1
|
Albalawi AE, Shater AF, Alanazi AD, Almohammed HI. Unveiling of the antileishmanial activities of Linalool loaded zinc oxide nanocomposite through its potent antioxidant and immunomodulatory effects. Acta Trop 2024; 252:107155. [PMID: 38373527 DOI: 10.1016/j.actatropica.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
This study aimed to produce linalool loaded zinc oxide nanocomposite (LZNPs) and assess its in vitro and in vivo antileishmanial effects against Leishmania major. LZNPs was produced through the synthesis of an ethanolic solution containing polyvinyl alcohol. The average size of LZNPs was determined to be 105 nm. The findings indicated that LZNPs displayed significant (p < 0.01) antileishmanial effects on promastigotes and amastigotes. Following exposure of promastigotes to LZNPs, there was a notable rise in the percentage of early and late apoptotic cells from 9.0 to 57.2 %. The gene expression levels of iNOS, IFN-γ, and TNF-α in macrophages were upregulated in a dose-dependent approach following exposure to LZNPs. LZNPs alone and in conjunction with glucantime (Glu) resulted in a reduction in the diameter and parasite load of CL lesions in infected mice. Treatment of the CL-infected mice with LZNPs at 25 and 50 mg/kg mainly in combination with Glu-reduced the tissue level of malondialdehyde (MDA), increased both gene and protein expression of the antioxidant enzymes as well as raised the expression level of IFN-γ and IL-12 cytokines, whereas caused a significant reduction in the expression level of IL-4. The present study shows that LZNPs has potent antileishmanial effects and controls CL in a mice model through its antioxidant and immunomodulatory properties. Further investigation, especially in clinical trials, could explore the potential use of this nanocomposite in managing and treating CL.
Collapse
Affiliation(s)
- Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47912, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Hamdan I Almohammed
- General Science Department, Deanship of Supportive Studies, Alasala University, P. O. Box 12666, Dammam 31483, Saudi Arabia.
| |
Collapse
|
2
|
de Oliveira NS, de Souza LG, de Almeida VM, Barreto ARR, Carvalho-Gondim F, Schaeffer E, Santos-Filho OA, Rossi-Bergmann B, da Silva AJM. Synthesis and evaluation of hybrid sulfonamide-chalcones with potential antileishmanial activity. Arch Pharm (Weinheim) 2024; 357:e2300440. [PMID: 38048546 DOI: 10.1002/ardp.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
Leishmaniasis is an emerging tropical infectious disease caused by a protozoan parasite of the genus Leishmania. In this work, the molecular hybridization between a trimethoxy chalcone and a sulfonamide group was used to generate a series of sulfonamide-chalcones. A series of eight sulfonamide-chalcone hybrids were made with good yields (up to 95%). These sulfonamide-chalcones were tested against promastigotes of Leishmania amazonensis and cytotoxicity against mouse macrophages, which showed good antileishmanial activity with IC50 = 1.72-3.19 µM. Three of them (10c, 10g, and 10h) were also highly active against intracellular amastigotes and had a good selectivity index (SI > 9). Thus, those three compounds were docked in the cytosolic tryparedoxin peroxidase (cTXNPx) enzyme of the parasite, and molecular dynamics simulations were carried out. This enzyme was selected as a target protein for the sulfonamide-chalcones due to the fact of the anterior report, which identified a strong and stable interaction between the chalcone NAT22 (6) and the cTXNPx. In addition, a prediction of the drug-likeness, and the pharmacokinetic profile of all compounds were made, demonstrating a good profile of those chalcones.
Collapse
Affiliation(s)
- Nathalia S de Oliveira
- Laboratório de Catalise Orgânica, Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana G de Souza
- Laboratório de Catalise Orgânica, Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor M de Almeida
- Laboratório de Modelagem Molecular e Biologia Estrutural Computacional, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arielly R R Barreto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Carvalho-Gondim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edgar Schaeffer
- Laboratório de Catalise Orgânica, Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Osvaldo A Santos-Filho
- Laboratório de Modelagem Molecular e Biologia Estrutural Computacional, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alcides J M da Silva
- Laboratório de Catalise Orgânica, Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Rodrigues Gazolla PA, Lima WP, de Aguiar AR, Gonçalves Borsodi MP, Costa AV, de Oliveira FM, de Oliveira OV, Andreazza Costa MC, Castro Ferreira MM, do Nascimento CJ, Junker J, Vaz BG, Teixeira RR. Leishmanicidal activity and 4D quantitative structure-activity relationship and molecular docking studies of vanillin-containing 1,2,3-triazole derivatives. Future Med Chem 2024; 16:139-155. [PMID: 38131191 DOI: 10.4155/fmc-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Aim: The assessment of the antileishmanial potential of 22 vanillin-containing 1,2,3-triazole derivatives against Leishmania braziliensis is reported. Materials & methods: Initial screening was performed against the parasite promastigote form. The most active compound, 4b, targeted parasites within amastigotes (IC50 = 4.2 ± 1.0 μmol l-1), presenting low cytotoxicity and a selective index value of 39. 4D quantitative structure-activity relationship and molecular docking studies provided insights into structure-activity and biological effects. Conclusion: A vanillin derivative with significant antileishmanial activity was identified. Enhanced activity was linked to increased electrostatic and Van der Waals interactions near the benzyl ring of the derivatives. Molecular docking indicated the inhibition of the Leishmania amazonensis sterol 14α-demethylase, using Leishmania infantum sterol 14α-demethylase as a model, without affecting the human isoform. Inhibition was active site competition with lanosterol.
Collapse
Affiliation(s)
- Poliana Aparecida Rodrigues Gazolla
- Grupo de Pesquisa e Síntese de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa-MG, 36570-900, Brazil
| | - Wallace Pacienza Lima
- Escola de Ciências da Saúde, Universidade do Grande Rio, Rio de Janeiro-RJ, 22775-003, Brazil
| | - Alex Ramos de Aguiar
- Grupo de Pesquisa e Síntese de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa-MG, 36570-900, Brazil
| | - Maria Paula Gonçalves Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adilson Vidal Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alegre-ES, 29500-000, Brazil
| | | | | | | | | | - Cláudia Jorge do Nascimento
- Departamento de Ciências Naturais, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro-RJ, 22290-240, Brazil
| | - Jochen Junker
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro-RJ, 21040-361, Brazil
| | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia-GO, 74001-970, Brazil
| | - Róbson Ricardo Teixeira
- Grupo de Pesquisa e Síntese de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa-MG, 36570-900, Brazil
| |
Collapse
|
4
|
Yadav N, Sharma K, Sengupta S, Singh S. Triethyl phosphine decorated cerium oxide nanoparticles exhibit selective killing of the unicellular protozoan parasite Leishmania donovani. 3 Biotech 2023; 13:413. [PMID: 38009165 PMCID: PMC10665285 DOI: 10.1007/s13205-023-03813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/08/2023] [Indexed: 11/28/2023] Open
Abstract
Globally, Leishmaniasis affects underprivileged communities of the nations and chemotherapy remains one of the preferred treatment options. However, the cytotoxicity, side effects, and cost of the present chemotherapies limit their utilization. Auranofin [an organogold compound having significant structural similarity with triethyl-phosphine (TEP)] has been reported as an effective therapy for Leishmaniasis treatment. Considering the high cost of gold and the strong affinity of cerium oxide nanoparticles (CeNPs) to phosphine ligands, we designed TEP-decorated CeNPs (CeNPs-TEP) and used them as a novel antileishmanial agent. The hydrodynamic size of synthesized CeNPs and CeNPs-TEP was observed to be 22.2 ± 3.7 nm and 92.11 ± 6.2 nm, respectively. CeNPs-TEP provided aqueous stability to TEP as TEP alone is extremely unstable in water. Exposure of CeNPs-TEP showed ~ 60 and ~ 82% cell death in Leishmania donovani Ag83 promastigotes after 24 and 48 h, respectively. The same concentration of CeNPs-TEP did not affect the cellular viability of RAW 264.7 macrophage cells significantly. The oxidative stress and depolarization of the mitochondrial membrane were also observed after the treatment of CeNPs-TEP. Exposure of CeNPs-TEP induced a ~ 2.2-fold increase in ROS generation inside Leishmania donovani Ag83 cells. Dual staining with ethidium bromide and acridine orange reveals that these processes ultimately result in cell death. The results conclude that a combination of CeNPs and TEP could open the door for developing novel antileishmanial therapeutics in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03813-7.
Collapse
Affiliation(s)
- Nisha Yadav
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Kikku Sharma
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Souvik Sengupta
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| |
Collapse
|
5
|
Veras PST, de Santana MBR, Brodskyn CI, Fraga DBM, Solcà MS, De Menezes JPB, Leite BMM, Teixeira HMP. Elucidating the role played by bone marrow in visceral leishmaniasis. Front Cell Infect Microbiol 2023; 13:1261074. [PMID: 37860064 PMCID: PMC10582953 DOI: 10.3389/fcimb.2023.1261074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Leishmaniasis is a widespread group of infectious diseases that significantly impact global health. Despite high prevalence, leishmaniasis often receives inadequate attention in the prioritization of measures targeting tropical diseases. The causative agents of leishmaniasis are protozoan parasites of the Leishmania genus, which give rise to a diverse range of clinical manifestations, including cutaneous and visceral forms. Visceral leishmaniasis (VL), the most severe form, can be life-threatening if left untreated. Parasites can spread systemically within the body, infecting a range of organs, such as the liver, spleen, bone marrow and lymph nodes. Natural reservoirs for these protozoa include rodents, dogs, foxes, jackals, and wolves, with dogs serving as the primary urban reservoir for Leishmania infantum. Dogs exhibit clinical and pathological similarities to human VL and are valuable models for studying disease progression. Both human and canine VL provoke clinical symptoms, such as organ enlargement, fever, weight loss and abnormal gamma globulin levels. Hematologic abnormalities have also been observed, including anemia, leukopenia with lymphocytosis, neutropenia, and thrombocytopenia. Studies in dogs have linked these hematologic changes in peripheral blood to alterations in the bone marrow. Mouse models of VL have also contributed significantly to our understanding of the mechanisms underlying these hematologic and bone marrow abnormalities. This review consolidates information on hematological and immunological changes in the bone marrow of humans, dogs, and mice infected with Leishmania species causing VL. It includes findings on the role of bone marrow as a source of parasite persistence in internal organs and VL development. Highlighting gaps in current knowledge, the review emphasizes the need for future research to enhance our understanding of VL and identify potential targets for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Patricia Sampaio Tavares Veras
- Laboratory of Parasite - Host Interaction and Epidemiology, Gonçalo Moniz Institute-Fiocruz Bahia, Salvador, Bahia, Brazil
- National Institute of Science and Technology of Tropical Diseases, National Council for Scientific Research and Development (CNPq), Salvador, Brazil
| | - Maria Borges Rabêlo de Santana
- Laboratory of Parasite - Host Interaction and Epidemiology, Gonçalo Moniz Institute-Fiocruz Bahia, Salvador, Bahia, Brazil
| | - Claudia Ida Brodskyn
- Laboratory of Parasite - Host Interaction and Epidemiology, Gonçalo Moniz Institute-Fiocruz Bahia, Salvador, Bahia, Brazil
| | - Deborah Bittencourt Mothé Fraga
- Laboratory of Parasite - Host Interaction and Epidemiology, Gonçalo Moniz Institute-Fiocruz Bahia, Salvador, Bahia, Brazil
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Manuela Silva Solcà
- Laboratory of Parasite - Host Interaction and Epidemiology, Gonçalo Moniz Institute-Fiocruz Bahia, Salvador, Bahia, Brazil
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | | | - Bruna Martins Macedo Leite
- Laboratory of Parasite - Host Interaction and Epidemiology, Gonçalo Moniz Institute-Fiocruz Bahia, Salvador, Bahia, Brazil
| | | |
Collapse
|
6
|
Alizadegan F, Aghaei M, Kumar SJ, Saadatmand M, Kumar SA. In vitro and in vivo antileishmanial effects of Nectaroscordum koelzi extract against Leishmania major. J Parasit Dis 2023; 47:683-688. [PMID: 37520187 PMCID: PMC10382433 DOI: 10.1007/s12639-023-01614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Due to the increasing resistance to common medicinal compounds, the use of medicinal plants has received special attention. Therefore, the current survey was designed to study the antileishmanial effects of Nectaroscordum koelzi Trautv. methanolic extract against Leishmania major. In this study, after preparing the methanolic extract of N. koelzi, its effect on the amastigotes of L. major and triggering the nitric oxide (NO) were measured. Then, the in vivo effect of the methanol extract on cutaneous leishmaniasis in mice was evaluated. The best anti-amastigote effect was for the methanol extract of N. koelzi along with meglumine antimony with 50% inhibitory concentrations value of 17.4 μg/ml (p < 0.001). The 50% cytotoxic concentrations values of methanol extract, meglumine antimoniate, and methanol extract + meglumine antimoniate were 596.3, 784.6, and 296.4 µg/ml, respectively. Macrophages treated with the methanolic extract markedly (p < 0.001) induced the release of nitric oxide. After 28 days of treatment, lesions were completely (p < 0.001) healed in mice treated with the methanolic extract (100 mg/kg) + meglumine antimoniate (25 mg/kg). N. koelzi methanolic extract mainly in combination with meglumine antimoniate showed favorable antileishmanial effects on L. major, concluding that the methanolic extract of N. koelzi can be used for the production of new leishmanicidal agents agaist cutaneous leishmaniasis. Although we revealed that NO trigerring and inhibition of infection in host cells are the antileishmanial mechanism action of N. koelzi methanolic extract, more studies must be performed to clear the mechanisms and its safety.
Collapse
Affiliation(s)
- Farhood Alizadegan
- Department of Pharmaceutical Sciences, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Mahdi Aghaei
- Department of Pharmaceutical Sciences, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Sharma J. Kumar
- Department of Pharmaceutical Sciences, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Massumeh Saadatmand
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Suja Ajoy Kumar
- Department of Pharmaceutical Sciences, Rajiv Gandhi University of Health Sciences, Bangalore, India
| |
Collapse
|
7
|
Mahmoudvand H, Khalaf AK, Rajabi PZ, Karbasian N, Ghasemian Yadegari J. Leishmanicidal and immunomodulatory activities of the formononetin (a natural isoflavone) against Leishmania tropica. BMC Res Notes 2023; 16:120. [PMID: 37365655 DOI: 10.1186/s13104-023-06403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE This work aimed to examine the leishmanicidal, cellular mechanisms and cytotoxicity effects of formononetin (FMN), a natural isoflavone, against Leishmania tropica. We used the MTT assay to determine the leishmanicidal effects of FMN against promastigotes and its cytotoxicity effects on J774-A1 macrophage cells. The Griess reaction assay and quantitative real-time PCR were used to determine the nitric oxide (NO) and the mRNA expression levels of IFN-γ and iNOS in infected J774-A1 macrophage cells. RESULTS FMN significantly (P < 0.001) decreased the viability and number of promastigotes and amastigotes forms. The 50% inhibitory concentrations value for FMN and glucantime was 9.3 and 14.3 µM for promastigote and amastigote, respectively. We found that the macrophages exposed with FMN especially at concentrations of 1/2 IC50 and IC50 significantly activated the NO release and the mRNA expression levels of IFN-γ, iNOS. The findings of the current research showed the favorable antileishmanial effects formononetin, a natural isoflavone, against various stages of L. tropica through inhibition of infectivity rate of macrophage cells and triggering the NO production and cellular immunity. However, supplementary works are essential to evaluate the ability and safety of FMN in animal model before use in the clinical phase.
Collapse
Affiliation(s)
- Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Pouya Zareh Rajabi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nooshin Karbasian
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javad Ghasemian Yadegari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
8
|
Leite-Silva J, Oliveira-Ribeiro C, Morgado FN, Pimentel MIF, Lyra MR, Fagundes A, Miranda LFC, Valete-Rosalino CM, Schubach AO, Conceição-Silva F. Is There Any Difference in the In Situ Immune Response in Active Localized Cutaneous Leishmaniasis That Respond Well or Poorly to Meglumine Antimoniate Treatment or Spontaneously Heal? Microorganisms 2023; 11:1631. [PMID: 37512804 PMCID: PMC10384164 DOI: 10.3390/microorganisms11071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/30/2023] Open
Abstract
Localized cutaneous leishmaniasis caused by Leishmania braziliensis can either respond well or poorly to the treatment or heal spontaneously; It seems to be dependent on the parasite and/or host factors, but the mechanisms are not fully understood. We evaluated the in situ immune response in eighty-two active lesions from fifty-eight patients prior to treatment classified as early spontaneous regression (SRL-n = 14); treatment responders (GRL-n = 20); and non-responders (before first treatment/relapse, PRL1/PRL2-n = 24 each). Immunohistochemistry was used to identify cell/functional markers which were correlated with the clinical characteristics. PRL showed significant differences in lesion number/size, clinical evolution, and positive parasitological examinations when compared with the other groups. SRL presented a more efficient immune response than GRL and PRL, with higher IFN-γ/NOS2 and a lower percentage of macrophages, neutrophils, NK, B cells, and Ki-67+ cells. Compared to SRL, PRL had fewer CD4+ Tcells and more CD163+ macrophages. PRL1 had more CD68+ macrophages and Ki-67+ cells but less IFN-γ than GRL. PRL present a less efficient immune profile, which could explain the poor treatment response, while SRL had a more balanced immune response profile for lesion healing. Altogether, these evaluations suggest a differentiated profile of the organization of the inflammatory process for lesions of different tegumentary leishmaniasis evolution.
Collapse
Affiliation(s)
- Jéssica Leite-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-250, RJ, Brazil
| | - Carla Oliveira-Ribeiro
- Service of Oncological Dermatology-National Institute of Cancer (INCA), Rio de Janeiro 20570-120, RJ, Brazil
| | - Fernanda Nazaré Morgado
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-250, RJ, Brazil
| | - Maria Inês Fernandes Pimentel
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Marcelo Rosandiski Lyra
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Aline Fagundes
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Luciana Freitas Campos Miranda
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Claudia Maria Valete-Rosalino
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Armando Oliveira Schubach
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Fátima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
9
|
Afonso RC, Yien RMK, de Siqueira LBDO, Simas NK, Dos Santos Matos AP, Ricci-Júnior E. Promising natural products for the treatment of cutaneous leishmaniasis: A review of in vitro and in vivo studies. Exp Parasitol 2023; 251:108554. [PMID: 37268108 DOI: 10.1016/j.exppara.2023.108554] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Although there are available treatments for cutaneous leishmaniasis (CL), the drugs used are far from ideal, toxic, and costly, in addition to the challenge faced by the development of resistance. Plants have been used as a source of natural compounds with antileishmanial action. However, few have reached the market and become phytomedicines with registration in regulatory agencies. Difficulties related to the extraction, purification, chemical identification, efficacy, safety, and production in sufficient quantity for clinical studies, hinder the emergence of new effective phytomedicines against leishmaniasis. Despite the difficulties reported, the major research centers in the world see that natural products are a trend concerning the treatment of leishmaniasis. The present work consists of a literature review of articles with in vivo studies, covering the period from January 2011 to December 2022, providing an overview of promising natural products for CL treatment. The papers show encouraging antileishmanial action of natural compounds with reduced parasite load and lesion size in animal models, suggesting new strategies for the treatment of the disease. The results reported in this review show advances in using natural products as safe and effective formulations, which can stimulate clinical studies to establish clinical therapy. In conclusion, the information in this review article serves as a preliminary basis for establishing a therapeutic protocol for future clinical trials that can validate the safety and efficacy of natural compounds, providing the development of affordable and safe phytomedicines for the treatment of CL.
Collapse
Affiliation(s)
- Rhuane Coutinho Afonso
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil
| | - Raíssa Mara Kao Yien
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil; Laboratory of Natural Products and Biological Assays, Department of Natural Products and Food, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Naomi Kato Simas
- Laboratory of Natural Products and Biological Assays, Department of Natural Products and Food, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Dos Santos Matos
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil
| | - Eduardo Ricci-Júnior
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Hassan AHE, Mahmoud K, Phan TN, Shaldam MA, Lee CH, Kim YJ, Cho SB, Bayoumi WA, El-Sayed SM, Choi Y, Moon S, No JH, Lee YS. Bestatin analogs-4-quinolinone hybrids as antileishmanial hits: Design, repurposing rational, synthesis, in vitro and in silico studies. Eur J Med Chem 2023; 250:115211. [PMID: 36827952 DOI: 10.1016/j.ejmech.2023.115211] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Amongst different forms of leishmaniasis, visceral leishmaniasis caused by L. donovani is highly mortal. Identification of new hit compounds might afford new starting points to develop novel therapeutics. In this lieu, a rationally designed small library of bestatin analogs-4-quinolone hybrids were prepared and evaluated. Analysis of SAR unveiled distinct profiles for hybrids type 1 and type 2, which might arise from their different molecular targets. Amongst type 1 bestatin analog-4-quinolone hybrids, hybrid 1e was identified as potential hit inhibiting growth of L. donovani promastigotes by 91 and 53% at 50 and 25 μM concentrations, respectively. Meanwhile, hybrid 2j was identified amongst type 2 bestatin analog-4-quinolone hybrids as potential hit compound inhibiting growth of L. donovani promastigotes by 50 and 38% at 50 and 25 μM concentrations, respectively. Preliminary safety evaluation of the promising hit compounds showed that they are 50-100 folds safer against human derived monocytic THP-1 cells relative to the drug erufosine. In silico study was conducted to predict the possible binding of hybrid 1e with methionine aminopeptidases 1 and 2 of L. donovani. Molecular dynamic simulations verified the predicted binding modes and provide more in depth understanding of the impact of hybrid 1e on LdMetAP-1 and LdMetAP-2.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
11
|
Antileishmanial Activity of the Essential Oils from Three Trees Obtained in Different Phenological Stages. Acta Parasitol 2023:10.1007/s11686-023-00664-3. [PMID: 36810938 DOI: 10.1007/s11686-023-00664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Leishmaniasis is a parasitic disease found in tropical areas, and it affects up to 12 million individuals globally. Chemotherapies now available include drawbacks such as toxicity, high cost, and parasite resistance. This work aimed to evaluate the antileishmanial properties of essential oils (EOs) extracted from aerial parts of Cupressus sempervirens (C. sempervirens), Tetraclinis articulata (T. articulata), and Pistacia lentiscus (P. lentiscus) trees. METHODS The EOs were obtained by hydro-distillation, and chemical composition was determined by gas chromatography coupled to mass spectrometry at three phenological stages. The EOs were evaluated in vitro for antileishmanial activities against Leishmania major (L. major) and Leishmania infantum (L. infantum). The cytotoxicity effect was also tested against murine macrophagic cells (Raw264.7 lines). RESULTS Results showed that P. lentiscus and T. articulata EOs presented low and moderate antileishmanial activity against L. infantum and L. major. However, C. sempervirens EO from the fructification stage gave an important selectivity index (23.89 and 18.96 against L. infantum and L. major, respectively). This activity was more interesting than those of amphotericin chemical drugs. Antileishmanial activity for this EO was highly correlated with germacrene D content (r = 1.00). This compound presented a SI equal to 13.34 and 10.38 for the two strains. According to the Principal Component Analysis (PCA), the distribution of the three phenological stages proved that the chemical composition of the EOs affected the antileishmanial activity. PCA revealed that SI was positively correlated with α-pinene, germacrene D and the sesquiterpene hydrocarbon class. Cupressus sempervirens EO can provide a source of germacrene D that can be used as a new alternative to chemical drugs for the treatment of antileishmanial diseases. CONCLUSION C. sempervirens EO seemed to be a highly active antileishmanial agent and a natural alternative for chemical drugs to treat several leishmanial strains.
Collapse
|
12
|
Therapeutic potential of Indian medicinal plants against Leishmania donovani: a review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2023. [DOI: 10.1007/s43538-023-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Meira RDMV, Gomes SLDS, Schaeffer E, Da Silva T, Brito ACDS, Siqueira LM, Inácio JD, Almeida-Amaral EE, Da-Cruz AM, Bezerra-Paiva M, Neves RH, Rodrigues LS, Dutra PML, Costa PRR, da Silva AJM, Da-Silva SAG. Low doses of 3-phenyl-lawsone or meglumine antimoniate delivery by tattooing route are successful in reducing parasite load in cutaneous lesions of Leishmania ( Viannia) braziliensis-infected hamsters. Front Cell Infect Microbiol 2023; 13:1025359. [PMID: 36743305 PMCID: PMC9892647 DOI: 10.3389/fcimb.2023.1025359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Current therapeutic ways adopted for the treatment of leishmaniasis are toxic and expensive including parasite resistance is a growing problem. Given this scenario, it is urgent to explore treatment alternatives for leishmaniasis. The aim of this study was to evaluate the effect of 3-phenyl-lawsone (3-PL) naphthoquinone on Leishmania (Viannia) braziliensis infection, both in vitro and in vivo, using two local routes of administration: subcutaneous (higher dose) and tattoo (lower dose). In vitro 3-PL showed low toxicity for macrophages (CC50 >3200 µM/48h) and activity against intracellular amastigotes (IC50 = 193 ± 19 µM/48h) and promastigotes (IC50 = 116 ± 26 µM/72h), in which induced increased ROS generation. Additionally, 3-PL up-regulated the production of cytokines such as tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), interleukin-6 (IL-6) and IL-10 in infected macrophages. However, the anti-amastigote action was independent of nitric oxide production. Treatment of hamsters infected with L. (V.) braziliensis from one week after infection with 3-PL by subcutaneous (25 µg/Kg) or tattooing (2.5 µg/Kg) route, during 3 weeks (3 times/week) or 2 weeks (2 times/week) significantly decreased the parasite load (p<0.001) in the lesion. The reduction of parasite load by 3-PL treatment was comparable to reference drug meglumine antimoniate administered by the same routes (subcutaneous 1mg/Kg and tattoo 0.1mg/Kg). In addition, treatment started from five weeks after infection with 3-PL per tattoo also decreased the parasite load. These results show the anti-leishmanial effect of 3-PL against L. (V.) braziliensis and its efficacy by subcutaneous (higher dose) and tattoo (lower dose) routes. In addition, this study shows that drug delivery by tattooing the lesion allows the use of lower doses than the conventional subcutaneous route, which may support the development of a new therapeutic strategy that can be adopted for leishmaniasis.
Collapse
Affiliation(s)
| | - Sara Lins da Silva Gomes
- Laboratório de Catálise Orgânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edgar Schaeffer
- Laboratório de Catálise Orgânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thayssa Da Silva
- Laboratório de Imunofarmacologia Parasitária, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Larissa Moreira Siqueira
- Laboratório de Imunofarmacologia Parasitária, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Job Domingos Inácio
- Laboratório de Bioquímica de Tripanosomatídeos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Alda Maria Da-Cruz
- Disciplina de Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil,Laboratório Interdisciplinar de Pesquisas Médicas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Milla Bezerra-Paiva
- Laboratório Interdisciplinar de Pesquisas Médicas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Renata Heisler Neves
- Laboratório de Helmintologia Romero Lascasas Porto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Silvia Amaral Gonçalves Da-Silva
- Laboratório de Imunofarmacologia Parasitária, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Silvia Amaral Gonçalves Da-Silva,
| |
Collapse
|
14
|
Xiao L. A Review: Meridianins and Meridianins Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248714. [PMID: 36557848 PMCID: PMC9781522 DOI: 10.3390/molecules27248714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Meridianins are a family of indole alkaloids derived from Antarctic tunicates with extensive pharmacological activities. A series of meridianin derivatives had been synthesized by drug researchers. This article reviews the extraction and purification methods, biological activities and pharmacological applications, pharmacokinetic characters and chemical synthesis of meridianins and their derivatives. And prospects on discovering new bioactivities of meridianins and optimizing their structure for the improvement of the ADMET properties are provided.
Collapse
Affiliation(s)
- Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
15
|
Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules 2022; 27:molecules27217579. [PMID: 36364404 PMCID: PMC9656935 DOI: 10.3390/molecules27217579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Leishmaniasis is one of the most neglected tropical diseases that present areal public health problems worldwide. Chemotherapy has several limitations such as toxic side effects, high costs, frequent relapses, the development of resistance, and the requirement for long-term treatment. Effective vaccines or drugs to prevent or cure the disease are not available yet. Therefore, it is important to dissect antileishmanial molecules that present selective efficacy and tolerable safety. Several studies revealed the antileishmanial activity of medicinal plants. Several organic extracts/essential oils and isolated natural compounds have been tested for their antileishmanial activities. Therefore, the aim of this review is to update and summarize the investigations that have been undertaken on the antileishmanial activity of medicinal plants and natural compounds derived, rom plants from January 2015 to December 2021. In this review, 94 plant species distributed in 39 families have been identified with antileishmanial activities. The leaves were the most commonly used plant part (49.5%) followed by stem bark, root, and whole plant (21.9%, 6.6%, and 5.4%, respectively). Other plant parts contributed less (<5%). The activity was reported against amastigotes and/or promastigotes of different species (L. infantum, L. tropica, L. major, L. amazonensis, L. aethiopica, L. donovani, L. braziliensis, L. panamensis, L. guyanensis, and L. mexicana). Most studies (84.2%) were carried out in vitro, and the others (15.8%) were performed in vivo. The IC50 values of 103 plant extracts determined in vitro were in a range of 0.88 µg/mL (polar fraction of dichloromethane extract of Boswellia serrata) to 98 µg/mL (petroleum ether extract of Murraya koenigii). Among the 15 plant extracts studied in vivo, the hydroalcoholic leaf extract of Solanum havanense reduced parasites by 93.6% in cutaneous leishmaniasis. Voacamine extracted from Tabernaemontana divaricata reduced hepatic parasitism by ≈30 times and splenic parasitism by ≈15 times in visceral leishmaniasis. Regarding cytotoxicity, 32.4% of the tested plant extracts against various Leishmania species have a selectivity index higher than 10. For isolated compounds, 49 natural compounds have been reported with anti-Leishmania activities against amastigotes and/or promastigotes of different species (L. infantum, L. major, L. amazonensis, L. donovani and L. braziliensis). The IC50 values were in a range of 0.2 µg/mL (colchicoside against promastigotes of L. major) to 42.4 µg/mL (dehydrodieuginol against promastigotes of L. amazonensis). In conclusion, there are numerous medicinal plants and natural compounds with strong effects (IC50 < 100 µg/mL) against different Leishmania species under in vitro and in vivo conditions with good selectivity indices (SI > 10). These plants and compounds may be promising sources for the development of new drugs against leishmaniasis and should be investigated in randomized clinical trials.
Collapse
|
16
|
Mahmoudvand H, Ghasemian Yadegari J, Khalaf AK, Hashemi MJ, Dastyarhaghighi S, Salimikia I. Chemical composition, antileishmanial, and cytotoxic effects Ferula macrecolea essential oil against Leishmania tropica. Parasite Epidemiol Control 2022; 19:e00270. [PMID: 36118048 PMCID: PMC9475300 DOI: 10.1016/j.parepi.2022.e00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/03/2022] Open
Abstract
Background The current study was aimed to evaluate the chemical composition, as well as antileishmanial and cytotoxic effects of the essential oil of Ferula macrecolea and its main compound, terpinolene, against promastigotes and amastigotes of Leishmania tropica. Methods The chemical composition of the essential oil was analyzed by a gas chromatograph connected to a mass spectrometer (GC/MS). The MTT (3-(4.5-dimethylthiazol-2-yl) - 2.5-diphenyl tetrazolium bromide) assay was used to study the effects of the essential oil and terpinolene against promastigotes while the macrophage model was used for evaluating the effect of F. macrecolea essential oil against amastigotes of L. tropica as well as assessing cytotoxicity. The Griess reaction assay was employed to study the nitric oxide (NO) produced by treating macrophage cells with the essential oil and terpinolene. Furthermore, the effect of the essential oil and terpinolene on plasma membrane permeability and inhibition of infection in macrophages was evaluated. Results The main compounds were terpinolene (77.72%), n-nonanal (4.47%), and linalool (4.35%), respectively. The 50% inhibitory concentrations (IC50) of the essential oil, terpinolene, and glucantime against promastigotes were 27.6, 11.6, and 32.8 μg/mL, respectively; however, their IC50 values against amastigotes were 42.3, 19.6, and 56.9 μg/mL, respectively. The 50% cytotoxic concentrations of the essential oil, terpinolene, and glucantime were 471.3, 207.3, and 1165.3 μg/mL, respectively. The production of NO in macrophage cells after treatment with the essential oil and terpinolene was increased in a dose-dependent manner (p < 0.001). The results revealed that by increasing the concentration of the essential oil and terpinolene, the permeability of the parasites' plasma membrane was significantly changed (p < 0.001). The pre-incubation of Leishmania parasites with F. macrecolea essential oil and terpinolene significantly declined the rate of cell infection by 74.8% and 79.4%, respectively (p < 0.001). Conclusion The results of the present study indicated that F. macrecolea essential oil, especially its main compound, i.e., terpinolene, has a potent antiparasitic effect on the promastigote and amastigote stages of L. tropica. Considering the advantages of medicinal plant products over their chemical counterparts, it is suggested that in the continuation of this study, the effect of F. macrecolea essential oil, especially terpinolene, on laboratory animals, and in case of high efficiency, in humans be evaluated.
Collapse
Affiliation(s)
- Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | | | | | - Iraj Salimikia
- Department of Pharmacognosy, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
17
|
Community-Based Interventions for the Prevention and Control of Cutaneous Leishmaniasis: A Systematic Review. SOCIAL SCIENCES 2022. [DOI: 10.3390/socsci11100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We reviewed the evidence on community-based interventions for the prevention and control of cutaneous leishmaniasis (CL). Community initiatives tailored towards awareness and mobilisation are regarded as a priority area in the Neglected Tropical Disease Roadmap 2021–2030 by the World Health Organization. We searched nine electronic databases for intervention-based studies. Two independent reviewers screened and assessed the articles for methodological quality using predefined criteria. We conducted a meta-analysis using a random effects model, along with narrative synthesis. Thirteen articles were eligible for inclusion, of which 12 were quantitative studies (quasi-experimental with control group and pre-post interventions) and one qualitative study. All articles reported on health education interventions aimed at changing people’s knowledge, attitudes, and practices (KAP) in relation to CL. Participant groups included students, mothers, housewives, volunteer health workers, and residents in general. An increased score was recorded for all outcomes across all interventions: knowledge (SMD: 1.85, 95% CI: 1.23, 2.47), attitudes (SMD: 1.36, 95% CI: 0.56, 2.15), and practices (SMD: 1.73, 95% CI: 0.99, 2.47). Whilst our findings show that educational interventions improved people’s knowledge, attitudes, and practices about CL, we argue that this approach is not sufficient for the prevention and control of this disease. Knowledge does not always translate into action, particularly where other structural barriers exist. Therefore, we recommend the design of more innovative community-based interventions with a broader focus (e.g., stigma, financial barriers, and healthcare access).
Collapse
|
18
|
Eugenol derivatives with 1,2,3-triazole moieties: Oral treatment of cutaneous leishmaniasis and a quantitative structure-activity relationship model for their leishmanicidal activity. Exp Parasitol 2022; 238:108269. [DOI: 10.1016/j.exppara.2022.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
|
19
|
Zaki AA, Kaddah MMY, Abulkhair HS, Ashour A. Unravelling the antifungal and antiprotozoal activities and LC-MS/MS quantification of steroidal saponins isolated from Panicum turgidum. RSC Adv 2022; 12:2980-2991. [PMID: 35425313 PMCID: PMC8979225 DOI: 10.1039/d1ra08532h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/15/2022] [Indexed: 12/27/2022] Open
Abstract
Bioassay-guided investigation of Panicum turgidum extract resulted in the identification of seven steroidal saponins (Turgidosterones 1-7). They were evaluated for their in vitro antifungal, antileishmanial, and antitrypanosomal activities. Turgidosterone 6 was the most active antifungal against Candida albicans and Candida neoformans (IC50 values of 2.84 and 1.08 μg mL-1, respectively). Turgidosterones 4-7 displayed antileishmanial activity against Leishmania donovani promastigotes with IC50 values ranging from 4.95 to 8.03 μg mL-1 and against Leishmania donovani amastigote/THP with IC50 values range of 4.50-9.29 μg mL-1. Activity against Trypanosoma brucei was also observed for Turgidosterones 4-7 with an IC50 values range of 1.26-3.77 μg mL-1. Turgidosterones 1-3 did not display any activity against the tested pathogens. The study of structure-activity relationships of the isolated saponins indicated that the antifungal, antileishmanial, and antitrypanosomal activities are markedly affected by the presence of spirostane-type saponins and the elongation of the sugar residue at C-3. To quantitatively determine the most abundant active ingredient in Panicum turgidum extract, a single run, sensitive, and highly selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been applied under positive and negative modes. The obtained results showed that compound 5 was the most abundant (95.93 ± 1.10 mg per gram of dry Panicum turgidum extract), followed by 6 (52.51 ± 1.05 mg gm-1), 4 (32.71 ± 0.48 mg gm-1), and 7 (13.19 ± 0.50 mg gm-1). Docking of these saponins against the Candida albicans oxidoreductases and Leishmania infantum trypanothione reductase active sites revealed their potential to effectively bind with a number of key residues in both receptor targets.
Collapse
Affiliation(s)
- Ahmed A Zaki
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt International Coastal Road New Damietta 34518 Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications New Borg El-Arab 21934 Alexandria Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt International Coastal Road New Damietta 34518 Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt International Coastal Road New Damietta 34518 Egypt
| |
Collapse
|
20
|
Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010319. [PMID: 35011552 PMCID: PMC8746838 DOI: 10.3390/molecules27010319] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 01/06/2023]
Abstract
Human protozoan diseases represent a serious health problem worldwide, affecting mainly people in social and economic vulnerability. These diseases have attracted little investment in drug discovery, which is reflected in the limited available therapeutic arsenal. Authorized drugs present problems such as low efficacy in some stages of the disease or toxicity, which result in undesirable side effects and treatment abandonment. Moreover, the emergence of drug-resistant parasite strains makes necessary an even greater effort to develop safe and effective antiparasitic agents. Among the chemotypes investigated for parasitic diseases, the indole nucleus has emerged as a privileged molecular scaffold for the generation of new drug candidates. In this review, the authors provide an overview of the indole-based compounds developed against important parasitic diseases, namely malaria, trypanosomiasis and leishmaniasis, by focusing on the design, optimization and synthesis of the most relevant synthetic indole scaffolds recently reported.
Collapse
|
21
|
Mohamed Abdelahi MM, El Bakri Y, Lai CH, Subramani K, Anouar EH, Ahmad S, Benchidmi M, Mague JT, Popović-Djordjević J, Goumri-Said S. Novel 3-chloro-6-nitro-1 H-indazole derivatives as promising antileishmanial candidates: synthesis, biological activity, and molecular modelling studies. J Enzyme Inhib Med Chem 2021; 37:151-167. [PMID: 34894940 PMCID: PMC8667887 DOI: 10.1080/14756366.2021.1995380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An efficient pathway was disclosed for the synthesis of 3-chloro-6-nitro-1H-indazole derivatives by 1,3-dipolar cycloaddition on dipolarophile compounds 2 and 3. Faced the problem of separation of two regioisomers, a click chemistry method has allowed us to obtain regioisomers of triazole-1,4 with good yields from 82 to 90% were employed. Also, the antileishmanial biological potency of the compounds was achieved using an MTT assay that reported compound 13 as a promising growth inhibitor of Leishmania major. Molecular docking demonstrated highly stable binding with the Leishmania trypanothione reductase enzyme and produced a network of hydrophobic and hydrophilic interactions. Molecular dynamics simulations were performed for TryR-13 complex to understand its structural and intermolecular affinity stability in a biological environment. The studied complex remained in good equilibrium with a structure deviation of ∼1-3 Å. MM/GBSA binding free energies illustrated the high stability of TryR-13 complex. The studied compounds are promising leads for structural optimisation to enhance the antileishmanial activity.
Collapse
Affiliation(s)
- Mohamed Mokhtar Mohamed Abdelahi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - Youness El Bakri
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco.,Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russia
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Mohammed Benchidmi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Jelena Popović-Djordjević
- Department for Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Tapkir SR, Patil RH, Galave SA, Phadtare GR, Khedkar VM, Garud DR. Synthesis, biological evaluation and molecular docking studies of quinoline‐conjugated 1,2,
3‐triazole
derivatives as antileishmanial agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandeep R. Tapkir
- Department of Chemistry Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Tilak road Pune India
| | - Rajendra H. Patil
- Department of Biotechnology Savitribai Phule Pune University Pune India
| | - Sharad A. Galave
- Department of Chemistry Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Tilak road Pune India
| | - Ganesh R. Phadtare
- Department of Chemistry Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Tilak road Pune India
| | | | - Dinesh R. Garud
- Department of Chemistry Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Tilak road Pune India
| |
Collapse
|
23
|
Khazaei M, Rahnama V, Motazedian MH, Samani SM, Hatam G. In vitro effect of artemether-loaded nanostructured lipid carrier (NLC) on Leishmania infantum. J Parasit Dis 2021; 45:964-971. [PMID: 34789979 DOI: 10.1007/s12639-021-01373-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 11/26/2022] Open
Abstract
Visceral leishmaniasis (VL) is an acute and deadly form of leishmaniasis, caused by Leishmania infantum parasite. Due to the toxicity and side effects of conventional treatment options, such as glucantime and other pentavalent drugs, finding novel drugs with fewer adverse effects is required. Artemether (ART), is one of the derivatives of artemisinin, which was shown to be effective in treating malaria and more recently, leishmaniasis. In this fundamental-applied research, we compared the effect of ART and nanostructure loaded with artemether (NLC-ART) on Leishmania infantum promastigotes and amastigotes, at different concentrations (2.5-5-10-25-50-100 μg/ml) using the MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay method after 24 and 48 h of treatment. Inhibitory concentration (IC50) values (μg/ml) of promastigote and amastigote of L. infantum to ART/ NLC-ART, after 48 h of treatment, were found to be 37.12 / 32.1 and 16.43 / 15.42, respectively. Moreover, we found that (NLC-ART), had the lowest cytotoxicity against the J774 macrophage cell line. Conclusion: The NLC-ART can be a good candidate for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Meisam Khazaei
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Rahnama
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Motazedian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nano Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Peixoto JF, Ramos YJ, de Lima Moreira D, Alves CR, Gonçalves-Oliveira LF. Potential of Piper spp. as a source of new compounds for the leishmaniases treatment. Parasitol Res 2021; 120:2731-2747. [PMID: 34245362 DOI: 10.1007/s00436-021-07199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Current treatment guidelines for leishmaniasis is based on chemotherapy with drugs that show a set of limitations such as high cost, toxicity, difficult route of administration, and lack of efficacy in endemic areas. In this context, phytopharmaceutical products and herbal medicines emerge as promising alternatives for developing new treatment against leishmaniasis. This review discusses the perspectives of leishmaniasis treatment based on natural products and phytotherapy highlighting the Piper genus, especially P. aduncun and P. mollicomum Kunth covering the period of 1998 to 2020. Leishmanicidal activity of pure compounds of Piper spp. [3-(3,4,5-trimethoxyphenyl) propanoic acid, 3-chlorosintenpyridone, 2'-hydroxy-3',4',6'-trimethoxy-chalcone, cardamonin, conocarpan, cubebin, eupomatenoid, flavokavain B, ( +)-(7R,8S)-epoxy-5,6-didehydrokavain, N-[7-(3',4'-methylenedioxypheny l-2(E),4(E)-heptadienoyl-pyrrolidine, N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl-pyrrolidine, piperovatine, pellitorine, and piplartine (piperlongumine)] were proved against the promastigote and amastigote forms of parasite related with cutaneous (L. (L.) amazonensis, L. (V.) braziliensis, and L. (V.) guyanensis) and visceral (L. (L.) donovani, L. (L.) chagasi, and L. (L.) infantum). We also discussed the perspective of leishmaniasis treatment, considering the potential synergism between different promising species of Piper, presenting some interesting interaction possibilities for future studies between plants. Finally, the necessary steps for technological development of phytomedicines and herbal medicines with the desirable quality requirements for medicines are highlighted. The data presented here highlight the use of Piper spp. as source of pharmacological compounds that can lead to effective, safe, and inexpensive treatments for leishmaniasis.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ygor Jessé Ramos
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Davyson de Lima Moreira
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Filipe Gonçalves-Oliveira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Unexpected Role of Sterol Synthesis in RNA Stability and Translation in Leishmania. Biomedicines 2021; 9:biomedicines9060696. [PMID: 34205466 PMCID: PMC8235615 DOI: 10.3390/biomedicines9060696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023] Open
Abstract
Leishmania parasites are trypanosomatid protozoans that cause leishmaniasis affecting millions of people worldwide. Sterols are important components of the plasma and organellar membranes. They also serve as precursors for the synthesis of signaling molecules. Unlike animals, Leishmania does not synthesize cholesterol but makes ergostane-based sterols instead. C-14-demethylase is a key enzyme involved in the biosynthesis of sterols and an important drug target. In Leishmania parasites, the inactivation of C-14-demethylase leads to multiple defects, including increased plasma membrane fluidity, mitochondrion dysfunction, hypersensitivity to stress and reduced virulence. In this study, we revealed a novel role for sterol synthesis in the maintenance of RNA stability and translation. Sterol alteration in C-14-demethylase knockout mutant leads to increased RNA degradation, reduced translation and impaired heat shock response. Thus, sterol biosynthesis in Leishmania plays an unexpected role in global gene regulation.
Collapse
|
27
|
Gupta O, Pradhan T, Bhatia R, Monga V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur J Med Chem 2021; 223:113606. [PMID: 34171661 DOI: 10.1016/j.ejmech.2021.113606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
28
|
Vandekerckhove O, De Buck E, Van Wijngaerden E. Lyme disease in Western Europe: an emerging problem? A systematic review. Acta Clin Belg 2021; 76:244-252. [PMID: 31739768 DOI: 10.1080/17843286.2019.1694293] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Lyme borreliosis is the most common zoonotic disease in Europe and causes an estimated total burden of 10.55 disability-adjusted life years (DALY) per 100 000 population. Its incidence in Western Europe is assumed to be increasing, yet this remains to be confirmed. The aim of this study was to assess the emergence of Lyme disease in Western Europe by performing a systematic review of the scientific literature.Methods: Pubmed, Embase and grey literature were searched from database inception until August 2018 for articles reporting the incidence of Lyme borreliosis in Western European countries. We included observational studies in English that reported data on a random sample of the population and fulfilled our definition of Lyme disease diagnosis. Annual population-weighted averages and the evolution of Lyme borreliosis incidence were extracted or calculated for every Western European country.Results: Our review identified 1514 and included 18 studies next to seven surveillance reports reporting data from 16 Western European countries. Incidence of Lyme borreliosis ranged from 0.001 (Italy) to 632 (Sweden, Blekinge county) cases/100 000/year. Iceland reported the strongest emergence with an average yearly increase of 21.15% over a 12-year period, whereas Italy reported the strongest average yearly decrease of 52.71% over a 5-year period. Very limited high-quality data were available on Lyme borreliosis incidence in the southern Western European countries.Conclusion: Diagnosis of Lyme borreliosis is on the rise in some Western European countries, mostly in the northern and central part. Better surveillance in the southern countries is necessary.
Collapse
Affiliation(s)
| | - Emmy De Buck
- Department for Evidence-Based Practice, Centre for Evidence-Based Practice, Mechelen, Belgium
- Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
29
|
Cruz KP, Patricio BFC, Pires VC, Amorim MF, Pinho AGSF, Quadros HC, Dantas DAS, Chaves MHC, Formiga FR, Rocha HVA, Veras PST. Development and Characterization of PLGA Nanoparticles Containing 17-DMAG, an Hsp90 Inhibitor. Front Chem 2021; 9:644827. [PMID: 34055735 PMCID: PMC8161503 DOI: 10.3389/fchem.2021.644827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a spectrum of neglected tropical diseases and its cutaneous form (CL) is characterized by papillary or ulcerated skin lesions that negatively impact patients' quality of life. Current CL treatments suffer limitations, such as severe side effects and high cost, making the search for new therapeutic alternatives an imperative. In this context, heat shock protein 90 (Hsp90) could present a novel therapeutic target, as evidence suggests that Hsp90 inhibitors, such as 17-Dimethylaminoethylamino-17-Demethoxygeldanamycin (17-DMAG), may represent promising chemotherapeutic agents against CL. As innovative input for formulation development of 17-DMAG, nano-based drug delivery systems could provide controlled release, targeting properties, and reduced drug toxicity. In this work, a double emulsion method was used to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing 17-DMAG. The nanoparticle was developed using two distinct protocols: Protocol 1 (P1) and Protocol 2 (P2), which differed concerning the organic solvent (acetone or dichloromethane, respectively) and procedure used to form double-emulsions (Ultra-Turrax® homogenization or sonication, respectively). The nanoparticles produced by P2 were comparatively smaller (305.5 vs. 489.0 nm) and more homogeneous polydispersion index (PdI) (0.129 vs. 0.33) than the ones made by P1. Afterward, the P2 was optimized and the best composition consisted of 2 mg of 17-DMAG, 100 mg of PLGA, 5% of polyethylene glycol (PEG 8000), 1.5 mL of the internal aqueous phase, 1% of polyvinyl alcohol (PVA), and 4 mL of the organic phase. Optimized P2 nanoparticles had a particle size of 297.2 nm (288.6-304.1) and encapsulation efficacy of 19.35% (15.42-42.18) by the supernatant method and 31.60% (19.9-48.79) by the filter/column method. Release kinetics performed at 37°C indicated that ~16% of the encapsulated 17-DMAG was released about to 72 h. In a separate set of experiments, a cell uptake assay employing confocal fluorescence microscopy revealed the internalization by macrophages of P2-optimized rhodamine B labeled nanoparticles at 30 min, 1, 2, 4, 6, 24, 48, and 72 h. Collectively, our results indicate the superior performance of P2 concerning the parameters used to assess nanoparticle development. Therefore, these findings warrant further research to evaluate optimized 17-DMAG-loaded nanoparticles (NP2-17-DMAG) for toxicity and antileishmanial effects in vitro and in vivo.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Beatriz F. C. Patricio
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinícius C. Pires
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marina F. Amorim
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Alan G. S. F. Pinho
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Helenita C. Quadros
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Diana A. S. Dantas
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marcelo H. C. Chaves
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fabio R. Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Brazil
| | - Helvécio V. A. Rocha
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq), Salvador, Brazil
| |
Collapse
|
30
|
Exploration of 7-azaindole-coumaranone hybrids and their analogues as protein kinase inhibitors. Chem Biol Interact 2021; 343:109478. [PMID: 33905741 DOI: 10.1016/j.cbi.2021.109478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023]
Abstract
7-Azaindole has been labelled a privileged scaffold for the design of new potent inhibitors of protein kinases. In this paper, we determined the inhibition profiles of novel mono- and disubstituted derivatives of 7-azaindole-coumaranone hybrids on various disease-related protein kinases. Eight hit compounds were identified, including a potent Haspin inhibitor with an IC50 value of 0.15 μM. An interesting observation was that all active monosubstituted compounds displayed dual inhibition for Haspin and GSK-3β, while disubstituted derivatives inhibited GSK-3β and LmCK1 from Leishmania major parasite. Analyses of structure activity relationships (SARs) also revealed that mono-substitution with para-fluorobenzyloxy ring produced an equipotent inhibition of Haspin and GSK-3β. Haspin and GSK-3β are relevant targets for developing new anticancer agents while LmCK1 is an innovative target for leishmanicidal drugs. Novel compounds reported in this paper constitute promising starting points for the development of new anticancer and leishmanicidal drugs.
Collapse
|
31
|
Nazer MR, Jahanbakhsh S, Ebrahimi K, Niazi M, Sepahvand M, Khatami M, Kharazi S. Cytotoxic and Antileishmanial Effects of Various Extracts of Capparis spinosa L.. Turk J Pharm Sci 2021; 18:146-150. [PMID: 33900699 DOI: 10.4274/tjps.galenos.2020.87259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Cutaneous leishmania sis (CL) is considered as one of the most critical infections worldwide, in which the protozoa of the genus Leishmania infects a person. Today, the common and selective drugs for the treatment of CL are antimonial compounds present some limitations to their usage. The objective of this study is to investigate the cytotoxic and antileishmanial effects of various extracts of Capparis spinosa L. on the in vitro model. Materials and Methods The primary phytochemical analysis of the C. spinosa extracts was performed to assess the presence of tannins, alkaloids, saponins, flavonoids, terpenoids, and glycosides. Furthermore, the in vitro cytotoxic and antileishmanial effects of C. spinosa extracts on Leishmania tropica promastigote were evaluated. Additionally, these effects on the J774-A1 macrophage cells by colorimetric cell viability 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide assay were also assessed. Results In this study, the findings of primary phytochemical screening of the C. spinosa extracts demonstrated the existence of flavonoids, tannins, terpenoids, glycosides, and alkaloids in this plant. Importantly, the findings indicated that the aqueous and methanolic extracts of C. spinosa exhibit a high potency to inhibit the growth of L. tropica promastigotes with inhibitory concentration 50 values of aqueous and methanolic extracts being 28.5 and 44.6 μg/mL, respectively. Based on the obtained results, C. spinosa extracts did not display a considerable cytotoxicity on the J774-A1 macrophage cells. Conclusion The obtained findings exhibited remarkable antileishmanial effects of C. spinosa extracts on L. tropica, thereby indicating the ability of C. spinosa as a herbal product to be developed as a new antileishmanial drug. Nevertheless, supplementary investigations will be obligatory to achieve these findings, especially in human subjects.
Collapse
Affiliation(s)
- Mohammad Reza Nazer
- Lorestan University of Medical Sciences, Razi Herbal Medicine Research Center, Khorramabad, Iran
| | - Sareh Jahanbakhsh
- Lorestan University of Medical Sciences, Student Research Committee, Khorramabad, Iran
| | | | - Massumeh Niazi
- Lorestan University of Medical Sciences, Student Research Committee, Khorramabad, Iran
| | - Maryam Sepahvand
- Lorestan University of Medical Sciences, Student Research Committee, Khorramabad, Iran
| | - Mehrdad Khatami
- Bam University of Medical Sciences, Student Research Committee, Bam, Iran
| | - Sam Kharazi
- Bam University of Medical Sciences, Student Research Committee, Bam, Iran
| |
Collapse
|
32
|
Albalawi AE, Khalaf AK, Alyousif MS, Alanazi AD, Baharvand P, Shakibaie M, Mahmoudvand H. Fe3O4 @piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Biomed Pharmacother 2021; 139:111566. [PMID: 33839494 DOI: 10.1016/j.biopha.2021.111566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In recent years, magnetic nanoparticles (NMP) as novel materials have been widely used for biomedical, diagnostic and therapeutic purposes like microbial infection therapy. The purpose of this study is to synthesize PO coated iron oxide magnetic nanoparticles (Fe3O4@PO NPs) and their anti-leishmanial effects in vitro and in vivo against cutaneous leishmaniasis. METHODS Fe3O4 magnetic nanoparticles were synthesized by the coprecipitation of Fe2 + and Fe3 + ions and used as a nanocarrier for the production of Fe3O4@PO NPs. The in vitro antileishmanial effects of PO-coated Fe3O4 NPs and Fe3O4 NPs (10-200 µg/mL) was determined against the intracellular amastigotes of Leishmania major (MRHO/IR/75/ER) and, then, examined on cutaneous leishmaniasis induced in male BALB/c mice by L. major. The rate of infectivity, production of nitric oxide (NO), and cytotoxic activates of Fe3O4 NPs and Fe3O4@PO NPs on J774-A1 macrophage cells were determined. RESULTS The size scattering of the Fe3O4 NPs and Fe3O4@PO NPs were in the range among 1-40 and 5-55 nm, respectively. The obtained IC50 values were 62.3 ± 2.15 μg/mL, 31.3 ± 2.26 μg/mL, and 52.6 ± 2.15 μg/mL for the Fe3O4 NPs and Fe3O4@PO NPs, and MA, respectively. The results revealed that the mean number of parasites and the mean diameter of the lesions was considerably (p < 0.05) decreased in the infected mice treated with Fe3O4 NPs and Fe3O4@PO NPs. The Fe3O4 NPs and Fe3O4@PO NPs significantly (p < 0.05) prompted the production of NO as a dose-dependent manner. The promastigotes pre-incubated in Fe3O4 NPs and Fe3O4@PO NPs at the concentration of 5 µg/mL had the ability to infect only 41.7% and 28.3% of the macrophages cells. The selectivity index of greater than 10 for Fe3O4 NPs and Fe3O4@PO NPs showed its safety to the J774-A1 macrophage cells and specificity to the parasite. CONCLUSION The results of this survey indicated the high potency of Fe3O4@PO NPs to inhibit the growth of amastigote forms of L. major as well as recovery and improvement CL induced by L. major in BALB/c mice without significant cytotoxicity. The results also indicated that, although the possible anti-leishmanial mechanisms of Fe3O4@PO NPs have not been clearly understood, however, the triggering of NO may be considered as one of the possible anti-leishmanial mechanisms of these nanoparticles. However, additional studies, in particular in clinical contexts, are mandatory.
Collapse
Affiliation(s)
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia; Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Parastoo Baharvand
- Department of Community Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
33
|
Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime ®) in Cutaneous Leishmaniasis. NANOMATERIALS 2021; 11:nano11040891. [PMID: 33807273 PMCID: PMC8065924 DOI: 10.3390/nano11040891] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Background: In recent years, the focus on nanotechnological methods in medicine, especially in the treatment of microbial infections, has increased rapidly. Aim: The present study aims to evaluate in vitro and in vivo antileishmanial effects of copper nanoparticles (CuNPs) green synthesized by Capparis spinosa fruit extract alone and combined with meglumine antimoniate (MA). Methods: CuNPs were green synthesized by C. spinosa methanolic extract. The in vitro antileishmanial activity of CuNPs (10–200 µg/mL) or MA alone (10–200 µg/mL), and various concentrations of MA (10–200 μg/mL) along with 20 μg/mL of CuNPs, was assessed against the Leishmania major (MRHO/IR/75/ER) amastigote forms and, then tested on cutaneous leishmaniasis induced in male BALB/c mice by L. major. Moreover, infectivity rate, nitric oxide (NO) production, and cytotoxic effects of CuNPs on J774-A1 cells were evaluated. Results: Scanning electron microscopy showed that the particle size of CuNPs was 17 to 41 nm. The results demonstrated that CuNPs, especially combined with MA, significantly (p < 0.001) inhibited the growth rate of L. major amastigotes and triggered the production of NO (p < 0.05) in a dose-dependent manner. CuNPs also had no significant cytotoxicity in J774 cells. The mean number of parasites was significantly (p < 0.05) reduced in the infected mice treated with CuNPs, especially combined with MA in a dose-dependent response. The mean diameter of the lesions decreased by 43 and 58 mm after the treatment with concentrations of 100 and 200 mg/mL of CuNPs, respectively. Conclusion: The findings of the present study demonstrated the high potency and synergistic effect of CuNPs alone and combined with MA in inhibiting the growth of amastigote forms of L. major, as well as recovery and improving cutaneous leishmaniasis (CL) induced by L. major in BALB/c mice. Additionally, supplementary studies, especially in clinical settings, are required.
Collapse
|
34
|
AlMohammed HI, Khudair Khalaf A, E. Albalawi A, Alanazi AD, Baharvand P, Moghaddam A, Mahmoudvand H. Chitosan-Based Nanomaterials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:689. [PMID: 33801922 PMCID: PMC8000302 DOI: 10.3390/nano11030689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The current chemotherapy agents against various forms of leishmaniasis have some problems and side effects, including high toxicity, high cost, and the emergence of resistant strains. Here, we aimed to review the preclinical studies (in vitro and in vivo) on the anti-leishmanial activity of chitosan and chitosan-based particles against Leishmania spp. METHODS This study was conducted based on the 06-PRISMA guidelines and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Various English databases such as PubMed, Google Scholar, Web of Science, EBSCO, ScienceDirect, and Scopus were used to find the publications related to the anti-leishmanial effects of chitosan and its derivatives and other pharmaceutical formulations, without a date limitation, to find all the published articles. The keywords included "chitosan", "chitosan nanoparticles", "anti-leishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". The language for data collection were limited to English. RESULTS Of 2669 papers, 25 papers, including 7 in vitro (28.0%), 7 in vivo (28.0%), and 11 in vitro/in vivo (44.0%) studies conducted up to 2020 met the inclusion criteria for discussion in this systematic review. The most common species of Leishmania used in these studies were L. major (12, 48.0%), L. donovani (7, 28.0%), and L. amazonensis (4, 16.80%). In vivo, the most used animals were BALB/c mice (11, 61.1%) followed by hamsters (6, 33.3%) and Wistar rats (1, 5.5%), respectively. In vitro, the most used Leishmania form was amastigote (8, 44.4%), followed by promastigote (4, 22.2%), and both forms promastigote/amastigote (6, 33.3%). CONCLUSION According to the literature, different types of drugs based on chitosan and their derivatives demonstrated considerable in vitro and in vivo anti-leishmanial activity against various Leishmania spp. Based on the findings of this review study, chitosan and its derivatives could be considered as an alternative and complementary source of valuable components against leishmaniasis with a high safety index. Nevertheless, more investigations are required to elaborate on this result, mainly in clinical settings.
Collapse
Affiliation(s)
- Hamdan I. AlMohammed
- Department of Microbiology and Parasitology, Almaarefa University, Riyadh 11597, Saudi Arabia;
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar 0096442, Iraq;
| | | | - Abdullah D. Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia;
- Department of Medical Laboratory, Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Parastoo Baharvand
- Department of Social Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran;
| | - Ali Moghaddam
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran;
| | - Hossein Mahmoudvand
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran
| |
Collapse
|
35
|
Zahedi SN, Hejazi SH, Boshtam M, Amini F, Fazeli H, Sarmadi M, Rahimi M, Khanahmad H. Recombinant C-Reactive Protein: A Potential Candidate for the Treatment of Cutaneous Leishmaniasis of BALB/c Mice Caused by Leishmania major. Acta Parasitol 2021; 66:53-59. [PMID: 32676917 DOI: 10.1007/s11686-020-00251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Leishmaniasis, a widespread parasitic disease, is a public health concern that is endemic in more than 90 countries. Owing to the drug resistance and also undesirable complications, designing new therapeutic methods are essential. C-reactive protein (CRP) is an acute phase protein of plasma with several immune modulatory functions. This study aimed to evaluate the effect of human recombinant CRP (hrCRP) on treating cutaneous leishmaniasis in mice models. METHODS hrCRP was expressed in E. coli Rosetta-gami and extracted from the SDS-PAGE gel. Male BALB/c mice were inoculated subcutaneously at the base of their tails by 1 × 105 stationary-phase of Leishmania major promastigotes (MHRO/IR/75/ER) suspended in sterile phosphate buffered saline (PBS). Nodules and subsequently, ulcers developed 14 days post-injection. 1.5 µg of the purified protein was administered on lesions of pre-infected mice by Leishmania major in the intervention group for five consecutive days. RESULTS The mean area of the lesions was decreased by about seven folds in the intervention group as compared to the control group after two weeks of the treatment (p = 0.024). The results were verified by the real-time polymerase chain reaction so that the parasite burden was determined 27 times in the control group as compared to the intervention group (p = 0.02). Two weeks after treatment, the conversion of the lesions to scars in the intervention group was observed. CONCLUSION The results indicate a potential therapeutic role for hrCRP in improving cutaneous leishmaniasis due to Leishmania major in mice models. The healing was in a stage-dependent manner.
Collapse
Affiliation(s)
- Seyedeh Noushin Zahedi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Hezarjerib Street, 8174643446, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, Skin Diseases and Leishmaniasis Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farahnaz Amini
- Faculty of Medicine and Health Sciences, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Hossein Fazeli
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Hezarjerib Street, 8174643446, Isfahan, Iran
| | - Mahsa Rahimi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Hezarjerib Street, 8174643446, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Hezarjerib Street, 8174643446, Isfahan, Iran.
| |
Collapse
|
36
|
Abstract
The genus Porophyllum (family Asteraceae) is native to the western hemisphere, growing in tropical and subtropical North and South America. Mexico is an important center of diversification of the genus. Plants belong of genus Porophyllum have been used in Mexican traditional medicine to treat kidney and intestinal diseases, parasitic, bacterial, and fungal infections and anti-inflammatory and anti-nociceptive activities. In this sense, several trials have been made on its chemical and in vitro and in vivo pharmacological activities. These studies were carried on the extracts and isolated compounds and support most of their reported uses in folk medicine as antifungal, antileishmanial, anti-inflammatory, anti-nociceptive and burn repair activities, and as a potential source of new class of insecticides. Bio guided phytochemical studies showed the isolation of thiophenes, terpenes and phenolics compounds, which could be responsible for the pharmacological activities. However, more pre-clinical assays that highlight the mechanisms of action of the compounds involved in pharmacological function are lacking. This review discusses the current knowledge of their chemistry, in vitro and in vivo pharmacological activities carried out on the plants belonging to the Porophyllum genus.
Collapse
|
37
|
Hezarjaribi HZ, Soosaraei M, Fakhar M, Akhtari J, Rafiei A, Jorjani ON. Preparation and Characterization of A Nanoliposomal Vaccine of pcLACK Candidate Against Cutaneous Leishmaniasis. Infect Disord Drug Targets 2020; 21:527-533. [PMID: 33019941 DOI: 10.2174/1871526520666201005141159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/01/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leishmaniasis is a public health problem and endemic in countries of the tropics and subtropics. An ongoing project with naked LACK (Leishmania homolog of receptors for activated C-kinase) demonstrated that this case of the gene is entirely susceptible to immune response and it does enter the cells effectively. This study aimed at developing a procedure to prepare a type of lipid nanoparticles overloaded with plasmid LACK (pcLACK) for usage as Leishmania major (L. major) nanoliposomal vaccine. MATERIALS AND METHODS The single-gene expression plasmid of pcLACK was encoded in the LACK antigen. Nanoparticles were set up by thin film procedure using cationic lipids 1, 2-Dioleoyl- 3-Trimethylammonium propane (DOTAP), 1, 2-Dioleoyl-snGlycero-3-Phosphoethanolamine (DOPE), and cholesterol in a molar proportion of 2:1:1 molar ratio. Using dynamic light scattering, the particle diameters of empty and loaded lipoplexes were measured in triplicate. The zeta-potential (ζ) was measured with the same instrument using the zeta potential mode as the average of 20 measurements by diluting the particles into a low salt buffer. RESULTS The results of the sustainability studies of Liposome-pcLACK formulation showed that there were no significant physical changes up to the 30th day of stability study at the storage condition of 4°C. However, there were significant changes in the formulation content during storage at 25°C for 30 days (204.2±0.90 at Day 30 compared with 207.2±0.26 nm at Day 0). It was observed that the prepared nanoliposomal formulation had more stability under refrigeration. CONCLUSION Immunostimulatory cationic lipids bearing a pcLACK encapsulation could serve as an effective delivery system.
Collapse
Affiliation(s)
- Hajar Ziaei Hezarjaribi
- Toxoplasmosis Research Center, Iranian National Registry Center for Toxoplasmosis(INRCT), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Soosaraei
- Toxoplasmosis Research Center, Iranian National Registry Center for Toxoplasmosis(INRCT), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Iranian National Registry Center for Toxoplasmosis(INRCT), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Toxoplasmosis Research Center, Iranian National Registry Center for Toxoplasmosis(INRCT), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Oghol Niaz Jorjani
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
38
|
Zabolinejad N, Layegh P, Abbasi Shaye Z, Salehi M, Ghanizadeh S. Evaluating the effect of oral clarithromycin on acute cutaneous leishmaniasis lesions compared with systemic glucantime. J DERMATOL TREAT 2020; 33:1418-1423. [PMID: 32972289 DOI: 10.1080/09546634.2020.1825612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM It is widely accepted that the high prevalence of leishmaniasis, demands the search for a tolerable effective treatment with the least side effects. This study aimed to evaluate the effect of treatment with clarithromycin on regression of lesions. MATERIALS AND METHODS This study was performed on 20 patients with leishmaniasis referred to dermatology clinic in 2017-2018. They were divided into two groups of intervention (500 mg oral clarithromycin twice a day) and control (20 mg/kg/day systematic glucantime). Induration size of lesions was recorded. RESULTS We had 20 patients with acute cutaneous leishmaniasis (CL) with 45 lesions in the control group and 49 lesions in the intervention group. In the control group, the mean number of lesions was 3 ± 2.8 and 5 ± 4.3 in each person in the control and intervention group (p=.63). The mean size of the largest diameter of lesions' induration at the beginning of the treatment was 19.81 ± 13 and 15.47 ± 15.6 mm in control and intervention group (p=.3) which changed to 1.59 and 0 respectively in three months after the treatment (p=.001). CONCLUSIONS We concluded oral clarithromycin had therapeutic effects on acute CL similar to systematic glucantime and could be considered as a safe and effective treatment option.
Collapse
Affiliation(s)
- Naghmeh Zabolinejad
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouran Layegh
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abbasi Shaye
- Clinical Research and Development Center of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Salehi
- Department of Social Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Development Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Ghanizadeh
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Navard SH, Rezvan H, Haddad MHF, Ali SA, Nourian A, Eslaminejad MB, Behmanesh MA. Therapeutic effects of mesenchymal stem cells on cutaneous leishmaniasis lesions caused by Leishmania major. J Glob Antimicrob Resist 2020; 23:243-250. [PMID: 32977079 DOI: 10.1016/j.jgar.2020.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Leishmania major (L. major) is a cutaneous leishmaniasis causative agent. Current chemotherapeutic methods are not totally effective in treatment of this disease. The immunomodulation and tissue repairing capability of mesenchymal stem cells (MSCs), ease of isolation, detection and in vitro culture, have encouraged biologists to use MSCs for cell therapy in different infections such as cutaneous leishmaniasis. METHODS BALB/c mice (6-8 weeks old) were infected with L. major then divided into four groups and treated with MSCs, Glucantime, Glucantime + MSCs, or PBS. Regression of lesions, potency of macrophages for phagocytosis, proliferation of immune cells against Leishmania soluble antigen, reduction of spleen parasite burden and healing of the lesions were evaluated on days 10, 20 and 30 of treatment. RESULTS The results indicated that the mice intralesionally injected with MSCs showed significant regression in the lesions produced by L. major by day 30. Proliferation of splenocytes stimulated with SLA (soluble leishmania antigen) in vitro in MSC-treated mice on day 20 was significantly higher than in the other groups. The potency of phagocytosis in macrophages of mice treated with MSCs was significantly higher by day 30 and healing of the lesions in this group of mice showed more progress on histopathological examinations. Spleen parasite burden showed significant reduction in the mice treated with Glucantime + MSCs by day 30. CONCLUSIONS The results showed that including MSCs in treatment of cutaneous leishmaniasis caused by L. major is a promising approach.
Collapse
Affiliation(s)
- Sahar Hamoon Navard
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Hossein Rezvan
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hossein Feiz Haddad
- Leishmaniasis Disease Registry Committee, Dezful University of Medical Sciences, Dezful, Iran; Infectious and Tropical Diseases Research Centre, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - S A Ali
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
40
|
Lasjerdi Z, Ghanbarian H, Mohammadi Yeganeh S, Seyyed Tabaei SJ, Mohebali M, Taghipour N, Koochaki A, Hamidi F, Gholamrezaei M, Haghighi A. Comparative Expression Profile Analysis of Apoptosis-Related miRNA and Its Target Gene in Leishmania major Infected Macrophages. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:332-340. [PMID: 33082797 PMCID: PMC7548466 DOI: 10.18502/ijpa.v15i3.4197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background: Cutaneous Leishmaniasis (CL) is an emerging uncontrollable and neglected infectious disease worldwide including Iran. The aim of this study was to investigate the expression profile of apoptosis-related miRNA and its target gene in macrophages. Methods: This study was carried out in the Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran from January 2016 to November 2018. Applying literature reviews, bioinformatics software, and microarray expression analysis, we selected miRNA-24-3p interfering in apoptosis pathway. The expression profile of this miRNA and target gene were investigated in Leishmania major (MRHO/IR/75/ER)-infected primary and RAW 264.7 macrophages (IBRC-C10072) compared with non-infected macrophages (control group) using quantitative Real-time PCR. Results: Results of bioinformatics analysis showed that miR-24-3p as anti-apoptotic miRNA inhibits pro-apoptotic genes (Caspases 3 and 7). Microarray expression data presented in Gene Expression Omnibus (GEO) revealed a significant difference in the expression level of selected miRNA and its target gene between two groups. QRT-PCR results showed that the expression of miR-24-3p was upregulated in L. major infectioned macrophages that approved the results of bioinformatics and microarray analysis. Conclusion: Parasite can alter miRNAs expression pattern in the host cells to establish infection and its survival. Alteration in miRNAs levels likely plays an important role in regulating macrophage functions following L. major infection. These results could highlight current understanding and new insights concerning the gene expression in macrophages during leishmaniasis and will help to development of novel strategies for control and treatment of CL.
Collapse
Affiliation(s)
- Zohreh Lasjerdi
- Department of Medical Parasitology and Mycology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | - Niloofar Taghipour
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Hamidi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Gholamrezaei
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Haghighi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Jalil A, Asim MH, Shahzadi I, Khan M, Matuszczak B, Bernkop-Schnürch A. Thiolated PVP-Amphotericin B Complexes: An Innovative Approach toward Highly Mucoadhesive Gels for Mucosal Leishmaniasis Treatment. Biomacromolecules 2020; 21:3658-3667. [PMID: 32803961 DOI: 10.1021/acs.biomac.0c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to synthesize polymeric excipients that can form mucoadhesive hydrogels containing amphotericin B (AmB) for the treatment of mucosal leishmaniasis. 2-(2-Acryloylaminoethyldisulfanyl)-nicotinic acid (ACENA) was copolymerized with N-vinyl pyrrolidone to obtain thiolated polyvinylpyrrolidone (PVP) that was then complexed with AmB to improve its solubility. The resulting structure of thiolated PVP was evaluated by 1H nuclear magnetic resonance to confirm S-protected thiol groups, and the average molecular mass was determined by size exclusion chromatography. Moreover, variants of thiolated PVP-AmB were studied for the thiol content, amount of complexed AmB, cytotoxicity, mucoadhesive properties, and antileishmaniasis activity. The highest achieved degree of thiolation was 772 ± 24.64 μmol/g, and the amount of complexed AmB was 27.05 ± 0.31 μmol per g of polymer. Thiolated PVP and thiolated PVP-AmB variants (0.5% m/v) showed no cytotoxicity, whereas the equivalent concentration of free AmB reduced Caco-2 cell viability to 70% within 24 h. Thiol-functionalized PVP and PVP-AmB complexes displayed 7.66- and 7.20-fold higher adhesion to the mucosal surface in comparison to unmodified PVP and PVP-AmB, respectively. In addition, variants of thiolated PVP-AmB complexes displayed 100% antileishmaniasis activity in comparison to the 80% killing efficiency of Fungizone, which has been applied in the equivalent AmB concentration of 0.2 μg/mL. Thiol-functionalized PVP proved to be a promising novel excipient for the delivery of AmB providing enhanced solubility and improved mucoadhesive properties which are beneficial for the treatment of mucosal leishmaniasis.
Collapse
Affiliation(s)
- Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.,Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Momin Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
42
|
Suman SS, Kumar A, Singh AK, Amit A, Topno RK, Pandey K, Das VNR, Das P, Ali V, Bimal S. Dendritic cell engineered cTXN as new vaccine prospect against L. donovani. Cytokine 2020; 145:155208. [PMID: 32736961 DOI: 10.1016/j.cyto.2020.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs), as antigen-presenting cells, can reportedly be infected withLeishmaniaparasites and hence provide a better option to trigger T-cell primary immune responses and immunological memory. We consistently primed DCs during culture with purified recombinant cytosolic tryparedoxin (rcTXN) and then evaluated the vaccine prospect of presentation of rcTXN against VL in BALB/c mice. We reported earlier the immunogenic properties of cTXN antigen derived fromL. donovani when anti-cTXN antibody was detected in the sera of kala-azar patients. It was observed that cTXN antigen, when used as an immunogen with murine DCs acting as a vehicle, was able to induce complete protection against VL in an infected group of immunized mice. This vaccination triggered splenic macrophages to produce more IL-12 and GM-CSF, and restricted IL-10 release to a minimum in an immunized group of infected animals. Concomitant changes in T-cell responses against cTXN antigen were also noticed, which increased the release of protective cytokine-like IFN-γ under the influence of NF-κβ in the indicated vaccinated group of animals. All cTXN-DCs-vaccinated BALB/c mice survived during the experimental period of 120 days. The results obtained in our study suggest that DCs primed with cTXN can be used as a vaccine prospect for the control of visceral leishmaniasis.
Collapse
Affiliation(s)
- Shashi S Suman
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ashish K Singh
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - R K Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - K Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - P Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.
| |
Collapse
|
43
|
Phylloseptin-1 is Leishmanicidal for Amastigotes of Leishmania amazonensis Inside Infected Macrophages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134856. [PMID: 32640562 PMCID: PMC7370015 DOI: 10.3390/ijerph17134856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Leishmania protozoans are the causal agents of neglected diseases that represent an important public health issue worldwide. The growing occurrence of drug-resistant strains of Leishmania and severe side effects of available treatments represent an important challenge for the leishmaniases treatment. We have previously reported the leishmanicidal activity of phylloseptin-1 (PSN-1), a peptide found in the skin secretion of Phyllomedusa azurea (=Pithecopus azureus), against Leishmania amazonensis promastigotes. However, its impact on the amastigote form of L. amazonensis and its impact on infected macrophages are unknown. In this work, we evaluated the effects of PSN-1 on amastigotes of L. amazonensis inside macrophages infected in vitro. We assessed the production of hydrogen peroxide and nitric oxide, as well as the levels of inflammatory and immunomodulatory markers (TGF-β, TNF-α and IL-12), in infected and non-infected macrophages treated with PSN-1. Treatment with PSN-1 decreased the number of infected cells and the number of ingested amastigotes per cell when compared with the untreated cells. At 32 µM (64 µg/mL), PSN-1 reduced hydrogen peroxide levels in both infected and uninfected macrophages, whereas it had little effect on NO production or TGF-β release. The effect of PSN-1 on IL-12 and TNF-α secretion depended on its concentration, but, in general, their levels tended to increase as PSN-1 concentration increased. Further in vitro and in vivo studies are needed to clarify the mechanisms of action of PSN-1 and its interaction with the immune system aiming to develop pharmacological applications.
Collapse
|
44
|
Glucantime-loaded electrospun core-shell nanofibers composed of poly(ethylene oxide)/gelatin-poly(vinyl alcohol)/chitosan as dressing for cutaneous leishmaniasis. Int J Biol Macromol 2020; 163:288-297. [PMID: 32610052 DOI: 10.1016/j.ijbiomac.2020.06.240] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/18/2023]
Abstract
Leishmaniasis, one of the main concerns of the World Health Organization, is a parasitic disease caused by Leishmania species. The main objective of this study was to prepare a topical drug delivery system that can deliver glucantime to the site of cutaneous Leishmania wounds. Using the electrospinning method, a core-shell nanofibrous mat composed of macromolecules including polyethylene oxide, gelatin, poly (vinyl alcohol) and chitosan was prepared. The prepared nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), tensile test and in vitro drug release test. The anti-Leishmania activities of drug-loaded nanofibers against Leishmania promastigotes and its cytotoxicity on fibroblasts were determined respectively by flow-cytometry and indirect MTT methods. Results of morphological studies showed that uniform nanofibers were prepared without any bead with average diameter of 404 nm. The TEM investigation confirmed the core-shell structure of the fibers. The in-vitro drug release assay was executed using Franz diffusion cell, which indicted 84% of glucantime was released during the first 9 h. The results indicated that 4 and 6 cm2 of nanofibers mat were significantly killed promatigotes up to 78%. Moreover, the MTT assay also showed that the fabricated nanofibers do not possess any cytotoxicity towards fibroblast cells.
Collapse
|
45
|
Oliaee RT, Sharifi I, Bamorovat M, Keyhani A, Babaei Z, Salarkia E, Tavakoly R, Khosravi A, Mostafavi M, Sharifi F, Mousavi SM. The potential role of nicotinamide on Leishmania tropica: An assessment of inhibitory effect, cytokines gene expression and arginase profiling. Int Immunopharmacol 2020; 86:106704. [PMID: 32590317 DOI: 10.1016/j.intimp.2020.106704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 11/26/2022]
Abstract
Leishmaniasis represents a major health concern worldwide which has no effective treatment modality. Nicotinamide (NAm) has been used for a wide range of applications from anticancer to antimicrobial usage. This study aimed to assess the effect of NAm combination on Leishmania tropica Inhibition, as well as on cytokines gene expression and arginase (ARG) activity in L. tropica-infected macrophages in an in vitro model. The leishmanicidal effects of NAm and Glucantime (meglumine antimoniate, MA) alone and in combination (NAm/MA) were evaluated using a colorimetric assay and macrophage model. Additionally, immunomodulatory effects and enzymatic activity were assessed by analyzing Th1 and Th2 cytokines gene expression and ARG level, respectively, in infected macrophages treated with NAm and MA, alone and in combination. Findings indicated that the NAm/MA combination demonstrated greater inhibitory effects on L. tropica promastigotes and amastigotes compared with each drug individually. Docking results proved the affinity of NAm to IFN-γ, which can affirm the increased levels of IFN-γ, IL-12p40 and TNF-α as well as reductions in IL-10 secretion with a dose-response effect, especially in the combination group. The NAm/MA combination also showed a significant reduction in the level of ARG activity at all concentrations used compared to each drug individually. These findings indicate higher effectiveness of NAm plus MA in reducing parasite growth, promoting immune response and inhibiting ARG level. This combination should be considered as a potential therapeutic regimen for treatment of volunteer patients with anthroponotic cutaneous leishmaniasis (ACL) in future control programs.
Collapse
Affiliation(s)
- Razieh Tavakoli Oliaee
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Rahele Tavakoly
- Student Research Committee, School of Health, Kerman University of Medical Sciences, Kerman, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
46
|
Saha A, Bhattacharjee A, Vij A, Das PK, Bhattacharya A, Biswas A. Evaluation of Modulators of cAMP-Response in Terms of Their Impact on Cell Cycle and Mitochondrial Activity of Leishmania donovani. Front Pharmacol 2020; 11:782. [PMID: 32670055 PMCID: PMC7326082 DOI: 10.3389/fphar.2020.00782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
With the identification of novel cAMP binding effector molecules in Trypanosoma, the role of cAMP in kinetoplastida parasites gained an intriguing breakthrough. Despite earlier demonstrations of the role of cAMP in the survival of Leishmania during macrophage infection, there is essential need to specifically clarify the involvement of cAMP in various cellular processes in the parasite. In this context, we sought to gain a comprehensive understanding of the effect of cAMP analogs and cAMP-cyclic nucleotide phosphodiesterase (PDE) inhibitors on proliferation of log phase parasites. Administration of both hydrolyzable (8-pCPT-cAMP) and nonhydrolyzable analogs (Sp-8-pCPT-cAMPS) of cAMP resulted in a significant decrease of Leishmania proliferation. Among the various PDE inhibitors, etazolate was found to be potently antiproliferative. BrdU cell proliferation and K/N/F-enumeration microscopic study revealed that both cAMP analogs and selective PDE inhibitors resulted in significant cell cycle arrest at G1 phase with reduced S-phase population. Furthermore, careful examination of the flagellar motility patterns revealed significantly reduced coordinated forward flagellar movement of the promastigotes with a concomitant decrease in cellular ATP levels. Alongside, 8-pCPT-cAMP and PDE inhibitors etazolate and trequinsin showed marked reduction in mitochondrial membrane potential. Treatment of etazolate at subcytotoxic concentration to infected macrophages significantly reduced parasite burden, and administration of etazolate to Leishmania-infected BALB/c mice showed reduced liver and spleen parasite burden. Collectively, these results imply involvement of cAMP in various crucial processes paving the avenue for developing potent antileishmanial agent.
Collapse
Affiliation(s)
- Amrita Saha
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anindita Bhattacharjee
- Department of Zoology, Cell and Molecular Biology Laboratory, University of Kalyani, Kalyani, India
| | - Amit Vij
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush K. Das
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Bhattacharya
- Department of Microbiology, School of Life Sciences and Biotechnology, Adamas University, Kolkata, India
| | - Arunima Biswas
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
47
|
Tahmasebi M, Soleimanifard S, Sanei A, Karimy A, Abtahi SM. A Survey on Inhibitory Effect of Whole-Body Extraction and Secretions of Lucilia sericata's Larvae on Leishmania major In vitro. Adv Biomed Res 2020; 9:12. [PMID: 32318361 PMCID: PMC7147512 DOI: 10.4103/abr.abr_56_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/26/2019] [Accepted: 11/03/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Leishmaniasis is a skin disease caused by Leishmania parasite. Despite being self-limiting, must be treated. Available drugs have side effects and drug resistance has also been seen. Materials and Methods: Maggot debridement therapy (MDT) is using sterile fly larvae (maggots) of blow flies (Lucilia sericata) for the treatment of different types of tissue wounds. Larvae have excreted and secreted substances that have been proved to have antimicrobial effects, in addition to the some other specifications. Results: In this study, the anti-leishmanial effects of extracts and secretions of sterile second- and third-instar larvae of L. sericata on the growth of Leishmania major promastigotes and amastigotes in the J774 macrophages have been evaluated in vitro. Conclusion: The results showed that extracts and secretions had almost the same leishmaniocidal effect on promastigotes and intracellular amastigotes without cytotoxic effect on macrophages.
Collapse
Affiliation(s)
- Maryam Tahmasebi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simindokht Soleimanifard
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Sanei
- Department of Medical Entomology, School of Health, Hormozgan University of Medical Sciences, Bandar-Abbas, Iran
| | - Azadeh Karimy
- Department of Entomology, Zist Eltiam Sepanta Company, Azad University of Khorasgan, Technology Incubator, Center of Medicinal Plant and Traditional Medicine, Isfahan, Iran
| | - Seyed Mohammad Abtahi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Regulation of Translation in the Protozoan Parasite Leishmania. Int J Mol Sci 2020; 21:ijms21082981. [PMID: 32340274 PMCID: PMC7215931 DOI: 10.3390/ijms21082981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis represents a serious health problem worldwide and drug resistance is a growing concern. Leishmania parasites use unusual mechanisms to control their gene expression. In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional control is mainly compensated by post-transcriptional mechanisms, including tight translational control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of translation plays a major role in parasite survival and adaptation to dramatically different environments during change of host; however, our knowledge of fine molecular mechanisms of translation in Leishmania remains limited. Here, we review the current progress in our understanding of how changes in the translational machinery promote parasite differentiation during transmission from a sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the development of drug resistance.
Collapse
|
49
|
Islam A, Ain Q, Munawar A, Corrêa Junior JD, Khan A, Ahmad F, Demicheli C, Shams DF, Ullah I, Sohail MF, Yasinzai M, Frézard F, Nadhman A. Reactive oxygen species generating photosynthesized ferromagnetic iron oxide nanorods as promising antileishmanial agent. Nanomedicine (Lond) 2020; 15:755-771. [PMID: 32193975 DOI: 10.2217/nnm-2019-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the photodynamic therapeutic potential of ferromagnetic iron oxide nanorods (FIONs), using Trigonella foenum-graecum as a reducing agent, against Leishmania tropica. Materials & methods: FIONs were characterized using ultraviolet visible spectroscopy, x-ray diffraction and scanning electron microscopy. Results: FIONs showed excellent activity against L. tropica promastigotes and amastigotes (IC50 0.036 ± 0.003 and 0.072 ± 0.001 μg/ml, respectively) upon 15 min pre-incubation light-emitting diode light (84 lm/W) exposure, resulting in reactive oxygen species generation and induction of cell death via apoptosis. FIONs were found to be highly biocompatible with human erythrocytes (LD50 779 ± 21 μg/ml) and significantly selective (selectivity index >1000) against murine peritoneal macrophages (CC50 102.7 ± 2.9 μg/ml). Conclusion: Due to their noteworthy in vitro antileishmanial properties, FIONs should be further investigated in an in vivo model of the disease.
Collapse
Affiliation(s)
- Arshad Islam
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan.,Postgraduate Program in Physiology & Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Quratul Ain
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Amna Munawar
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - José Dias Corrêa Junior
- Departamento of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ajmal Khan
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Farhan Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Cynthia Demicheli
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Frédéric Frézard
- Postgraduate Program in Physiology & Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| |
Collapse
|
50
|
dos Santos Meira C, Gedamu L. Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms 2019; 7:microorganisms7120695. [PMID: 31847221 PMCID: PMC6956275 DOI: 10.3390/microorganisms7120695] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The intracellular protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a vector-borne disease of major public health concern, estimated to affect 12 million people worldwide. The clinical manifestations of leishmaniasis are highly variable and can range from self-healing localized cutaneous lesions to life-threatening disseminated visceral disease. Once introduced into the skin by infected sandflies, Leishmania parasites interact with a variety of immune cells, such as neutrophils, monocytes, dendritic cells (DCs), and macrophages. The resolution of infection requires a finely tuned interplay between innate and adaptive immune cells, culminating with the activation of microbicidal functions and parasite clearance within host cells. However, several factors derived from the host, insect vector, and Leishmania spp., including the presence of a double-stranded RNA virus (LRV), can modulate the host immunity and influence the disease outcome. In this review, we discuss the immune mechanisms underlying the main forms of leishmaniasis, some of the factors involved with the establishment of infection and disease severity, and potential approaches for vaccine and drug development focused on host immunity.
Collapse
|