1
|
Matalon R, Surendran S, McDonald JD, Okorodudu AO, Tyring SK, Michals-Matalon K, Harris P. Abnormal Expression of Genes Associated with Development and Inflammation in the Heart of Mouse Maternal Phenylketonuria Offspring. Int J Immunopathol Pharmacol 2016; 18:557-65. [PMID: 16164837 DOI: 10.1177/039463200501800316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study descibes gene expression in the fetus hearts obtained from mouse model for Phenylketonuria. These hearts have cardiovascular disease (CVD). Therefore genes involved in CVD were examined. Several genes associated with heart development and inflammation were found to be altered. In order to investigate whether the abnormal gene expression alters transcription and translation, the levels of troponin mRNA and protein were determined. One step real time RT-PCR showed a reduction in cardiac troponin I, troponin T2 and ryanodine receptor 2. Determination of troponin I and T protein levels showed reduced levels of these proteins. Our results suggest that altered gene expression affects protein production. These changes are likely involved in the cardiovascular defects seen in the mouse.
Collapse
Affiliation(s)
- R Matalon
- Department of Pediatrics, The University of Texas Medical Branch (UTMB), Galveston, Texas 77555-0632, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development 2016; 143:197-210. [PMID: 26786210 DOI: 10.1242/dev.124883] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cardiac conduction system (CCS) consists of distinctive components that initiate and conduct the electrical impulse required for the coordinated contraction of the cardiac chambers. CCS development involves complex regulatory networks that act in stage-, tissue- and dose-dependent manners, and recent findings indicate that the activity of these networks is sensitive to common genetic variants associated with cardiac arrhythmias. Here, we review how these findings have provided novel insights into the regulatory mechanisms and transcriptional networks underlying CCS formation and function.
Collapse
Affiliation(s)
- Jan Hendrik van Weerd
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
3
|
GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. Cell Mol Life Sci 2015; 72:3871-81. [PMID: 26126786 PMCID: PMC4575685 DOI: 10.1007/s00018-015-1974-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Heart progenitor cells differentiate into various cell types including pacemaker and working cardiomyocytes. Cell-type specific gene expression is achieved by combinatorial interactions between tissue-specific transcription factors (TFs), co-factors, and chromatin remodelers and DNA binding elements in regulatory regions. Dysfunction of these transcriptional networks may result in congenital heart defects. Functional analysis of the regulatory DNA sequences has contributed substantially to the identification of the transcriptional network components and combinatorial interactions regulating the tissue-specific gene programs. GATA TFs have been identified as central players in these networks. In particular, GATA binding elements have emerged as a platform to recruit broadly active histone modification enzymes and cell-type-specific co-factors to drive cell-type-specific gene programs. Here, we discuss the role of GATA factors in cell fate decisions and differentiation in the developing heart.
Collapse
|
4
|
Liang X, Evans SM, Sun Y. Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med 2015; 25:1-9. [PMID: 25442735 PMCID: PMC5544420 DOI: 10.1016/j.tcm.2014.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/22/2022]
Abstract
Specialized myocytes of the cardiac conduction system (CCS) are essential to coordinate sequential contraction of cardiac atria and ventricles. Anomalies of the CCS can result in lethal cardiac arrhythmias, including sick sinus syndrome and atrial or ventricular fibrillation. To develop future therapies and regenerative medicine aimed at cardiac arrhythmias, it is important to understand formation and function of distinct components of the CCS. Essential to this understanding is the development of CCS-specific markers. In this review, we briefly summarize available mouse models of CCS markers and focus on those involving the hyperpolarization cation-selective nucleotide-gated cation channel, HCN4, which selectively marks all components of the specialized CCS in adult heart. Recent studies have revealed, however, that HCN4 expression during development is highly dynamic in cardiac precursors. These studies have offered insights into the contributions of the first and second heart field to myocyte and conduction system lineages and suggested the timing of allocation of specific conduction system precursors during development. Altogether, they have highlighted the utility of HCN4 as a cell surface marker for distinct components of the CCS at distinct stages of development, which can be utilized to facilitate purification and characterization of CCS precursors in mouse and human model systems and pave the way for regenerative therapies.
Collapse
Affiliation(s)
- Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, University of California, San Diego, San Diego, CA
| | - Sylvia M Evans
- Department of Medicine, University of California, San Diego, San Diego, CA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA; Department of Pharmacology, University of California, San Diego, San Diego, CA.
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nat Commun 2014; 5:3680. [PMID: 24770533 PMCID: PMC4015328 DOI: 10.1038/ncomms4680] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
The embryonic vertebrate heart tube develops an atrioventricular canal that divides the atrial and ventricular chambers, forms atrioventricular conduction tissue and organizes valve development. Here we assess the transcriptional mechanism underlying this localized differentiation process. We show that atrioventricular canal-specific enhancers are GATA-binding site-dependent and act as switches that repress gene activity in the chambers. We find that atrioventricular canal-specific gene loci are enriched in H3K27ac, a marker of active enhancers, in atrioventricular canal tissue and depleted in H3K27ac in chamber tissue. In the atrioventricular canal, Gata4 activates the enhancers in synergy with Bmp2/Smad signalling, leading to H3K27 acetylation. In contrast, in chambers, Gata4 cooperates with pan-cardiac Hdac1 and Hdac2 and chamber-specific Hey1 and Hey2, leading to H3K27 deacetylation and repression. We conclude that atrioventricular canal-specific enhancers are platforms integrating cardiac transcription factors, broadly active histone modification enzymes and localized co-factors to drive atrioventricular canal-specific gene activity. The atrioventricular canal partitions the developing vertebrate heart. Here, the authors show that the cardiac transcription factor Gata4 together with histone modification enzymes and localized co-factors binds atrioventricular canal-specific enhancers, thereby repressing gene activity in the cardiac chambers.
Collapse
|
6
|
Barnett P, van den Boogaard M, Christoffels V. Localized and temporal gene regulation in heart development. Curr Top Dev Biol 2012; 100:171-201. [PMID: 22449844 DOI: 10.1016/b978-0-12-387786-4.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heart is a structurally complex and functionally heterogeneous organ. The repertoire of genes active in a given cardiac cell defines its shapes and function. This process of localized or heterogeneous gene expression is regulated to a large extent at the level of transcription, dictating the degree particular genes in a cell are active. Therefore, errors in the regulation of localized gene expression are at the basis of misregulation of the delicate process of heart development and function. In this review, we provide an overview of the origin of the different components of the vertebrate heart, and discuss our current understanding of the regulation of localized gene expression in the developing heart. We will also discuss where future research may lead to gain more insight into this process, which should provide much needed insight into the dysregulation of heart development and function, and the etiology of congenital defects.
Collapse
Affiliation(s)
- Phil Barnett
- Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
7
|
Krejčí E, Pesevski Z, Dealmeida AC, Mrug M, Fresco VM, Argraves WS, Barth JL, Cui X, Sedmera D. Microarray analysis of normal and abnormal chick ventricular myocardial development. Physiol Res 2012; 61:S137-44. [PMID: 22827870 PMCID: PMC4112186 DOI: 10.33549/physiolres.932379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The left and right ventricle originate from distinct parts of the cardiac tube, and several genes are known to be differentially expressed in these compartments. The aims of this study were to determine developmental differences in gene expression between the left and right ventricle, and to assess the effect of altered hemodynamic loading. RNA was extracted from isolated left and right normal chick embryonic ventricles at embryonic day 6, 8, and 10, and from day 8 left atrial ligated hearts with hypoplastic left and dilated right ventricles. cRNA was hybridized to Affymetrix Chicken Genome array according to manufacturer protocols. Microarray analysis identified 302 transcripts that were differentially expressed between the left and right ventricle. Comparative analysis detected 91 genes that were different in left ventricles of ligated hearts compared to age-matched ventricles, while 66 were different in the right ones. A large number of the changes could be interpreted as a delay of normal maturation. The approach described in this study could be used as one of the measures to gauge success of surgical procedures for congenital heart disease and help in determining the optimal time frame for intervention to prevent onset of irreversible changes.
Collapse
Affiliation(s)
- E. Krejčí
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Z. Pesevski
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - A. C. Dealmeida
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - M. Mrug
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - V. M. Fresco
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - W. S. Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - J. L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - X. Cui
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - D. Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Aanhaanen WTJ, Moorman AFM, Christoffels VM. Origin and development of the atrioventricular myocardial lineage: insight into the development of accessory pathways. ACTA ACUST UNITED AC 2011; 91:565-77. [PMID: 21630423 DOI: 10.1002/bdra.20826] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/16/2022]
Abstract
Defects originating from the atrioventricular canal region are part of a wide spectrum of congenital cardiovascular malformations that frequently affect newborns. These defects include partial or complete atrioventricular septal defects, atrioventricular valve defects, and arrhythmias, such as atrioventricular re-entry tachycardia, atrioventricular nodal block, and ventricular preexcitation. Insight into the cellular origin of the atrioventricular canal myocardium and the molecular mechanisms that control its development will aid in the understanding of the etiology of the atrioventricular defects. This review discusses current knowledge concerning the origin and fate of the atrioventricular canal myocardium, the molecular mechanisms that determine its specification and differentiation, and its role in the development of certain malformations such as those that underlie ventricular preexcitation.
Collapse
Affiliation(s)
- Wim T J Aanhaanen
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Abstract
Pacemaker and conduction system myocytes play crucial roles in initiating and regulating the contraction of the cardiac chambers. Genetic defects, acquired diseases, and aging cause dysfunction of the pacemaker and conduction tissues, emphasizing the clinical necessity to understand the molecular and cellular mechanisms of their development and homeostasis. Although all cardiac myocytes of the developing heart initially possess pacemaker properties, the majority differentiates into working myocardium. Only small populations of embryonic myocytes will form the sinus node and the atrioventricular node and bundle. Recent efforts have revealed that the development of these nodal regions is achieved by highly localized suppression of working muscle differentiation, and have identified transcriptional repressors that mediate this process. This review will summarize and reflect new experimental findings on the cellular origin and the molecular control of differentiation and morphogenesis of the pacemaker tissues of the heart. It will also shed light on the etiology of inborn and acquired errors of nodal tissues.
Collapse
Affiliation(s)
- Vincent M. Christoffels
- From the Heart Failure Research Center (V.M.C., A.F.M.M.), Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences (G.J.S.), University of Amsterdam, The Netherlands; and Institut für Molekularbiologie (A.K.), Medizinische Hochschule Hannover, Germany
| | - Gertien J. Smits
- From the Heart Failure Research Center (V.M.C., A.F.M.M.), Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences (G.J.S.), University of Amsterdam, The Netherlands; and Institut für Molekularbiologie (A.K.), Medizinische Hochschule Hannover, Germany
| | - Andreas Kispert
- From the Heart Failure Research Center (V.M.C., A.F.M.M.), Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences (G.J.S.), University of Amsterdam, The Netherlands; and Institut für Molekularbiologie (A.K.), Medizinische Hochschule Hannover, Germany
| | - Antoon F. M. Moorman
- From the Heart Failure Research Center (V.M.C., A.F.M.M.), Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences (G.J.S.), University of Amsterdam, The Netherlands; and Institut für Molekularbiologie (A.K.), Medizinische Hochschule Hannover, Germany
| |
Collapse
|
10
|
Aanhaanen WTJ, Brons JF, Domínguez JN, Rana MS, Norden J, Airik R, Wakker V, de Gier-de Vries C, Brown NA, Kispert A, Moorman AFM, Christoffels VM. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 2009; 104:1267-74. [PMID: 19423846 DOI: 10.1161/circresaha.108.192450] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The primary myocardium of the embryonic heart, including the atrioventricular canal and outflow tract, is essential for septation and valve formation. In the chamber-forming heart, the expression of the T-box transcription factor Tbx2 is restricted to the primary myocardium. To gain insight into the cellular contributions of the Tbx2+ primary myocardium to the components of the definitive heart, genetic lineage tracing was performed using a novel Tbx2Cre allele. These analyses revealed that progeny of Tbx2+ cells provide an unexpectedly large contribution to the Tbx2-negative ventricles. Contrary to common assumption, we found that the embryonic left ventricle only forms the left part of the definitive ventricular septum and the apex. The atrioventricular node, but not the atrioventricular bundle, was found to derive from Tbx2+ cells. The Tbx2+ outflow tract formed the right ventricle and right part of the ventricular septum. In Tbx2-deficient embryos, the left-sided atrioventricular canal was found to prematurely differentiate to chamber myocardium and to proliferate at increased rates similar to those of chamber myocardium. As a result, the atrioventricular junction and base of the left ventricle were malformed. Together, these observations indicate that Tbx2 temporally suppresses differentiation and proliferation of primary myocardial cells. A subset of these Tbx2Cre-marked cells switch off expression of Tbx2, which allows them to differentiate into chamber myocardium, to initiate proliferation, and to provide a large contribution to the ventricles. These findings imply that errors in the development of the early atrioventricular canal may affect a much larger region than previously anticipated, including the ventricular base.
Collapse
Affiliation(s)
- Wim T J Aanhaanen
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kolditz DP, Wijffels MCEF, Blom NA, van der Laarse A, Markwald RR, Schalij MJ, Gittenberger-de Groot AC. Persistence of functional atrioventricular accessory pathways in postseptated embryonic avian hearts: implications for morphogenesis and functional maturation of the cardiac conduction system. Circulation 2006; 115:17-26. [PMID: 17190860 DOI: 10.1161/circulationaha.106.658807] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND During heart development, the ventricular activation sequence changes from a base-to-apex to an apex-to-base pattern. We investigated the possibility of impulse propagation through remnants of atrioventricular (AV) connections in quail hearts. METHODS AND RESULTS In 86 hearts (group A, HH30-34, n=15; group B, HH35-44, n=65; group C, 5 to 6 months, n=6) electrodes were positioned at the left atrium, right ventricular base, left ventricular (LV) base, and LV apex. In group A, LV base activation preceded LV apex activation in the majority of cases (60%; 9 of 15), whereas hearts in group B primarily demonstrated an LV apex-to-base activation pattern (72%; 47 of 65). Interestingly, in group B, the right ventricular base (17%; 11 of 65) or LV base (8%; 5 of 65) exhibited premature activation in 25% (16 of 65) of cases, whereas in 26% (17 of 65), the right ventricular base or LV base was activated simultaneously with the LV apex. Morphological analysis confirmed functional data by showing persistent muscular AV connections in embryonic hearts. Interestingly, all myocardial AV connections stained positive for periostin, a nonmyocardial marker. Longitudinal analysis (HH35-44) demonstrated a decrease in both the number of hearts that exhibited premature base activation (P=0.015) and the number (P=0.004) and width (P=0.179) of accessory AV pathways with developmental stage in a similar time course. In the adult quail hearts, accessory myocardial AV pathways were functionally and morphologically absent. CONCLUSIONS Thus, impulse propagation through persistent accessory AV connections remains possible at near-hatching stages (HH44) of development, which may provide a substrate for AV reentrant arrhythmias in perinatal life. Periostin positivity and absence of AV pathways in the adult heart suggest that these connections eventually lose their myocardial phenotype, which implicates ongoing AV ring isolation perinatally and postnatally.
Collapse
Affiliation(s)
- Denise P Kolditz
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Myers DC, Fishman GI. Toward an understanding of the genetics of murine cardiac pacemaking and conduction system development. ACTA ACUST UNITED AC 2005; 280:1018-21. [PMID: 15368345 DOI: 10.1002/ar.a.20077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We distinguish the cardiac pacemaking and conduction system (CPCS) from neighboring working cardiomyocytes by its function to generate and deliver electrical impulses within the heart. Yet the CPCS is a series of integrated but distinct components. The components must act in a coordinated fashion, but they are also functionally, molecularly, and electrophysiologically unique. Understanding the differentiation and function of this elegant and complex system is an exciting challenge. Knowledge of genes and signaling pathways that direct CPCS development is at present minimal, but the use of transgenic mice represents an enormous opportunity for elucidating the unknown. Transgenic marker lines have enabled us to image and manipulate the CPCS in new ways. These tools are now being used to examine the CPCS in mutants where its formation and function is altered, generating new information and directions for study of the genetics of CPCS development.
Collapse
Affiliation(s)
- Dina C Myers
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
13
|
Rothenberg F, Nikolski VP, Watanabe M, Efimov IR. Electrophysiology and anatomy of embryonic rabbit hearts before and after septation. Am J Physiol Heart Circ Physiol 2005; 288:H344-51. [PMID: 15331361 DOI: 10.1152/ajpheart.00770.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms of cardiac pacemaking and conduction system (CPCS) development are difficult to study, in part because of the absence of models that are physiologically similar to humans in which we can label the entire CPCS. Investigations of the adult rabbit heart have provided insight into normal and abnormal cardiac conduction. The adult and the embryonic rabbit have an endogenous marker of the entire cardiac conduction system, neurofilament 160 (NF-160). Previous work suggested that ventricular septation correlates with critical phases in avian CPCS development, in contrast to the mouse CPCS. Combining high-resolution optical mapping with immunohistochemical analysis of the embryonic rabbit heart, we investigated the significance of ventricular septation in patterning the rabbit embryonic conduction system. We hypothesized that 1) completion of ventricular septation does not correlate with changes in the ventricular activation sequence in rabbit embryos and 2) CPCS anatomy determines the activation sequence of the embryonic heart. We found that preseptated ( days 11–13, n = 13) and postseptated (day 15, n = 5) hearts had similar “apex-to-base” ventricular excitation. PR intervals were not significantly different in either group. CPCS anatomy revealed continuity of the NF-160-positive tract connecting the presumptive sinoatrial node, atrioventricular (AV) junction, and ventricular conduction system. The presence of collagen in the AV junction coincided with the appearance of an AV interval. We conclude that the apex-to-base ventricular activation sequence in the rabbit embryo is present before completion of ventricular septation. CPCS anatomy reflects global cardiac activation as demonstrated by high-resolution optical mapping.
Collapse
Affiliation(s)
- F Rothenberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | |
Collapse
|
14
|
Rothenberg F, Efimov IR, Watanabe M. Functional imaging of the embryonic pacemaking and cardiac conduction system over the past 150 years: Technologies to overcome the challenges. ACTA ACUST UNITED AC 2004; 280:980-9. [PMID: 15372434 DOI: 10.1002/ar.a.20076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early analyses of cardiac pacemaking and conduction system (CPCS) development relied on classic histology and visual inspection of the beating heart. Current techniques that facilitate delineation of the CPCS include the use of specific antibody markers and transgenic mouse lines specifically expressing reporter genes. Assaying the function of tiny embryonic hearts required an increase in the level of spatial and temporal resolution. Current methods for such analyses include the use of intracellular and extracellular microelectrodes, echocardiography, rapid optical imaging using fluorescent dyes, and most recently optical coherence tomography. This review will focus on methods developed to investigate the functional emergence of the embryonic cardiac conduction system. Where appropriate, the methods used to delineate the anatomic pathways will also be discussed. The combination of techniques to capture both morphological and functional data from the CPCS will further improve with continued interdisciplinary collaboration. The Supplementary Material referred to in this article can be found at the Anatomical Record website (http://www.interscience.wiley.com/jpages/0003-276X/suppmat).
Collapse
Affiliation(s)
- Florence Rothenberg
- Biomedical Engineering, Department Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
15
|
Adamo RF, Guay CL, Edwards AV, Wessels A, Burch JBE. GATA-6 gene enhancer contains nested regulatory modules for primary myocardium and the embedded nascent atrioventricular conduction system. ACTA ACUST UNITED AC 2004; 280:1062-71. [PMID: 15372489 DOI: 10.1002/ar.a.20105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cGATA-6 gene is flanked by an enhancer that selectively marks the atrioventricular conduction system (AVCS) in transgenic mice. This enhancer reads anterior/posterior and medial/lateral positional information very early in the cardiogenic program and remains active in progressively more restricted regions of primary myocardium leading up to the emergence of a histologically distinct AVCS. We undertook to parse this enhancer to resolve how the respective AVCS-specific transcription program is regulated at the molecular level. We determined that this AVCS enhancer includes a 102 bp module that is sufficient to restrict expression to primary nonchamber myocardium. This offers a novel tool to analyze the early molecular delineation of primary and chamber myocardium, which subsequently give rise to components of the central and peripheral conduction system, respectively. Furthermore, we show that this 102 bp module in turn contains a nested 47 bp core module that has the potential to direct expression specifically to the AVCS domain of primary myocardium, albeit with low efficiency. Accordingly, we show that a GATA site and a GC-rich site in the 102 bp region bolster the activity of the nested 47 bp AVCS core region even within the context of the parental 1,478 bp enhancer. These are the first functional elements to be reported for a cardiac conduction system-specific control region.
Collapse
Affiliation(s)
- Richard F Adamo
- Cell Developmental Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
16
|
Schubert W, Yang XY, Yang TTC, Factor SM, Lisanti MP, Molkentin JD, Rincon M, Chow CW. Requirement of transcription factor NFAT in developing atrial myocardium. J Cell Biol 2003; 161:861-74. [PMID: 12796475 PMCID: PMC2172977 DOI: 10.1083/jcb.200301058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor of activated T cell (NFAT) is a ubiquitous regulator involved in multiple biological processes. Here, we demonstrate that NFAT is temporally required in the developing atrial myocardium between embryonic day 14 and P0 (birth). Inhibition of NFAT activity by conditional expression of dominant-negative NFAT causes thinning of the atrial myocardium. The thin myocardium exhibits severe sarcomere disorganization and reduced expression of cardiac troponin-I (cTnI) and cardiac troponin-T (cTnT). Promoter analysis indicates that NFAT binds to and regulates transcription of the cTnI and the cTnT genes. Thus, regulation of cytoskeletal protein gene expression by NFAT may be important for the structural architecture of the developing atrial myocardium.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Animals
- Animals, Newborn
- Binding Sites/genetics
- Cell Nucleus/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/genetics
- Fetus
- Gene Expression Regulation, Developmental/genetics
- Genes, Regulator/genetics
- Heart Atria/abnormalities
- Heart Atria/growth & development
- Heart Atria/metabolism
- Mice
- Mice, Transgenic
- Microscopy, Electron
- Mutation/genetics
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Troponin I/biosynthesis
- Troponin I/genetics
- Troponin T/biosynthesis
- Troponin T/genetics
Collapse
Affiliation(s)
- William Schubert
- Dept. of Molecular Pharmacology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gourdie RG, Harris BS, Bond J, Justus C, Hewett KW, O'Brien TX, Thompson RP, Sedmera D. Development of the cardiac pacemaking and conduction system. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:46-57. [PMID: 12768657 DOI: 10.1002/bdrc.10008] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The heartbeat is initiated and coordinated by a heterogeneous set of tissues, collectively referred to as the pacemaking and conduction system (PCS). While the structural and physiological properties of these specialized tissues has been studied for more than a century, distinct new insights have emerged in recent years. The tools of molecular biology and the lessons of modern embryology are beginning to uncover the mechanisms governing induction, patterning and developmental integration of the PCS. In particular, significant advances have been made in understanding the developmental biology of the fast conduction network in the ventricles--the His-Purkinje system. Although this progress has largely been made by using animal models such as the chick and mouse, the insights gained may help explain cardiac disease in humans, as well as lead to new treatment strategies.
Collapse
Affiliation(s)
- Robert G Gourdie
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Suite 601, Charlestor, SC 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Habets PEMH, Moorman AFM, Clout DEW, van Roon MA, Lingbeek M, van Lohuizen M, Campione M, Christoffels VM. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 2002; 16:1234-46. [PMID: 12023302 PMCID: PMC186286 DOI: 10.1101/gad.222902] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During heart development, chamber myocardium forms locally from the embryonic myocardium of the tubular heart. The atrial natriuretic factor (ANF) gene is specifically expressed in this developing chamber myocardium and is one of the first hallmarks of chamber formation. We investigated the regulatory mechanism underlying this selective expression. Transgenic analysis shows that a small fragment of the ANF gene is responsible for the developmental pattern of endogenous ANF gene expression. Furthermore, this fragment is able to repress cardiac troponin I (cTnI) promoter activity selectively in the embryonic myocardium of the atrioventricular canal (AVC). In vivo inactivation of a T-box factor (TBE)- or NK2-homeobox factor binding element (NKE) within the ANF fragment removed the repression in the AVC without affecting its chamber activity. The T-box family member Tbx2, encoding a transcriptional repressor, is expressed in the embryonic myocardium in a pattern mutually exclusive to ANF, thus suggesting a role in the suppression of ANF. Tbx2 formed a complex with Nkx2.5 on the ANF TBE-NKE, and was able to repress ANF promoter activity. Our data provide a potential mechanism for chamber-restricted gene activity in which the cooperative action of Tbx2 and Nkx2.5 inhibits expression in the AVC.
Collapse
Affiliation(s)
- Petra E M H Habets
- Experimental and Molecular Cardiology Group, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Franco D, Domínguez J, de Castro Md MDP, Aránega A. [Regulation of myocardial gene expression during heart development]. Rev Esp Cardiol 2002; 55:167-84. [PMID: 11852007 DOI: 10.1016/s0300-8932(02)76576-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heart is an organ with special significance in medicine and developmental biology. The development of the heart and its vessels during embryogenesis is the result of numerous and complex processes. At present, our understanding is based on decades of meticulous anatomical studies. However, the spectacular progress of modern molecular biology and developmental biology has marked the beginning of a new era in embryology. The molecular bases for cardiogenesis are just emerging. Several families of genes with restricted expression to the heart have been identified in the last years, including genes encoding for contractile proteins, ion channels as well as transcription factors involved in tissue specific gene expression. Likewise, the analyses of regulatory elements have increased our understanding of the molecular mechanisms directing gene expression. In this review, we illustrate the different patterns of gene and transgene expression in the developing myocardium. These data demonstrate that the wide molecular heterogeneity observed in the developing myocardium is not restricted to embryogenesis but it also remains in the adulthood. Therefore, such molecular diversity should be taken into account on the design of future gene therapy approaches, having thus direct clinical implications.
Collapse
Affiliation(s)
- Diego Franco
- Departamento de Biología Experimental, Area de Biología Celular, Facultad de Ciencias Experimentales, Universidad de Jaén, Spain.
| | | | | | | |
Collapse
|