1
|
Zdunek-Zastocka E, Michniewska B, Pawlicka A, Grabowska A. Cadmium Alters the Metabolism and Perception of Abscisic Acid in Pisum sativum Leaves in a Developmentally Specific Manner. Int J Mol Sci 2024; 25:6582. [PMID: 38928288 PMCID: PMC11203977 DOI: 10.3390/ijms25126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, β-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland (A.P.)
| | | | | | | |
Collapse
|
2
|
Smith AB, Ganguly DR, Moore M, Bowerman AF, Janapala Y, Shirokikh NE, Pogson BJ, Crisp PA. Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:818-839. [PMID: 37947266 PMCID: PMC10952913 DOI: 10.1111/tpj.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.
Collapse
Affiliation(s)
- Aaron B. Smith
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marten Moore
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Andrew F. Bowerman
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yoshika Janapala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Shine‐Dalgarno Centre for RNA InnovationThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Barry J. Pogson
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Peter A. Crisp
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
3
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
4
|
The Eucalyptus grandis chloroplast proteome: Seasonal variations in leaf development. PLoS One 2022; 17:e0265134. [PMID: 36048873 PMCID: PMC9436043 DOI: 10.1371/journal.pone.0265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Chloroplast metabolism is very sensitive to environmental fluctuations and is intimately related to plant leaf development. Characterization of the chloroplast proteome dynamics can contribute to a better understanding on plant adaptation to different climate scenarios and leaf development processes. Herein, we carried out a discovery-driven analysis of the Eucalyptus grandis chloroplast proteome during leaf maturation and throughout different seasons of the year. The chloroplast proteome from young leaves differed the most from all assessed samples. Most upregulated proteins identified in mature and young leaves were those related to catabolic-redox signaling and biogenesis processes, respectively. Seasonal dynamics revealed unique proteome features in the fall and spring periods. The most abundant chloroplast protein in humid (wet) seasons (spring and summer) was a small subunit of RuBisCO, while in the dry periods (fall and winter) the proteins that showed the most pronounced accumulation were associated with photo-oxidative damage, Calvin cycle, shikimate pathway, and detoxification. Our investigation of the chloroplast proteome dynamics during leaf development revealed significant alterations in relation to the maturation event. Our findings also suggest that transition seasons induced the most pronounced chloroplast proteome changes over the year. This study contributes to a more comprehensive understanding on the subcellular mechanisms that lead to plant leaf adaptation and ultimately gives more insights into Eucalyptus grandis phenology.
Collapse
|
5
|
Pérez-Llorca M, Caselles V, Müller M, Munné-Bosch S. The threshold between life and death in Cistus albidus L. seedlings: mechanisms underlying drought tolerance and resilience. TREE PHYSIOLOGY 2021; 41:1861-1876. [PMID: 33864363 DOI: 10.1093/treephys/tpab047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Drought can lead to important shifts in population dynamics if it occurs during seedling establishment. With the aim of elucidating the underlying mechanisms of drought tolerance and resilience, here we monitored the survival of seedlings of the Mediterranean shrub Cistus albidus L. throughout a year growing in the natural Park of the Montserrat Mountains (Spain) and, additionally, we studied the response to severe drought and subsequent recovery after rewatering of seedlings grown in growth chambers. To find possible mechanisms explaining how seedlings respond to drought, growth and survival together with physiological-related parameters such as chlorophyll contents, vitamin E and stress-related phytohormones were measured. We found that survival decreased by 30% at the end of summer and that the main proxy of seedling survival was total chlorophyll. This proxy was further confirmed in the growth chambers, where we found that seedlings that recovered from drought had higher levels of total chlorophyll compared with the seedlings that did not recover. Furthermore, modulation of vitamin E and jasmonates contents appeared to be crucial in the drought response of C. albidus seedlings. We propose a prediction model of survival that includes total chlorophyll height, leaf mass area and maximum photosystem II efficiency with chlorophyll contents being a good long-term predictor of C. albidus seedling survival under severe stress, which, in turn, could help to better foresee population fluctuations in the field.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
- Institute for Research on Biodiversity, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Vicent Caselles
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
- Institute for Research on Biodiversity, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
6
|
Carvalho LC, Vieira C, Abreu MM, Magalhães MCF. Physiological response of Cistus salviifolius L. to high arsenic concentrations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2305-2319. [PMID: 31473873 DOI: 10.1007/s10653-019-00389-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is a trace element found in the environment which can be particularly toxic to living organisms. However, some plant species such as those of the genus Cistus are able to grow in soils with high As concentrations and could be used in the sustainable rehabilitation of mining areas through phytostabilization. In this work, the growth and the physiological response of Cistus salviifolius L. to As-induced oxidative stress at several concentrations (reaching 30 mg L-1) in an hydroponic system were evaluated for 30 days. Several growth parameters, chlorophyll content, chemical composition, one indicator of oxidative stress (H2O2) and two of the major antioxidative metabolites (ascorbate and glutathione) were analysed. The toxic effect of As was better perceived in the plants submitted to treatments with concentrations of 20 and 30 mg As L-1. Plants subjected to these treatments had higher concentration of As in roots and shoots. The concentrations of Ca, Mg, K and Fe in the plants as well as a large part of the evaluated growth parameters were also affected. Arsenic did not interfere with the ability of the plant to perform photosynthesis, as there were no significant differences in the contents of chlorophyll a, b and total between the different treatments. Plants from all treatments accumulated higher amount of As in roots than in shoots, and it was also in the roots that the concentrations of H2O2, AsA and GSH were higher. Cistus salviifolius showed high tolerance to As up to the concentration of 5 mg L-1, which makes it a species with high potential to be used in the phytostabilization of soils contaminated with As and presenting high concentrations of the element in the soil solution.
Collapse
Affiliation(s)
- Luísa C Carvalho
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal.
| | - Cláudia Vieira
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Abreu
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Clara F Magalhães
- Departamento de Química and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Czékus Z, Csíkos O, Ördög A, Tari I, Poór P. Effects of Jasmonic Acid in ER Stress and Unfolded Protein Response in Tomato Plants. Biomolecules 2020; 10:biom10071031. [PMID: 32664460 PMCID: PMC7407312 DOI: 10.3390/biom10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Endoplasmic reticulum (ER) stress elicits a protective mechanism called unfolded protein response (UPR) to maintain cellular homeostasis, which can be regulated by defence hormones. In this study, the physiological role of jasmonic acid (JA) in ER stress and UPR signalling has been investigated in intact leaves of tomato plants. Exogenous JA treatments not only induced the transcript accumulation of UPR marker gene SlBiP but also elevated transcript levels of SlIRE1 and SlbZIP60. By the application of JA signalling mutant jai1 plants, the role of JA in ER stress sensing and signalling was further investigated. Treatment with tunicamycin (Tm), the inhibitor of N-glycosylation of secreted glycoproteins, increased the transcript levels of SlBiP. Interestingly, SlIRE1a and SlIRE1b were significantly lower in jai1. In contrast, the transcript accumulation of Bax Inhibitor-1 (SlBI1) and SlbZIP60 was higher in jai1. To evaluate how a chemical chaperone modulates Tm-induced ER stress, plants were treated with sodium 4-phenylbutyrate, which also decreased the Tm-induced increase in SlBiP, SlIRE1a, and SlBI1 transcripts. In addition, it was found that changes in hydrogen peroxide content, proteasomal activity, and lipid peroxidation induced by Tm is regulated by JA, while nitric oxide was not involved in ER stress and UPR signalling in leaves of tomato.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
- Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Orsolya Csíkos
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
- Correspondence:
| |
Collapse
|
8
|
Proteomic analyses unraveling water stress response in two Eucalyptus species originating from contrasting environments for aridity. Mol Biol Rep 2020; 47:5191-5205. [PMID: 32564226 DOI: 10.1007/s11033-020-05594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.
Collapse
|
9
|
Cotado A, Munné-Bosch S, Pintó-Marijuan M. Strategies for severe drought survival and recovery in a Pyrenean relict species. PHYSIOLOGIA PLANTARUM 2020; 169:276-290. [PMID: 32072645 DOI: 10.1111/ppl.13072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In the context of future climate change new habitats will be threatened and unique species will be forced to develop different strategies to survive. Saxifraga longifolia Lapeyr. is an endemic species from the Pyrenees with a very particular habitat. We explored the capacity and strategies of S. longifolia plants to face different severities of drought stress under both natural conditions and controlled water stress followed by a re-watering period of 20 days. Our results showed a role for abscisic acid (ABA), salicylic acid (SA) and cytokinins (CKs) in plant survival from drought stress, and as the stress increased, ABA lost significance and SA appeared to be more associated with the response mechanisms. Moreover, photo-oxidative stress markers revealed that both xanthophyll cycles played a photoprotection role with a stronger participation of the lutein epoxide cycle as the stress was more intense. Severe drought decreased the maximum efficiency of photosystem II (Fv /Fm ) below 0.45, being this the limit to survive upon rewatering. Overall, our results proved different strategies of S. longifolia plants to cope with drought stress and suggested a Fv /Fm threshold to predict plant survival in high-mountain environments.
Collapse
Affiliation(s)
- Alba Cotado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
10
|
Jiang Z, Jin F, Shan X, Li Y. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings. Int J Mol Sci 2019; 20:ijms20235956. [PMID: 31779286 PMCID: PMC6928945 DOI: 10.3390/ijms20235956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Drought stress, especially during the seedling stage, seriously limits the growth of maize and reduces production in the northeast of China. To investigate the molecular mechanisms of drought response in maize seedlings, proteome changes were analyzed. Using an isotopic tagging relative quantitation (iTRAQ) based method, a total of 207 differentially accumulated protein species (DAPS) were identified under drought stress in maize seedlings. The DAPS were classified into ten essential groups and analyzed thoroughly, which involved in signaling, osmotic regulation, protein synthesis and turnover, reactive oxygen species (ROS) scavenging, membrane trafficking, transcription related, cell structure and cell cycle, fatty acid metabolism, carbohydrate and energy metabolism, as well as photosynthesis and photorespiration. The enhancements of ROS scavenging, osmotic regulation, protein turnover, membrane trafficking, and photosynthesis may play important roles in improving drought tolerance of maize seedlings. Besides, the inhibitions of some protein synthesis and slowdown of cell division could reduce the growth rate and avoid excessive water loss, which is possible to be the main reasons for enhancing drought avoidance of maize seedlings. The incongruence between protein and transcript levels was expectedly observed in the process of confirming iTRAQ data by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, which further indicated that the multiplex post-transcriptional regulation and post-translational modification occurred in drought-stressed maize seedlings. Finally, a hypothetical strategy was proposed that maize seedlings coped with drought stress by improving drought tolerance (via. promoting osmotic adjustment and antioxidant capacity) and enhancing drought avoidance (via. reducing water loss). Our study provides valuable insight to mechanisms underlying drought response in maize seedlings.
Collapse
Affiliation(s)
- Zhilei Jiang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China; (Z.J.); (F.J.)
| | - Fengxue Jin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China; (Z.J.); (F.J.)
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (X.S.); (Y.L.)
| | - Yidan Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China; (Z.J.); (F.J.)
- Correspondence: (X.S.); (Y.L.)
| |
Collapse
|
11
|
Pérez-Llorca M, Casadesús A, Munné-Bosch S, Müller M. Contrasting patterns of hormonal and photoprotective isoprenoids in response to stress in Cistus albidus during a Mediterranean winter. PLANTA 2019; 250:1409-1422. [PMID: 31286198 DOI: 10.1007/s00425-019-03234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 06/09/2023]
Abstract
Seasonal accumulation of hormonal and photoprotective isoprenoids, particularly α-tocopherol, carotenoids and abscisic acid, indicate their important role in protecting Cistus albidus plants from environmental stress during a Mediterranean winter. The high diurnal amounts of α-tocopherol and xanthophylls 3 h before maximum light intensity suggest a photoprotective response against the prevailing diurnal changes. The timing to modulate acclimatory/defense responses under changing environmental conditions is one of the most critical points for plant fitness and stress tolerance. Here, we report seasonal and diurnal changes in the contents of isoprenoids originated from the methylerythritol phosphate pathway, including chlorophylls, carotenoids, tocochromanols, and phytohormones (abscisic acid, cytokinins, and gibberellins) in C. albidus during a Mediterranean winter. Plants were subjected not only to typically low winter temperatures but also to drought, as shown by a mean plant water status of 54% during the experimental period. The maximum PSII efficiency, however, remained consistently high (Fv/Fm > 0.8), proving that C. albidus had efficient mechanisms to tolerate combined stress conditions during winter. While seasonal α-tocopherol contents remained high (200-300 µg/g DW) during the experimental period, carotenoid contents increased during winter attaining maximum levels in February (minimum air temperature ≤ 5 °C for 13 days). Following the initial transient increases of bioactive trans-zeatin (about fivefold) during winter, the increased abscisic acid contents proved its important role during abiotic stress tolerance. Diurnal amounts of α-tocopherol and xanthophylls, particularly lutein, zeaxanthin and neoxanthin including the de-epoxidation state, reached maximum levels as early as 2 h after dawn, when solar intensity was 68% lower than the maximum solar radiation at noon. It is concluded that (1) given their proven antioxidant properties, both α-tocopherol and carotenoids seem to play a crucial role protecting the photosynthetic apparatus under severe stress conditions; (2) high seasonal amounts of abscisic acid indicate its important role in abiotic stress tolerance within plant hormones, although under specific environmental conditions, accumulation of bioactive cytokinins appears to be involved to enhance stress tolerance; (3) the concerted diurnal adjustment of α-tocopherol and xanthophylls as early as 3 h before maximum light intensity suggests that plants anticipated the predictable diurnal changes in the environment to protect the photosynthetic apparatus.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Ciccarelli D, Bottega S, Spanò C. Study of functional and physiological response of co-occurring shrub species to the Mediterranean climate. Saudi J Biol Sci 2019; 26:1668-1675. [PMID: 31762642 PMCID: PMC6864201 DOI: 10.1016/j.sjbs.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/24/2023] Open
Abstract
The Mediterranean basin is characterised by increasingly dry summers and the study of the adaptive traits developed by plants living in this stressful environment is of great interest, also in relation to climate projections for this area. Cistus monspeliensis, Myrtus communis and Phillyrea angustifolia are three co-occurring shrubs typical of the Mediterranean maquis. Their functional and physiological parameters were studied in spring, summer and autumn in order to highlight adjustments of these traits and to test eventual different adaptive strategies. Soil and leaf chemical characteristics were determined in the different seasons. Leaf area, specific leaf area, leaf dry matter content, succulence index, pigment contents hydric status and main markers of oxidative stress and antioxidant response were detected. The stressful summer season induced disturbance in hydric balance, decrease in succulence index and chlorophyll content and high contents of hydrogen peroxide. Thanks to higher enzymatic activities and total glutathione content, in the two evergreen species M. communis and P. angustifolia oxidative damage remained at levels equal to or lower than the other seasons. Only in the semideciduous C. monspeliensis both functional and biochemical traits showed a higher stress condition in summer. The higher stability of functional traits in the two evergreen species may be explained by the sclerophyllous nature of their leaves. Four environmental variables - Tmax, Tmin, soil conductivity and organic matter - mostly influenced NMDS segregation of these species.
Collapse
Affiliation(s)
| | | | - Carmelina Spanò
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56126 Pisa, Italy
| |
Collapse
|
13
|
Carvalho LC, Santos ES, Abreu MM. Unraveling the crucial role of the ascorbate-glutathione cycle in the resilience of Cistus monspeliensis L. to withstand high As concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:389-397. [PMID: 30634090 DOI: 10.1016/j.ecoenv.2018.12.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas of the Iberian Pyrite Belt. This species can accumulate high concentrations of As in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown in an Arenosol irrigated with aqueous nutrient solutions containing increasing concentrations of As (0, 1500, 5000, 10000, 15000 µM) and the effects of this metalloid on plant development and on the defence mechanisms against oxidative stress were monitored. Independently of the treatment, As was mainly retained in the roots. The plants with the highest concentrations of As in the shoots (> 5000 µM) showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production and also nutritional deficiencies. Most of the studied physiological parameters (pigments, glutathione, ascorbate and antioxidative enzymes) showed significant correlation with As concentration in roots and shoots. Pigments, especially anthocyanins, were negatively affected even in the treatments with the lowest As concentrations. Glutathione increased significantly in roots at low As levels while in shoots this increase occurred in all As treatments. Ascorbate decreased in both tissues with As addition. The highest concentrations of As in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by inducing the expression of genes coding antioxidative enzymes.
Collapse
Affiliation(s)
- Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal.
| | - Erika S Santos
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
| | - M Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Correia B, Hancock RD, Amaral J, Gomez-Cadenas A, Valledor L, Pinto G. Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That Are Not Activated When Subjected to Drought or Heat Stress Alone. FRONTIERS IN PLANT SCIENCE 2018; 9:819. [PMID: 29973941 PMCID: PMC6019450 DOI: 10.3389/fpls.2018.00819] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/28/2018] [Indexed: 05/08/2023]
Abstract
Aiming to mimic a more realistic field condition and to determine convergent and divergent responses of individual stresses in relation to their combination, we explored physiological, biochemical, and metabolomic alterations after drought and heat stress imposition (alone and combined) and recovery, using a drought-tolerant Eucalyptus globulus clone. When plants were exposed to drought alone, the main responses included reduced pre-dawn water potential (Ψpd) and gas exchange. This was accompanied by increases in malondialdehyde (MDA) and total glutathione, indicative of oxidative stress. Abscisic acid (ABA) levels increased while the content of jasmonic acid (JA) fell. Metabolic alterations included reductions in the levels of sugar phosphates accompanied by increases in starch and non-structural carbohydrates. Levels of α-glycerophosphate and shikimate were also reduced while free amino acids increased. On the other hand, heat alone triggered an increase in relative water content (RWC) and Ψpd. Photosynthetic rate and pigments were reduced accompanied by a reduction in water use efficiency. Heat-induced a reduction of salicylic acid (SA) and JA content. Sugar alcohols and several amino acids were enhanced by the heat treatment while starch, fructose-6-phosphate, glucose-6-phosphate, and α-glycerophosphate were reduced. Contrary to what was observed under drought, heat stress activated the shikimic acid pathway. Drought-stressed plants subject to a heat shock exhibited a sharp decrease in gas exchange, Ψpd and JA, no alterations in electrolyte leakage, MDA, starch, and pigments and increased glutathione pool in relation to control. Comparing this with drought stress alone, subjecting drought stressed plants to an additional heat stress alleviated Ψpd and MDA, maintained an increased glutathione pool and reduced starch content and non-structural carbohydrates. A novel response triggered by the combined stress was the accumulation of cinnamate. Regarding recovery, most of the parameters affected by each stress condition reversed after re-establishment of control growing conditions. These results highlight that the combination of drought and heat provides significant protection from more detrimental effects of drought-stressed eucalypts, confirming that combined stress alter plant metabolism in a novel manner that cannot be extrapolated by the sum of the different stresses applied individually.
Collapse
Affiliation(s)
- Barbara Correia
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Robert D. Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Joana Amaral
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Aurelio Gomez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
| | - Glória Pinto
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Yan W, Zheng S, Zhong Y, Shangguan Z. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia. Sci Rep 2017; 7:4470. [PMID: 28667337 PMCID: PMC5493649 DOI: 10.1038/s41598-017-04760-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/19/2017] [Indexed: 11/25/2022] Open
Abstract
Leaf gas exchange is closely associated with water relations; however, less attention has been given to this relationship over successive drought events. Dynamic changes in gas exchange and water potential in the seedlings of two woody species, Amorpha fruticosa and Robinia pseudoacacia, were monitored during recurrent drought. The pre-dawn leaf water potential declined in parallel with gas exchange in both species, and sharp declines in gas exchange occurred with decreasing water potential. A significant correlation between pre-dawn water potential and gas exchange was observed in both species and showed a right shift in R. pseudoacacia in the second drought. The results suggested that stomatal closure in early drought was mediated mainly by elevated foliar abscisic acid (ABA) in R. pseudoacacia, while a shift from ABA-regulated to leaf-water-potential-driven stomatal closure was observed in A. fruticosa. After re-watering, the pre-dawn water potential recovered quickly, whereas stomatal conductance did not fully recover from drought in R. pseudoacacia, which affected the ability to tightly control transpiration post-drought. The dynamics of recovery from drought suggest that stomatal behavior post-drought may be restricted mainly by hydraulic factors, but non-hydraulic factors may also be involved in R. pseudoacacia.
Collapse
Affiliation(s)
- Weiming Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Shuxia Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yangquanwei Zhong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
16
|
Yin Z, Ren J, Zhou L, Sun L, Wang J, Liu Y, Song X. Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses. Proteome Sci 2017; 15:9. [PMID: 28503099 PMCID: PMC5422899 DOI: 10.1186/s12953-017-0117-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry (Cerasus humilis) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. METHODS Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. RESULTS Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis. Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. CONCLUSIONS WD promoted the CO2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under WD.
Collapse
Affiliation(s)
- Zepeng Yin
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- State Key Laboratory of Tree Genetic sand Breeding, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866 People’s Republic of China
| | - Jing Ren
- College of Food Science; Key Laboratory of Dairy Science, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030 People’s Republic of China
| | - Lijuan Zhou
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Lina Sun
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiewan Wang
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Yulong Liu
- Forest Engineering and Environment Research Institute of Heilongjiang Province, No. 134 Haping Road, Nangang District, Harbin, Heilongjiang 150081 People’s Republic of China
| | - Xingshun Song
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- State Key Laboratory of Tree Genetic sand Breeding, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| |
Collapse
|
17
|
Cao Y, Luo Q, Tian Y, Meng F. Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots. BMC PLANT BIOLOGY 2017; 17:53. [PMID: 28241796 PMCID: PMC5327565 DOI: 10.1186/s12870-017-1000-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/10/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plants are oftentimes exposed to many types of abiotic stresses. Drought is one of the main environmental stresses which limits plant growth, distribution and crop yield worldwide. Amygdalus mira (Koehne) Yü et Lu is an important wild peach, and it is considered an ideal wild peach germplasm for improving cultivated peach plants. Because of the loss of genetic variation, cultivated peach plants are sensitive to biotic and abiotic stresses. Wild peach germplasm can offer many useful genes for peach improvement. Responses to drought by withholding water have been studied in Amygdalus mira (Koehne) Yü et Lu roots. In this study, plants were divided into well-watered (control) and water-stressed (treatment) groups, and the treatment group did not receive water until the recovery period (day 16). RESULTS Several physiological parameters, including root water content and root length, were reduced by drought stress and recovered after rewatering. In addition, the relative conductivity, the levels of proline, MDA and H2O2, and the activities of ROS scavenging enzymes (POD, APX and CAT) were increased, and none of these factors, except the level of proline, recovered after rewatering. In total, 95 differentially expressed proteins were revealed after drought. The identified proteins refer to a extensive range of biological processes, molecular functions and cellular components, including cytoskeleton dynamics (3.16% of the total 95 proteins), carbohydrate and nitrogen metabolism (6.33% of the total 95 proteins), energy metabolism (7.37% of the total 95 proteins), transcription and translation (18.95% of the total 95 proteins), transport (4.21% of the total 95 proteins), inducers (3.16% of the total 95 proteins), stress and defense (26.31% of the total 95 proteins), molecular chaperones (9.47% of the total 95 proteins), protein degradation (3.16% of the total 95 proteins), signal transduction (7.37% of the total 95 proteins), other materials metabolism (5.26% of the total 95 proteins) and unknown functions (5.26% of the total 95 proteins). Proteins related to defense, stress, transcription and translation play an important role in drought response. In addition, we also examined the correlation between protein and transcript levels. CONCLUSIONS The interaction between enzymatic and non-enzymatic antioxidants, the levels of proline, MDA, H2O2 and the relative conductivity, and the expression level of proteins in drought-treated plants all contribute to drought resistance in Amygdalus mira (Koehne) Yü et Lu.
Collapse
Affiliation(s)
- Yuan Cao
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Qiuxiang Luo
- Key Laboratory of Saline-Alkaline Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Yan Tian
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
18
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
19
|
Dworak A, Nykiel M, Walczak B, Miazek A, Szworst-Łupina D, Zagdańska B, Kiełkiewicz M. Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. PLANTA 2016; 244:939-60. [PMID: 27334025 PMCID: PMC5018026 DOI: 10.1007/s00425-016-2559-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/13/2016] [Indexed: 05/20/2023]
Abstract
In maize, leaf proteome responses evoked by soil drought applied separately differ from those evoked by mite feeding or both types of stresses occurring simultaneously. This study focuses on the involvement of proteomic changes in defence responses of a conventional maize cultivar (Bosman) to the two-spotted spider mite infestation, soil drought and both stresses coexisting for 6 days. Under watering cessation or mite feeding applied separately, the protein carbonylation was not directly linked to the antioxidant enzymes' activities. Protein carbonylation increased at higher and lower SOD, APX, GR, POX, PPO activities following soil drought and mite feeding, respectively. Combination of these stresses resulted in protein carbonylation decrease despite the increased activity of all antioxidant enzymes (except the CAT). However, maize protein network modification remains unknown upon biotic/abiotic stresses overlapping. Here, using multivariate chemometric methods, 94 leaf protein spots (out of 358 considered; 2-DE) were identified (LC-MS/MS) as differentiating the studied treatments. Only 43 of them had individual discrimination power. The soil drought increased abundance of leaf proteins related mainly to photosynthesis, carbohydrate metabolism, defence (molecular chaperons) and protection. On the contrary, mite feeding decreased the abundance of photosynthesis related proteins and enhanced the abundance of proteins protecting the mite-infested leaf against photoinhibition. The drought and mites occurring simultaneously increased abundance of proteins that may improve the efficiency of carbon fixation, as well as carbohydrate and amino acid metabolism. Furthermore, increased abundance of the Rubisco large subunit-binding protein (subunit β), fructose-bisphosphate aldolase and mitochondrial precursor of Mn-SOD and decreased abundance of the glycolysis-related enzymes in the mite-free leaf (in the vicinity of mite-infested leaf) illustrate the involvement of these proteins in systemic maize response to mite feeding.
Collapse
Affiliation(s)
- Anna Dworak
- Section of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Beata Walczak
- Institute of Chemistry, Silesian University, 9 Szkolna, 40-006, Katowice, Poland
| | - Anna Miazek
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Dagmara Szworst-Łupina
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Barbara Zagdańska
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland
| | - Małgorzata Kiełkiewicz
- Section of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska, 02-776, Warsaw, Poland.
| |
Collapse
|
20
|
Arenas-Lago D, Carvalho LC, Santos ES, Abreu MM. The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:219-227. [PMID: 27054705 DOI: 10.1016/j.ecoenv.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas from the Iberian Pyrite Belt. This species can have high concentrations of Zn in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown at several concentrations of Zn(2+) (0, 500, 1000, 1500, 2000µM) and the effects of this metal on plant development and on the defence mechanisms against oxidative stress were evaluated. Independently of the treatment, Zn was mainly retained in the roots. The plants with the highest concentrations of Zn showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production. At 2000µM of Zn, the dry biomass of the shoots decreased significantly. High concentrations of Zn in shoots did not induce deficiencies of other nutrients, except Cu. Plants with high concentrations of Zn had low amounts of chlorophyll, anthocyanins and glutathione and high contents of H2O2. The highest concentrations of Zn in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by triggering antioxidative enzyme activity and by direct reactive oxygen species (ROS) scavenging through carotenoids, that are unaffected by stress due to stabilisation by ascorbic acid.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Universidad de Vigo, Department of Plant Biology and Soil Science, Vigo, Spain.
| | - Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Erika S Santos
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação em Ciências do Ambiente e Empresariais, Instituto Superior Dom Afonso III, Loulé, Portugal
| | - M Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Wujeska-Klause A, Bossinger G, Tausz M. The concentration of ascorbic acid and glutathione in 13 provenances of Acacia melanoxylon. TREE PHYSIOLOGY 2016; 36:524-532. [PMID: 26960387 DOI: 10.1093/treephys/tpw008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Climate change can negatively affect sensitive tree species, affecting their acclimation and adaptation strategies. A common garden experiment provides an opportunity to test whether responses of trees from different provenances are genetically driven and if this response is related to factors at the site of origin. We hypothesized that antioxidative defence systems and leaf mass area ofAcacia melanoxylonR. Br. samples collected from different provenances will vary depending on local rainfall. Thirteen provenances ofA. melanoxylonoriginating from different rainfall habitats (500-2000 mm) were grown for 5 years in a common garden. For 2 years, phyllode samples were collected during winter and summer, for measurements of leaf mass area and concentrations of glutathione and ascorbic acid. Leaf mass area varied between seasons, years and provenances ofA. melanoxylon, and an increase was associated with decreasing rainfall at the site of origin. Ascorbic acid and glutathione concentrations varied between seasons, years (i.e., environmental factors) and among provenances ofA. melanoxylon In general, glutathione and ascorbic acid concentrations were higher in winter compared with summer. Ascorbic acid and glutathione were different among provenances, but this was not associated with rainfall at the site of origin.
Collapse
Affiliation(s)
- Agnieszka Wujeska-Klause
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia
| | - Michael Tausz
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia
| |
Collapse
|
22
|
Lyon D, Castillejo MA, Mehmeti-Tershani V, Staudinger C, Kleemaier C, Wienkoop S. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula. Mol Cell Proteomics 2016; 15:1921-37. [PMID: 27001437 PMCID: PMC5083093 DOI: 10.1074/mcp.m115.049205] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 11/17/2022] Open
Abstract
Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth. During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula. The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants. Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible new targets as well as metabolic mechanisms for future plant-bioengineering toward enhanced drought stress tolerance are presented.
Collapse
Affiliation(s)
- David Lyon
- From the ‡Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | | | - Vlora Mehmeti-Tershani
- From the ‡Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Christiana Staudinger
- From the ‡Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Christoph Kleemaier
- From the ‡Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- From the ‡Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|