1
|
Suarez P, Alonso JL, Gómez G, Vidal G. Performance of sewage treatment technologies for the removal of Cryptosporidium sp. and Giardia sp.: Toward water circularity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116320. [PMID: 36183529 DOI: 10.1016/j.jenvman.2022.116320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium sp. and Giardia sp. are parasites that cause diseases in the population. Most of parasite diseases regarding the consumption of drinking water polluted with sewage are caused by Cryptosporidium sp. or Giardia sp. it is because of the incomplete disinfection of the wastewater treatment. Therefore, in this work the removal or inactivation efficiency of different treatment technologies presented by around 40 scientific studies was evaluated, with a view to water circularity. For Cryptosporidium sp., we conclude that the most efficient secondary technologies are aerobic technologies, which remove between 0.00 and 2.17 log units (Ulog), with activated sludge presenting the greatest efficiency, and that the tertiary technologies with the greatest removal are those that use ultrasound, which reach removal values of 3.17 Ulog. In the case of Giardia sp., the secondary technologies with the greatest removal are anaerobic technologies, with values between 0.00 and 3.80 Ulog, and the tertiary technologies with the greatest removal are those that combine filtration with UV or a chemical disinfection agent. Despite the removal values obtained, the greatest concern remains detecting and quantifying the infectious forms of both parasites in effluents; therefore, although the technologies perform adequately, discharge effluents must be monitored with more sensitive techniques, above all aiming for circularity of the treated water in a context of the water scarcity that affects some parts of the world.
Collapse
Affiliation(s)
- Pilar Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - José Luis Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile.
| |
Collapse
|
2
|
Hassan EM, Örmeci B, DeRosa MC, Dixon BR, Sattar SA, Iqbal A. A review of Cryptosporidium spp. and their detection in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1-25. [PMID: 33460403 DOI: 10.2166/wst.2020.515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cryptosporidium spp. are one of the most important waterborne pathogens worldwide and a leading cause of mortality from waterborne gastrointestinal diseases. Detection of Cryptosporidium spp. in water can be very challenging due to their low numbers and the complexity of the water matrix. This review describes the biology of Cryptosporidium spp. and current methods used in their detection with a focus on C. parvum and C. hominis. Among the methods discussed and compared are microscopy, immunology-based methods using monoclonal antibodies, molecular methods including PCR (polymerase chain reaction)-based assays, and emerging aptamer-based methods. These methods have different capabilities and limitations, but one common challenge is the need for better sensitivity and specificity, particularly in the presence of contaminants. The application of DNA aptamers in the detection of Cryptosporidium spp. oocysts shows promise in overcoming these challenges, and there will likely be significant developments in aptamer-based sensors in the near future.
Collapse
Affiliation(s)
- Eman M Hassan
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Canada, K1S 5B6
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada, K1A 0K9
| | - Syed A Sattar
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail: ; C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| | - Asma Iqbal
- C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| |
Collapse
|
3
|
Pereira A, Teixeira J, Sousa S, Parreira R, Campino L, Meireles J, Maia C. Giardia duodenalis infection in dogs from the metropolitan area of Lisbon, Portugal: prevalence, genotyping and associated risk factors. J Parasit Dis 2020; 45:372-379. [PMID: 34295036 DOI: 10.1007/s12639-020-01307-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022] Open
Abstract
Abstract Giardia duodenalis is a cosmopolitan enteric protozoan that affects a wide range of vertebrates, including humans and dogs. Genetic characterisation reveals eight different assemblages, with A and B having been found mainly in humans and several other animals, and thus considered potentially zoonotic, while C and D are adapted to infect dogs. This study aimed to determine the prevalence of G. duodenalis, their distribution into assemblages, and risk factors associated with their infection of dogs from the metropolitan area of Lisbon. Giardia duodenalis cysts were microscopically identified in 33.8% (27/80) of the faecal samples analysed. Multivariate logistic regression analysis revealed that dogs under 6 months of age and from both breeders and shelters, had a significantly higher risk of being infected with G. duodenalis. Based on phylogenetic analysis of the partial coding sequences for β-giardin, glutamate dehydrogenase, and triosephosphate isomerase, the parasites found in three dog isolates were typed as G. duodenalis assemblage C, 11 were typed as D, and four were typed as C or D, depending on the targeted genes. The risk to public health seems to be reduced, as no genotypes with zoonotic potential have been detected. Nevertheless, better health management towards a minimisation of the environmental faecal pollution, as well as an increase in the awareness of health professionals, dog owners, dog breeders and caregivers regarding the risks posed by this protozoan to the health of animals and humans, are recommended. Graphic abstract
Collapse
Affiliation(s)
- André Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA), Lisboa, Portugal.,Medical Parasitology Unit, IHMT-NOVA, Lisboa, Portugal
| | - Joana Teixeira
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Sousa
- Medical Parasitology Unit, IHMT-NOVA, Lisboa, Portugal.,Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Ricardo Parreira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA), Lisboa, Portugal.,Medical Microbiology Unit, IHMT-NOVA, Lisboa, Portugal
| | - Lenea Campino
- Medical Parasitology Unit, IHMT-NOVA, Lisboa, Portugal
| | - José Meireles
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Maia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA), Lisboa, Portugal.,Medical Parasitology Unit, IHMT-NOVA, Lisboa, Portugal
| |
Collapse
|
4
|
Julien DA, Sargeant JM, Guy RA, Shapiro K, Imai RK, Bunce A, Sudlovenick E, Chen S, Li J, Harper SL. Prevalence and genetic characterization of Giardia spp. and Cryptosporidium spp. in dogs in Iqaluit, Nunavut, Canada. Zoonoses Public Health 2019; 66:813-825. [PMID: 31305029 DOI: 10.1111/zph.12628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/31/2022]
Abstract
There are few epidemiologic studies on the role of dogs in zoonotic parasitic transmission in the Circumpolar North. The objectives of this study were to: (a) estimate the faecal prevalence of Giardia spp. and Cryptosporidium spp. in dogs; (b) investigate potential associations between the type of dog population and the faecal presence of Giardia spp. and Cryptosporidium spp.; and (c) describe the molecular characteristics of Giardia spp. and Cryptosporidium spp. in dogs in Iqaluit, Nunavut. We conducted two cross-sectional studies in July and September 2016. In July, the team collected daily faecal samples for 3 days from each of 20 sled dogs. In September, the team collected three faecal samples from each of 59 sled dogs, 111 samples from shelter dogs and 104 from community dogs. We analysed faecal samples for the presence of Giardia spp. and Cryptosporidium spp. using rapid immunoassay and flotation techniques. Polymerase chain reaction (PCR) and sequencing of target genes were performed on positive faecal samples. Overall, the faecal prevalence of at least one of the target parasites, when one faecal sample was chosen at random for all dogs, was 8.16% (CI: 5.52-11.92), and for Giardia spp. and Cryptosporidium spp., prevalence was 4.42% (CI: 2.58-7.49) and 6.12% (CI: 3.88-9.53), respectively. The odds of faecal Giardia spp. in sled dogs were significantly higher than those in shelter and community dogs (OR 10.19 [CI: 1.16-89.35]). Sequence analysis revealed that 6 faecal samples were Giardia intestinalis, zoonotic assemblage B (n = 2) and species-specific assemblages D (n = 3) and E (n = 1), and five faecal samples were Cryptosporidium canis. Giardia intestinalis is zoonotic; however, Cryptosporidium canis is rare in humans and, when present, usually occurs in immunosuppressed individuals. Dogs may be a potential source of zoonotic Giardia intestinalis assemblage B infections in residents in Iqaluit, Nunavut, Canada; however, the direction of transmission is unclear.
Collapse
Affiliation(s)
- Danielle A Julien
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - Jan M Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca A Guy
- National Microbiology Laboratory at the Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Karen Shapiro
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Rachel K Imai
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anna Bunce
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Enooyaq Sudlovenick
- Department of Pathology and Microbiology, Atlantic Veterinary College, Charlottetown, Prince Edward Island, Canada
| | - Shu Chen
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | - Jiping Li
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | - Sherilee L Harper
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada.,School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184:15-28. [PMID: 29395034 DOI: 10.1016/j.actatropica.2018.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
The detection and characterization of genotypes and sub genotypes of Cryptosporidium and Giardia is essential for their enumeration, surveillance, prevention, and control. Different diagnostic methods are available for the analysis of Cryptosporidium and Giardia including conventional phenotypic tools that face major limitations in the specific diagnosis of these protozoan parasites. The substantial advancement in the development of genetic signature based molecular tools for the quantification, diagnosis and genetic variation analysis has increased the understanding of the epidemiology and preventive measures of related infections. The conventional methods such as microscopy, antibody and enzyme based approaches, offer better detection results when combined with advanced molecular methods. Gene based approaches increase the precision of identification, for example, many signatures detected in environmental matrices represent species/genotype that are not infectious to humans. This review summarizes the available methods and the advantages and limitations of advance detection techniques like nucleic acid-based approaches for the detection of viable oocysts and cysts of Cryptosporidium and Giardia along with the conventional and widely accepted detection techniques like microscopy, antibody and enzyme based ones. This technical article also encourages the wide application of molecular methods in genetic characterization of distinct species of Cryptosporidium and Giardia, to adopt necessary preventive measures with reliable identification and mapping the source of contamination.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
6
|
Leal DAG, Souza DSM, Caumo KS, Fongaro G, Panatieri LF, Durigan M, Rott MB, Barardi CRM, Franco RMB. Genotypic characterization and assessment of infectivity of human waterborne pathogens recovered from oysters and estuarine waters in Brazil. WATER RESEARCH 2018; 137:273-280. [PMID: 29550730 DOI: 10.1016/j.watres.2018.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Waterborne, food-borne and sewage-borne pathogens are a major global concern, with the annual recurrence, most notably during the summer, of outbreaks of gastroenteritis of unconfirmed etiology associated with recreational activities in marine environments. The consumption of contaminated water-based foodstuffs is also related to outbreaks of human illness. The main goals of the present study were: i) to identify the genetic assemblages of Giardia duodenalis cysts in growing and depurated oysters destined for human consumption on the southern coast of São Paulo, Brazil; ii) to verify the main circulating G. duodenalis assemblages and their subtypes in different brackish waters used for the production of mollusks and for recreational purposes; iii) to track the contamination of growing and depurated oysters by the human adenovirus and identify the infectivity of adenoviral particles recovered from oysters before and after depuration; iv) to evaluate the occurrence and genotype of the free-living amoebae of the genus Acanthamoeba in brackish water and oysters from all the sites described above. Four sampling sites in the Cananeia estuary were selected to search for pathogenic and amphizoic protozoa (Giardia and Acanthamoeba respectively): site 1: oyster growth, site 2: catchment water (before UV depuration procedure), site 3: filter backwash (filtration stage of water treatment) and site 4: oyster depuration tank. Oysters at sites 1 and 4 were evaluated for the presence of adenovirus (HAdV). Analysis consisted of conventional microbiological as well as molecular methods. Giardia duodenalis were detected in all the water sites analyzed and the molecular analysis revealed that sub-assemblage AII was the most frequently distributed throughout the estuarine environment, although one sample was identified as belonging to the assemblage C. Acanthamoeba were also isolated from different locations of the estuarine area, and were detected at all the analyzed sites. The majority of isolates belonged to the T3 genotype, while the T4 genotype was identified once. The sequencing reaction of Giardia duodenalis revealed the contamination of three batches of depurated oysters by the sub-assemblage AII. With respect to viruses, seven batches of oysters (four growing and three depurated) were found to be harboring infectious HAdV particles when submitted to plaque assay. Overall, the results of the sequencing reactions combined with the plaque assay revealed that the isolates of Giardia duodenalis and the infectious HAdV particles identified in oyster tissues have the potential to infect humans and pose a threat if consumed raw or lightly cooked. This is the first report on the sub-assemblage AII identified in oysters which are submitted to a cleaning and disinfection procedure prior to human consumption in Brazil. Acanthamoeba specific genotypes were also identified for the first time in a recreational estuarine area in Brazil, contributing to knowledge of their molecular and environmental epidemiology, which is considered scarce even in marine and estuarine areas of the world.
Collapse
Affiliation(s)
- Diego Averaldo Guiguet Leal
- Universidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Patologia Básica, Laboratório de Parasitologia Ambiental, Curitiba, Paraná PO Box: 19031, CEP: 81531-980, Brazil.
| | - Doris Sobral Marques Souza
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas, Departamento de Microbiologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Karin Silva Caumo
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências da Saúde, Departamento de Análises Clínicas, Laboratório de Estudos de Protozoários Emergentes, Florianópolis, Santa Catarina CEP: 88040-970, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Rio Grande do Sul CEP: 900035-190, Brazil
| | - Gislaine Fongaro
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas, Departamento de Microbiologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Lua Ferreira Panatieri
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Rio Grande do Sul CEP: 900035-190, Brazil
| | | | - Marilise Brittes Rott
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Rio Grande do Sul CEP: 900035-190, Brazil
| | - Célia Regina Monte Barardi
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas, Departamento de Microbiologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Regina Maura Bueno Franco
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Laboratório de Protozoologia, Campinas, São Paulo CEP 13083-970, Brazil
| |
Collapse
|
7
|
Comparison of current methods used to detect Cryptosporidium oocysts in stools. Int J Hyg Environ Health 2018; 221:743-763. [PMID: 29776848 DOI: 10.1016/j.ijheh.2018.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023]
Abstract
In this review all of the methods that are currently in use for the investigation of Cryptosporidium in stool material are highlighted and critically discussed. It appears that more qualifications and background knowledge in this field regarding the diagnosis of the Cryptosporidium parasite is required. Furthermore, there is no standardization for the protocols that are commonly used to either detect oocysts in faeces or to diagnose the Cryptosporidium infection. It is therefore necessary to initiate further education and research that will assist in improving the accuracy of the diagnosis of Cryptosporidium oocysts in the faecal micro-cosmos. Where ambient concentrations of oocysts are low in stool material, detection becomes a formidable task. Procedures for ring tests and the standardization of multi-laboratory testing are recommended. It is also necessary to enhance the routine surveillance capacity of cryptosporidiosis and to improve the safety against it, considering the fact that this disease is under diagnosed and under reported. This review is intended to stimulate research that could lead to future improvements and further developments in monitoring the diagnostic methodologies that will assist in harmonizing Cryptosporidium oocysts in stool diagnosis.
Collapse
|
8
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
9
|
Koehler AV, Jex AR, Haydon SR, Stevens MA, Gasser RB. Giardia/giardiasis — A perspective on diagnostic and analytical tools. Biotechnol Adv 2014; 32:280-9. [DOI: 10.1016/j.biotechadv.2013.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/08/2013] [Accepted: 10/27/2013] [Indexed: 12/28/2022]
|
10
|
Ware MW, Keely SP, Villegas EN. Development and evaluation of an off-the-slide genotyping technique for identifying Giardia cysts and Cryptosporidium oocysts directly from US EPA Method 1623 slides. J Appl Microbiol 2013; 115:298-309. [PMID: 23594204 DOI: 10.1111/jam.12223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 12/01/2022]
Abstract
AIMS This study developed and systematically evaluated performance and limit of detection of an off-the-slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts. METHODS AND RESULTS Slide standards containing flow-sorted (oo)cysts were used to evaluate the off-the-slide genotyping procedure by microscopy and PCR. Results show approximately 20% of cysts and oocysts are lost during staining. Although transfer efficiency from the slide to the PCR tube could not be determined by microscopy, it was observed that the transfer process aided in the physical lysis of the (oo)cysts likely releasing DNA. PCR detection rates for a single event on a slide were 44% for Giardia and 27% for Cryptosporidium, and a minimum of five cysts and 20 oocysts are required to achieve a 90% PCR detection rate. A Poisson distribution analysis estimated the relative PCR target densities and limits of detection, it showed that 18 Cryptosporidium and five Giardia replicates are required for a 95% probability of detecting a single (oo)cyst on a slide. CONCLUSIONS This study successfully developed and evaluated recovery rates and limits of detection of an off-the-slide genotyping procedure for both Cryptosporidium and Giardia (oo)cysts from the same slide. SIGNIFICANCE AND IMPACT OF THE STUDY This off-the-slide genotyping technique is a simple and low cost tool that expands the applications of US EPA Method 1623 results by identifying the genotypes and assemblages of the enumerated Cryptosporidium and Giardia. This additional information will be useful for microbial risk assessment models and watershed management decisions.
Collapse
Affiliation(s)
- M W Ware
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | | | | |
Collapse
|
11
|
Alum A, Sbai B, Asaad H, Rubino JR, Khalid Ijaz M. ECC-RT-PCR: a new method to determine the viability and infectivity of Giardia cysts. Int J Infect Dis 2012; 16:e350-3. [PMID: 22390842 DOI: 10.1016/j.ijid.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Giardia sp is a major cause of diarrheal illness worldwide, and millions of people are infected each year. Rapid methods to determine the infectivity and virulence of isolates are critical for the development of intervention strategies to control the transmission of Giardia sp cysts, which occurs through contaminated surfaces, food, and water. However, determining the viability, infectivity, and virulence of Giardia sp cysts using molecular methods is a technical challenge because of the lack of a cell culture model. METHOD This study was designed to evaluate mRNA expression in trophozoites and to assess trophozoite attachment to cell monolayer and changes in transcellular resistance as an indicator of Giardia sp viability and infectivity. Heat shock mRNA in Giardia cysts and variant-specific protein (VSP) mRNA in trophozoites were quantified by reverse transcription polymerase chain reaction (RT-PCR). C2bb (Caco-2) cells were grown on transwell chambers to study the attachment of trophozoites, changes in transcellular resistance, and expression of VSP in trophozoites. RESULTS The results of these molecular and cell culture studies indicate a direct linear correlation between the viability and infectivity of fresh stocks of Giardia sp cysts. The attachment of trophozoites to cell monolayer, expression of VSP, and change in the transcellular resistance was directly correlated with their infectivity in neonatal mice. PCR was successfully combined with the electrophysiological analysis of cell culture (ECC-RT-PCR) post-trophozoite attachment. CONCLUSION This study shows that the ECC-RT-PCR, a new integrated cell culture assay, can be used as a rapid and cost-effective tool for assessing the viability and infectivity of environmental isolates of Giardia sp cysts.
Collapse
Affiliation(s)
- Absar Alum
- Arizona State University, Department of Civil & Environmental Engineering, Tempe, Arizona, USA; DH Laboratory, Chandler, Arizona, USA
| | | | | | | | | |
Collapse
|
12
|
Kuhnert-Paul Y, Bangoura B, Dittmar K, Daugschies A, Schmäschke R. Cryptosporidiosis: comparison of three diagnostic methods and effects of storage temperature on detectability of cryptosporidia in cattle faeces. Parasitol Res 2012; 111:165-71. [PMID: 22246371 DOI: 10.1007/s00436-011-2813-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/23/2011] [Indexed: 11/25/2022]
Abstract
Three diagnostic methods (a modified Ziehl-Neelsen staining technique (MZN), a negative staining with carbol fuchsine (CF) and a commercial enzyme immunoassay (EIA) kit, ProSpecT® Cryptosporidium Microplate Assay (Remel, Lenexa, KS, USA)) for detection of Cryptosporidium oocysts in cattle faeces were compared regarding sensitivity and suitability under routine laboratory conditions, with particular emphasis on sample storage. In the 103 faecal samples examined, cryptosporidia infections were detected significantly more often by EIA (p<0.05; n=76) than by MZN (n=65) if ten random fields were evaluated microscopically, but not if the whole coverslip was scanned. In contrast, sensitivities of EIA and CF (n=69) did not differ significantly. Results were obtained very rapidly by CF. However, the hands-on time of CF is comparable to EIA, while MZN is more time consuming. EIA is more expensive than CF and MZN but easy to perform and to evaluate and does not need considerably experienced staff in contrast to CF and MZN. Moreover, 45 faecal samples stored for up to 27 days at different temperatures (+6°C, +16°C, +30°C, +40°C) were examined. The sensitivity of microscopic detection of oocysts in stained smears (CF, MZN) decreased in a temperature and time-dependent manner, while EIA results were not influenced by sample storage at any temperature.
Collapse
Affiliation(s)
- Yvonne Kuhnert-Paul
- Institute of Parasitology, University of Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
13
|
Effectiveness of water treatment for the removal of Cryptosporidium and Giardia spp. Epidemiol Infect 2012; 140:2014-22. [PMID: 22217301 DOI: 10.1017/s0950268811002780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cryptosporidium and Giardia are intestinal parasites of humans and of many other species of animals. Water constitutes an important route of transmission for human infections in both developed and developing countries. In Poland, contamination of water sources with oocysts/cysts is not routinely monitored and scientific research in this field is scarce. Our aim was to compare the contamination of surface and treated water and thus the success of water treatment processes. Water samples (n=94) of between 30 l (surface water) to over 1000 l for tap water, were taken in the period of 2008-2009 using specially constructed equipment with cartridge filtration (Filta-Max; IDEXX, USA). Immunofluorescent assay, and nested polymerase chain reaction were used for the detection of parasites. Cryptosporidium oocysts were found in 85% of surface water and in 59% of raw (intake) water samples. Oocysts were also detected in treated water (16%) but were absent in samples of swimming pool water. The highest mean number of Cryptosporidium oocysts [geometric mean (GM)=61/10 l] was found in samples of rinsing water. Giardia cysts were observed in 61% of surface water samples, in 6% of raw water and in 19% of treated water, with the highest number of cysts noted in rinsing water samples (GM=70 cysts/10 l). Our study highlights the frequent occurrence of parasites in surface waters in Poland and the effectiveness of water treatment for the removal of parasites from drinking water.
Collapse
|
14
|
Weissenböck H, Ondrovics M, Gurtner S, Schiessl P, Mostegl MM, Richter B. Development of a chromogenic in situ hybridization for Giardia duodenalis and its application in canine, feline, and porcine intestinal tissues samples. J Vet Diagn Invest 2011; 23:486-91. [PMID: 21908276 DOI: 10.1177/1040638711404151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the present study, a chromogenic in situ hybridization for the identification of Giardia duodenalis in paraffin-embedded tissue samples was developed. The sensitivity and specificity of the probe was validated by testing it on cultured reference samples of different assemblages of G. duodenalis as well as culture and tissue samples containing other protozoa and infectious agents. The probe gave a positive reaction with the Giardia samples and a negative reaction with all other samples. Further, the probe was used for screening of histological slides of intestine from different animal species (99 canine samples, 85 feline samples, and 202 porcine samples) for the presence of G. duodenalis trophozoites. With this assay, the parasites were detected in samples from 8 dogs (8.08%), 6 cats (7.06%), and zero pigs. The results clearly indicate that the described method is useful for detection of Giardia trophozoites in routinely processed intestinal tissue of different animal species.
Collapse
Affiliation(s)
- Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria. Herbert.
| | | | | | | | | | | |
Collapse
|
15
|
Baque RH, Gilliam AO, Robles LD, Jakubowski W, Slifko TR. A real-time RT-PCR method to detect viable Giardia lamblia cysts in environmental waters. WATER RESEARCH 2011; 45:3175-84. [PMID: 21501854 DOI: 10.1016/j.watres.2011.03.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 05/19/2023]
Abstract
Currently, USEPA Method 1623 is the standard assay used for simultaneous detection of Giardia cysts and Cryptosporidium oocysts in various water matrices. However, the method is unable to distinguish between species, genotype, or to assess viability. Therefore, the objective of the present study was to address the shortcomings of USEPA Method 1623 by developing a novel molecular-based method that can assess viability of Giardia cysts in environmental waters and identify genotypes that pose a human health threat (assemblage groups A and B). Primers and TaqMan(®) probes were designed to target the beta-giardin gene in order to discriminate among species and assemblages. Viability was determined by detection of de-novo mRNA synthesis after heat induction. The beta-giardin primer/probe sets were able to detect and differentiate between Giardia lamblia assemblages A and B, and did not detect Giardia muris (mouse species) or G. lamblia assemblages C, D, E and F (non-human), with the exception of Probe A which did detect G. lamblia assemblage F DNA. Additionally, DNA or cDNA of other waterborne organisms were not detected, suggesting that the method is specific to Giardia assemblages. Assay applicability was demonstrated by detection of viable G. lamblia cysts in spiked (assemblage B) and unspiked (assemblage A and B) reclaimed water samples.
Collapse
Affiliation(s)
- Robert H Baque
- Orange County Utilities, 9124 Curry Ford Rd, Orlando, FL 32825, USA
| | | | | | | | | |
Collapse
|
16
|
Collinet-Adler S, Ward HD. Cryptosporidiosis: environmental, therapeutic, and preventive challenges. Eur J Clin Microbiol Infect Dis 2010; 29:927-35. [PMID: 20521158 PMCID: PMC4049176 DOI: 10.1007/s10096-010-0960-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Cryptosporidium spp. are responsible for endemic and epidemic disease worldwide. Clinical manifestations may include acute, persistent, or chronic diarrhea, biliary, and pulmonary disease. Disease severity ranges from asymptomatic or mild to severe, intractable diarrhea with wasting depending on immune status, nutrition, and age. Transmission is fecal-oral with both human and animal reservoirs. Disease is often self limited in healthy individuals, but therapy remains a challenge in the immune-compromised. Prevention currently depends on appropriate hygiene and proper water management and treatment.
Collapse
Affiliation(s)
- S Collinet-Adler
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|
17
|
Brescia CC, Griffin SM, Ware MW, Varughese EA, Egorov AI, Villegas EN. Cryptosporidium propidium monoazide-PCR, a molecular biology-based technique for genotyping of viable Cryptosporidium oocysts. Appl Environ Microbiol 2009; 75:6856-63. [PMID: 19749067 PMCID: PMC2772443 DOI: 10.1128/aem.00540-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium is an important waterborne protozoan parasite that can cause severe diarrhea and death in the immunocompromised. The current methods used to monitor for Cryptosporidium oocysts in water are the microscopy-based USEPA methods 1622 and 1623. These methods assess total levels of oocysts in source waters, but do not determine oocyst viability or genotype. Recently, propidium monoazide (PMA) has been used in conjunction with molecular diagnostic tools to identify species and assess the viability of bacteria. The goal of this study was the development of a Cryptosporidium PMA-PCR (CryptoPMA-PCR) assay that includes PMA treatment prior to PCR analysis in order to prevent the amplification of DNA from dead oocysts. The results demonstrated that PMA penetrates only dead oocysts and blocks amplification of their DNA. The CryptoPMA-PCR assay can also specifically detect live oocysts within a mixed population of live and dead oocysts. More importantly, live oocysts, not dead oocysts, were detected in raw waste or surface water samples spiked with Cryptosporidium oocysts. This proof-of-concept study is the first to demonstrate the use of PMA for pre-PCR treatment of Cryptosporidium oocysts. The CryptoPMA-PCR assay is an attractive approach to specifically detect and genotype viable Cryptosporidium oocysts in the water, which is critical for human health risk assessment.
Collapse
Affiliation(s)
- Cristin C. Brescia
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Shannon M. Griffin
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Michael W. Ware
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Eunice A. Varughese
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Andrey I. Egorov
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Eric N. Villegas
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| |
Collapse
|
18
|
Smith HV, Nichols RAB. Cryptosporidium: detection in water and food. Exp Parasitol 2009; 124:61-79. [PMID: 19501088 DOI: 10.1016/j.exppara.2009.05.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/24/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022]
Abstract
Water and food are major environmental transmission routes for Cryptosporidium, but our ability to identify the spectrum of oocyst contributions in current performance-based methods is limited. Determining risks in water and foodstuffs, and the importance of zoonotic transmission, requires the use of molecular methods, which add value to performance-based morphologic methods. Multi-locus approaches increase the accuracy of identification, as many signatures detected in water originate from species/genotypes that are not infectious to humans. Method optimisation is necessary for detecting small numbers of oocysts in environmental samples consistently, and further work is required to (i) optimise IMS recovery efficiency, (ii) quality assure performance-based methods, (iii) maximise DNA extraction and purification, (iv) adopt standardised and validated loci and primers, (v) determine the species and subspecies range in samples containing mixtures, and standardising storage and transport matrices for validating genetic loci, primer sets and DNA sequences.
Collapse
Affiliation(s)
- Huw V Smith
- Scottish Parasite Diagnostic Laboratory, Stobhill Hospital, Glasgow G21 3UW, Scotland, UK.
| | | |
Collapse
|
19
|
Fate of Cryptosporidium parvum and Cryptosporidium hominis oocysts and Giardia duodenalis cysts during secondary wastewater treatments. Parasitol Res 2009; 105:689-96. [PMID: 19396463 DOI: 10.1007/s00436-009-1440-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
This study investigates the fate of Cryptosporidium parvum and C. hominis oocysts and Giardia duodenalis cysts at four Irish municipal wastewater treatment plants (i.e., Plant A, B, C, and D) that utilize sludge activation or biofilm-coated percolating filter systems for secondary wastewater treatment. The fate of these pathogens through the sewage treatment processes was determined based on their viable transmissive stages, i.e., oocysts for Cryptosporidium and cysts for Giardia. Analysis of final effluent indicated that over 97% of viable oocysts and cysts were eliminated, except at Plant C, which achieved only 64% of oocyst removal. A significant correlation between the removal of oocysts and cysts was found at Plants A, B, and D (R = 0.98, P < 0.05). All sewage sludge samples were positive for C. parvum and C. hominis, and G. duodenalis, with maximum concentrations of 20 oocysts and eight cysts per gram in primary sludge indicating the need for further sludge sanitization treatments. This study provides evidence that C. parvum and C. hominis oocysts and G. duodenalis cysts are present throughout the wastewater processes and in end-products, and can enter the aquatic environment with consequent negative implications for public health.
Collapse
|
20
|
Barbosa J, Costa-de-Oliveira S, Rodrigues AG, Pina-Vaz C. Optimization of a flow cytometry protocol for detection and viability assessment of Giardia lamblia. Travel Med Infect Dis 2008; 6:234-9. [DOI: 10.1016/j.tmaid.2008.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 01/04/2008] [Indexed: 11/15/2022]
|
21
|
Jex AR, Smith HV, Monis PT, Campbell BE, Gasser RB. Cryptosporidium--biotechnological advances in the detection, diagnosis and analysis of genetic variation. Biotechnol Adv 2008; 26:304-17. [PMID: 18430539 DOI: 10.1016/j.biotechadv.2008.02.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/29/2008] [Accepted: 02/14/2008] [Indexed: 11/19/2022]
Abstract
Cryptosporidiosis is predominantly a gastrointestinal disease of humans and other animals, caused by various species of protozoan parasites representing the genus Cryptosporidium. This disease, transmitted mainly via the faecal-oral route (in water or food), is of major socioeconomic importance worldwide. The diagnosis and genetic characterization of the different species and population variants (usually recognised as "genotypes" or "subgenotypes") of Cryptosporidium is central to the prevention, surveillance and control of cryptosporidiosis, particularly given that there is presently no broadly applicable treatment regimen for this disease. Although traditional phenotypic techniques have had major limitations in the specific diagnosis of cryptosporidiosis, there have been major advances in the development of molecular analytical and diagnostic tools. This article provides a concise account of Cryptosporidium and cryptosporidiosis, and focuses mainly on recent advances in nucleic acid-based approaches for the diagnosis of cryptosporidiosis and analysis of genetic variation within and among species of Cryptosporidium. These advances represent a significant step toward an improved understanding of the epidemiology as well as the prevention and control of cryptosporidiosis.
Collapse
Affiliation(s)
- A R Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia.
| | | | | | | | | |
Collapse
|
22
|
Jenkins MC, O'Brien CN, Trout JM. Detection of Cryptosporidium parvum Oocysts by Dot-Blotting Using Monoclonal Antibodies to Cryptosporidium parvum Virus 40-kDa Capsid Protein. J Parasitol 2008; 94:94-8. [DOI: 10.1645/ge-1313.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Graczyk TK, Kacprzak M, Neczaj E, Tamang L, Graczyk H, Lucy FE, Girouard AS. Occurrence of Cryptosporidium and Giardia in sewage sludge and solid waste landfill leachate and quantitative comparative analysis of sanitization treatments on pathogen inactivation. ENVIRONMENTAL RESEARCH 2008; 106:27-33. [PMID: 17585898 DOI: 10.1016/j.envres.2007.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 05/07/2007] [Accepted: 05/18/2007] [Indexed: 05/15/2023]
Abstract
Circulation of Cryptosporidum and Giardia in the environment can be facilitated by spreading of sewage sludge on agricultural or livestock grazing lands or depositing in landfills. Solid waste landfill leachate and sewage sludge samples were quantitatively tested for C. parvum and C. hominis oocysts, and G. lamblia cysts by the combined multiplexed fluorescence in situ hybridization (FISH) and immunofluorescent antibody (IFA) method. Subsequently, the effects of four sanitization treatments (i.e., ultrasound and microwave energy disintegrations, and quicklime and top-soil stabilization) on inactivation of these pathogens were determined. The landfill leachate samples were positive for Giardia, and sewage sludge samples for both Cryptosporididium and Giardia. The overall concentration of G. lamblia cysts (mean; 24.2/g) was significantly higher (P<0.01) than the concentration of C. parvum and C. hominis oocysts (mean; 14.0/g). Sonication reduced the load of G. lamblia cysts to non-detectable levels in 12 of 21 samples (57.1%), and in 5 of 6 samples (83.3%) for C. parvum and C. hominis. Quicklime stabilization treatment was 100% effective in inactivation of Cryptosporidium and Giardia, and microwave energy disintegration lacked the efficacy. Top-soil stabilization treatment reduced gradually the load of both pathogens which was consistent with the serial dilution of sewage sludge with the soil substrate. This study demonstrated that sewage sludge and landfill leachate contained high numbers of potentially viable, human-virulent species of Cryptosporidium and Giardia, and that sonication and quicklime stabilization were the most effective treatments for sanitization of sewage sludge and solid waste landfill leachates.
Collapse
Affiliation(s)
- Thaddeus K Graczyk
- Department of Environmental Health Sciences, Division of Environmental Health Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Sousa MC, Morais JB, Machado JE, Poiares-da-Silva J. Genotyping of Giardia lamblia human isolates from Portugal by PCR-RFLP and sequencing. J Eukaryot Microbiol 2007; 53 Suppl 1:S174-6. [PMID: 17169050 DOI: 10.1111/j.1550-7408.2006.00221.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M C Sousa
- Centre of Pharmaceutical Studies, Laboratory of Microbiology and Parasitology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | | | | | | |
Collapse
|
25
|
Sunderland D, Graczyk TK, Tamang L, Breysse PN. Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. WATER RESEARCH 2007; 41:3483-9. [PMID: 17583766 DOI: 10.1016/j.watres.2007.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/24/2007] [Accepted: 05/07/2007] [Indexed: 05/15/2023]
Abstract
Recreational beach water samples collected on weekends and weekdays during 11 consecutive summer weeks were tested for potentially viable Cryptosporidium parvum oocysts and Giardia lamblia cysts using the multiplexed fluorescence in situ hybridization (FISH) method. The levels of oocysts and cysts on weekends were significantly higher than on the weekdays (P<0.01). Concentrations of oocysts in weekend samples (n=27) ranged from 2 to 42 oocysts/L (mean: 13.7 oocysts/L), and cyst concentration ranged from 0 to 33 cysts/L (mean: 9.1 cysts/L). For the samples collected on weekdays (n=33), the highest oocyst concentration was 7 oocysts/L (mean: 1.5 oocysts/L), and the highest cyst concentration was 4 cysts/L (mean: 0.6 cysts/L). The values of water turbidity were significantly higher on weekends than on weekdays, and were correlated with the number of bathers and concentration of C. parvum oocysts and G. lamblia cysts (P<0.04). The study demonstrated positive relationships between number of bathers and levels of waterborne C. parvum oocysts and G. lamblia cysts in recreational beach water. It is essential to test recreational waters for Cryptosporidium and Giardia when numbers of bathers are greatest, or limit the number of bathers in a recreational beach area.
Collapse
Affiliation(s)
- Deirdre Sunderland
- Department of Environmental Health Sciences, Division of Environmental Health Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
26
|
|
27
|
Graczyk TK, Lucy FE, Tamang L, Miraflor A. Human enteropathogen load in activated sewage sludge and corresponding sewage sludge end products. Appl Environ Microbiol 2007; 73:2013-5. [PMID: 17277215 PMCID: PMC1828822 DOI: 10.1128/aem.02412-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study demonstrated a significant reduction in the concentrations of Cryptosporidium parvum and Cryptosporidium hominis oocysts, Giardia lamblia cysts, and spores of human-virulent microsporidia in dewatered and biologically stabilized sewage sludge cake end products compared to those of the respective pathogens in the corresponding samples collected during the sludge activation process.
Collapse
Affiliation(s)
- Thaddeus K Graczyk
- Department of Environmental Health Sciences, Division of Environmental Health Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
28
|
Méndez-Hermida F, Gómez-Couso H, Ares-Mazás E. Artemia is Capable of Spreading Oocysts of Cryptosporidium and the Cysts of Giardia. J Eukaryot Microbiol 2006; 53:432-4. [PMID: 17123406 DOI: 10.1111/j.1550-7408.2006.00126.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The capability for ingesting and spreading the fixed oocysts of Cryptosporidium and fixed cysts of Giardia, two waterborne protozoan parasites, by Artemia franciscana, a microcrustacean widely used as live diet in fish and shellfish larviculture, was demonstrated using differential interference contrast and immunofluorescence microscopy. Our findings suggest the possibility that this microcrustacean could serve as a disseminating vehicle of both parasites in aquatic environments.
Collapse
Affiliation(s)
- Fernando Méndez-Hermida
- Departamento de Microbiología y Parasitología, Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | |
Collapse
|
29
|
Taguchi T, Shinozaki Y, Takeyama H, Haraguchi S, Yoshino M, Kaneko M, Ishimori Y, Matsunaga T. Direct counting of Cryptosporidium parvum oocysts using fluorescence in situ hybridization on a membrane filter. J Microbiol Methods 2006; 67:373-80. [PMID: 16793153 DOI: 10.1016/j.mimet.2006.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/30/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
This report describes the development of a direct and rapid detection method for the pathogenic protozoan, Cryptosporidium parvum, from environmental water samples using fluorescence in situ hybridization (FISH) on a membrane filter. The hydrophilic polytetrafluoroethylene (PTFE) membrane filter with FISH-stained oocysts yielded the highest signal to noise (S/N) ratio of the different membrane filters tested. PTFE membranes retained 98.8+/-0.4% of the concentrated oocysts after washing, simultaneous permeabilization and fixation with a hot ethanol solution, and hybridization with a fluorescently labeled oligonucleotide probe. This procedure eliminates subsequent time-consuming recovery steps that often result in a loss of the actual oocysts in a given environmental water sample. Furthermore, C. parvum was successfully distinguished from Cryptosporidium muris and other species in environmental water samples with the addition of formamide into the hybridization solution. In tap water samples, the S/N ratio was heightened by washing the membrane filter prior to FISH with a 1 M HCl solution in order to reduce the large amounts of impurities and background fluorescence from the non-specific adsorption of the fluorescently labeled oligonucleotide probe.
Collapse
Affiliation(s)
- Tomoyuki Taguchi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bednarska M, Bajer A, Sinski E, Girouard AS, Tamang L, Graczyk TK. Fluorescent in situ hybridization as a tool to retrospectively identify Cryptosporidium parvum and Giardia lamblia in samples from terrestrial mammalian wildlife. Parasitol Res 2006; 100:455-60. [PMID: 17004098 DOI: 10.1007/s00436-006-0276-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 06/30/2006] [Indexed: 11/26/2022]
Abstract
Fecal samples of five terrestrial mammalian wildlife species stored at 4 degrees C or at -20 degrees C for up to 36 months have been tested for human zoonotic enteric parasites (i.e., Cryptosporidium parvum and Giardia lamblia) using combined fluorescent in situ hybridization (FISH) and direct fluorescent antibody techniques. The prevalence of C. parvum and G. lamblia varied from 20 to 63% (mean, 45.8%) and from 13 to 100% (mean, 53.2%), respectively. The prevalence of C. parvum and G. lamblia infections was higher in small rodents (mean, 68.5%) than in other wildlife (mean, 21%). Overall, 31.1% of animals were coinfected, and coinfections were more prevalent in small rodents (mean, 52%) than in other wildlife species (mean, 13.2%). The present study has shown that the FISH assay can be retrospectively applied to fecal samples for the identification of C. parvum oocysts, but is less suitable for the identification of G. lamblia cysts in such samples. Terrestrial mammalian wildlife, particularly small rodents, can contribute to watershed contamination with C. parvum oocysts and G. lamblia cysts. To control contamination, the management of pristine watersheds used for drinking water purposes should incorporate control measures for terrestrial wildlife, especially field rodents residing within such watersheds.
Collapse
Affiliation(s)
- Malgorzata Bednarska
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warszawa, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Sunnotel O, Lowery CJ, Moore JE, Dooley JSG, Xiao L, Millar BC, Rooney PJ, Snelling WJ. Cryptosporidium. Lett Appl Microbiol 2006; 43:7-16. [PMID: 16834714 DOI: 10.1111/j.1472-765x.2006.01936.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review discusses characteristics of the genus Cryptosporidium and addresses the pathogenesis, reservoirs, public health significance and current applications for the detection and typing of this important pathogen. By increasing knowledge in key areas of Cryptosporidium research such as aetiology, epidemiology, transmission and host interactions, the numbers of cases of human cryptosporidiosis should be reduced.
Collapse
Affiliation(s)
- O Sunnotel
- Centre for Molecular Biosciences, School of Biomedical Sciences, University of Ulster, Coleraine, Co., Londonderry, UK
| | | | | | | | | | | | | | | |
Collapse
|