1
|
Ritter K, Rissel R, Renz M, Ziebart A, Schäfer MKE, Kamuf J. Nebulized Lipopolysaccharide Causes Delayed Cortical Neuroinflammation in a Murine Model of Acute Lung Injury. Int J Mol Sci 2024; 25:10117. [PMID: 39337602 PMCID: PMC11432715 DOI: 10.3390/ijms251810117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Lung injury caused by respiratory infection is a major cause of hospitalization and mortality and a leading origin of sepsis. Sepsis-associated encephalopathy and delirium are frequent complications in patients with severe lung injury, yet the pathogenetic mechanisms remain unclear. Here, 70 female C57BL/6 mice were subjected to a single full-body-exposure with nebulized lipopolysaccharide (LPS). Neuromotor impairment was assessed repeatedly and brain, blood, and lung samples were analyzed at survival points of 24 h, 48 h, 72 h, and 96 h after exposure. qRT-PCR revealed increased mRNA-expression of TNFα and IL-1β 24 h and 48 h after LPS-exposure in the lung, concomitantly with increased amounts of proteins in bronchoalveolar lavage and interstitial lung edema. In the cerebral cortex, at 72 h and/or 96 h after LPS exposure, the inflammation- and activity-associated markers TLR4, GFAP, Gadd45b, c-Fos, and Arc were increased. Therefore, single exposure to nebulized LPS not only triggers an early inflammatory reaction in the lung but also induces a delayed neuroinflammatory response. The identified mechanisms provide new insights into the pathogenesis of sepsis-associated encephalopathy and might serve as targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - René Rissel
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Miriam Renz
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes-Gutenberg-University, 55131 Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Jens Kamuf
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
2
|
Laohavisudhi K, Sriwichaiin S, Attachaipanich T, Wittayachamnankul B, Chattipakorn N, Chattipakorn S. Mechanistic insights into Lipocalin-2 in ischemic stroke and hemorrhagic brain injury: Integrating animal and clinical studies. Exp Neurol 2024; 379:114885. [PMID: 38996863 DOI: 10.1016/j.expneurol.2024.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Brain injuries, including strokes and traumatic brain injuries (TBI), are a major global health concern, contributing significantly to both mortality and long-term disability. Recent research has identified lipocalin-2 (LCN2), a glycoprotein secreted by various brain cells, as a key factor in influencing brain injury outcomes. Evidence from animal and clinical studies firmly establishes the pivotal role of LCN2 in driving the inflammatory responses triggered by damage to brain tissue. Furthermore, increased LCN2 promotes cellular differentiation, blood-brain barrier breakdown, and decreases cell viability. Interventions with LCN2 inhibitors attenuated brain injury through a reduction in the inflammation process and enhanced cellular viability. Potential mechanisms of LCN2 involve several pathways including the Janus kinase-2 (JAK2)-signal transducers and the transcription-3 (STAT3) signaling, hypoxia-inducible factor 1-alpha (HIF-1α)-LCN2-vascular endothelial growth factor alpha (VEGFα), and the PKR-like ER kinase (PERK) pathways. LCN2 itself interacts with diverse inflammatory cytokines in TBI and intracranial hemorrhage (ICH), resulting in disruption of the blood-brain barrier, increased programmed cell death, and an imbalance in iron homeostasis. Clinical studies have also shown that increased LCN2 level can act as a prognostic biomarker of outcomes following brain injuries. Therefore, this review aims to comprehensively evaluate the role and underlying mechanisms of LCN2 in brain injuries, including stroke and TBI, and explore potential therapeutic interventions targeting LCN2 in these conditions.
Collapse
Affiliation(s)
- Korsin Laohavisudhi
- Department of Emergency Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Borwon Wittayachamnankul
- Department of Emergency Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Staib-Lasarzik I, Gölz C, Bobkiewiecz W, Somnuke P, Sebastiani A, Thal SC, Schäfer MK. Sortilin is dispensable for secondary injury processes following traumatic brain injury in mice. Heliyon 2024; 10:e35198. [PMID: 39170542 PMCID: PMC11336488 DOI: 10.1016/j.heliyon.2024.e35198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Traumatic brain injury (TBI) is characterized by complex secondary injury processes involving the p75 neurotrophin receptor (p75NTR), which has been proposed as a possible therapeutic target. However, the pathogenic role of the p75NTR co-receptor sortilin in TBI has not been investigated. In this study, we examined whether sortilin contributes to acute and early processes of secondary injury using a murine controlled cortical impact (CCI) model of TBI. Initial expression analysis showed a down-regulation of sortilin mRNA levels 1 and 5 day post injury (dpi) and a reduced expression of sortilin protein 1 dpi. Next, a total of 40 SortilinΔExon14 loss-of-function mouse mutants (Sort1-/-) and wild-type (Sort1+/+) littermate mice were subjected to CCI and examined at 1 and 5 dpi. Neither sensorimotor deficits or brain lesion size nor CCI-induced cell death or calcium-dependent excitotoxicity as evaluated by TUNEL staining or Western blot analysis of alpha II spectrin breakdown products were different between Sort1-/- and Sort1+/+ mice. In addition, CCI induced the up-regulation of pro-inflammatory marker mRNA expression (Il6, Tnfa, Aif1, and Gfap) irrespectively of the genotype. Similarly, the mRNA expressions of neurotrophins (Bdnf, Ngf, Nt3), VPS10P domain receptors others than sortilin (Ngfr, Sorl1, Sorcs2), and the sortilin interactor progranulin were not affected by genotype. Our results suggest that sortilin is a modulatory rather than a critical factor in the acute and early brain tissue response after TBI.
Collapse
Affiliation(s)
- Irina Staib-Lasarzik
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wieslawa Bobkiewiecz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K.E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Ritter K, Baalmann M, Dolderer C, Ritz U, Schäfer MKE. Brain-Bone Crosstalk in a Murine Polytrauma Model Promotes Bone Remodeling but Impairs Neuromotor Recovery and Anxiety-Related Behavior. Biomedicines 2024; 12:1399. [PMID: 39061973 PMCID: PMC11274630 DOI: 10.3390/biomedicines12071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Traumatic brain injury (TBI) and long bone fractures are a common injury pattern in polytrauma patients and modulate each other's healing process. As only a limited number of studies have investigated both traumatic sites, we tested the hypothesis that brain-bone polytrauma mutually impacts neuro- and osteopathological outcomes. Adult female C57BL/6N mice were subjected to controlled cortical impact (CCI), and/or osteosynthetic stabilized femoral fracture (FF), or sham surgery. Neuromotor and behavioral impairments were assessed by neurological severity score, open field test, rotarod test, and elevated plus maze test. Brain and bone tissues were processed 42 days after trauma. CCI+FF polytrauma mice had increased bone formation as compared to FF mice and increased mRNA expression of bone sialoprotein (BSP). Bone fractures did not aggravate neuropathology or neuroinflammation assessed by cerebral lesion size, hippocampal integrity, astrocyte and microglia activation, and gene expression. Behavioral assessments demonstrated an overall impaired recovery of neuromotor function and persistent abnormalities in anxiety-related behavior in polytrauma mice. This study shows enhanced bone healing, impaired neuromotor recovery and anxiety-like behavior in a brain-bone polytrauma model. However, bone fractures did not aggravate TBI-evoked neuropathology, suggesting the existence of outcome-relevant mechanisms independent of the extent of brain structural damage and neuroinflammation.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| | - Markus Baalmann
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| | - Christopher Dolderer
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.D.); (U.R.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.D.); (U.R.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| |
Collapse
|
5
|
Jansen JM. Mediating effects of impulsivity and alexithymia in the association between traumatic brain injury and aggression in incarcerated males. Aggress Behav 2023; 49:629-642. [PMID: 37405946 DOI: 10.1002/ab.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Studies suggest both alexithymia and impulsivity (partially) explain aggressive behavior in traumatic brain injury (TBI) patients, but none of these studies use both questionnaire and performance-based measures as recommended, nor simultaneously investigate both impulsivity and alexithymia. The available studies therefore likely miss part of the constructs of alexithymia and impulsivity, and do not comprehensively assess the mediating effects of both constructs in the relationship between TBI and aggression. A sample of N = 281 incarcerated individuals were recruited from Dutch penitentiary institutions, and completed the Buss Perry Aggression Questionnaire (aggression), BIS-11 (impulsivity) and Toronto Alexithymia Scale-20 (alexithymia) questionnaires, as well as a stop-signal task and an emotion recognition paradigm. Several multiple mediation analyses were conducted using structural equation modelling, to assess the viability of a causal theoretical model of aggression. The final planned models were the original models with a good fit with the data (comparative fit index > 0.95, root mean square error of approximation and Standardized root mean square residual < 0.05), and results indicate that only questionnaire-based impulsivity mediated the relationship between TBI and aggression. TBI was unrelated to alexithymia, stop-signal or emotion recognition performance. Aggression was predicted by both alexithymia and impulsivity, but not by the performance measures. Post hoc analyses shows that alexithymia moderates the relationship between impulsivity and aggression. These results imply that aggressive incarcerated individuals showing impulsive behavior should be screened for TBI, since TBI is often overlooked or misdiagnosed, and indicate that both impulsivity and alexithymia are potential focus points for aggression reduction treatment in TBI patients.
Collapse
Affiliation(s)
- Jochem M Jansen
- Institute for Criminal Law & Criminology, Faculty of Law, Leiden University, Leiden, Netherlands
- Arkin, Amsterdam, Netherlands
| |
Collapse
|
6
|
Timotius IK, Roelofs RF, Richmond-Hacham B, Noldus LPJJ, von Hörsten S, Bikovski L. CatWalk XT gait parameters: a review of reported parameters in pre-clinical studies of multiple central nervous system and peripheral nervous system disease models. Front Behav Neurosci 2023; 17:1147784. [PMID: 37351154 PMCID: PMC10284348 DOI: 10.3389/fnbeh.2023.1147784] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Automated gait assessment tests are used in studies of disorders characterized by gait impairment. CatWalk XT is one of the first commercially available automated systems for analyzing the gait of rodents and is currently the most used system in peer-reviewed publications. This automated gait analysis system can generate a large number of gait parameters. However, this creates a new challenge in selecting relevant parameters that describe the changes within a particular disease model. Here, for the first time, we performed a multi-disorder review on published CatWalk XT data. We identify commonly reported CatWalk XT gait parameters derived from 91 peer-reviewed experimental studies in mice, covering six disorders of the central nervous system (CNS) and peripheral nervous system (PNS). The disorders modeled in mice were traumatic brain injury (TBI), stroke, sciatic nerve injury (SNI), spinal cord injury (SCI), Parkinson's disease (PD), and ataxia. Our review consisted of parameter selection, clustering, categorization, statistical evaluation, and data visualization. It suggests that certain gait parameters serve as potential indicators of gait dysfunction across multiple disease models, while others are specific to particular models. The findings also suggest that the more site-specific the injury is, the fewer parameters are reported to characterize its gait abnormalities. This study strives to present a clearly organized picture of gait parameters used in each one of the different mouse models, potentially helping novel CatWalk XT users to apply this information to similar or related mouse models they are working on.
Collapse
Affiliation(s)
- Ivanna K. Timotius
- Department of Electronics Engineering, Satya Wacana Christian University, Salatiga, Indonesia
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bar Richmond-Hacham
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lucas P. J. J. Noldus
- Noldus Information Technology BV, Wageningen, Netherlands
- Donders Center for Neuroscience, Radboud University, Nijmegen, Netherlands
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lior Bikovski
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| |
Collapse
|
7
|
Timaru-Kast R, Coronel-Castello SP, Krämer TJ, Hugonnet AV, Schäfer MKE, Sebastiani A, Thal SC. AT 1 inhibition mediated neuroprotection after experimental traumatic brain injury is dependent on neutrophils in male mice. Sci Rep 2023; 13:7413. [PMID: 37150755 PMCID: PMC10164737 DOI: 10.1038/s41598-023-33797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
After traumatic brain injury (TBI) cerebral inflammation with invasion of neutrophils and lymphocytes is a crucial factor in the process of secondary brain damage. In TBI the intrinsic renin-angiotensin system is an important mediator of cerebral inflammation, as inhibition of the angiotensin II receptor type 1 (AT1) reduces secondary brain damage and the invasion of neutrophil granulocytes into injured cerebral tissue. The current study explored the involvement of immune cells in neuroprotection mediated by AT1 inhibition following experimental TBI. Four different cohorts of male mice were examined, investigating the effects of neutropenia (anti-Ly6G antibody mediated neutrophil depletion; C57BL/6), lymphopenia (RAG1 deficiency, RAG1-/-), and their combination with candesartan-mediated AT1 inhibition. The present results showed that reduction of neutrophils and lymphocytes, as well as AT1 inhibition in wild type and RAG1-/- mice, reduced brain damage and neuroinflammation after TBI. However, in neutropenic mice, candesartan did not have an effect. Interestingly, AT1 inhibition was found to be neuroprotective in RAG1-/- mice but not in neutropenic mice. The findings suggest that AT1 inhibition may exert neuroprotection by reducing the inflammation caused by neutrophils, ultimately leading to a decrease in their invasion into cerebral tissue.
Collapse
Affiliation(s)
- Ralph Timaru-Kast
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Shila P Coronel-Castello
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias J Krämer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Faculty of Health, University of Witten/Herdecke, Alfred-Herrhausen-Strasse 50, 58455, Witten, Germany
| | - André V Hugonnet
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, HELIOS University Hospital Wuppertal, University of Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, HELIOS University Hospital Wuppertal, University of Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
8
|
Krämer TJ, Pickart F, Pöttker B, Gölz C, Neulen A, Pantel T, Goetz H, Ritter K, Schäfer MKE, Thal SC. Early DNase-I therapy delays secondary brain damage after traumatic brain injury in adult mice. Sci Rep 2023; 13:4348. [PMID: 36928073 PMCID: PMC10018640 DOI: 10.1038/s41598-023-30421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) causes the release of danger-associated molecular patterns (DAMP) from damaged or dead cells, which contribute to secondary brain damage after TBI. Cell-free DNA (cfDNA) is a DAMP known to cause disruption of the blood-brain barrier (BBB), promote procoagulant processes, brain edema, and neuroinflammation. This study tested the hypothesis that administration of deoxyribonuclease-I (DNase-I) has a beneficial effect after TBI. Mice (n = 84) were subjected to controlled cortical impact (CCI) and posttraumatic intraperitoneal injections of low dose (LD) or high dose (HD) of DNase-I or vehicle solution at 30 min and 12 h after CCI. LD was most effective to reduce lesion volume (p = 0.003), brain water content (p < 0.0001) and to stabilize BBB integrity (p = 0.019) 1 day post-injury (dpi). At 6 h post injury LD-treated animals showed less cleavage of fibrin (p = 0.0014), and enhanced perfusion as assessed by micro-computer-tomography (p = 0.027). At 5 dpi the number of Iba1-positive cells (p = 0.037) were reduced, but the number of CD45-positive cells, motoric function and brain lesion volume was not different. Posttraumatic-treatment with DNase-I therefore stabilizes the BBB, reduces the formation of brain edema, immune response, and delays secondary brain damage. DNase-I might be a new approach to extend the treatment window after TBI.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Faculty of Health, University Witten/Herdecke, Witten, Germany.
| | - Florian Pickart
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Hermann Goetz
- Cell Biology Unit, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
9
|
Ahluwalia M, Mcmichael H, Kumar M, Espinosa MP, Bosomtwi A, Lu Y, Khodadadi H, Jarrahi A, Khan MB, Hess DC, Rahimi SY, Vender JR, Vale FL, Braun M, Baban B, Dhandapani KM, Vaibhav K. Altered endocannabinoid metabolism compromises the brain-CSF barrier and exacerbates chronic deficits after traumatic brain injury in mice. Exp Neurol 2023; 361:114320. [PMID: 36627040 PMCID: PMC9904276 DOI: 10.1016/j.expneurol.2023.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Hannah Mcmichael
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Mario P Espinosa
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Asamoah Bosomtwi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - David C Hess
- Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Scott Y Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States of America; VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
10
|
Stelfa G, Svalbe B, Vavers E, Duritis I, Dambrova M, Zvejniece L. Moderate traumatic brain injury triggers long-term risks for the development of peripheral pain sensitivity and depressive-like behavior in mice. Front Neurol 2022; 13:985895. [PMID: 36203982 PMCID: PMC9531915 DOI: 10.3389/fneur.2022.985895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
As traumatic brain injury (TBI) is one of the major causes of permanent disability, there is increasing interest in the long-term outcome of TBI. While motor deficits, cognitive impairment and longer-term risks of neurodegenerative disease are well-established consequences in animal models of TBI, pain is discussed less often despite its high prevalence. The current study addresses the need to characterize the extent of chronic pain and long-term behavioral impairments induced by moderate lateral fluid percussion injury (latFPI) in mice up to 12 months post-TBI and evaluates the validity of the model. Adult male BALB/c mice were subjected to latFPI, and the results were compared with outcomes in sham-operated mice. Mouse behavior was assessed at 1 and 7 days and 1, 3, 6, 9, and 12 months post-injury using sensory-motor (neurological severity score, NSS), cold (acetone) and mechanical sensitivity (von Frey), depressive-like behavior (tail suspension), locomotor (open field), motor coordination (rotarod) and cognitive (Morris water maze, y-maze, passive avoidance) tests. Animals with TBI demonstrated significantly higher NSS than the sham-operated group for up to 9 months after the injury. Cold sensitization was significantly increased in the contralateral hind paw in the TBI group compared to that of the sham group at 3, 6, and 9 months after TBI. In the von Frey test, the withdrawal threshold of the contralateral and ipsilateral hind paws was reduced at 6 months after TBI and lasted for up to 12 months post-injury. latFPI induced progressive depressive-like behavior starting at 6 months post-injury. No significant deficits were observed in memory, motor coordination or locomotion over the 12-month assessment period. The present study demonstrates that moderate TBI in mice elicits long-lasting impairment of sensory-motor function, results in progressive depression and potentiates peripheral pain. Hence, the latFPI model provides a relevant preclinical setting for the study of the link between brain injury and chronic sequelae such as depression and peripheral pain.
Collapse
Affiliation(s)
- Gundega Stelfa
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
- *Correspondence: Gundega Stelfa
| | - Baiba Svalbe
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edijs Vavers
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Ilmars Duritis
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
11
|
Malik H, Wolff MD, Teskey GC, Mychasiuk R. Electrographic seizures and brain hyperoxia may be key etiological factors for post-concussive deficits. J Neurophysiol 2022; 128:727-737. [PMID: 35976074 PMCID: PMC9484996 DOI: 10.1152/jn.00533.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Repetitive mild traumatic brain injuries (RmTBIs) are increasingly recognized to have long-term neurological sequelae in a significant proportion of patients. Individuals that have had RmTBIs exhibit a variety of sensory, cognitive, or behavioral consequences that can negatively impact quality of life. Brain tissue oxygen levels (PO2) are normally maintained through exquisite regulation of blood supply to stay within the normoxic zone (18–30 mmHg in the rat hippocampus). However, during neurological events in which brain tissue oxygen levels leave the normoxic zone, neuronal dysfunction and behavioral deficits have been observed, and are frequently related to poorer prognoses. The oxygenation response in the brain after RmTBIs/repeated concussions has been poorly characterized, with most preliminary research limited to the neocortex. Furthermore, the mechanisms by which RmTBIs impact changes to brain oxygenation and vice versa remain to be determined. In the current study, we demonstrate that upon receiving RmTBIs, rats exhibit posttraumatic, electrographic seizures in the hippocampus, without behavioral (clinical) seizures, that are accompanied by a long-lasting period of hyperoxygenation. These electrographic seizures and the ensuing hyperoxic episodes are associated with deficits in working memory and motor coordination that were reversible through attenuation of the posttraumatic and postictal (postseizure) hyperoxia, via administration of a vasoconstricting agent, the calcium channel agonist Bay K8644. We propose that the posttraumatic period characterized by brain oxygenation levels well above the normoxic zone, may be the basis for some of the common symptoms associated with RmTBIs. NEW & NOTEWORTHY We monitor oxygenation and electrographic activity in the hippocampus, immediately before and after mild traumatic brain injury. We demonstrate that as the number of injuries increases from 1 to 3, the proportion of rats that exhibit electrographic seizures and hyperoxia increases. Moreover, the presence of electrographic seizures and hyperoxia are associated with postinjury behavioral impairments, and if the hyperoxia is blocked with Bay K8644, the behavioral deficits are eliminated.
Collapse
Affiliation(s)
- Haris Malik
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Richelle Mychasiuk
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychology, University of Calgary, Calgary, Canada.,Department of Neuroscience, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Yu E, Zhang E, Lv X, Yan L, Lin Z, Siaw-Debrah F, Zhang Y, Yang S, Ruan L, Zhuge Q, Ni H. LDC7559 Exerts Neuroprotective Effects by Inhibiting GSDMD-dependent Pyroptosis of Microglia in Mice with Traumatic Brain Injury. J Neurotrauma 2022; 40:742-757. [PMID: 35920115 DOI: 10.1089/neu.2021.0318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is considered one of a critical factor in the recovery of neurological function following traumatic brain injury. Brain injury activates a molecular signaling cascade associated with pyroptosis and inflammation, including NLRP3, inflammatory cytokines, caspase-1, gasdermin D (GSDMD), and other pyroptosis-related proteins. In this study, we explored the neuroprotective effects of LDC7559, a GSDMD inhibitor. Briefly, LDC7559, siRNA-GSDMD (si-GSDMD), or equal solvent was administrated to mice with a lipopolysaccharide + nigericin (LPS + Nig) model in vitro or with controlled cortical impact brain injury. The findings revealed that inflammation and pyroptosis levels were decreased by LDC7559 or si-GSDMD treatment both in vitro and in vivo. Immunofluorescence staining, brain water content, hematoxylin and eosin staining, and behavioral investigations suggested that LDC7559 or si-GSDMD inhibited microglial proliferation, ameliorated cerebral edema, reduced brain tissue loss, and promoted brain function recovery. Taken together, LDC7559 may inhibit pyroptosis and reduce inflammation by inhibiting GSDMD, thereby promoting the recovery of neurological function.
Collapse
Affiliation(s)
- Enxing Yu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,Ningbo City First Hospital, Department of Plastic and Reconstructive Surgery, Ningbo, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery,, Wenzhou, Zhejiang, China;
| | - Erjia Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China;
| | - Xinhuang Lv
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China;
| | - Lin Yan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Zhongxiao Lin
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Felix Siaw-Debrah
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,Korle Bu Teaching Hospital, Department of Neurosurgery, Korlebu teaching hospital, Accra, Greater Accra, Ghana;
| | - Ying Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Su Yang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Linhui Ruan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Qichuan Zhuge
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Haoqi Ni
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| |
Collapse
|
13
|
Duan M, Liu Y, Li F, Lu L, Chen YC. Cerebral blood flow network differences correlated with cognitive impairment in mild traumatic brain injury. Front Neurosci 2022; 16:969971. [PMID: 35937870 PMCID: PMC9355478 DOI: 10.3389/fnins.2022.969971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
Purpose To examine whether the cerebral blood flow (CBF) and CBF connectivity differences are sex-specific and whether these differences are correlated with cognitive impairment in mTBI. Methods Resting-state perfusion magnetic resonance imaging was performed in 40 patients with acute mTBI and 40 healthy controls by using pseudocontinuous arterial spin labeling within 14 days following injury. The differences in normalized CBF were first compared and CBF connectivity of the brain regions with significant CBF differences were compared next. The association between the normalized CBF and CBF connectivity differences and cognitive function were further investigated. Results Men patients had lower normalized CBF in the frontal gyrus, temporal gyrus and hippocampus and decreased negative CBF connectivity between brain regions including the hippocampus, temporal gyrus, postcentral gyrus and lenticular nucleus, putamen, compared with men controls. Women patients had lower normalized CBF in the frontal gyrus, however had higher normalized CBF in the temporal gyrus and hippocampus, compared with women controls. Additionally, women patients showed increased positive CBF connectivity between the seed region of interest (ROI) of the right inferior temporal gyrus and temporal gyrus and frontal gyrus, and had increased positive CBF connectivity between the seed ROI of the right hippocampus and the temporal gyrus. Furthermore, men patients had higher CBF in the right middle temporal gyrus and left precentral gyrus than women patients. Conclusion This study provides evidence of sex differences in both decreased and increased CBF and CBF connectivity and association with cognitive outcome in the acute stage after mTBI.
Collapse
Affiliation(s)
- Min Duan
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Liyan Lu,
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yu-Chen Chen,
| |
Collapse
|
14
|
Hahnefeld L, Vogel A, Gurke R, Geisslinger G, Schäfer MKE, Tegeder I. Phosphatidylethanolamine Deficiency and Triglyceride Overload in Perilesional Cortex Contribute to Non-Goal-Directed Hyperactivity after Traumatic Brain Injury in Mice. Biomedicines 2022; 10:biomedicines10040914. [PMID: 35453664 PMCID: PMC9033131 DOI: 10.3390/biomedicines10040914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) is often complicated by long-lasting disabilities, including headache, fatigue, insomnia, hyperactivity, and cognitive deficits. In a previous study in mice, we showed that persistent non-goal-directed hyperactivity is a characteristic post-TBI behavior that was associated with low levels of endocannabinoids in the perilesional cortex. We now analyzed lipidome patterns in the brain and plasma in TBI versus sham mice in association with key behavioral parameters and endocannabinoids. Lipidome profiles in the plasma and subcortical ipsilateral and contralateral brain were astonishingly equal in sham and TBI mice, but the ipsilateral perilesional cortex revealed a strong increase in neutral lipids represented by 30 species of triacylglycerols (TGs) of different chain lengths and saturation. The accumulation of TG was localized predominantly to perilesional border cells as revealed by Oil Red O staining. In addition, hexosylceramides (HexCer) and phosphatidylethanolamines (PE and ether-linked PE-O) were reduced. They are precursors of gangliosides and endocannabinoids, respectively. High TG, low HexCer, and low PE/PE-O showed a linear association with non-goal-directed nighttime hyperactivity but not with the loss of avoidance memory. The analyses suggest that TG overload and HexCer and PE deficiencies contributed to behavioral dimensions of post-TBI psychopathology.
Collapse
Affiliation(s)
- Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Alexandra Vogel
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Correspondence:
| |
Collapse
|
15
|
Ribonuclease-1 treatment after traumatic brain injury preserves blood-brain barrier integrity and delays secondary brain damage in mice. Sci Rep 2022; 12:5731. [PMID: 35388024 PMCID: PMC8986812 DOI: 10.1038/s41598-022-09326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) involves primary mechanical damage and delayed secondary damage caused by vascular dysfunction and neuroinflammation. Intracellular components released into the parenchyma and systemic circulation, termed danger-associated molecular patterns (DAMPs), are major drivers of vascular dysfunction and neuroinflammation. These DAMPs include cell-free RNAs (cfRNAs), which damage the blood-brain barrier (BBB), thereby promoting edema, procoagulatory processes, and infiltration of inflammatory cells. We tested the hypothesis that intraperitoneal injection of Ribonuclease-1 (RNase1, two doses of 20, 60, or 180 µg/kg) at 30 min and 12 h after controlled-cortical-impact (CCI) can reduce secondary lesion expansion compared to vehicle treatment 24 h and 120 h post-CCI. The lowest total dose (40 µg/kg) was most effective at reducing lesion volume (- 31% RNase 40 µg/kg vs. vehicle), brain water accumulation (- 5.5%), and loss of BBB integrity (- 21.6%) at 24 h post-CCI. RNase1 also reduced perilesional leukocyte recruitment (- 53.3%) and microglial activation (- 18.3%) at 120 h post-CCI, but there was no difference in lesion volume at this time and no functional benefit. Treatment with RNase1 in the early phase following TBI stabilizes the BBB and impedes leukocyte immigration, thereby suppressing neuroinflammation. RNase1-treatment may be a novel approach to delay brain injury to extend the window for treatment opportunities after TBI.
Collapse
|
16
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
17
|
Zhan J, Ma Y, Zhao D, Li Z, Tan H, Wang X, Liu H, Yang T. Knowledge atlas of post-traumatic epilepsy research: Based on citespace visualization analysis. Epilepsy Res 2021; 178:106790. [PMID: 34798493 DOI: 10.1016/j.eplepsyres.2021.106790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023]
Abstract
The mechanism of posttraumatic epilepsy (PTE) is complicated and the treatment and prognostic effects are not satisfactory. In this study, CiteSpace and VOSviewer are used to analyze the literature related to PTE (January 2000-June 2020). The aspects of the cooperative network (author, institution, and country), keywords co-occurrence, document co-citation clustering, and journal dual-map overlay were analyzed, and the atlas was constructed. The United States, Finland, and other research institutions have frequently published PTE-related articles, thus having richer research results. The relevant research was mostly published in journals, such as Journal of Neurotrauma, Journal of Neuroscience, Brain Research, Neurobiology of Disease. Quantitative diffusion MRI plays a critical role in PTE research. The study on the susceptibility to seizures and the underlying mechanism of PTE received different degrees of attention. The present study provided an in-depth understanding of the research foundation, relevant research results, the current research frontiers, and the main research focus in the PTE field. Herein, we briefly discussed relevant key articles and also provided ideas for future research directions.
Collapse
Affiliation(s)
- Jingjing Zhan
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Yixun Ma
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Dong Zhao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Zheng Li
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Huachao Tan
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xu Wang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Hongxia Liu
- China University of Political Science and Law, The Institute for Digital Technology and Law (IDTL), China; The CUPL Scientometrics and Evaluation Center of Rule of Law, China.
| | - Tiantong Yang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China.
| |
Collapse
|
18
|
Wu H, Chen X, Li P, Wen Z. Automatic Symmetry Detection From Brain MRI Based on a 2-Channel Convolutional Neural Network. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:4464-4475. [PMID: 31794419 DOI: 10.1109/tcyb.2019.2952937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Symmetry detection is a method to extract the ideal mid-sagittal plane (MSP) from brain magnetic resonance (MR) images, which can significantly improve the diagnostic accuracy of brain diseases. In this article, we propose an automatic symmetry detection method for brain MR images in 2-D slices based on a 2-channel convolutional neural network (CNN). Different from the existing detection methods that mainly rely on the local image features (gradient, edge, etc.) to determine the MSP, we use a CNN-based model to implement the brain symmetry detection, which does not require any local feature detections and feature matchings. By training to learn a wide variety of benchmarks in the brain images, we can further use a 2-channel CNN to evaluate the similarity between the pairs of brain patches, which are randomly extracted from the whole brain slice based on a Poisson sampling. Finally, a scoring and ranking scheme is used to identify the optimal symmetry axis for each input brain MR slice. Our method was evaluated in 2166 artificial synthesized brain images and 3064 collected in vivo MR images, which included both healthy and pathological cases. The experimental results display that our method achieves excellent performance for symmetry detection. Comparisons with the state-of-the-art methods also demonstrate the effectiveness and advantages for our approach in achieving higher accuracy than the previous competitors.
Collapse
|
19
|
Gait analysis in a rat model of traumatic brain injury. Behav Brain Res 2021; 405:113210. [PMID: 33639268 DOI: 10.1016/j.bbr.2021.113210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/19/2023]
Abstract
Gait disruptions following traumatic brain injury (TBI) are noted in the clinical population. To date, thorough analysis of gait changes in animal models of TBI to allow for correlation of pathological alterations and utilization of this as a therapeutic outcome have been limited. We therefore assessed gait using the DigiGait analysis system as well as overall locomotion using the Beam Walk test in adult male Sprague-Dawley rats following a commonly used model of TBI, parietal lobe controlled cortical impact (CCI). Rats underwent DigiGait baseline analysis 24 h prior to injury, followed by a moderate CCI in the left parietal lobe. Performance on the DigiGait was then assessed at 1, 3, 7, and 14 days post-injury, followed by histological analysis of brain tissue. Beam walk analysis showed a transient but significant impairment acutely after injury. Despite observance of gait disturbance in the clinical population, TBI in the parietal lobe of rats resulted in limited alterations in hind or forelimb function. General hindlimb locomotion showed significant but transient impairment. Significant changes in gait were observed to last through the sub-acute period, including right hindpaw angle of rotation and left forelimb and right hindlimb swing phase duration. Slight changes that did not reach statistical significant but may reflect subtle impacts of TBI on gait were reflected in several other measures, such as stride duration, stance duration and stance width. These results demonstrate that moderate-severe injury to the parietal cortex and underlying structures including corpus callosum, hippocampus, thalamus and basal ganglia result in slight changes to gait that can be detected using the Digigait analysis system.
Collapse
|
20
|
Early Reciprocal Effects in a Murine Model of Traumatic Brain Injury and Femoral Fracture. Mediators Inflamm 2021; 2021:8835730. [PMID: 33531878 PMCID: PMC7834824 DOI: 10.1155/2021/8835730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major cause of death and disability in early adulthood. Concomitant extracranial injury such as long bone fracture was reported to exacerbate TBI pathology. However, early reciprocal effects and mechanisms have been barely investigated. To address this issue, C57BL/6N mice were subjected to either the controlled cortical impact (CCI) model of TBI, fracture of the left femur (FF), combined injury (CCI+FF), or sham procedure. Behavioral alterations were monitored until 5 days post injury (dpi), followed by (immuno-)histology, gene and protein expression analyses using quantitative PCR, western blot, and ELISA. We found that CCI+FF mice exhibited increased neurological impairments, reduced recovery, and altered anxiety-related behavior compared to single injury groups. At 5 dpi, cerebral lesion size was not affected by combined injury but exaggerated hippocampal substance loss and increased perilesional astrogliosis were observed in CCI+FF mice compared to isolated CCI. Bone gene expression of the osteogenic markers Runx2, osteocalcin, alkaline phosphatase, and bone sialoprotein was induced by fracture injury but attenuated by concomitant TBI. Plasma concentrations of the biomarkers osteopontin and progranulin were elevated in CCI+FF mice compared to other experimental groups. Taken together, using a murine model of TBI and femoral fracture, we report early reciprocal impairments of brain tissue maintenance, behavioral recovery, and bone repair gene expression. Increased circulating levels of the biomarkers osteopontin and progranulin indicate ongoing tissue inflammation and repair. Our results may have implications for future therapeutic approaches to interfere with the pathological crosstalk between TBI and concomitant bone fracture.
Collapse
|
21
|
O’Donoghue C, Meixner C. A qualitative study of providers’ decision-making for cases involving neurobehavioral issues. COGENT PSYCHOLOGY 2020. [DOI: 10.1080/23311908.2020.1788330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Cynthia O’Donoghue
- Communication Sciences and Disorders, James Madison University, Harrisonburg, USA
| | - Cara Meixner
- Graduate Psychology, James Madison University, Harrisonburg, USA
| |
Collapse
|
22
|
Hummel R, Ulbrich S, Appel D, Li S, Hirnet T, Zander S, Bobkiewicz W, Gölz C, Schäfer MK. Administration of all-trans retinoic acid after experimental traumatic brain injury is brain protective. Br J Pharmacol 2020; 177:5208-5223. [PMID: 32964418 PMCID: PMC7588818 DOI: 10.1111/bph.15259] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE All-trans retinoic acid (ATRA) is a vitamin A metabolite, important in the developing and mature brain. Pre-injury ATRA administration ameliorates ischaemic brain insults in rodents. This study examined the effects of post-traumatic ATRA treatment in experimental traumatic brain injury (TBI). EXPERIMENTAL APPROACH Male adult mice were subjected to the controlled cortical impact model of TBI or sham procedure and killed at 7 or 30 days post-injury (dpi). ATRA (10 mg kg-1, i.p.) was given immediately after the injury and 1, 2 and 3 dpi. Neurological function and sensorimotor coordination were evaluated. Brains were processed for (immuno-) histological, mRNA and protein analyses (qPCR and western blot). KEY RESULTS ATRA treatment reduced brain lesion size, reactive astrogliosis and axonal injury at 7 dpi, and hippocampal granule cell layer (GCL) integrity was protected at 7 and 30 dpi, independent of cell proliferation in neurogenic niches and blood-brain barrier damage. Neurological and motor deficits over time and the brain tissue loss at 30 dpi were not affected by ATRA treatment. ATRA decreased gene expression of markers for damage-associated molecular pattern (HMGB1), apoptosis (caspase-3 and Bax), activated microglia (TSPO), and reactive astrogliosis (GFAP, SerpinA3N) at 7 dpi and a subset of markers at 30 dpi (TSPO, GFAP). CONCLUSION AND IMPLICATIONS In experimental TBI, post-traumatic ATRA administration exerted brain protective effects, including long-term protection of GCL integrity, but did not affect neurological and motor deficits. Further investigations are required to optimize treatment regimens to enhance ATRA's brain protective effects and improve outcomes.
Collapse
Affiliation(s)
- Regina Hummel
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Sebastian Ulbrich
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Dominik Appel
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Shuailong Li
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Tobias Hirnet
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Sonja Zander
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Wieslawa Bobkiewicz
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Christina Gölz
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Michael K.E. Schäfer
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
- Focus Program Translational Neurosciences (FTN)Johannes Gutenberg‐University MainzMainzGermany
- Research Center for ImmunotherapyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| |
Collapse
|
23
|
Pinkowski NJ, Guerin J, Zhang H, Carpentier ST, McCurdy KE, Pacheco JM, Mehos CJ, Brigman JL, Morton RA. Repeated mild traumatic brain injuries impair visual discrimination learning in adolescent mice. Neurobiol Learn Mem 2020; 175:107315. [PMID: 32980477 DOI: 10.1016/j.nlm.2020.107315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Cognitive deficits following a mild traumatic brain injury (mTBI) are common and are associated with learning deficits in school-age children. Some of these deficits include problems with long-term memory, working memory, processing speeds, attention, mental fatigue, and executive function. Processing speed deficits have been associated with alterations in white matter, but the underlying mechanisms of many of the other deficits are unclear. Without a clear understanding of the underlying mechanisms we cannot effectively treat these injuries. The goal of these studies is to validate a translatable touchscreen discrimination/reversal task to identify deficits in executive function following a single or repeated mTBIs. Using a mild closed skull injury model in adolescent mice we were able to identify clear deficits in discrimination learning following repeated injuries that were not present from a single mTBI. The repeated injuries were not associated with any deficits in motor-based behavior but did induce a robust increase in astrocyte activation. These studies provide an essential platform to interrogate the underlying neurological dysfunction associated with these injuries.
Collapse
Affiliation(s)
- Natalie J Pinkowski
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Juliana Guerin
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Haikun Zhang
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Sydney T Carpentier
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Kathryn E McCurdy
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Johann M Pacheco
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Carissa J Mehos
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States; Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States; Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
24
|
Low brain endocannabinoids associated with persistent non-goal directed nighttime hyperactivity after traumatic brain injury in mice. Sci Rep 2020; 10:14929. [PMID: 32913220 PMCID: PMC7483739 DOI: 10.1038/s41598-020-71879-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent cause of chronic headache, fatigue, insomnia, hyperactivity, memory deficits, irritability and posttraumatic stress disorder. Recent evidence suggests beneficial effects of pro-cannabinoid treatments. We assessed in mice levels of endocannabinoids in association with the occurrence and persistence of comparable sequelae after controlled cortical impact in mice using a set of long-term behavioral observations in IntelliCages, motor and nociception tests in two sequential cohorts of TBI/sham mice. TBI mice maintained lower body weights, and they had persistent low levels of brain ethanolamide endocannabinoids (eCBs: AEA, OEA, PEA) in perilesional and subcortical ipsilateral brain tissue (6 months), but rapidly recovered motor functions (within days), and average nociceptive responses were within normal limits, albeit with high variability, ranging from loss of thermal sensation to hypersensitivity. TBI mice showed persistent non-goal directed nighttime hyperactivity, i.e. they visited rewarding and non-rewarding operant corners with high frequency and random success. On successful visits, they made more licks than sham mice resulting in net over-licking. The lower the eCBs the stronger was the hyperactivity. In reward-based learning and reversal learning tasks, TBI mice were not inferior to sham mice, but avoidance memory was less stable. Hence, the major late behavioral TBI phenotype was non-goal directed nighttime hyperactivity and "over-licking" in association with low ipsilateral brain eCBs. The behavioral phenotype would agree with a "post-TBI hyperactivity disorder". The association with persistently low eCBs in perilesional and subcortical regions suggests that eCB deficiency contribute to the post-TBI psychopathology.
Collapse
|
25
|
Cerebral Blood Flow and Its Connectivity Deficits in Mild Traumatic Brain Injury at the Acute Stage. Neural Plast 2020; 2020:2174371. [PMID: 32684919 PMCID: PMC7349463 DOI: 10.1155/2020/2174371] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Objective The influence of cognitive impairment after mild traumatic brain injury (mTBI) on cerebral vascular perfusion has been widely concerned, yet the resting-state cerebral blood flow (CBF) connectivity alterations based on arterial spin labeling (ASL) in mild traumatic brain injury (mTBI) remain unclear. This study investigated region CBF and CBF connectivity features in acute mTBI patients, as well as the associations between CBF changes and cognitive impairment. Materials and Methods Forty-five acute mTBI patients and 42 health controls underwent pseudocontinuous arterial spin labeling (pCASL) perfusion magnetic resonance imaging (MRI). The alterations in regional CBF and relationship between the CBF changes and cognitive impairment were detected. The ASL-CBF connectivity of the brain regions with regional CBF significant differences was also compared between two groups. Neuropsychological tests covered seven cognitive domains. Associations between the CBF changes and cognitive impairment were further investigated. Results Compared with the healthy controls, the acute mTBI patients exhibited increased CBF in the bilateral inferior temporal gyrus (ITG) and decreased CBF in the right middle frontal gyrus (MFG), the bilateral superior frontal gyrus (SFG), and the right cerebellum posterior lobe (CPL). In the mTBI patients, significant correlations were identified between the CBF changes and cognitive impairment. Importantly, the acute mTBI patients exhibited CBF disconnections between the right CPL and right fusiform gyrus (FG) as well as bilateral ITG, between the left SFG and left middle occipital gyrus (MOG), and between the right SFG and right FG as well as right parahippocampal gyrus. Conclusion Our results suggest that acute mTBI patients exhibit both regional CBF abnormalities and CBF connectivity deficits, which may underlie the cognitive impairment of the acute mTBI patients.
Collapse
|
26
|
Mao X, Terpolilli NA, Wehn A, Cheng S, Hellal F, Liu B, Seker B, Plesnila N. Progressive Histopathological Damage Occurring Up to One Year after Experimental Traumatic Brain Injury Is Associated with Cognitive Decline and Depression-Like Behavior. J Neurotrauma 2020; 37:1331-1341. [DOI: 10.1089/neu.2019.6510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A. Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, Munich University Hospital, Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Farida Hellal
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University and China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Burcu Seker
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
27
|
Pacheco JM, Hines-Lanham A, Stratton C, Mehos CJ, McCurdy KE, Pinkowski NJ, Zhang H, Shuttleworth CW, Morton RA. Spreading Depolarizations Occur in Mild Traumatic Brain Injuries and Are Associated with Postinjury Behavior. eNeuro 2019; 6:ENEURO.0070-19.2019. [PMID: 31748237 PMCID: PMC6893232 DOI: 10.1523/eneuro.0070-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer mild traumatic brain injuries (mTBIs) every year, and there is growing evidence that repeated injuries can result in long-term pathology. The acute symptoms of these injuries may or may not include the loss of consciousness but do include disorientation, confusion, and/or the inability to concentrate. Most of these acute symptoms spontaneously resolve within a few hours or days. However, the underlying physiological and cellular mechanisms remain unclear. Spreading depolarizations (SDs) are known to occur in rodents and humans following moderate and severe TBIs, and SDs have long been hypothesized to occur in more mild injuries. Using a closed skull impact model, we investigated the presence of SDs immediately following a mTBI. Animals remained motionless for multiple minutes following an impact and once recovered had fewer episodes of movement. We recorded the defining electrophysiological properties of SDs, including the large extracellular field potential shifts and suppression of high-frequency cortical activity. Impact-induced SDs were also associated with a propagating wave of reduced cerebral blood flow (CBF). In the wake of the SD, there was a prolonged period of reduced CBF that recovered in approximately 90 min. Similar to SDs in more severe injuries, the impact-induced SDs could be blocked with ketamine. Interestingly, impacts at a slower velocity did not produce the prolonged immobility and did not initiate SDs. Our data suggest that SDs play a significant role in mTBIs and SDs may contribute to the acute symptoms of mTBIs.
Collapse
Affiliation(s)
- Johann M Pacheco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Ashlyn Hines-Lanham
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Claire Stratton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Carissa J Mehos
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kathryn E McCurdy
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Natalie J Pinkowski
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Haikun Zhang
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
28
|
Sex differences in cued fear responses and parvalbumin cell density in the hippocampus following repetitive concussive brain injuries in C57BL/6J mice. PLoS One 2019; 14:e0222153. [PMID: 31487322 PMCID: PMC6728068 DOI: 10.1371/journal.pone.0222153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
There is strong evidence to suggest a link between repeated head trauma and cognitive and emotional disorders, and Repetitive concussive brain injuries (rCBI) may also be a risk factor for depression and anxiety disorders. Animal models of brain injury afford the opportunity for controlled study of the effects of injury on functional outcomes. In this study, male and cycling female C57BL/6J mice sustained rCBI (3x) at 24-hr intervals and were tested in a context and cued fear conditioning paradigm, open field (OF), elevated zero maze and tail suspension test. All mice with rCBI showed less freezing behavior than sham control mice during the fear conditioning context test. Injured male, but not female mice also froze less in response to the auditory cue (tone). Injured mice were hyperactive in an OF environment and spent more time in the open quadrants of the elevated zero maze, suggesting decreased anxiety, but there were no differences between injured mice and sham-controls in depressive-like activity on the tail suspension test. Pathologically, injured mice showed increased astrogliosis in the injured cortex and white matter tracts (optic tracts and corpus callosum). There were no changes in the number of parvalbumin-positive interneurons in the cortex or amygdala, but injured male mice had fewer parvalbumin-positive neurons in the hippocampus. Parvalbumin-reactive interneurons of the hippocampus have been previously demonstrated to be involved in hippocampal-cortical interactions required for memory consolidation, and it is possible memory changes in the fear-conditioning paradigm following rCBI are the result of more subtle imbalances in excitation and inhibition both within the amygdala and hippocampus, and between more widespread brain regions that are injured following a diffuse brain injury.
Collapse
|
29
|
Campos-Pires R, Hirnet T, Valeo F, Ong BE, Radyushkin K, Aldhoun J, Saville J, Edge CJ, Franks NP, Thal SC, Dickinson R. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth 2019; 123:60-73. [PMID: 31122738 PMCID: PMC6676773 DOI: 10.1016/j.bja.2019.02.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/07/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Xenon is a noble gas with neuroprotective properties that can improve short and long-term outcomes in young adult mice after controlled cortical impact. This follow-up study investigates the effects of xenon on very long-term outcomes and survival. Methods C57BL/6N young adult male mice (n=72) received single controlled cortical impact or sham surgery and were treated with either xenon (75% Xe:25% O2) or control gas (75% N2:25% O2). Outcomes measured were: (i) 24 h lesion volume and neurological outcome score; (ii) contextual fear conditioning at 2 weeks and 20 months; (iii) corpus callosum white matter quantification; (iv) immunohistological assessment of neuroinflammation and neuronal loss; and (v) long-term survival. Results Xenon treatment significantly reduced secondary injury (P<0.05), improved short-term vestibulomotor function (P<0.01), and prevented development of very late-onset traumatic brain injury (TBI)-related memory deficits. Xenon treatment reduced white matter loss in the contralateral corpus callosum and neuronal loss in the contralateral hippocampal CA1 and dentate gyrus areas at 20 months. Xenon's long-term neuroprotective effects were associated with a significant (P<0.05) reduction in neuroinflammation in multiple brain areas involved in associative memory, including reduction in reactive astrogliosis and microglial cell proliferation. Survival was improved significantly (P<0.05) in xenon-treated animals compared with untreated animals up to 12 months after injury. Conclusions Xenon treatment after TBI results in very long-term improvements in clinically relevant outcomes and survival. Our findings support the idea that xenon treatment shortly after TBI may have long-term benefits in the treatment of brain trauma patients.
Collapse
Affiliation(s)
- Rita Campos-Pires
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK; Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, UK; Charing Cross Hospital Intensive Care Unit, Critical Care Directorate, Imperial College Healthcare NHS Trust, London, UK
| | - Tobias Hirnet
- Department of Anaesthesiology, Medical Centre of Johannes Gutenberg University, Mainz, Germany
| | - Flavia Valeo
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Bee Eng Ong
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Konstantin Radyushkin
- Mouse Behavioural Outcome Unit, Focus Program Translational Neurosciences, Johannes Gutenberg University, Mainz, Germany
| | - Jitka Aldhoun
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Joanna Saville
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, UK; Department of Anaesthetics, Royal Berkshire Hospital NHS Foundation Trust, Reading, UK
| | | | - Serge C Thal
- Department of Anaesthesiology, Medical Centre of Johannes Gutenberg University, Mainz, Germany.
| | - Robert Dickinson
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK; Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|
30
|
Lu L, Li F, Ma Y, Chen H, Wang P, Peng M, Chen YC, Yin X. Functional connectivity disruption of the substantia nigra associated with cognitive impairment in acute mild traumatic brain injury. Eur J Radiol 2019; 114:69-75. [PMID: 31005180 DOI: 10.1016/j.ejrad.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Mild traumatic brain injury is known to have frequent cognitive impairment. Accumulating evidence is pointing to the malfunctioning of the substantia nigra (SN) as an important factor for head trauma. However, it remains unknown whether changes in the SN-based resting state functional connectivity following mTBI at acute stage and its relationship with cognitive function. MATERIALS AND METHODS 58 patients with mTBI and 30 age-, gender-, and years of education-matched healthy controls were enrolled in the current study. All of participants received resting state functional magnetic resonance imaging as well as neuropsychological assessment. The resting state functional MR imaging data were analyzed by using a standard seed-based whole-brain correlation method to characterize SN resting state networks. Student t tests were used to perform comparisons. The association between SN resting state networks and performance on neuropsychological measures was also investigated in patients with mTBI by using Pearson rank correlation. RESULTS Patients with mTBI at acute stage exhibited reduced left SN-based functional connectivity with right insula and caudate and increased left SN-based functional connectivity with left precuneus and left middle occipital gyrus, and reduced right SN-based functional connectivity with left insula. Increased functional connectivity of left precuneus was negatively associated with neurocognitive functions as well (r = -0.266; P = 0.049). CONCLUSION The present study indicated that patients with acute mTBI suffer from disruption in their SN resting state networks. Moreover, abnormal functional connectivity significantly correlated with cognitive function. Taking together, these results may better improve our understanding of the neuropathological mechanism underlying the neurocognitive symptoms associated with acute mTBI.
Collapse
Affiliation(s)
- Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yuehu Ma
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Mingyang Peng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
31
|
Wang ML, Yu MM, Yang DX, Liu YL, Wei XE, Li WB. Diffusion Kurtosis Imaging Characterizes Brain Microstructural Changes Associated with Cognitive Impairment in a Rat Model of Chronic Traumatic Brain Injury. Neuroscience 2018; 392:180-189. [PMID: 30278249 DOI: 10.1016/j.neuroscience.2018.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 01/26/2023]
Abstract
This study aims to investigate the value of diffusion kurtosis imaging (DKI) in assessing microstructural changes associated with cognitive impairment in chronic traumatic brain injury (TBI). At 7 months, six TBI rats and six control rats underwent Morris water maze (MWM) tests, followed by DKI examinations. DKI parameters were measured in bilateral cortex, hippocampus, and callosum. Brain immunohistochemistry (IHC) analysis of neuron [neuron-specific nuclear protein (NeuN)], astroglia [glial fibrillary acidic protein (GFAP)], microglia [ionized calcium binding adaptor molecule 1 (Iba-1)], and myelin [myelin basic protein (MBP)] was performed in the same area as DKI parameter. The DKI parameters, IHC results, and MWM results were compared between TBI and control groups. Correlation analysis was performed to analyze the relationship between DKI parameters and IHC and MWM results. TBI group had worse performance in MWM test. DKI showed higher mean diffusion (MD) in all ipsilateral regions of interest (ROIs), and lower mean kurtosis (MK) in ipsilateral cortex and callosum in TBI group (P < 0.05). TBI group also showed lower IHC staining of NeuN, and higher staining of Iba-1 and MBP in all ipsilateral ROIs (P < 0.05). Further correlational study showed a positive relationship between MK and NeuN, MD and MBP in ipsilateral cortex, and a negative relationship between MK and Iba-1, MBP in ipsilateral cortex and hippocampus (P < 0.05). The MK in ipsilateral cortex and hippocampus were also correlated with MWM test results (P < 0.05). Our study suggests that DKI could be used to assess the microstructural changes associated with cognitive impairment in chronic TBI.
Collapse
Affiliation(s)
- Ming-Liang Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Meng-Meng Yu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Dian-Xu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Ying-Liang Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Xiao-Er Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Wen-Bin Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China; Imaging Center, Kashgar Prefecture Second People's Hospital, No. 1 Jiankang Road, Kashgar 844000, China.
| |
Collapse
|
32
|
NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biol 2018; 68-69:571-588. [DOI: 10.1016/j.matbio.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022]
|
33
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
34
|
Braun M, Khan ZT, Khan MB, Kumar M, Ward A, Achyut BR, Arbab AS, Hess DC, Hoda MN, Baban B, Dhandapani KM, Vaibhav K. Selective activation of cannabinoid receptor-2 reduces neuroinflammation after traumatic brain injury via alternative macrophage polarization. Brain Behav Immun 2018; 68:224-237. [PMID: 29079445 PMCID: PMC5767553 DOI: 10.1016/j.bbi.2017.10.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/14/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is an important mediator of secondary neurological injury after traumatic brain injury (TBI). Endocannabinoids, endogenously produced arachidonate based lipids, have recently emerged as powerful anti-inflammatory compounds, yet the molecular and cellular mechanisms underlying these effects are poorly defined. Endocannabinoids are physiological ligands for two known cannabinoid receptors, CB1R and CB2R. In the present study, we hypothesized that selective activation of CB2R attenuates neuroinflammation and reduces neurovascular injury after TBI. Using a murine controlled cortical impact (CCI) model of TBI, we observed a dramatic upregulation of CB2R within infiltrating myeloid cells beginning at 72 h. Administration of the selective CB2R agonist, GP1a (1-5 mg/kg), attenuated pro-inflammatory M1 macrophage polarization, increased anti-inflammatory M2 polarization, reduced edema development, enhanced cerebral blood flow, and improved neurobehavioral outcomes after TBI. In contrast, the CB2R antagonist, AM630, worsened outcomes. Taken together, our findings support the development of selective CB2R agonists as a therapeutic strategy to improve TBI outcomes while avoiding the psychoactive effects of CB1R activation.
Collapse
Affiliation(s)
- Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University
| | - Zenab T. Khan
- Department of Neurosurgery, Medical College of Georgia, Augusta University,Center for Nursing Research, Augusta University
| | - Mohammad B. Khan
- Department of Neurology, Medical College of Georgia, Augusta University
| | - Manish Kumar
- European Molecular Biology Laboratory (EMBL), Monterontondo, Italy
| | - Ayobami Ward
- Department of Neurosurgery, Medical College of Georgia, Augusta University
| | | | | | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University
| | - Md. Nasrul Hoda
- Department of Neurology, Medical College of Georgia, Augusta University,Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University,Department of Oral Biology, Dental College of Georgia, Augusta University,Department of Surgery, Medical College of Georgia, Augusta University
| | | | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, United States; Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University, United States.
| |
Collapse
|