1
|
Silva CMDA, Dos Santos FN, Mota TF, Brodskyn CI, Fraga DBM, Magalhães-Junior JT. Identification of Lutzomyia longipalpis' using MALDI-TOF peptide/protein profiles. Acta Trop 2024; 257:107303. [PMID: 38950763 DOI: 10.1016/j.actatropica.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Sand flies are vectors of great public health importance, since they constitute a group of hematophagous insects responsible for etiological agents transmission of zoonotic diseases such a visceral leishmaniasis. In face of the expansion of these diseases, efficient control strategies are needed which depend on comprehending the sand fly eco-epidemiology. In this regard, MALDI-TOF mass spectrometry has been used for bacteria, fungi and yeast detection studies through peptide/protein profiles. However, little is known about interference of biological factors associated with vector ecology, such as blood meal preferences and even sand fly age on the peptide/protein profiles. Thus, the present study aimed to evaluate the differences in peptide/protein profiles of the sand fly Lutzomyia longipalpis, by means of MALDI-TOF, due to the sand fly's age, sex, blood meal source and Leishmania infantum infection. Sample preparation was made removing both head and last abdomen segments keeping the thorax, its appendices and the rest of the abdomen. Five specimens per pool were used to obtain peptide/protein extract of which 1 μL solution was deposited over 1 μL MALDI matrix dried. Characteristic spectra were analyzed using principal coordinate analysis as well as indicator species analysis to discriminate differences in sand flies's peptide/protein profile by sex, age, blood meal source and L. infantum infection. The results show that the evaluated variables produced distinct peptide/protein profiles, demonstrated by the identification of specific diagnostic ions. It was found that the interference of biological factors should be taken into account when using the MALDI-TOF analysis of sand fly species identification and eco-epidemiological applications in field studies. Based on our results, we believe that it is possible to identify infected specimens and the source of blood meal in a collection of wild sand flies, serving to measure infectivity and understand the dynamics of the vector's transmission chain. Our results may be useful for epidemiological studies that look at the ecology of sand flies and leishmaniasis, as well as for raising awareness of biological characteristics' impact on peptide/protein profiles in sand fly species identification.
Collapse
Affiliation(s)
- Caliene Melo de Andrade Silva
- Universidade Federal do Oeste da Bahia (UFOB), Centro Multidisciplinar da Barra, Barra, Bahia, Brazil, 47100-000; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710.
| | - Fábio Neves Dos Santos
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil, 13083-970; Instituto de Química, Universidade Federal da Bahia (UFBA), Campus Universitário de Ondina, Salvador, Bahia, Brazil, 40170-290
| | - Tiago Feitosa Mota
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710
| | - Claudia Ida Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710
| | - Deborah Bittencourt Mothé Fraga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710; Universidade Federal da Bahia (UFBA), Escola de Medicina Veterinária e Zootecnia, Salvador, Bahia, Brazil, 40170-110
| | | |
Collapse
|
2
|
Nakatt L, Gaye PM, Moukah MO, Niang B, Basco L, Ranque S, Ould Mohamed Salem Boukhary A. Urogenital schistosomiasis in schoolchildren in the lake zones of Kankossa and Oued Rawdha, southern Mauritania: The first parasitological and malacological survey. PLoS Negl Trop Dis 2024; 18:e0012505. [PMID: 39321164 PMCID: PMC11458011 DOI: 10.1371/journal.pntd.0012505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/07/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis due to Schistosoma haematobium is a major public health problem in Mauritania, but little is known about its epidemiology in many areas of the country, particularly in the lake zones. The objectives of the present parasitological and malacological study were to assess the prevalence and intensity of urogenital schistosomiasis among school children in Kankossa and Oued Rawdha lakes, southern Mauritania, and determine the species of intermediate host snails and the prevalence of snails with schistosome. METHODS A school-based epidemiological survey was conducted in two villages in the lake areas of Kankossa and Oued Rawdha. Urine samples were collected from 450 state primary school children and Koranic school children and examined for the presence of S. haematobium eggs using filtration technique. Water bodies adjacent to human settlement were surveyed for Bulinus and Biomphalaria snails that may potentially be intermediate hosts of S. haematobium. Morphological, molecular, and proteomic (i.e. matrix-assisted laser desorption ionization time-of-flight mass spectrometry [MALDI-TOF MS]) identification of collected snails were conducted, and their infection status was assessed by real-time polymerase chain reaction (RT-PCR) using the highly repetitive DraI gene. RESULTS The prevalence of urogenital schistosomiasis was 35.6% and 15.8% in Kankossa and Oued Rawdha villages, respectively, corresponding to 'moderate' prevalence (i.e., 10-49% infected schoolchildren). Urogenital schistosomiasis prevalence was higher in boys (30.0%) than in girls (21.2%; P < 0.05), and in Koranic schools pupils (37.1%) than in state schools (20.5%; P < 0.05) pupils. Multiple regression analysis showed that sex (odds ratio [OR]: 1.64; 95% confidence interval [95% CI]: 1.06-2.57; P = 0.03) and Koranic school level (OR: 1.79; 95% CI: 1.06-3.04; P = 0.03) were independently and significantly associated with urogenital schistosomiasis. Based on molecular and proteomic identification, both B. senegalensis and B. umbilicatus colonized the water bodies of Oued Rawdha, whereas both B. forskalii and B. truncatus colonized those of Kankossa. The DraI RT-PCR detected S. haematobium complex DNA in 8 of 66 (12.1%) analysed snails: one B. truncatus and one B. forskalii in Kankossa and five B. senegalensis and one B. umbilicatus in Oued Rawdha. CONCLUSION Urogenital schistosomiasis is moderately prevalent in the lake zones of Kankossa and, to a lesser extent, Oued Rawdha, located in southern Mauritania. Mass drug administration campaigns with praziquantel should be conducted to reduce the prevalence of urogenital schistosomiasis among school-aged children in the lake zone of Kankossa and Oued Rawdha village. Further parasitological and malacological studies should be conducted in other villages located in the Mauritanian lakes in the southern Sahelian zones and the northern oasis areas to strengthen our knowledge of the current epidemiological situation and implement appropriate urogenital schistosomiasis control strategies.
Collapse
Affiliation(s)
- Lemat Nakatt
- Université de Nouakchott, Faculté des Sciences et Techniques, UR génomes et milieux, Nouakchott, Mauritanie
- Aix Marseille Univ, AP-HM, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Papa Mouhamadou Gaye
- Aix Marseille Univ, AP-HM, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | | | - Binta Niang
- Université de Nouakchott, Faculté des Sciences et Techniques, UR génomes et milieux, Nouakchott, Mauritanie
| | - Leonardo Basco
- IHU-Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Marseille, France
| | - Stephane Ranque
- Aix Marseille Univ, AP-HM, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | | |
Collapse
|
3
|
Costa MM, Corbel V, Ben Hamouda R, Almeras L. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review. INSECTS 2024; 15:651. [PMID: 39336619 PMCID: PMC11432722 DOI: 10.3390/insects15090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed.
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France;
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Refka Ben Hamouda
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
4
|
Karisa J, Ominde K, Tuwei M, Bartilol B, Ondieki Z, Musani H, Wanjiku C, Mwikali K, Babu L, Rono M, Eminov M, Mbogo C, Bejon P, Mwangangi J, Laroche M, Maia M. Utility of MALDI-TOF MS for determination of species identity and blood meal sources of primary malaria vectors on the Kenyan coast. Wellcome Open Res 2024; 8:151. [PMID: 38957296 PMCID: PMC11217722 DOI: 10.12688/wellcomeopenres.18982.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/04/2024] Open
Abstract
Background Protein analysis using matrix-assisted laser desorption/ionisation time-of-flight mass-spectrometry (MALDI-TOF MS) represents a promising tool for entomological surveillance. In this study we tested the discriminative power of this tool for measuring species and blood meal source of main Afrotropical malaria vectors on the Kenyan coast. Methods Mosquito collections were conducted along the coastal region of Kenya. MALDI-TOF MS spectra were obtained from each individual mosquito's cephalothorax as well as the abdomens of blood-engorged mosquitoes. The same mosquitoes were also processed using gold standard tests: polymerase chain reaction (PCR) for species identification and enzyme linked immunosorbent assay (ELISA) for blood meal source identification. Results Of the 2,332 mosquitoes subjected to MALDI-TOF MS, 85% (1,971/2,332) were considered for database creation and validation. There was an overall accuracy of 97.5% in the identification of members of the An. gambiae ( An. gambiae, 100%; An. arabiensis, 91.9%; An. merus, 97.5%; and An. quadriannulatus, 90.2%) and An. funestus ( An. funestus, 94.2%; An. rivulorum, 99.4%; and An. leesoni, 94.1%) complexes. Furthermore, MALDI-TOF MS also provided accurate (94.5% accuracy) identification of blood host sources across all mosquito species. Conclusions This study provides further evidence of the discriminative power of MALDI-TOF MS to identify sibling species and blood meal source of Afrotropical malaria vectors, further supporting its utility in entomological surveillance. The low cost per sample (<0.2USD) and high throughput nature of the method represents a cost-effective alternative to molecular methods and could enable programs to increase the number of samples analysed and therefore improve the data generated from surveillance activities.
Collapse
Affiliation(s)
- Jonathan Karisa
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
- The Open University, Milton Keynes, United Kingdom, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, UK
- Pwani University, Kilifi, Kenya, 195-80108, Kenya
| | - Kelly Ominde
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Mercy Tuwei
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
- Pwani University, Kilifi, Kenya, 195-80108, Kenya
| | - Brian Bartilol
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Zedekiah Ondieki
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Harun Musani
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Caroline Wanjiku
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Kioko Mwikali
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Lawrence Babu
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Martin Rono
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
- Pwani University, Kilifi, Kenya, 195-80108, Kenya
| | | | - Charles Mbogo
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Philip Bejon
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
- University of Oxford, Centre for Global Health and Tropical Medicine, Oxford, UK, Oxford, UK
| | - Joseph Mwangangi
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
| | - Maureen Laroche
- The University of Texas Medical Branch -, Galveston National Laboratory 301 University Blvd, Texas, Galveston TX 77555-1019, USA
| | - Marta Maia
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya, 230-80108, Kenya
- University of Oxford, Centre for Global Health and Tropical Medicine, Oxford, UK, Oxford, UK
| |
Collapse
|
5
|
Almeras L, Costa MM, Amalvict R, Guilliet J, Dusfour I, David JP, Corbel V. Potential of MALDI-TOF MS biotyping to detect deltamethrin resistance in the dengue vector Aedes aegypti. PLoS One 2024; 19:e0303027. [PMID: 38728353 PMCID: PMC11086877 DOI: 10.1371/journal.pone.0303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.
Collapse
Affiliation(s)
- Lionel Almeras
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Monique Melo Costa
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Rémy Amalvict
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
- Centre National de Référence du Paludisme, Marseille, 13005, France
| | - Joseph Guilliet
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Isabelle Dusfour
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité de Contrôle et Adaptation des Vecteurs, Cayenne, France
| | - Jean-Philippe David
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Vincent Corbel
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, Rio de Janeiro–RJ, Brazil
| |
Collapse
|
6
|
Omucheni DL, Kaduki KA, Mukabana WR. Rapid and non-destructive identification of Anopheles gambiae and Anopheles arabiensis mosquito species using Raman spectroscopy via machine learning classification models. Malar J 2023; 22:342. [PMID: 37940964 PMCID: PMC10634188 DOI: 10.1186/s12936-023-04777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Identification of malaria vectors is an important exercise that can result in the deployment of targeted control measures and monitoring the susceptibility of the vectors to control strategies. Although known to possess distinct biting behaviours and habitats, the African malaria vectors Anopheles gambiae and Anopheles arabiensis are morphologically indistinguishable and are known to be discriminated by molecular techniques. In this paper, Raman spectroscopy is proposed to complement the tedious and time-consuming Polymerase Chain Reaction (PCR) method for the rapid screening of mosquito identity. METHODS A dispersive Raman microscope was used to record spectra from the legs (femurs and tibiae) of fresh anaesthetized laboratory-bred mosquitoes. The scattered Raman intensity signal peaks observed were predominantly centered at approximately 1400 cm-1, 1590 cm-1, and 2067 cm-1. These peaks, which are characteristic signatures of melanin pigment found in the insect cuticle, were important in the discrimination of the two mosquito species. Principal Component Analysis (PCA) was used for dimension reduction. Four classification models were built using the following techniques: Linear Discriminant Analysis (LDA), Logistic Regression (LR), Quadratic Discriminant Analysis (QDA), and Quadratic Support Vector Machine (QSVM). RESULTS PCA extracted twenty-one features accounting for 95% of the variation in the data. Using the twenty-one principal components, LDA, LR, QDA, and QSVM discriminated and classified the two cryptic species with 86%, 85%, 89%, and 93% accuracy, respectively on cross-validation and 79%, 82%, 81% and 93% respectively on the test data set. CONCLUSION Raman spectroscopy in combination with machine learning tools is an effective, rapid and non-destructive method for discriminating and classifying two cryptic mosquito species, Anopheles gambiae and Anopheles arabiensis belonging to the Anopheles gambiae complex.
Collapse
Affiliation(s)
| | | | - Wolfgang R Mukabana
- Department of Biology, University of Nairobi, Nairobi, Kenya
- Science for Health Society, Nairobi, Kenya
| |
Collapse
|
7
|
Karisa J, Ominde K, Tuwei M, Bartilol B, Ondieki Z, Musani H, Wanjiku C, Mwikali K, Babu L, Rono M, Eminov M, Mbogo C, Bejon P, Mwangangi J, Laroche M, Maia M. Utility of MALDI-TOF MS for determination of species identity and blood meal sources of primary malaria vectors on the Kenyan coast. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18982.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background: Protein analysis using matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) represents a promising tool for entomological surveillance. In this study we tested the discriminative power of this tool for measuring species and blood meal source of main Afrotropical malaria vectors on the Kenyan coast. Methods: Mosquito collections were conducted along the coastal region of Kenya. MALDI-TOF MS spectra were obtained from each individual mosquito’s cephalothorax as well as the abdomens of blood-engorged mosquitoes. The same mosquitoes were also processed using gold standard tests: polymerase chain reaction (PCR) for species identification and enzyme linked immunosorbent assay (ELISA) for blood meal source identification. Results: Of the 2,332 mosquitoes subjected to MALDI-TOF MS, 85% (1,971/2,332) were considered for database creation and validation. There was an overall accuracy of 97.5% in the identification of members of the An. gambiae (An. gambiae, 100%; An. arabiensis, 91.9%; An. merus, 97.5%; and An. quadriannulatus, 90.2%) and An. funestus (An. funestus, 94.2%; An. rivulorum, 99.4%; and An. leesoni, 94.1%) complexes. Furthermore, MALDI-TOF MS also provided accurate (94.5% accuracy) identification of blood host sources across all mosquito species. Conclusions: This study provides further evidence of the discriminative power of MALDI-TOF MS to identify sibling species and blood meal source of Afrotropical malaria vectors, further supporting its utility in entomological surveillance. The low cost per sample (<0.2USD) and high throughput nature of the method represents a cost-effective alternative to molecular methods and could enable programs to increase the number of samples analysed and therefore improve the data generated from surveillance activities.
Collapse
|
8
|
Wagner I, Grigoraki L, Enevoldson P, Clarkson M, Jones S, Hurst JL, Beynon RJ, Ranson H. Rapid identification of mosquito species and age by mass spectrometric analysis. BMC Biol 2023; 21:10. [PMID: 36690979 PMCID: PMC9872345 DOI: 10.1186/s12915-022-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND A rapid, accurate method to identify and to age-grade mosquito populations would be a major advance in predicting the risk of pathogen transmission and evaluating the public health impact of vector control interventions. Whilst other spectrometric or transcriptomic methods show promise, current approaches rely on challenging morphological techniques or simple binary classifications that cannot identify the subset of the population old enough to be infectious. In this study, the ability of rapid evaporative ionisation mass spectrometry (REIMS) to identify the species and age of mosquitoes reared in the laboratory and derived from the wild was investigated. RESULTS The accuracy of REIMS in identifying morphologically identical species of the Anopheles gambiae complex exceeded 97% using principal component/linear discriminant analysis (PC-LDA) and 84% based on random forest analysis. Age separation into 3 different age categories (1 day, 5-6 days, 14-15 days) was achieved with 99% (PC-LDA) and 91% (random forest) accuracy. When tested on wild mosquitoes from the UK, REIMS data could determine the species and age of the specimens with accuracies of 91 and 90% respectively. CONCLUSIONS The accuracy of REIMS to resolve the species and age of Anopheles mosquitoes is comparable to that achieved by infrared spectroscopy approaches. The processing time and ease of use represent significant advantages over current, dissection-based methods. Importantly, the accuracy was maintained when using wild mosquitoes reared under differing environmental conditions, and when mosquitoes were stored frozen or desiccated. This high throughput approach thus has potential to conduct rapid, real-time monitoring of vector populations, providing entomological evidence of the impact of alternative interventions.
Collapse
Affiliation(s)
- Iris Wagner
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Linda Grigoraki
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Peter Enevoldson
- Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ UK
- Department of Livestock and One Health, University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, Neston, CH64 7TE UK
| | - Michael Clarkson
- Department of Livestock and One Health, University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, Neston, CH64 7TE UK
| | - Sam Jones
- International Pheromone Systems Ltd, Evolution House, Long Acres Road, Clayhill Industrial Estate, Neston, CH64 3RL Cheshire UK
| | - Jane L. Hurst
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE UK
| | - Robert J. Beynon
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
9
|
Cannet A, Simon-Chane C, Akhoundi M, Histace A, Romain O, Souchaud M, Jacob P, Delaunay P, Sereno D, Bousses P, Grebaut P, Geiger A, de Beer C, Kaba D, Sereno D. Wing Interferential Patterns (WIPs) and machine learning, a step toward automatized tsetse (Glossina spp.) identification. Sci Rep 2022; 12:20086. [PMID: 36418429 PMCID: PMC9684539 DOI: 10.1038/s41598-022-24522-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
A simple method for accurately identifying Glossina spp in the field is a challenge to sustain the future elimination of Human African Trypanosomiasis (HAT) as a public health scourge, as well as for the sustainable management of African Animal Trypanosomiasis (AAT). Current methods for Glossina species identification heavily rely on a few well-trained experts. Methodologies that rely on molecular methodologies like DNA barcoding or mass spectrometry protein profiling (MALDI TOFF) haven't been thoroughly investigated for Glossina sp. Nevertheless, because they are destructive, costly, time-consuming, and expensive in infrastructure and materials, they might not be well adapted for the survey of arthropod vectors involved in the transmission of pathogens responsible for Neglected Tropical Diseases, like HAT. This study demonstrates a new type of methodology to classify Glossina species. In conjunction with a deep learning architecture, a database of Wing Interference Patterns (WIPs) representative of the Glossina species involved in the transmission of HAT and AAT was used. This database has 1766 pictures representing 23 Glossina species. This cost-effective methodology, which requires mounting wings on slides and using a commercially available microscope, demonstrates that WIPs are an excellent medium to automatically recognize Glossina species with very high accuracy.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des affaires sanitaires et sociales de la Nouvelle-Calédonie, Nouméa, New Caledonia France
| | - Camille Simon-Chane
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Mohammad Akhoundi
- grid.413780.90000 0000 8715 2621Parasitology-Mycology, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Aymeric Histace
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Olivier Romain
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Marc Souchaud
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Pierre Jacob
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Pascal Delaunay
- grid.462370.40000 0004 0620 5402Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice-Sophia Antipolis, Nice, France ,grid.413770.6Parasitologie-Mycologie, Hôpital de L’Archet, Centre Hospitalier Universitaire de Nice, (CHU), Nice, France ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Darian Sereno
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Philippe Bousses
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Pascal Grebaut
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Anne Geiger
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Chantel de Beer
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Center of Nuclear Techniques in Food and Agriculture, Vienna, Austria ,grid.428711.90000 0001 2173 1003Epidemiology, Parasites & Vectors, Agricultural Research Council - Onderstepoort Veterinary Research (ARC-OVR), Onderstepoort, South Africa
| | - Dramane Kaba
- grid.452477.7Institut Pierre Richet, Institut National de Santé Publique, Abidjian, Côte d’Ivoire
| | - Denis Sereno
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
10
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
11
|
Bamou R, Costa MM, Diarra AZ, Martins AJ, Parola P, Almeras L. Enhanced procedures for mosquito identification by MALDI-TOF MS. Parasit Vectors 2022; 15:240. [PMID: 35773735 PMCID: PMC9248115 DOI: 10.1186/s13071-022-05361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background In the last decade, an innovative approach has emerged for arthropod identification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Increasing interest in applying the original technique for arthropod identification has led to the development of a variety of procedures for sample preparation and selection of body parts, among others. However, the absence of a consensual strategy hampers direct inter-study comparisons. Moreover, these different procedures are confusing to new users. Establishing optimized procedures and standardized protocols for mosquito identification by MALDI-TOF MS is therefore a necessity, and would notably enable the sharing of reference MS databases. Here, we assess the optimal conditions for mosquito identification using MALDI-TOF MS profiling. Methods Three homogenization methods, two of which were manual and one automatic, were used on three distinct body parts (legs, thorax, head) of two mosquito laboratory strains, Anopheles coluzzii and Aedes aegypti, and the results evaluated. The reproducibility of MS profiles, identification rate with relevant scores and the suitability of procedures for high-throughput analyses were the main criteria for establishing optimized guidelines. Additionally, the consequences of blood-feeding and geographical origin were evaluated using both laboratory strains and field-collected mosquitoes. Results Relevant score values for mosquito identification were obtained for all the three body parts assayed using MALDI-TOF MS profiling; however, the thorax and legs were the most suitable specimens, independently of homogenization method or species. Although the manual homogenization methods were associated with a high rate of identification on the three body parts, this homogenization mode is not adaptable to the processing of a large number of samples. Therefore, the automatic homogenization procedure was selected as the reference homogenization method. Blood-feeding status did not hamper the identification of mosquito species, despite the presence of MS peaks from original blood in the MS profiles of the three body parts tested from both species. Finally, a significant improvement in identification scores was obtained for field-collected specimens when MS spectra of species from the same geographical area were added to the database. Conclusion The results of the current study establish guidelines for the selection of mosquito anatomic parts and modality of sample preparation (e.g. homogenization) for future specimen identification by MALDI-TOF MS profiling. These standardized operational protocols could be used as references for creating an international MS database. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05361-0.
Collapse
Affiliation(s)
- Roland Bamou
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Monique Melo Costa
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Adama Zan Diarra
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratório Misto Internacional "Sentinela", FIOCRUZ, IRD, Universidade de Brasília (UnB), Rio de Janeiro, RJ, Brazil
| | - Philippe Parola
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.
| |
Collapse
|
12
|
Abdellahoum Z, Nebbak A, Lafri I, Kaced A, Bouhenna MM, Bachari K, Boumegoura A, Agred R, Boudchicha RH, Smadi MA, Maurin M, Bitam I. Identification of Algerian field-caught mosquito vectors by MALDI-TOF MS. Vet Parasitol Reg Stud Reports 2022; 31:100735. [PMID: 35569916 DOI: 10.1016/j.vprsr.2022.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne diseases represent a real threats worldwide, in reason of the lack of vaccine and cure for some diseases. Among arthropod vectors, mosquitoes are described to be the most dangerous animal on earth, resulting in an estimated 725,000 deaths per year due to their borne diseases. Geographical position of Algeria makes this country a high risk area for emerging and re-emerging diseases, such as dengue coming from north (Europe) and malaria from south (Africa). To prevent these threats, rapid and continuous surveillance of mosquito vectors is essential. For this purpose we aimed in this study to create a mosquito vectors locale database using MALDI-TOF mass spectrometry technology for rapid identification of these arthropods. This methodology was validated by testing 211 mosquitoes, including four species (Aedes albopictus, Culex pipiens, Culex quinquefasciatus, and Culiseta longiareolata), in two northern wilayahs of Algeria (Algiers and Bejaia). Species determination by MALDI TOF MS was highly concordant with reference phenotypic and genetic methods. Using this MALDI-TOF MS tool will allow better surveillance of mosquito species able to transmit mosquito borne diseases in Algeria.
Collapse
Affiliation(s)
- Zakaria Abdellahoum
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria
| | - Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ismail Lafri
- Laboratoire des Biotechnologies Liées à la Reproduction Animale, Institut des Sciences Vétérinaires, Université Blida 1, BP 270 Blida, Algeria.
| | - Amel Kaced
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Mustapha Mounir Bouhenna
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ali Boumegoura
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rym Agred
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rima Hind Boudchicha
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Mustapha Adnane Smadi
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria; Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, Batna, Algeria
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; Centre National de la Recherche Scientifique, TIMC-IMAG, UMR5525, Université Grenoble Alpes, 38400, Saint Martin d'Heres, France.
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria; Ecole Supérieure des Sciences de l'Aliment et des Industries Alimentaires, Alger 16004, Algeria
| |
Collapse
|
13
|
M'madi Saidou A, Diarra AZ, Almeras L, Parola P. Identification of ticks from an old collection by MALDI-TOF MS. J Proteomics 2022; 264:104623. [PMID: 35623553 DOI: 10.1016/j.jprot.2022.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Objective of this study is to find the optimal conditions for preparing the samples, resulting in quality, reproducible and specific MS spectra of the ticks, with a shelf life in 70% ethanol of more than ten years. Amblyomma (Am.) variegatum species which had been stored in alcohol for more than twenty years and for which numerous specimens were available were used to compare the performance of four protocols tested. Spectra of insufficient quality were obtained from Am. variegatum legs preserved in alcohol for long periods with the reference protocol, named DO that we had set up years ago. The same observation was made on the spectra from Am. variegatum legs from dry (evaporated alcohol, DO-mod protocol). With new protocols named ReDO and PReDO the spectra were of good quality with high intensities (> 3000 a.u.). Blind testing showed that 94%, and 93% of the spectra were correctly identified with relevant log score values (LSVs ≥1.8), respectively for ReDO and PReDO protocols. All soft ticks treated in this study by PReDO protocol exhibited low intensity spectra with background noise. This study revealed that MALDI-TOF MS is able to identify hard ticks stored during decades in alcohol or dry (evaporated alcohol). SIGNIFICANCE OF THE STUDY: The correct identification of ticks, including vectors responsible for the transmission of infectious diseases in humans and animals is essential for their control. MALDI-TOF MS, a proteomic tool that has emerged in recent years, has become an innovative, accurate and alternative tool for the identification of arthropods, including ticks. However, previous studies reported that preservation of arthropods in alcohol modified the MS spectra obtained from specimens of the same species freshly collected or frozenly stored. In this study, a standard protocol was established for the identification of tick collections which had been stored for more than ten years in alcohol. Four different protocols were assessed. The analysis of the results showed that among the four protocols tested, two protocols named ReDO (Rehydration and incubation of the legs in 40 μl of HPLC water for 12 h in a dry bath at 37°) and PreDO (Drying of the legs for 12 h in a dry bath at 37 °C followed by rehydration and incubation in 40 μl of HPLC water for 12 h.) seem to be more appropriate for the MALDI-TOF MS identification of ticks from old collections preserved in alcohol or dry. This study is promising for the future, as it will make it possible to create a MALDI-TOF MS database from a wide range of ticks which have been stored for a long time in alcohol or which are dry stored in laboratories and museums around the world.
Collapse
Affiliation(s)
- Ahamada M'madi Saidou
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
14
|
Huynh LN, Diarra AZ, Nguyen HS, Tran LB, Do VN, Ly TDA, Ho VH, Nguyen XQ, Parola P. MALDI-TOF mass spectrometry identification of mosquitoes collected in Vietnam. Parasit Vectors 2022; 15:39. [PMID: 35090542 PMCID: PMC8795957 DOI: 10.1186/s13071-022-05149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a tool that has revolutionised clinical microbiology and has recently been described as an innovative and effective approach to arthropod identification. METHODS In this study, mosquitoes were captured in Vietnam using four different methods (human landing catch, CDC light traps, BG-Sentinel traps, animal-baited net traps). A total of 4215 mosquitoes were captured and morphologically identified as belonging to three genera: Aedes, Anopheles and Culex. We randomly selected 1253 mosquitoes, including 662 specimens of 14 Anopheles species, 200 specimens of two Aedes species and 391 morphologically unidentified Culex specimens, for molecular and MALDI-TOF MS analysis. The DNA from 98 mosquitoes (69 Anopheles specimens, 23 Culex specimens and six Aedes sp. specimens) was subjected to molecular analysis, either to confirm our morphological identification or the MALDI-TOF MS results, as well as to identify the Culex species that were morphologically identified at the genus level and to resolve the discrepancies between the morphological identification and the MALDI-TOF MS identification. RESULTS High-quality MS spectra were obtained for 1058 of the 1253 specimens (84%), including 192/200 for Aedes, 589/662 for Anopheles and 277/391 for Culex. The blind test showed that 986/997 (99%) of the specimens were correctly identified by MALDI-TOF MS, with log score values ranging from 1.708 to 2.843. Eleven specimens of Culex could not be identified based on morphological features, MALDI-TOF MS or molecular analysis. CONCLUSIONS This study enabled us to identify several species of mosquitoes from Vietnam using MALDI-TOF MS, and to enrich our database of MALDI-TOF MS reference spectra.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hong Sang Nguyen
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Long Bien Tran
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Van Nguyen Do
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Tran Duc Anh Ly
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
15
|
Hamlili FZ, Thiam F, Laroche M, Diarra AZ, Doucouré S, Gaye PM, Fall CB, Faye B, Sokhna C, Sow D, Parola P. MALDI-TOF mass spectrometry for the identification of freshwater snails from Senegal, including intermediate hosts of schistosomes. PLoS Negl Trop Dis 2021; 15:e0009725. [PMID: 34516582 PMCID: PMC8489727 DOI: 10.1371/journal.pntd.0009725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 10/04/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
Freshwater snails of the genera Biomphalaria, Bulinus, and Oncomelania are intermediate hosts of schistosomes that cause human schistosomiasis, one of the most significant infectious neglected diseases in the world. Identification of freshwater snails is usually based on morphology and potentially DNA-based methods, but these have many drawbacks that hamper their use. MALDI-TOF MS has revolutionised clinical microbiology and has emerged in the medical entomology field. This study aims to evaluate MALDI-TOF MS profiling for the identification of both frozen and ethanol-stored snail species using protein extracts from different body parts. A total of 530 field specimens belonging to nine species (Biomphalaria pfeifferi, Bulinus forskalii, Bulinus senegalensis, Bulinus truncatus, Bulinus globosus, Bellamya unicolor, Cleopatra bulimoides, Lymnaea natalensis, Melanoides tuberculata) and 89 laboratory-reared specimens, including three species (Bi. pfeifferi, Bu. forskalii, Bu. truncatus) were used for this study. For frozen snails, the feet of 127 field and 74 laboratory-reared specimens were used to validate the optimised MALDI-TOF MS protocol. The spectral analysis yielded intra-species reproducibility and inter-species specificity which resulted in the correct identification of all the specimens in blind queries, with log-score values greater than 1.7. In a second step, we demonstrated that MALDI-TOF MS could also be used to identify ethanol-stored snails using proteins extracted from the foot using a specific database including a large number of ethanol preserved specimens. This study shows for the first time that MALDI-TOF MS is a reliable tool for the rapid identification of frozen and ethanol-stored freshwater snails without any malacological expertise.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Fatou Thiam
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Laboratoire de Parasitologie-Helminthologie, Département de Biologie Animale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Maureen Laroche
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Papa Mouhamadou Gaye
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Laboratoire de Parasitologie-Helminthologie, Département de Biologie Animale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Cheikh Binetou Fall
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal
| | - Babacar Faye
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal
| | - Cheikh Sokhna
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
| | - Doudou Sow
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gaston Berger de Saint Louis, Senegal
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
16
|
Huynh LN, Diarra AZ, Pham QL, Le-Viet N, Berenger JM, Ho VH, Nguyen XQ, Parola P. Morphological, molecular and MALDI-TOF MS identification of ticks and tick-associated pathogens in Vietnam. PLoS Negl Trop Dis 2021; 15:e0009813. [PMID: 34582467 PMCID: PMC8500424 DOI: 10.1371/journal.pntd.0009813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/08/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising and reliable tool for arthropod identification, including the identification of alcohol-preserved ticks based on extracted leg protein spectra. In this study, the legs of 361 ticks collected in Vietnam, including 251 Rhiphicephalus sanguineus s.l, 99 Rhipicephalus (Boophilus) microplus, two Amblyomma varanensis, seven Dermacentor auratus, one Dermacentor compactus and one Amblyomma sp. were submitted for MALDI-TOF MS analyses. Spectral analysis showed intra-species reproducibility and inter-species specificity and the spectra of 329 (91%) specimens were of excellent quality. The blind test of 310 spectra remaining after updating the database with 19 spectra revealed that all were correctly identified with log score values (LSV) ranging from 1.7 to 2.396 with a mean of 1.982 ± 0.142 and a median of 1.971. The DNA of several microorganisms including Anaplasma platys, Anaplasma phagocytophilum, Anaplasma marginale, Ehrlichia rustica, Babesia vogeli, Theileria sinensis, and Theileria orientalis were detected in 25 ticks. Co-infection by A. phagocytophilum and T. sinensis was found in one Rh. (B) microplus.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Quang Luan Pham
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Nhiem Le-Viet
- School of Medicine and Pharmacy, The University of Da Nang (UD), Da Nang, Vietnam
| | - Jean-Michel Berenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
17
|
Benyahia H, Ouarti B, Diarra AZ, Boucheikhchoukh M, Meguini MN, Behidji M, Benakhla A, Parola P, Almeras L. Identification of Lice Stored in Alcohol Using MALDI-TOF MS. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1126-1133. [PMID: 33346344 DOI: 10.1093/jme/tjaa266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 06/12/2023]
Abstract
Lice pose major public and veterinary health problems with economic consequences. Their identification is essential and requires the development of an innovative strategy. MALDI-TOF MS has recently been proposed as a quick, inexpensive, and accurate tool for the identification of arthropods. Alcohol is one of the most frequently used storage methods and makes it possible to store samples for long periods at room temperature. Several recent studies have reported that alcohol alters protein profiles resulting from MS analysis. After preliminary studies on frozen lice, the purpose of this research was to evaluate the influence of alcohol preservation on the accuracy of lice identification by MALDI-TOF MS. To this end, lice stored in alcohol for variable periods were submitted for MS analysis and sample preparation protocols were optimized. The reproducibility and specificity of the MS spectra obtained on both these arthropod families allowed us to implement the reference MS spectra database (DB) with protein profiles of seven lice species stored in alcohol. Blind tests revealed a correct identification of 93.9% of Pediculus humanus corporis (Linnaeus, 1758) and 98.4% of the other lice species collected in the field. This study demonstrated that MALDI-TOF MS could be successfully used for the identification of lice stored in alcohol for different lengths of time.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Basma Ouarti
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Mehdi Boucheikhchoukh
- Department of Veterinary Sciences, Chadli Bendjedid University, El-Tarf, 36000, Algeria
| | - Mohamed Nadir Meguini
- Institute of Veterinary and Agronomic Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Makhlouf Behidji
- Institute of Veterinary and Agronomic Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Ahmed Benakhla
- Department of Veterinary Sciences, Chadli Bendjedid University, El-Tarf, 36000, Algeria
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
18
|
Wing Morphometrics of Aedes Mosquitoes from North-Eastern France. INSECTS 2021; 12:insects12040341. [PMID: 33921410 PMCID: PMC8069731 DOI: 10.3390/insects12040341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the context of the increasing circulation of arboviruses, a simple, fast and reliable identification method for mosquitoes is needed. Geometric morphometrics have proven useful for mosquito classification and have been used around the world on known vectors such as Aedes albopictus. Morphometrics applied on French indigenous mosquitoes would prove useful in the case of autochthonous outbreaks of arboviral diseases. METHODS We applied geometric morphometric analysis on six indigenous and invasive species of the Aedes genus in order to evaluate its efficiency for mosquito classification. RESULTS Six species of Aedes mosquitoes (Ae. albopictus, Ae. cantans, Ae. cinereus, Ae. sticticus, Ae. japonicus and Ae. rusticus) were successfully differentiated with Canonical Variate Analysis of the Procrustes dataset of superimposed coordinates of 18 wing landmarks. CONCLUSIONS Geometric morphometrics are effective tools for the rapid, inexpensive and reliable classification of at least six species of the Aedes genus in France.
Collapse
|
19
|
Sevestre J, Diarra AZ, Laroche M, Almeras L, Parola P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases. Future Microbiol 2021; 16:323-340. [PMID: 33733821 DOI: 10.2217/fmb-2020-0145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthropod vectors have historically been identified morphologically, and more recently using molecular biology methods. However, both of these methods are time-consuming and require specific expertise and equipment. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which has revolutionized the routine identification of microorganisms in clinical microbiology laboratories, was recently successfully applied to the identification of arthropod vectors. Since then, the robustness of this identification technique has been confirmed, extended to a large panel of arthropod vectors, and assessed for detecting blood feeding behavior and identifying the infection status in regard to certain pathogenic agents. In this study, we summarize the state-of-the-art of matrix-assisted laser desorption ionization time-of-flight mass spectrometry applied to the identification of arthropod vectors (ticks, mosquitoes, phlebotomine sand-flies, fleas, triatomines, lice and Culicoides), their trophic preferences and their ability to discriminate between infection statuses.
Collapse
Affiliation(s)
- Jacques Sevestre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Z Diarra
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Lionel Almeras
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Département Microbiologie et Maladies Infectieuses, Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
20
|
New assessment of Anopheles vector species identification using MALDI-TOF MS. Malar J 2021; 20:33. [PMID: 33422056 PMCID: PMC7796594 DOI: 10.1186/s12936-020-03557-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
Background Anopheles species identification is essential for an effective malaria vector control programme. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has been developed to identify adult Anopheles species, using the legs or the cephalothorax. The protein repertoire from arthropods can vary according to compartment, but there is no general consensus regarding the anatomic part to be used. Methods To determine the body part of the Anopheles mosquitoes best suited for the identification of field specimens, a mass spectral library was generated with head, thorax with wings and legs of Anopheles gambiae, Anopheles arabiensis and Anopheles funestus obtained from reference centres. The MSL was evaluated using two independent panels of 52 and 40 An. gambiae field-collected in Mali and Guinea, respectively. Geographic variability was also tested using the panel from Mali and several databases containing added specimens from Mali and Senegal. Results Using the head and a database without specimens from the same field collection, the proportion of interpretable and correct identifications was significantly higher than using the other body parts at a threshold value of 1.7 (p < 0.0001). The thorax of engorged specimens was negatively impacted by the blood meal after frozen storage. The addition of specimens from Mali into the database significantly improved the results of Mali panel (p < 0.0001), which became comparable between head and legs. With higher identification scores, the using of the head will allow to decrease the number of technical replicates of protein extract per specimen, which represents a significant improvement for routine use of MALDI-TOF MS. Conclusions The using of the head of Anopheles may improve the performance of MALDI-TOF MS. Region-specific mass spectrum databases will have to be produced. Further research is needed to improve the standardization in order to share online spectral databases.
Collapse
|
21
|
Rossel S, Barco A, Kloppmann M, Martínez Arbizu P, Huwer B, Knebelsberger T. Rapid species level identification of fish eggs by proteome fingerprinting using MALDI-TOF MS. J Proteomics 2020; 231:103993. [PMID: 32971306 DOI: 10.1016/j.jprot.2020.103993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022]
Abstract
Quantifying spawning biomass of commercially relevant fish species is important to generate fishing quotas. This will mostly rely on the annual or daily production of fish eggs. However, these have to be identified precisely to species level to obtain a reliable estimate of offspring production of the different species. Because morphological identification can be very difficult, recent developments are heading towards application of molecular tools. Methods such as COI barcoding have long handling times and cause high costs for single specimen identifications. In order to test MALDI-TOF MS, a rapid and cost-effective alternative for species identification, we identified fish eggs using COI barcoding and used the same specimens to set up a MALDI-TOF MS reference library. This library, constructed from two different MALDI-TOF MS instruments, was then used to identify unknown eggs from a different sampling occasion. By using a line of evidence from hierarchical clustering and different supervised identification approaches we obtained concordant species identifications for 97.5% of the unknown fish eggs, proving MALDI-TOF MS a good tool for rapid species level identification of fish eggs. At the same time we point out the necessity of adjusting identification scores of supervised methods for identification to optimize identification success. SIGNIFICANCE: Fish products are commercially highly important and many societies rely on them as a major food resource. Over many decades stocks of various relevant fish species have been reduced due to unregulated overfishing. Nowadays, to avoid overfishing and threatening of important fish species, fish stocks are regularly monitored. One component of this monitoring is the monitoring of spawning stock sizes. Whereas this is highly dependent on correct species identification of fish eggs, morphological identification is difficult because of lack of morphological features.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382 Wilhelmshaven, Germany.
| | - Andrea Barco
- biome-ID, Südstrand 44, 26382 Wilhelmshaven, Germany
| | - Matthias Kloppmann
- Thünen Institut für Seefischerei, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382 Wilhelmshaven, Germany
| | - Bastian Huwer
- Technical University of Denmark, National Institute of Aquatic Resources, Kemitorvet, Bygning 202, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
22
|
Briolant S, Costa MM, Nguyen C, Dusfour I, Pommier de Santi V, Girod R, Almeras L. Identification of French Guiana anopheline mosquitoes by MALDI-TOF MS profiling using protein signatures from two body parts. PLoS One 2020; 15:e0234098. [PMID: 32817616 PMCID: PMC7444543 DOI: 10.1371/journal.pone.0234098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 01/17/2023] Open
Abstract
In French Guiana, the malaria, a parasitic infection transmitted by Anopheline mosquitoes, remains a disease of public health importance. To prevent malaria transmission, the main effective way remains Anopheles control. For an effective control, accurate Anopheles species identification is indispensable to distinguish malaria vectors from non-vectors. Although, morphological and molecular methods are largely used, an innovative tool, based on protein pattern comparisons, the Matrix Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) profiling, emerged this last decade for arthropod identification. However, the limited mosquito fauna diversity of reference MS spectra remains one of the main drawback for its large usage. The aim of the present study was then to create and to share reference MS spectra for the identification of French Guiana Anopheline species. A total of eight distinct Anopheles species, among which four are malaria vectors, were collected in 6 areas. To improve Anopheles identification, two body parts, legs and thoraxes, were independently submitted to MS for the creation of respective reference MS spectra database (DB). This study underlined that double checking by MS enhanced the Anopheles identification confidence and rate of reliable classification. The sharing of this reference MS spectra DB should make easier Anopheles species monitoring in endemic malaria area to help malaria vector control or elimination programs.
Collapse
Affiliation(s)
- Sébastien Briolant
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Christophe Nguyen
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Isabelle Dusfour
- Unite d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | - Romain Girod
- Unite d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
23
|
Nebbak A, Almeras L. Identification of Aedes mosquitoes by MALDI-TOF MS biotyping using protein signatures from larval and pupal exuviae. Parasit Vectors 2020; 13:161. [PMID: 32238178 PMCID: PMC7110738 DOI: 10.1186/s13071-020-04029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) biotyping is an innovative strategy, applied successfully for the identification of numerous arthropod families including mosquitoes. The effective mosquito identification using this emerging tool was demonstrated possible at different steps of their life-cycle, including eggs, immature and adult stages. Unfortunately, for species identification by MS, the euthanasia of the mosquito specimen is required. METHODS To avoid mosquito euthanasia, the present study assessed whether aedine mosquitoes could be identified by MALDI-TOF MS biotyping, using their respective exuviae. In this way, exuviae from the fourth-instar and pupal stages of Aedes albopictus and Aedes aegypti were submitted to MALDI-TOF MS analysis. RESULTS Reproducible and specific MS spectra according to aedine species and stage of exuviae were observed which were objectified by cluster analyses, composite correlation index (CCI) tool and principal components analysis (PCA). The query of our reference MS spectra database (DB) upgraded with MS spectra of exuviae from fourth-instar larvae and pupae of both Aedes species revealed that 100% of the samples were correctly classified at the species and stage levels. Among them, 93.8% (135/144) of the MS profiles reached the threshold log score value (LSV > 1.8) for reliable identification. CONCLUSIONS The extension of reference MS spectra DB to exuviae from fourth-instar and pupal stages made now possible the identification of mosquitoes throughout their life-cycle at aquatic and aerial stages. The exuviae presenting the advantage to avoid specimen euthanasia, allowing to perform complementary analysis on alive mosquitoes.
Collapse
Affiliation(s)
- Amira Nebbak
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France.,Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algérie
| | - Lionel Almeras
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France. .,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
24
|
Zouré AA, Serteyn L, Somda Z, Badolo A, Francis F. Proteomic Investigation on Anopheles gambiae in Burkina Faso Related to Insecticide Pressures from Different Climatic Regions. Proteomics 2020; 20:e1900400. [PMID: 32108434 DOI: 10.1002/pmic.201900400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Indexed: 11/09/2022]
Abstract
In Sub-Saharan Africa, An. gambiae sensu lato (s.l.) Giles 190, largely contributes to malaria transmission. Therefore, the authors carry out a proteomic analysis to compare its metabolic state, depending on different pesticide pressures by selecting areas with/without cotton crops. The proteomes data are available via ProteomeXchange with identifier PXD016300. From a total of 1.182 identified proteins, 648 are retained for further statistical analysis and are attributed to biological functions, the most important of which being energy metabolism (120 proteins) followed by translation-biogenesis (74), cytoskeleton (71), stress response (62), biosynthetic process (60), signalling (44), cellular respiration (38), cell redox homeostasis (25), DNA processing (17), pheromone binding (10), protein folding (9), RNA processing (9), other proteins (26) and unknown functions (83). In the Sudano-Sahelian region, 421 (91.3%) proteins are found in samples from areas both with and without cotton crops. By contrast, in the Sahelian region, only 271 (55.0%) are common to both crop areas, and 233 proteins are up-regulated from the cotton area. The focus is placed on proteins with putative roles in insecticide resistance, according to literature. This study provides the first whole-body proteomic characterisation of An. gambiae s.l. in Burkina Faso, as a framework to strengthen vector control strategies.
Collapse
Affiliation(s)
- Abdou Azaque Zouré
- Institute of Health Sciences Research, (IRSS/CNRST)/Department of Biomedical and Public Health, Ouagadougou, 03 BP 7192, Burkina Faso.,Functional and Evolutionary Entomology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium
| | - Laurent Serteyn
- Functional and Evolutionary Entomology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium
| | - Zéphirin Somda
- Laboratoire d'Entomologie Fondamentale et Appliquée, UFR/SVT, Université Joseph Ki-Zerbo, BP 7021, Ouagadougou, 03, Burkina Faso
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, UFR/SVT, Université Joseph Ki-Zerbo, BP 7021, Ouagadougou, 03, Burkina Faso
| | - Frédéric Francis
- Functional and Evolutionary Entomology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium
| |
Collapse
|
25
|
dos Santos Souza É, Fernandes RP, Guedes WN, dos Santos FN, Eberlin MN, Lopes NP, Padovani VD, da Rosa JA. Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools. Anal Bioanal Chem 2020; 412:1431-1439. [DOI: 10.1007/s00216-019-02376-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
|
26
|
Arfuso F, Gaglio G, Abbate JM, Caracappa G, Lupia A, Napoli E, Giarratana F, Latrofa MS, Giannetto S, Otranto D, Brianti E. Identification of phlebotomine sand flies through MALDI-TOF mass spectrometry and in-house reference database. Acta Trop 2019; 194:47-52. [PMID: 30871992 DOI: 10.1016/j.actatropica.2019.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 01/20/2023]
Abstract
Phlebotomine sand flies are vectors for many pathogens responsible for human and animal diseases worldwide. Their identification at species level is of importance in epidemiological studies and control programmes. MALDI-TOF MS has been increasingly investigated as an alternative approach to the conventional identification of arthropods species. To establish an in-house protein spectra database for a quick and reliable species identification of phlebotomine sand flies, 166 field-caught sand fly specimens, morphologically identified as Phlebotomus perniciosus (no = 56; 26 males and 30 females), Phlebotomus neglectus (no = 4 males), Phlebotomus sergenti (no = 6; 4 males and 2 females) and Sergentomyia minuta (no = 100; 45 males and 55 females), were subjected to MALDI-TOF MS analyses. Out of 166, 149 specimens (89.8%) produced consistent species-specific protein spectra. Good quality database for P. perniciosus and S. minuta were generated; no databases have yet constructed for P. neglectus and P. sergenti due to the low number of specimens examined. The identification of 80 sand flies (no = 20 P. perniciosus; no = 60 S. minuta) were confirmed using the new generated SuperSpectra as validation test. The results reported support the use of MALDI-TOF MS for rapid, simple and reliable phlebotomine sand fly species identification suggesting its usefulness in accurate survey studies, ultimately improving biological and epidemiological knowledge on these important vectors of pathogens.
Collapse
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Gabriella Gaglio
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Giulia Caracappa
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Angelo Lupia
- Biologist Practitioner, Via A. Gramsci 15, 88050, Catanzaro, Italy
| | - Ettore Napoli
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Filippo Giarratana
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Maria Stefania Latrofa
- Department of Veterinary Medicine, University of Bari, Strada prov.le per Casamassima km. 3, Valenzano, Bari, Italy
| | - Salvatore Giannetto
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Strada prov.le per Casamassima km. 3, Valenzano, Bari, Italy
| | - Emanuele Brianti
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy.
| |
Collapse
|
27
|
Feucherolles M, Poppert S, Utzinger J, Becker SL. MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: a systematic review. Parasit Vectors 2019; 12:245. [PMID: 31101120 PMCID: PMC6525464 DOI: 10.1186/s13071-019-3493-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a widely used technique for the rapid and accurate identification of bacteria, mycobacteria and certain fungal pathogens in the clinical microbiology laboratory. Thus far, only few attempts have been made to apply the technique in clinical parasitology, particularly regarding helminth identification. METHODS We systematically reviewed the scientific literature on studies pertaining to MALDI-TOF MS as a diagnostic technique for helminths (cestodes, nematodes and trematodes) of medical and veterinary importance. Readily available electronic databases (i.e. PubMed/MEDLINE, ScienceDirect, Cochrane Library, Web of Science and Google Scholar) were searched from inception to 10 October 2018, without restriction on year of publication or language. The titles and abstracts of studies were screened for eligibility by two independent reviewers. Relevant articles were read in full and included in the systematic review. RESULTS A total of 84 peer-reviewed articles were considered for the final analysis. Most papers reported on the application of MALDI-TOF for the study of Caenorhabditis elegans, and the technique was primarily used for identification of specific proteins rather than entire pathogens. Since 2015, a small number of studies documented the successful use of MALDI-TOF MS for species-specific identification of nematodes of human and veterinary importance, such as Trichinella spp. and Dirofilaria spp. However, the quality of available data and the number of examined helminth samples was low. CONCLUSIONS Data on the use of MALDI-TOF MS for the diagnosis of helminths are scarce, but recent evidence suggests a potential role for a reliable identification of nematodes. Future research should explore the diagnostic accuracy of MALDI-TOF MS for identification of (i) adult helminths, larvae and eggs shed in faecal samples; and (ii) helminth-related proteins that are detectable in serum or body fluids of infected individuals.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, Belvaux, Luxembourg
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
28
|
Nebbak A, Willcox AC, Koumare S, Berenger JM, Raoult D, Parola P, Fontaine A, Briolant S, Almeras L. Longitudinal monitoring of environmental factors at Culicidae larval habitats in urban areas and their association with various mosquito species using an innovative strategy. PEST MANAGEMENT SCIENCE 2019; 75:923-934. [PMID: 30178568 DOI: 10.1002/ps.5196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND To prevent the risk of mosquito-borne disease outbreaks, larval source management remains the most sustainable and effective mosquito control strategy. The present study aimed to determine the influence of environmental characteristics of mosquito larval habitats in an urban area of Marseille, France. Fourteen sites containing water were monitored every 2 weeks from May to October 2015 for mosquito species occurrence and larval density, and environmental parameters were measured at each visit. Rapid and accurate species identification of mosquito larvae was performed using an innovative MALDI-TOF MS method. RESULTS A total of 6753 larvae (L1-L4) and pupae were collected, of which 35.8% (n = 2418) were speciated using MALDI-TOF MS. Correct identifications were obtained for 2259 specimens (93.4%). A total of five mosquito species were found, including Aedes (Ae.) albopictus, Culex (Cx.) p. pipiens, Cx. hortensis, Cx. impudicus, and Culiseta (Cs.) longiareolata. Larvae of the Culex genus were predominant in both density and distribution. Small, shaded pools of shallow water favored Ae. albopictus colonization, whereas the wide distribution of Cx. p. pipiens demonstrated that this species was weakly influenced by environmental changes. CONCLUSIONS The present work confirms that MALDI-TOF MS is a useful tool for mosquito speciation and suggests that understanding the environmental factors associated with the occurrence and density of mosquito species at the larval stage in Marseille may aid in the future implementation of mosquito control programs. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Amira Nebbak
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Alexandra C Willcox
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sekou Koumare
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Malaria Research and Training Center, Faculté de médecine, Université de Bamako, Bamako, Mali
| | - Jean-Michel Berenger
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Albin Fontaine
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Sébastien Briolant
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Lionel Almeras
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
29
|
Loaiza JR, Almanza A, Rojas JC, Mejía L, Cervantes ND, Sanchez-Galan JE, Merchán F, Grillet A, Miller MJ, De León LF, Gittens RA. Application of matrix-assisted laser desorption/ionization mass spectrometry to identify species of Neotropical Anopheles vectors of malaria. Malar J 2019; 18:95. [PMID: 30902057 PMCID: PMC6431007 DOI: 10.1186/s12936-019-2723-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/12/2019] [Indexed: 11/24/2022] Open
Abstract
Background Malaria control in Panama is problematic due to the high diversity of morphologically similar Anopheles mosquito species, which makes identification of vectors of human Plasmodium challenging. Strategies by Panamanian health authorities to bring malaria under control targeting Anopheles vectors could be ineffective if they tackle a misidentified species. Methods A rapid mass spectrometry identification procedure was developed to accurately and timely sort out field-collected Neotropical Anopheles mosquitoes into vector and non-vector species. Matrix-assisted laser desorption/ionization (MALDI) mass spectra of highly-abundant proteins were generated from laboratory-reared mosquitoes using different extraction protocols, body parts, and sexes to minimize the amount of material from specimen vouchers needed and optimize the protocol for taxonomic identification. Subsequently, the mass spectra of field-collected Neotropical Anopheles mosquito species were classified using a combination of custom-made unsupervised (i.e., Principal component analysis—PCA) and supervised (i.e., Linear discriminant analysis—LDA) classification algorithms. Results Regardless of the protocol used or the mosquito species and sex, the legs contained the least intra-specific variability with enough well-preserved proteins to differentiate among distinct biological species, consistent with previous literature. After minimizing the amount of material needed from the voucher, one leg was enough to produce reliable spectra between specimens. Further, both PCA and LDA were able to classify up to 12 mosquito species, from different subgenera and seven geographically spread localities across Panama using mass spectra from one leg pair. LDA demonstrated high discriminatory power and consistency, with validation and cross-validation positive identification rates above 93% at the species level. Conclusion The selected sample processing procedure can be used to identify field-collected Anopheles species, including vectors of Plasmodium, in a short period of time, with a minimal amount of tissue and without the need of an expert mosquito taxonomist. This strategy to analyse protein spectra overcomes the drawbacks of working without a reference library to classify unknown samples. Finally, this MALDI approach can aid ongoing malaria eradication efforts in Panama and other countries with large number of mosquito’s species by improving vector surveillance in epidemic-prone sites such as indigenous Comarcas. Electronic supplementary material The online version of this article (10.1186/s12936-019-2723-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jose R Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, 0843-01103, Republic of Panama.,Smithsonian Tropical Research Institute, Panama, Republic of Panama.,Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama, Republic of Panama
| | - Alejandro Almanza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, 0843-01103, Republic of Panama
| | - Juan C Rojas
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, 0843-01103, Republic of Panama
| | - Luis Mejía
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, 0843-01103, Republic of Panama.,Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Norma D Cervantes
- College of Health Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Javier E Sanchez-Galan
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, 0843-01103, Republic of Panama.,Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas, Centro de Producción e Investigaciones Agroindustriales, Universidad Tecnológica de Panamá, Panama, Republic of Panama
| | - Fernando Merchán
- Grupo de Investigación en Sistemas de Comunicaciones Digitales Avanzados, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de Panamá, Panama, Republic of Panama
| | - Arnaud Grillet
- Grupo de Investigación en Sistemas de Comunicaciones Digitales Avanzados, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de Panamá, Panama, Republic of Panama.,ENSEIRB-MATMECA-Bordeaux INP, Talence, France
| | - Matthew J Miller
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Luis F De León
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, 0843-01103, Republic of Panama.,Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Rolando A Gittens
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, 0843-01103, Republic of Panama. .,Centro de Neurociencias, INDICASAT AIP, Panama, Republic of Panama.
| |
Collapse
|
30
|
Vega-Rúa A, Pagès N, Fontaine A, Nuccio C, Hery L, Goindin D, Gustave J, Almeras L. Improvement of mosquito identification by MALDI-TOF MS biotyping using protein signatures from two body parts. Parasit Vectors 2018; 11:574. [PMID: 30390691 PMCID: PMC6215610 DOI: 10.1186/s13071-018-3157-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022] Open
Abstract
Background Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technology (MALDI-TOF MS) is an innovative tool that has been shown to be effective for the identification of numerous arthropod groups including mosquitoes. A critical step in the implementation of MALDI-TOF MS identification is the creation of spectra databases (DB) for the species of interest. Mosquito legs were the body part most frequently used to create identification DB. However, legs are one of the most fragile mosquito compartments, which can put identification at risk. Here, we assessed whether mosquito thoraxes could also be used as a relevant body part for mosquito species identification using a MALDI-TOF MS biotyping strategy; we propose a double DB query strategy to reinforce identification success. Methods Thoraxes and legs from 91 mosquito specimens belonging to seven mosquito species collected in six localities from Guadeloupe, and two laboratory strains, Aedes aegypti BORA and Aedes albopictus Marseille, were dissected and analyzed by MALDI-TOF MS. Molecular identification using cox1 gene sequencing was also conducted on representative specimens to confirm their identification. Results MS profiles obtained with both thoraxes and legs were highly compartment-specific, species-specific and species-reproducible, allowing high identification scores (log-score values, LSVs) when queried against the in-house MS reference spectra DB (thorax LSVs range: 2.260–2.783, leg LSVs range: 2.132–2.753). Conclusions Both thoraxes and legs could be used for a double DB query in order to reinforce the success and accuracy of MALDI-TOF MS identification. Electronic supplementary material The online version of this article (10.1186/s13071-018-3157-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anubis Vega-Rúa
- Laboratory of Vector Control Research, Environment and Health Unit, Institut Pasteur de la Guadeloupe, 97183, Les Abymes, Guadeloupe, France.
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170, Petit Bourg, Guadeloupe, France.,ASTRE, CIRAD, INRA, University of Montpellier, Montpellier, France
| | - Albin Fontaine
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU - Méditerranée Infection, 19-21 bd Jean Moulin, 13385, Marseille, cedex 5, France
| | - Christopher Nuccio
- Aix Marseille Université, INSERM, SSA, IRBA, MCT, 13005, Marseille, France
| | - Lyza Hery
- Laboratory of Vector Control Research, Environment and Health Unit, Institut Pasteur de la Guadeloupe, 97183, Les Abymes, Guadeloupe, France
| | - Daniella Goindin
- Laboratory of Vector Control Research, Environment and Health Unit, Institut Pasteur de la Guadeloupe, 97183, Les Abymes, Guadeloupe, France
| | - Joel Gustave
- Vector Control Service of Guadeloupe, Regional Health Agency, Airport Zone South Raizet, 97139, Les Abymes, Guadeloupe, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU - Méditerranée Infection, 19-21 bd Jean Moulin, 13385, Marseille, cedex 5, France
| |
Collapse
|
31
|
Chabriere E, Bassène H, Drancourt M, Sokhna C. MALDI-TOF MS and point of care are disruptive diagnostic tools in Africa. New Microbes New Infect 2018; 26:S83-S88. [PMID: 30402248 PMCID: PMC6205576 DOI: 10.1016/j.nmni.2018.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
We review reviewing our experience of point-of-care and mass spectrometry in Senegal as two disruptive technologies promoting the rapid diagnosis of infection, permitting better medical management of patients.
Collapse
Affiliation(s)
- E. Chabriere
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - H. Bassène
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Senegal
| | - M. Drancourt
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - C. Sokhna
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Senegal
| |
Collapse
|
32
|
Abstract
Australian mosquito species significantly impact human health through nuisance biting and the transmission of endemic and exotic pathogens. Surveillance programmes designed to provide an early warning of mosquito-borne disease risk require reliable identification of mosquitoes. This study aimed to investigate the viability of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid and inexpensive approach to the identification of Australian mosquitoes and was validated using a three-step taxonomic approach. A total of 300 mosquitoes representing 21 species were collected from south-eastern New South Wales and morphologically identified. The legs from the mosquitoes were removed and subjected to MALDI-TOF MS analysis. Fifty-eight mosquitoes were sequenced at the cytochrome c oxidase subunit I (cox1) gene region and genetic relationships were analysed. We create the first MALDI-TOF MS spectra database of Australian mosquito species including 19 species. We clearly demonstrate the accuracy of MALDI-TOF MS for identification of Australian mosquitoes. It is especially useful for assessing gaps in the effectiveness of DNA barcoding by differentiating closely related taxa. Indeed, cox1 DNA barcoding was not able to differentiate members of the Culex pipiens group, Cx. quinquefasciatus and Cx. pipiens molestus, but these specimens were correctly identified using MALDI-TOF MS.
Collapse
|
33
|
Tandina F, Doumbo O, Yaro AS, Traoré SF, Parola P, Robert V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasit Vectors 2018; 11:467. [PMID: 30103823 PMCID: PMC6090629 DOI: 10.1186/s13071-018-3045-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022] Open
Abstract
Mosquito-borne diseases cause major human diseases in almost every part of the world. In West Africa, and notably in Mali, vector control measures help reduce the impact of mosquito-borne diseases, although malaria remains a threat to both morbidity and mortality. The most recent overview article on mosquitoes in Mali was published in 1961, with a total of 88 species. Our present review focuses on mosquitoes of medical importance among which the Anopheles vectors of Plasmodium and filaria, as well as the Culex and Aedes vectors of arboviruses. It aims to provide a concise update of the literature on Culicidae, covering the ecological areas in which the species are found but also the transmitted pathogens and recent innovative tools for vector surveys. This review highlights the recent introduction of invasive mosquito species, including Aedes albopictus and Culex neavei. The comprehensive list of mosquito species currently recorded includes 106 species (28 species of the Anophelinae and 78 species of the Culicinae). There are probable gaps in our knowledge concerning mosquitoes of the subfamily Culicinae and northern half of Mali because most studies have been carried out on the genus Anopheles and have taken place in the southern part of the country. It is hoped that this review may be useful to decision makers responsible for vector control strategies and to researchers for future surveys on mosquitoes, particularly the vectors of emerging arboviruses.
Collapse
Affiliation(s)
- Fatalmoudou Tandina
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Alpha Seydou Yaro
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sékou F. Traoré
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Vincent Robert
- MIVEGEC Unit, IRD-CNRS-Univ. Montpellier, Montpellier, France
| |
Collapse
|
34
|
Malaria, tuberculosis and HIV: what's new? Contribution of the Institut Hospitalo-Universitaire Méditerranée Infection in updated data. New Microbes New Infect 2018; 26:S23-S30. [PMID: 30402240 PMCID: PMC6205578 DOI: 10.1016/j.nmni.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 11/22/2022] Open
Abstract
The Institut Hospitalo-Universitaire Méditerranée Infection is positioned for the diagnosis, prevention and treatment of the ‘big three’ killer diseases: malaria, tuberculosis and HIV. We implemented the use of new diagnostic samples such as stools and new diagnostic tests such as mass spectrometry for the dual identification of vectors and pathogens. Furthermore, advances in the prevention and treatment of malaria and tuberculosis are reviewed, along with advances in the understanding of the role of microbiota in the resistance to HIV infection. These achievements represent a major step towards a better management of the ‘big three’ diseases worldwide.
Collapse
|
35
|
Boucheikhchoukh M, Laroche M, Aouadi A, Dib L, Benakhla A, Raoult D, Parola P. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comp Immunol Microbiol Infect Dis 2018; 57:39-49. [PMID: 30017077 DOI: 10.1016/j.cimid.2018.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/04/2018] [Accepted: 05/09/2018] [Indexed: 11/26/2022]
Abstract
Recent studies have reported the reliability of MALDI-TOF MS for arthropod identification, including fresh or alcohol-preserved ticks based on leg-derived mass spectra. The aim of this study was to evaluate the performance of MALDI-TOF MS for the identification of alcohol-preserved Algerian ticks collected from different domestic and wild hosts. Secondly, we conducted a molecular survey to detect the presence of bacterial DNA in all ticks that were previously subjected to MALDI-TOF MS. A total of 2635 ixodid and 1401 argasid ticks belonging to 9 distinct species were collected in nine different regions of northeastern Algeria. The legs of 230 specimens were subjected to MALDI-TOF MS assays. Spectral analysis revealed intra-species similarity and inter-species specificity for the MS spectra, which was consistent with the morphological identification. Blind tests against the in-lab database revealed that 93.48% of the tested specimens were correctly identified. The accuracy of the morphological and MALDI-TOF MS identifications was validated by sequencing the 12S ribosomal RNA gene (rRNA) for 33 specimens and all the ticks were correctly identified. The quantitative PCR screening showed that for 219 tested ticks, 15 were positive for Rickettsia spp., 8 for Borrelia spp. and 17 for Anaplasmataceae. The PCR tests were negative for Coxiella burnetii and Bartonella spp. This study supports MALDI-TOF MS being a reliable tool for the identification of arthropods and brings new data that sheds light on tick species diversity and tick-borne diseases in Algeria.
Collapse
Affiliation(s)
- Mehdi Boucheikhchoukh
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
| | - Atef Aouadi
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria; Université Cherif Messaadia, Département des Sciences Vétérinaires, Souk Ahras, 41000, Algeria.
| | - Loubna Dib
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Ahmed Benakhla
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
36
|
Mewara A, Sharma M, Kaura T, Zaman K, Yadav R, Sehgal R. Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasit Vectors 2018; 11:281. [PMID: 29720246 PMCID: PMC5932809 DOI: 10.1186/s13071-018-2854-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background Accurate and rapid identification of dipteran vectors is integral for entomological surveys and is a vital component of control programs for mosquito-borne diseases. Conventionally, morphological features are used for mosquito identification, which suffer from biological and geographical variations and lack of standardization. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for protein profiling of mosquito species from North India with the aim of creating a MALDI-TOF MS database and evaluating it. Methods Mosquito larvae were collected from different rural and urban areas and reared to adult stages. The adult mosquitoes of four medically important genera, Anopheles, Aedes, Culex and Armigerus, were morphologically identified to the species level and confirmed by ITS2-specific PCR sequencing. The cephalothoraces of the adult specimens were subjected to MALDI-TOF analysis and the signature peak spectra were selected for creation of database, which was then evaluated to identify 60 blinded mosquito specimens. Results Reproducible MALDI-TOF MS spectra spanning over 2–14 kDa m/z range were produced for nine mosquito species: Anopheles (An. stephensi, An. culicifacies and An. annularis); Aedes (Ae. aegypti and Ae. albopictus); Culex (Cx. quinquefasciatus, Cx. vishnui and Cx. tritaenorhynchus); and Armigerus (Ar. subalbatus). Genus- and species-specific peaks were identified to create the database and a score of > 1.8 was used to denote reliable identification. The average numbers of peaks obtained were 55–60 for Anopheles, 80–100 for Aedes, 30–60 for Culex and 45–50 peaks for Armigeres species. Of the 60 coded samples, 58 (96.67%) were correctly identified by MALDI-TOF MS with a score > 1.8, while there were two unreliable identifications (both Cx. quinquefasciatus with scores < 1.8). Conclusions MALDI-TOF MS appears to be a pragmatic technique for accurate and rapid identification of mosquito species. The database needs to be expanded to include species from different geographical regions and also different life-cycle stages to fully harness the technique for entomological surveillance programs. Electronic supplementary material The online version of this article (10.1186/s13071-018-2854-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhishek Mewara
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India.
| | - Megha Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Taruna Kaura
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Kamran Zaman
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Rakesh Yadav
- Medical Microbiology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| |
Collapse
|
37
|
Laroche M, Bérenger JM, Delaunay P, Charrel R, Pradines B, Berger F, Ranque S, Bitam I, Davoust B, Raoult D, Parola P. Medical Entomology: A Reemerging Field of Research to Better Understand Vector-Borne Infectious Diseases. Clin Infect Dis 2018; 65:S30-S38. [PMID: 28859353 DOI: 10.1093/cid/cix463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the last decade, the Chikungunya and Zika virus outbreaks have turned public attention to the possibility of the expansion of vector-borne infectious diseases worldwide. Medical entomology is focused on the study of arthropods involved in human health. We review here some of the research approaches taken by the medical entomology team of the University Hospital Institute (UHI) Méditerranée Infection of Marseille, France, with the support of recent or representative studies. We propose our approaches to technical innovations in arthropod identification and the detection of microorganisms in arthropods, the use of arthropods as epidemiological or diagnostic tools, entomological investigations around clinical cases or within specific populations, and how we have developed experimental models to decipher the interactions between arthropods, microorganisms, and humans.
Collapse
Affiliation(s)
- Maureen Laroche
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Jean-Michel Bérenger
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis
| | - Remi Charrel
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille Université, IRD 190, Inserm 1207, EHESP), AP-HM, IHU Méditerranée Infection
| | - Bruno Pradines
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille ( AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille.,Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées.,Centre National de Référence du Paludisme
| | - Franck Berger
- GSBDD Marseille-Aubagne, Centre d'épidémiologie et de santé publique des armées, Marseille, France
| | - Stéphane Ranque
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interactions Génomes, Faculté des Sciences Biologiques Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Algeria
| | - Bernard Davoust
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Didier Raoult
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| | - Philippe Parola
- Aix Marseille Université, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Assistance Publique-Hôpitaux de Marseille (AP-HM), Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Marseille
| |
Collapse
|
38
|
The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020389. [PMID: 29473903 PMCID: PMC5858458 DOI: 10.3390/ijerph15020389] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/17/2022]
Abstract
Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission.
Collapse
|
39
|
El Hamzaoui B, Laroche M, Almeras L, Bérenger JM, Raoult D, Parola P. Detection of Bartonella spp. in fleas by MALDI-TOF MS. PLoS Negl Trop Dis 2018; 12:e0006189. [PMID: 29451890 PMCID: PMC5833284 DOI: 10.1371/journal.pntd.0006189] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/01/2018] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Background Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has recently emerged in the field of entomology as a promising method for the identification of arthropods and the detection of associated pathogens. Methodology/Principal findings An experimental model of Ctenocephalides felis (cat fleas) infected with Bartonella quintana and Bartonella henselae was developed to evaluate the efficacy of MALDI-TOF MS in distinguishing infected from uninfected fleas, and its ability to distinguish fleas infected with Bartonella quintana from fleas infected with Bartonella henselae. For B. quintana, two groups of fleas received three successive blood meals, infected or not. A total of 140 fleas (100 exposed fleas and 40 control fleas) were engorged on human blood, infected or uninfected with B. quintana. Regarding the second pathogen, two groups of fleas (200 exposed fleas and 40 control fleas) were fed in the same manner with human blood, infected or not with Bartonella henselae. Fleas were dissected longitudinally; one-half was used for assessment of B. quintana and B. henselae infectious status by real-time PCR, and the second half was subjected to MALDI-TOF MS analysis. Comparison of MS spectra from infected fleas and uninfected fleas revealed distinct MS profiles. Blind queries against our MALDI-TOF MS arthropod database, upgraded with reference spectra from B. quintana and B. henselae infected fleas but also non-infected fleas, provided the correct classification for 100% of the different categories of specimens tested on the first model of flea infection with Bartonella quintana. As for Bartonella henselae, 81% of exposed qPCR-positive fleas, 96% of exposed qPCR-negative fleas and 100% of control fleas were correctly identified on the second model of flea infection. MALDI-TOF MS successfully differentiated Bartonella spp.-infected and uninfected fleas and was also able to correctly differentiate fleas infected with Bartonella quintana and fleas infected with Bartonella henselae. MALDI-TOF MS correctly identified flea species as well as their infectious status, consistent with the results of real-time PCR. Conclusions/Significance MALDI-TOF is a promising tool for identification of the infection status of fleas infected with Bartonella spp., which allows new possibilities for fast and accurate diagnosis in medical entomology and vector surveillance. Fleas are known vectors of human infectious diseases. Identification of fleas and their associated pathogens is essential for the prevention of flea-borne diseases. Currently, the morphological identification of arthropods based on dichotomous keys, as well as molecular techniques, are the most common approaches for arthropod identification and entomological surveillance. In recent years, MALDI-TOF MS has revolutionized clinical microbiology in enabling the rapid identification of bacteria and fungi by comparing the protein profiles obtained to a database. This proteomic approach has recently been used for arthropod identification and pathogen detection. Here, we developed an experimental model to test MALDI-TOF's ability to differentiate fleas infected with human pathogens, Bartonella quintana and Bartonella henselae, from uninfected fleas.
Collapse
Affiliation(s)
- Basma El Hamzaoui
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
- Unité de Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
- * E-mail:
| |
Collapse
|
40
|
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been recently described as an innovative and effective tool for identifying arthropods and mosquito blood meal sources. To test this approach in the context of an entomological survey in the field, mosquitoes were collected from five ecologically distinct areas of Mali. We successfully analysed the blood meals from 651 mosquito abdomens crushed on Whatman filter paper (WFPs) in the field using MALDI-TOF MS. The legs of 826 mosquitoes were then submitted for MALDI-TOF MS analysis in order to identify the different mosquito species. Eight mosquito species were identified, including Anopheles gambiae Giles, Anopheles coluzzii, Anopheles arabiensis, Culex quinquefasciatus, Culex neavei, Culex perexiguus, Aedes aegypti and Aedes fowleri in Mali. The field mosquitoes for which MALDI-TOF MS did not provide successful identification were not previously available in our database. These specimens were subsequently molecularly identified. The WFP blood meal sources found in this study were matched against human blood (n = 619), chicken blood (n = 9), cow blood (n = 9), donkey blood (n = 6), dog blood (n = 5) and sheep blood (n = 3). This study reinforces the fact that MALDI-TOF MS is a promising tool for entomological surveys.
Collapse
|
41
|
Halada P, Hlavackova K, Dvorak V, Volf P. Identification of immature stages of phlebotomine sand flies using MALDI-TOF MS and mapping of mass spectra during sand fly life cycle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:47-56. [PMID: 29248738 DOI: 10.1016/j.ibmb.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
The aim of the study was to evaluate the potential of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) for the species identification of sand flies at different developmental stages and map changes in their protein profiles during the course of whole life cycle. Specimens of six different species from laboratory colonies at larval and pupal stages were examined using MALDI-TOF MS. The protein profiles of larvae were stable from the L2 to L4 developmental stages and clearly distinguishable at the species level. In a validation study, 123 larvae of the six species were queried against reference database resulting in 93% correct species identification (log score values higher than 2.0). The spectra generated from sand fly pupae allow species identification as well and surprisingly, in contrast to biting midges and mosquitoes, they did not change during this developmental stage. For adults, thorax was revealed as the optimal body part for sample preparation yielding reproducible spectra regardless age and diet. Only variations were uncovered for freshly engorged females profiles of which were affected by blood signals first two days post bloodmeal. The findings demonstrate that in addition to adult species differentiation MALDI-TOF MS may also serve as a rapid and effective tool for species identification of juvenile stages of phlebotomine sand flies.
Collapse
Affiliation(s)
- Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Kristyna Hlavackova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 43, Czech Republic.
| | - Vit Dvorak
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 43, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 43, Czech Republic
| |
Collapse
|
42
|
Mosquitoes as Arbovirus Vectors: From Species Identification to Vector Competence. PARASITOLOGY RESEARCH MONOGRAPHS 2018. [PMCID: PMC7122353 DOI: 10.1007/978-3-319-94075-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mosquitoes and other arthropods transmit a large number of medically important pathogens, in particular viruses. These arthropod-borne viruses (arboviruses) include a wide variety of RNA viruses belonging to the Flaviviridae family (West Nile virus (WNV), Usutu virus (USUV), Dengue virus (DENV), Japanese encephalitis virus (JEV), Zika virus (ZIKV)), the Togaviridae family (Chikungunya virus (CHIKV)), and Bunyavirales order (Rift Valley fever virus (RVFV)) (please refer also to Table 9.1). Arboviral transmission to humans and livestock constitutes a major threat to public health and economy as illustrated by the emergence of ZIKV in the Americas, RVFV outbreaks in Africa, and the worldwide outbreaks of DENV. To answer the question if those viral pathogens also pose a risk to Europe, we need to first answer the key questions (summarized in Fig. 9.1):Who could contribute to such an outbreak? Information about mosquito species resident or imported, potential hosts and viruses able to infect vectors and hosts in Germany is needed. Where would competent mosquito species meet favorable conditions for transmission? Information on the minimum requirements for efficient replication of the virus in a given vector species and subsequent transmission is needed. How do viruses and vectors interact to facilitate transmission? Information on the vector immunity, vector physiology, vector genetics, and vector microbiomes is needed.
Collapse
|
43
|
Nebbak A, El Hamzaoui B, Berenger JM, Bitam I, Raoult D, Almeras L, Parola P. Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:438-448. [PMID: 28722283 DOI: 10.1111/mve.12250] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Ticks and fleas are vectors for numerous human and animal pathogens. Controlling them, which is important in combating such diseases, requires accurate identification, to distinguish between vector and non-vector species. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to the rapid identification of arthropods. The growth of this promising tool, however, requires guidelines to be established. To this end, standardization protocols were applied to species of Rhipicephalus sanguineus (Ixodida: Ixodidae) Latreille and Ctenocephalides felis felis (Siphonaptera: Pulicidae) Bouché, including the automation of sample homogenization using two homogenizer devices, and varied sample preservation modes for a period of 1-6 months. The MS spectra were then compared with those obtained from manual pestle grinding, the standard homogenization method. Both automated methods generated intense, reproducible MS spectra from fresh specimens. Frozen storage methods appeared to represent the best preservation mode, for up to 6 months, while storage in ethanol is also possible, with some caveats for tick specimens. Carnoy's buffer, however, was shown to be less compatible with MS analysis for the purpose of identifying ticks or fleas. These standard protocols for MALDI-TOF MS arthropod identification should be complemented by additional MS spectrum quality controls, to generalize their use in monitoring arthropods of medical interest.
Collapse
Affiliation(s)
- A Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algeria
| | - B El Hamzaoui
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - J-M Berenger
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - I Bitam
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algeria
| | - D Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - L Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - P Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
44
|
Nebbak A, Willcox AC, Bitam I, Raoult D, Parola P, Almeras L. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics 2017; 16:3148-3160. [PMID: 27862981 DOI: 10.1002/pmic.201600287] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/19/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The rapid spread of vector-borne diseases demands the development of an innovative strategy for arthropod monitoring. The emergence of MALDI-TOF MS as a rapid, low-cost, and accurate tool for arthropod identification is revolutionizing medical entomology. However, as MS spectra from an arthropod can vary according to the body part selected, the sample homogenization method used and the mode and duration of sample storage, standardization of protocols is indispensable prior to the creation and sharing of an MS reference spectra database. In the present study, manual grinding of Anopheles gambiae Giles and Aedes albopictus mosquitoes at the adult and larval (L3) developmental stages was compared to automated homogenization. Settings for each homogenizer were optimized, and glass powder was found to be the best sample disruptor based on its ability to create reproducible and intense MS spectra. In addition, the suitability of common arthropod storage conditions for further MALDI-TOF MS analysis was kinetically evaluated. The conditions that best preserved samples for accurate species identification by MALDI-TOF MS were freezing at -20°C or in liquid nitrogen for up to 6 months. The optimized conditions were objectified based on the reproducibility and stability of species-specific MS profiles. The automation and standardization of mosquito sample preparation methods for MALDI-TOF MS analyses will popularize the use of this innovative tool for the rapid identification of arthropods with medical interest.
Collapse
Affiliation(s)
- Amira Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Laboratoire de Biodiversité et Environnement : Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Alexandra C Willcox
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Idir Bitam
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Laboratoire de Biodiversité et Environnement : Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
45
|
Nongonierma AB, FitzGerald RJ. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.08.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Boyer PH, Boulanger N, Nebbak A, Collin E, Jaulhac B, Almeras L. Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus. PLoS One 2017; 12:e0185430. [PMID: 28950023 PMCID: PMC5614582 DOI: 10.1371/journal.pone.0185430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been demonstrated to be useful for tick identification at the species level. More recently, this tool has been successfully applied for the detection of bacterial pathogens directly in tick vectors. The present work has assessed the detection of Borrelia burgdorferi sensu lato in Ixodes ricinus tick vector by MALDI-TOF MS. To this aim, experimental infection model of I. ricinus ticks by B. afzelii was carried out and specimens collected in the field were also included in the study. Borrelia infectious status of I. ricinus ticks was molecularly controlled using half-idiosome to classify specimens. Among the 39 ticks engorged on infected mice, 14 were confirmed to be infected by B. afzelii. For field collection, 14.8% (n = 12/81) I. ricinus ticks were validated molecularly as infected by B. burgdorferi sl. To determine the body part allowing the detection of MS protein profile changes between non-infected and B. afzelii infected specimens, ticks were dissected in three compartments (i.e. 4 legs, capitulum and half-idiosome) prior to MS analysis. Highly reproducible MS spectra were obtained for I. ricinus ticks according to the compartment tested and their infectious status. However, no MS profile change was found when paired body part comparison between non-infected and B. afzelii infected specimens was made. Statistical analyses did not succeed to discover, per body part, specific MS peaks distinguishing Borrelia-infected from non-infected ticks whatever their origins, laboratory reared or field collected. Despite the unsuccessful of MALDI-TOF MS to classify tick specimens according to their B. afzelii infectious status, this proteomic tool remains a promising method for rapid, economic and accurate identification of tick species. Moreover, the singularity of MS spectra between legs and half-idiosome of I. ricinus could be used to reinforce this proteomic identification by submission of both these compartments to MS.
Collapse
Affiliation(s)
- Pierre H. Boyer
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| | - Amira Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection 19–21 Boulevard Jean Moulin, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Elodie Collin
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
| | - Benoit Jaulhac
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection 19–21 Boulevard Jean Moulin, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
47
|
Raharimalala FN, Andrianinarivomanana TM, Rakotondrasoa A, Collard JM, Boyer S. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:289-298. [PMID: 28426182 DOI: 10.1111/mve.12230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/12/2016] [Accepted: 02/02/2017] [Indexed: 06/07/2023]
Abstract
Arthropod-borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time-consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI-TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI-TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI-TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control.
Collapse
Affiliation(s)
- F N Raharimalala
- Unit of Medical Entomology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - A Rakotondrasoa
- Unit of Experimental Bacteriology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - J M Collard
- Unit of Experimental Bacteriology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - S Boyer
- Unit of Medical Entomology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
48
|
MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology 2017; 145:665-675. [PMID: 28768559 DOI: 10.1017/s0031182017001342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Triatomines are haematophagous insects involved in the transmission of Trypanosoma cruzi, the aetiological agent of Chagas disease. The vector competence of these arthropods can be highly variable, depending on the species. A precise identification is therefore crucial for the epidemiological surveillance of T. cruzi and the determination of at-risk human populations. To circumvent the difficulties of morphological identification and the lack of comprehensiveness of the GenBank database, we hereby propose an alternative method for triatomine identification. The femurs of the median legs of triatomines from eight different species from French Guiana were subjected to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. Method evaluation was performed on fresh specimens and was applied to dry specimens collected between 1991 and 2003. Femur-derived protein extracts provided reproducible spectra within the same species along with significant interspecies heterogeneity. Validation of the study by blind test analysis provided 100% correct identification of the specimens in terms of the species, sex and developmental stage. MALDI-TOF mass spectrometry appears to be a powerful tool for triatomine identification, which is a major step forward in the fight against Chagas disease.
Collapse
|
49
|
Abstract
In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an efficient tool for arthropod identification. Its application for field monitoring of adult mosquitoes was demonstrated, but identification of larvae has been limited to laboratory-reared specimens. Study aim was to test the success of MALDI-TOF MS in correctly identifying mosquito larvae collected in the field. Collections were performed at 13 breeding sites in urban areas of Marseille, a city in the South of France. A total of 559 larvae were collected. Of these, 73 were accurately morphologically identified, with confirmation either by molecular identification (n = 31) or analysis with MALDI-TOF MS (n = 31) and 11 were tested using both methods. The larvae identified belonged to six species including Culiseta longiareolata, Culex pipiens pipiens, Culex hortensis, Aedes albopictus, Ochlerotatus caspius and Anopheles maculipennis. A high intra-species reproducibility and inter-species specificity of whole larva MS spectra was obtained and was independent of breeding site. More than 92% of the remaining 486 larvae were identified in blind tests against the MS spectra database. Identification rates were lower for early and pupal stages, which is attributed to lower protein abundance and metamorphosis, respectively. The suitability of MALDI-TOF MS for mosquito larvae identification from the field has been confirmed.
Collapse
|
50
|
Diarra AZ, Almeras L, Laroche M, Berenger JM, Koné AK, Bocoum Z, Dabo A, Doumbo O, Raoult D, Parola P. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl Trop Dis 2017; 11:e0005762. [PMID: 28742123 PMCID: PMC5542699 DOI: 10.1371/journal.pntd.0005762] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/03/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali.
Collapse
Affiliation(s)
- Adama Zan Diarra
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Lionel Almeras
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Maureen Laroche
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Jean-Michel Berenger
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | | | - Abdoulaye Dabo
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Ogobara Doumbo
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Didier Raoult
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|