, possibly through hormetic effects. AMF increased Hg uptake into the roots, as well as Hg transfer to the shoots. AMF affected plant mineral nutrient uptake, depending on the type of AMF inoculum and the presence of Hg. In the roots, Hg was mainly localized in rhizodermis and endodermis, followed by the cortex and the central cylinder. Higher Hg concentrations were detected in the central cylinder of AM plants than in that of the controls, pointing to a higher Hg mobility and potential bioavailability in AMF inoculated plants.
Collapse
Affiliation(s)
- Marta Debeljak
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Johannes T van Elteren
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ana Špruk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Andrei Izmer
- Department of Chemistry, Atomic & Mass Spectrometry A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, BE-9000 Ghent, Belgium
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, BE-9000 Ghent, Belgium
| | - Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Beleggia R, Fragasso M, Miglietta F, Cattivelli L, Menga V, Nigro F, Pecchioni N, Fares C. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO 2 concentrations. Food Chem 2017; 242:53-61. [PMID: 29037725 DOI: 10.1016/j.foodchem.2017.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/15/2022]
Abstract
The concentrations of 10 minerals were investigated in the grain of 12 durum wheat genotypes grown under free air CO2 enrichment conditions, and in four of their derived pasta samples, using inductively coupled plasma mass spectrometry. Compared to ambient CO2 (400ppm; AMB), under elevated CO2 (570ppm; ELE), the micro-element and macro-element contents showed strong and significant decreases in the grain: Mn, -28.3%; Fe, -26.7%; Zn, -21.9%; Mg, -22.7%; Mo, -40.4%; K, -22.4%; and Ca, -19.5%. These variations defined the 12 genotypes as sensitive or non-sensitive to ELE. The pasta samples under AMB and ELE showed decreased mineral contents compared to the grain. Nevertheless, the contributions of the pasta to the recommended daily allowances remained relevant, also for the micro-elements under ELE conditions (range, from 18% of the recommended daily allowance for Zn, to 70% for Mn and Mo).
Collapse
Affiliation(s)
- Romina Beleggia
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Mariagiovanna Fragasso
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Franco Miglietta
- CNR-IBIMET, Istituto di Biometeorologia, Via Giovanni Caproni, 8, 50145 Firenze, Italy; IMèRA - Institut d'Etudes Avancèes, 2, Place Le Verrier, 13004 Marseille, France
| | - Luigi Cattivelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Genomica Vegetale (CREA-GPG), Fiorenzuola D'Arda, Italy
| | - Valeria Menga
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Franca Nigro
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Nicola Pecchioni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Clara Fares
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy.
| |
Collapse
|
21
|
Mantouvalou I, Lachmann T, Singh SP, Vogel-Mikuš K, Kanngießer B. Advanced Absorption Correction for 3D Elemental Images Applied to the Analysis of Pearl Millet Seeds Obtained with a Laboratory Confocal Micro X-ray Fluorescence Spectrometer. Anal Chem 2017; 89:5453-5460. [DOI: 10.1021/acs.analchem.7b00373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ioanna Mantouvalou
- Institute
for Optics and Atomic Physics, Technical University of Berlin, 10623 Berlin, Germany
| | - Tim Lachmann
- Institute
for Optics and Atomic Physics, Technical University of Berlin, 10623 Berlin, Germany
| | - Sudhir P. Singh
- Center of Innovative and Applied Bioprocessing India, Mohali, Punjab India - 160071
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Birgit Kanngießer
- Institute
for Optics and Atomic Physics, Technical University of Berlin, 10623 Berlin, Germany
| |
Collapse
|
22
|
Castillo-Michel HA, Larue C, Pradas Del Real AE, Cotte M, Sarret G. Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:13-32. [PMID: 27475903 DOI: 10.1016/j.plaphy.2016.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 05/20/2023]
Abstract
The increased use of engineered nanomaterials (ENMs) in commercial products and the continuous development of novel applications, is leading to increased intentional and unintentional release of ENMs into the environment with potential negative impacts. Particularly, the partition of nanoparticles (NPs) to waste water treatment plant (WWTP) sludge represents a potential threat to agricultural ecosystems where these biosolids are being applied as fertilizers. Moreover, several applications of ENMs in agriculture and soil remediation are suggested. Therefore, detailed risk assessment should be done to evaluate possible secondary negative impacts. The impact of ENMS on plants as central component of ecosystems and worldwide food supply is of primary relevance. Understanding the fate and physical and chemical modifications of NPs in plants and their possible transfer into food chains requires specialized analytical techniques. Due to the importance of both chemical and physical factors to consider for a better understanding of ENMs behavior in complex matrices, these materials can be considered a new type of analyte. An ideal technique should require minimal sample preparation, be non-destructive, and offer the best balance between sensitivity, chemical specificity, and spatial resolution. Synchrotron radiation (SR) techniques are particularly adapted to investigate localization and speciation of ENMs in plants. SR X-ray fluorescence mapping (SR-XFM) offers multi-elemental detection with lateral resolution down to the tens of nm, in combination with spatially resolved X-ray absorption spectroscopy (XAS) speciation. This review will focus on important methodological aspects regarding sample preparation, data acquisition and data analysis of SR-XFM/XAS to investigate interactions between plants and ENMs.
Collapse
Affiliation(s)
| | - Camille Larue
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Ana E Pradas Del Real
- European Synchrotron Radiation Facility, Beamline ID21, Grenoble 38100, France; ISTerre (Institut des Sciences de la Terre), Université Grenoble Alpes, CNRS, Grenoble 38100, France
| | - Marine Cotte
- European Synchrotron Radiation Facility, Beamline ID21, Grenoble 38100, France
| | - Geraldine Sarret
- ISTerre (Institut des Sciences de la Terre), Université Grenoble Alpes, CNRS, Grenoble 38100, France
| |
Collapse
|
23
|
Rodak BW, Freitas DS, Bamberg SM, Carneiro MAC, Guilherme LRG. X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N 2-fixing bacteria and mycorrhizal fungi. J Microbiol Methods 2016; 132:14-20. [PMID: 27838542 DOI: 10.1016/j.mimet.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N2-fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis.
Collapse
Affiliation(s)
- Bruna Wurr Rodak
- Department of Soil Science, Federal University of Lavras (UFLA), University Campus, 372000-000, Lavras, Minas Gerais, Brazil
| | - Douglas Siqueira Freitas
- Department of Soil Science, Federal University of Lavras (UFLA), University Campus, 372000-000, Lavras, Minas Gerais, Brazil.
| | - Soraya Marx Bamberg
- Department of Soil Science, Federal University of Lavras (UFLA), University Campus, 372000-000, Lavras, Minas Gerais, Brazil
| | - Marco Aurélio Carbone Carneiro
- Department of Soil Science, Federal University of Lavras (UFLA), University Campus, 372000-000, Lavras, Minas Gerais, Brazil
| | | |
Collapse
|
24
|
Detterbeck A, Pongrac P, Rensch S, Reuscher S, Pečovnik M, Vavpetič P, Pelicon P, Holzheu S, Krämer U, Clemens S. Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation. THE NEW PHYTOLOGIST 2016; 211:1241-54. [PMID: 27125321 DOI: 10.1111/nph.13987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/23/2016] [Indexed: 05/21/2023]
Abstract
Genetic biofortification requires knowledge on natural variation and the underlying mechanisms of micronutrient accumulation. We therefore studied diversity in grain micronutrient concentrations and spatial distribution in barley (Hordeum vulgare), a genetically tractable model cereal and an important crop with widespread cultivation. We assembled a diverse collection of barley cultivars and landraces and analysed grain micronutrient profiles in genebank material and after three independent cultivations. Lines with contrasting grain zinc (Zn) accumulation were selected for in-depth analysis of micronutrient distribution within the grain by micro-proton-induced X-ray emission (μ-PIXE). Also, we addressed association with grain cadmium (Cd) accumulation. The analysis of > 120 lines revealed substantial variation, especially in grain Zn concentrations. A large fraction of this variation is due to genetic differences. Grain dissection and μ-PIXE analysis of contrasting lines showed that differences in grain Zn accumulation apply to all parts of the grain including the endosperm. Cd concentrations exceeded the Codex Alimentarius threshold in most of the representative barley lines after cultivation in a Cd-contaminated agricultural soil. Two important conclusions for biofortification are: first, high-Zn grains contain more Zn also in the consumed parts of the grain; and second, higher micronutrient concentrations are strongly associated with higher Cd accumulation.
Collapse
Affiliation(s)
- Amelie Detterbeck
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Paula Pongrac
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stefan Rensch
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stefan Reuscher
- Department of Plant Physiology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Matic Pečovnik
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Stefan Holzheu
- Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95440, Bayreuth, Germany
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
- Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95440, Bayreuth, Germany
| |
Collapse
|
25
|
De Brier N, Gomand SV, Donner E, Paterson D, Smolders E, Delcour JA, Lombi E. Element distribution and iron speciation in mature wheat grains (Triticum aestivum L.) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging. PLANT, CELL & ENVIRONMENT 2016; 39:1835-47. [PMID: 27038325 DOI: 10.1111/pce.12749] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 05/15/2023]
Abstract
Several studies have suggested that the majority of iron (Fe) and zinc (Zn) in wheat grains are associated with phytate, but a nuanced approach to unravel important tissue-level variation in element speciation within the grain is lacking. Here, we present spatially resolved Fe-speciation data obtained directly from different grain tissues using the newly developed synchrotron-based technique of X-ray absorption near-edge spectroscopy imaging, coupling this with high-definition μ-X-ray fluorescence microscopy to map the co-localization of essential elements. In the aleurone, phosphorus (P) is co-localized with Fe and Zn, and X-ray absorption near-edge structure imaging confirmed that Fe is chelated by phytate in this tissue layer. In the crease tissues, Zn is also positively related to P distribution, albeit less so than in the aleurone. Speciation analysis suggests that Fe is bound to nicotianamine rather than phytate in the nucellar projection, and that more complex Fe structures may also be present. In the embryo, high Zn concentrations are present in the root and shoot primordium, co-occurring with sulfur and presumably bound to thiol groups. Overall, Fe is mainly concentrated in the scutellum and co-localized with P. This high resolution imaging and speciation analysis reveals the complexity of the physiological processes responsible for element accumulation and bioaccessibility.
Collapse
Affiliation(s)
- Niels De Brier
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, B-3001, Belgium
| | - Sara V Gomand
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, B-3001, Belgium
| | - Erica Donner
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - David Paterson
- Australian Synchrotron, Clayton, Victoria, 3168, Australia
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Leuven, B-3001, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, B-3001, Belgium
| | - Enzo Lombi
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| |
Collapse
|
26
|
Panighello S, Kavčič A, Vogel-Mikuš K, Tennent NH, Wallert A, Hočevar SB, van Elteren JT. Investigation of smalt in cross-sections of 17th century paintings using elemental mapping by laser ablation ICP-MS. Microchem J 2016. [DOI: 10.1016/j.microc.2015.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Vogel-Mikuš K, Pongrac P, Pelicon P. Micro-PIXE elemental mapping for ionome studies of crop plants. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s0129083514400142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In order to maintain homeostasis and consequent optimal cell functioning and integrity and/or to avoid toxicity, proper allocation of elements at organ, tissue, cellular and subcellular level is needed. Studies of element localization are therefore crucial to reveal the mechanisms of element trafficking and also tolerance and toxicity. Moreover, studies of localization and speciation of trace elements in grains of staple crops are also of high applicative value, allowing one to determine major and trace element concentrations in different grain tissues without possible contamination. In the last decade, a remarkable progress has been made in the development and application of different 2D imaging techniques in complex biological systems, especially in the sense of improved lateral resolution and sensitivity. The superiority of micro-PIXE over other 2D imaging techniques lies in its wide elemental range (from sodium (Na) to uranium (U)), high elemental sensitivity below micron spatial resolution and fully quantitative element concentration analysis. The aim of this review is to summarize the latest development of micro-PIXE for imaging of the distribution of major and trace elements in crop plants with emphasis on sample preparation methodologies and post-imaging analysis. Case studies of element localization in the grains of major crop plants are also presented.
Collapse
Affiliation(s)
- Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Reactor Center, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Paula Pongrac
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Primož Pelicon
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Reactor Center, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Singh SP, Srivastava R, Kumar J. Male sterility systems in wheat and opportunities for hybrid wheat development. ACTA PHYSIOLOGIAE PLANTARUM 2015; 37:1713. [PMID: 0 DOI: 10.1007/s11738-014-1713-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
29
|
Comparative transcriptional profiling of two wheat genotypes, with contrasting levels of minerals in grains, shows expression differences during grain filling. PLoS One 2014; 9:e111718. [PMID: 25364903 PMCID: PMC4218811 DOI: 10.1371/journal.pone.0111718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/03/2014] [Indexed: 12/24/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world. To identify the candidate genes for mineral accumulation, it is important to examine differential transcriptome between wheat genotypes, with contrasting levels of minerals in grains. A transcriptional comparison of developing grains was carried out between two wheat genotypes- Triticum aestivum Cv. WL711 (low grain mineral), and T. aestivum L. IITR26 (high grain mineral), using Affymetrix GeneChip Wheat Genome Array. The study identified a total of 580 probe sets as differentially expressed (with log2 fold change of ≥2 at p≤0.01) between the two genotypes, during grain filling. Transcripts with significant differences in induction or repression between the two genotypes included genes related to metal homeostasis, metal tolerance, lignin and flavonoid biosynthesis, amino acid and protein transport, vacuolar-sorting receptor, aquaporins, and stress responses. Meta-analysis revealed spatial and temporal signatures of a majority of the differentially regulated transcripts.
Collapse
|