1
|
Wang MY, Yi MX, Mo XY, Wei SJ, Qiao Y, Zhang Z, Su ZL, Lu HY. Over-activation of iNKT cells aggravate lung injury in bronchopulmonary dysplasia mice. Redox Biol 2024; 77:103370. [PMID: 39342744 PMCID: PMC11470607 DOI: 10.1016/j.redox.2024.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe lung disease in preterm infants, the abnormal proliferate and differentiate ability of type II epithelial cells (AEC II) is the key to the pathological basis of BPD. Mechanisms regarding abnormal AEC II in BPD remain unclear. The present work investigated the role and mechanisms of invariant natural killer T (iNKT) cells in lung disorder in BPD using public datasets, clinical samples, a hyperoxia-induced BPD mouse model and AEC II-iNKT cells transwell co-culture system. Firstly, we found that the NKT cells development factor IL-15 increased over time in patients with BPD in public databases, and clinically collected peripheral blood NKT cells in patients with BPD were increased. Subsequently, the percentage of iNKT cells increased in hyperoxia group compared with normoxia group, with the highest at P7, accompanied by increased activation with abnormal lung development. The administration of anti-CD1d neutralizing antibody to inhibit iNKT cells could alleviate the abnormal lung development of hyperoxia group mice, while α-GalCer administration could aggravate lung injury in hyperoxia group mice, and adoptive transfer of iNKT cells could aggravate the abnormal lung development in hyperoxia group mice. In addition, to further verify the role of iNKT cells on AEC II, AEC II-iNKT cells co-culture system was established. The presence of iNKT cells could aggravate the abnormal expression of SP-C and T1α under hyperoxia. Meanwhile, RNA-seq analysis showed that ferroptosis-related genes were highly expressed in AEC II co-cultured with iNKT cells under hyperoxia. We further validated the effect of the presence of iNKT cells under hyperoxia environment on AEC II ferroptosis levels, suggested that iNKT cells promote AEC II ferroptosis under hyperoxia, accompanied by decreased expression of SP-C and T1α. Our study found that the recruitment of iNKT cells in the lung may be an important cause of alveolarization disorder in BPD.
Collapse
Affiliation(s)
- Ming-Yan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Meng-Xu Yi
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Xing-Yu Mo
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Shan-Jie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yu Qiao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Zheng Zhang
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute for Medical Immunology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| |
Collapse
|
2
|
Chen YC, Lee YL, Lee CA, Lin TY, Hwu EET, Cheng PC. Development of a Lipid-encapsulated TGFβRI-siRNA Drug for Liver Fibrosis Induced by Schistosoma mansoni. PLoS Negl Trop Dis 2024; 18:e0012502. [PMID: 39264964 PMCID: PMC11421824 DOI: 10.1371/journal.pntd.0012502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Schistosoma mansoni infection leads to chronic schistosomiasis and severe hepatic fibrosis. We designed a liver-targeted lipid nanoparticle (LNP) carrying siRNA against type I TGF-β receptor (TGFβRI) mRNA to treat schistosomiasis-induced liver fibrosis in BALB/c mice. Knockdown of TGFβRI by LNP-siTGFβRI reduced LX-2 cell activation in vitro and alleviated liver fibrosis in S. mansoni-infected mice. αSMA and Col1a1 fibrotic markers in the liver tissues of infected mice were significantly suppressed in the treatment groups. In the serum of the LNP-siTGFβRI-treated groups, cytokines IFNγ, IL-1α, IL-6, IL-12, RANTES (CCL5), and TNFα increased, while GM-CSF, IL-2, IL-4, IL-10, IL-13, and KC (CXCL1) decreased compared to the control. Cell proportions were significantly altered in S. mansoni-infected mice, with increased CD56d NK cells and decreased CD19+ B cells and CD4+ T cells compared to naïve mice. Following LNP-siTGFβRI treatment, CD56d NK cells were downregulated, while B and memory Th cell populations were upregulated. The density of fibrotic regions significantly decreased with LNP-siTGFβRI treatment in a dose-dependent manner, and no systemic toxicity was observed in the major organs. This targeted siRNA delivery strategy effectively reduced granulomatous lesions in schistosomiasis-induced liver fibrosis without detectable side effects.
Collapse
Affiliation(s)
- Ying-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Drug Metabolism & Pharmacokinetics Department, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Taiwan
| | - Ching-An Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Yuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Edwin En-Te Hwu
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark
| | - Po-Ching Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Xie H, Chen D, Feng Y, Mo F, Liu L, Xing J, Xiao W, Gong Y, Tang S, Tan Z, Liang G, Zhao S, Yin W, Huang J. Evaluation of the TLR3 involvement during Schistosoma japonicum-induced pathology. BMC Immunol 2024; 25:2. [PMID: 38172683 PMCID: PMC10765740 DOI: 10.1186/s12865-023-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite the functions of TLRs in the parasitic infections have been extensively reported, few studies have addressed the role of TLR3 in the immune response to Schistosoma japonicum infections. The aim of this study was to investigate the properties of TLR3 in the liver of C57BL/6 mice infected by S. japonicum. METHODS The production of TLR3+ cells in CD4+T cells (CD4+CD3+), CD8+T cells (CD8+CD3+), γδT cells (γδTCR+CD3+), NKT cells (NK1.1+CD3+), B cells (CD19+CD3-), NK (NK1.1-CD3+) cells, MDSC (CD11b+Gr1+), macrophages (CD11b+F4/80+), DCs (CD11c+CD11b+) and neutrophils (CD11b+ Ly6g+) were assessed by flow cytometry. Sections of the liver were examined by haematoxylin and eosin staining in order to measure the area of granulomas. Hematological parameters including white blood cell (WBC), red blood cell (RBC), platelet (PLT) and hemoglobin (HGB) were analyzed. The levels of ALT and AST in the serum were measured using biochemical kits. The relative titers of anti-SEA IgG and anti-SEA IgM in the serum were measured by enzyme-linked immunosorbent assay (ELISA). CD25, CD69, CD314 and CD94 molecules were detected by flow cytometry. RESULTS Flow cytometry results showed that the expression of TLR3 increased significantly after S. japonicum infection (P < 0.05). Hepatic myeloid and lymphoid cells could express TLR3, and the percentages of TLR3-expressing MDSC, macrophages and neutrophils were increased after infection. Knocking out TLR3 ameliorated the damage and decreased infiltration of inflammatory cells in infected C57BL/6 mouse livers.,The number of WBC was significantly reduced in TLR3 KO-infected mice compared to WT-infected mice (P < 0.01), but the levels of RBC, platelet and HGB were significantly increased in KO infected mice. Moreover, the relative titers of anti-SEA IgG and anti-SEA IgM in the serum of infected KO mice were statistically decreased compared with the infected WT mice. We also compared the activation-associated molecules expression between S.japonicum-infected WT and TLR3 KO mice. CONCLUSIONS Taken together, our data indicated that TLR3 played potential roles in the context of S. japonicum infection and it may accelerate the progression of S. japonicum-associated liver pathology.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dianhui Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanfa Feng
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Feng Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Xiao
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanni Tang
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guikuan Liang
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shan Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Weiguo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Jun Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
4
|
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol 2022; 13:960852. [PMID: 36032104 PMCID: PMC9399941 DOI: 10.3389/fimmu.2022.960852] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| |
Collapse
|
5
|
Hu Y, Wang X, Wei Y, Liu H, Zhang J, Shen Y, Cao J. Functional Inhibition of Natural Killer Cells in a BALB/c Mouse Model of Liver Fibrosis Induced by Schistosoma japonicum Infection. Front Cell Infect Microbiol 2020; 10:598987. [PMID: 33330140 PMCID: PMC7710793 DOI: 10.3389/fcimb.2020.598987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Aims Schistosomiasis japonica is a widespread human zoonotic disease, and in China, there are many patients with schistosomiasis suffering from liver fibrosis. Many studies have shown that natural killer (NK) cells could reduce the progression of hepatic fibrosis by directly killing hepatic stellate cells (HSCs). However, NK cells could not inhibit the progress of liver fibrosis induced by Schistosoma japonicum infection. We aimed to investigate the function of NK cells in schistosomiasis. Methods BALB/c mice were infected with S. japonicum cercariae. The receptors and their proportions expressed on NK cells in the liver and spleen from infected mice were detected using flow cytometry. Levels of IFN-γ, perforin, and granzyme of NK cells, and collagen I, III, and α-SMA of hepatic tissue, were detected using quantitative real-time PCR. Changes in cytokine levels in sera were detected using a cytometric bead array. Liver fibrosis was evaluated using hematoxylin and eosin and Masson staining. NK function in the schistosomiasis model was analyzed. Results From 2 to 4 weeks post-infection, NK cells were activated, with significantly increased levels of effector molecules (IFN-γ, perforin, and granzyme) that peaked at 4 weeks after infection. The proportion of NK cells increased in the liver and spleen from 6 to 10 weeks post-infection. However, the function of NK cells was inhibited from 6 to 10 weeks post-infection with significantly decreased levels of activated receptors (AR), inhibitory receptors (IR), and effector molecules. The levels of IFN-γ, IL-12, and IL-6 in mouse serum peaked at 6 weeks post-infection, and IL-10 and IL-21 levels peaked at 8 weeks post-infection. Hepatic fibrosis markers increased significantly at 6 weeks after infection. Conclusion Our study suggested that NK cells were activated from 2 to 4 weeks post-infection and participated in inflammation in the mouse model. After the S. japonicum laid their eggs, NK cells became inhibited, with decreased levels of both activating and inhibitory NK cell receptors, as well as cytotoxic molecules. In addition, liver fibrosis formed. In mice infected with S. japonicum, the process of liver fibrosis might be alleviated by removing the functional inhibition of NK cells.
Collapse
Affiliation(s)
- Yuan Hu
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Xiaoling Wang
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yuhuan Wei
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Hua Liu
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Jing Zhang
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yujuan Shen
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| |
Collapse
|
6
|
Weatherhead JE, Gazzinelli-Guimaraes P, Knight JM, Fujiwara R, Hotez PJ, Bottazzi ME, Corry DB. Host Immunity and Inflammation to Pulmonary Helminth Infections. Front Immunol 2020; 11:594520. [PMID: 33193446 PMCID: PMC7606285 DOI: 10.3389/fimmu.2020.594520] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
Helminths, including nematodes, cestodes and trematodes, are complex parasitic organisms that infect at least one billion people globally living in extreme poverty. Helminthic infections are associated with severe morbidity particularly in young children who often harbor the highest burden of disease. While each helminth species completes a distinct life cycle within the host, several helminths incite significant lung disease. This impact on the lungs occurs either directly from larval migration and host immune activation or indirectly from a systemic inflammatory immune response. The impact of helminths on the pulmonary immune response involves a sophisticated orchestration and activation of the host innate and adaptive immune cells. The consequences of activating pulmonary host immune responses are variable with several helminthic infections leading to severe, pulmonary compromise while others providing immune tolerance and protection against the development of pulmonary diseases. Further delineation of the convoluted interface between helminth infection and the pulmonary host immune responses is critical to the development of novel therapeutics that are critically needed to prevent the significant global morbidity caused by these parasites.
Collapse
Affiliation(s)
- Jill E. Weatherhead
- Department of Medicine, Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - John M. Knight
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
| | - Ricardo Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter J. Hotez
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Center for Vaccine Development, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
- Hagler Institute for Advanced Study at Texas A&M University, College State, TX, United States
| | - Maria Elena Bottazzi
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Center for Vaccine Development, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - David B. Corry
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Immunology, Allergy, Rheumatology, Baylor College of Medicine, Houston, TX, United States
- Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Houston, TX, United States
| |
Collapse
|
7
|
Cha H, Xie H, Jin C, Feng Y, Xie S, Xie A, Yang Q, Qi Y, Qiu H, Wu Q, Yin Z, Mu J, Huang J. Adjustments of γδ T Cells in the Lung of Schistosoma japonicum-Infected C56BL/6 Mice. Front Immunol 2020; 11:1045. [PMID: 32582168 PMCID: PMC7287124 DOI: 10.3389/fimmu.2020.01045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Many kinds of lymphocytes are involved in Schistosoma japonicum (S. japonicum) infection-induced disease. γδ T cells comprise a small number of innate lymphocytes that quickly respond to foreign materials. In this study, the role of γδ T cells in the lung of S. japonicum-infected C56BL/6 mice was investigated. The results demonstrated that S. japonicum infection induces γδ T cell accumulation in the lung, expressing higher levels of CD25, MHCII, CD80, and PDL1, and lower levels of CD127 and CD62L (P < 0.05). The intracellular cytokines staining results illustrated higher percentages of IL-4-, IL-10-, IL-21-, and IL-6-producing γδ T cells and lower percentages of IFN-γ-expressing γδ T cells in the lung of infected mice (P < 0.05). Moreover, the granuloma size in lung tissue was significantly increased in Vδ−/− mice (P < 0.05). In the lung of S. japonicum-infected Vδ−/− mice, both type 1 and type 2 immune responses were decreased significantly (P < 0.05). In addition, the expression of CD80 and CD69 on B cells was decreased significantly (P < 0.05), and the SEA-specific antibody was markedly decreased (P < 0.05) in the blood of infected Vδ−/− mice. In conclusion, this study indicates that γδ T cells could adjust the Th2 dominant immune response in the lung of S. japonicum-infected mice.
Collapse
Affiliation(s)
- Hefei Cha
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenxi Jin
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiongli Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Chen D, Zhao Y, Feng Y, Jin C, Yang Q, Qiu H, Xie H, Xie S, Zhou Y, Huang J. Expression of TLR2, TLR3, TLR4, and TLR7 on pulmonary lymphocytes of Schistosoma japonicum-infected C57BL/6 mice. Innate Immun 2020; 25:224-234. [PMID: 31018808 PMCID: PMC6830883 DOI: 10.1177/1753425919840424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the paramount role of TLRs in the induction of innate immune and
inflammatory responses, there is a paucity of studies on the role of TLRs in
Schistosoma japonicum infection. Here, we observed obvious
infiltration of inflammatory cells in S. japonicum-infected
C57BL/6 mouse lungs. Expression and release of IFN-γ, IL-4, and IL-17 were
significantly higher in pulmonary lymphocytes from infected mice compared with
control mice in response to anti-CD3 plus anti-CD28 mAbs. Higher percentages of
TLR2, TLR3, TLR4, and TLR7 were expressed on such lymphocytes, and the TLR
agonists PGN, Poly I:C, LPS, and R848 induced a higher level of IFN-γ. However,
a higher level of IL-4 was found in the supernatant of pulmonary lymphocytes
from infected mice stimulated by these TLR agonists plus CD3 Ab. Only R848 plus
anti-CD3 mAb could induce a higher level of IFN-γ in such lymphocytes. TLR
expressions were then compared on different pulmonary lymphocytes after
infection, including T cells, B cells, NK cells, NKT cells, and γδT cells. The
expression levels of TLR3 on T cells, B cells, NK cells, and γδT cells were
increased in the lungs after infection. NK cells also expressed higher levels of
TLR4 after infection of control mice. Collectively, these findings highlight the
potential role of TLR expression in the context of S. japonicum
infection.
Collapse
Affiliation(s)
- Dianhui Chen
- 1 The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou Medical University, China
| | - Yi Zhao
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Yuanfa Feng
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Chenxi Jin
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Quan Yang
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Huaina Qiu
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Hongyan Xie
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Sihao Xie
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Yi Zhou
- 3 College of Pharmacy, Guangzhou Medical University, China
| | - Jun Huang
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| |
Collapse
|
9
|
Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, Qi Y, Qiu H, Chen H, Tao A, Mu J, Qin W, Huang J. Changes of CD103-expressing pulmonary CD4 + and CD8 + T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis 2019; 19:999. [PMID: 31775660 PMCID: PMC6880605 DOI: 10.1186/s12879-019-4633-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recent studies have shown that CD103 is an important marker for tissue-resident memory T cells (TRM) which plays an important role in anti-infection. However, the role of CD103+ TRM was not elucidated in the progress of S. japonicum infection induced disease. METHODS 6-8 weeks old C57BL/6 mice were infected by S. japonicum. Mice were sacrificed and the lungs were removed 5-6 weeks after infection. Immunofluorescent staining and Q-PCR were performed to identify the expression of CD103 molecule. Single cellular populations were made, percentages of CD103 on both CD4+ and CD8+ T lymphocytes were dynamical observed by flow cytometry (FCM). Moreover, the expression of memory T cells related molecules CD69 and CD62L, T cell function associated molecules CD107a, IFN-γ, IL-4, IL-9, and IL-10 were compared between CD103+ CD4+ and CD8+ T cells by FCM. RESULTS CD103+ cells were emerged in the lung of both naive and S. japonicum infected mice. Both the percentage and the absolute numbers of pulmonary CD4+ and CD8+ cells were increased after S. japonicum infection (P < 0.05). The percentage of CD103+ cells in CD8+ T cells decreased significantly at the early stage of S. japonicum infection (P < 0.05). Increased CD69, decreased CD62L and CD107a expressions were detected on both CD4+ and CD8+ CD103+ T cells in the lungs of infected mice (P < 0.05). Compared to CD8+ CD103+ T cells, CD4+ CD103+ T cells from infected mice expressed higher level of CD69 and lower level CD62L molecules (P < 0.05). Moreover, higher percentage of IL-4+, IL-9+ and IL-10+ cells on CD4+ CD103+ pulmonary T cells was found in infected mice (P < 0.05). Significantly increased IL-4 and IL-9, and decreased IFN-γ expressing cells were detected in CD8+CD103+ cells of infected mice (P < 0.05). CONCLUSIONS CD103-expressing pulmonary CD4+ and CD8+ T cells play important roles in mediating S. japonicum infection induced granulomatous inflammation in the lung.
Collapse
Affiliation(s)
- Yi Zhao
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Quan Yang
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chenxi Jin
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuanfa Feng
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shihao Xie
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyan Xie
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanwei Qi
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huaina Qiu
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyuan Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ailin Tao
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjuan Qin
- Department of Radiation Oncology, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Jun Huang
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
10
|
Abstract
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Collapse
|
11
|
Walwyn-Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald AS, Davis DM. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2028-2041. [PMID: 30120122 PMCID: PMC6139540 DOI: 10.4049/jimmunol.1800475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Cross-talk between NK cells and dendritic cells (DCs) is important in Th1 immune responses, including antitumor immunity and responses to infections. DCs also play a crucial role in polarizing Th2 immunity, but the impact of NK cell-DC interactions in this context remains unknown. In this study, we stimulated human monocyte-derived DCs in vitro with different pathogen-associated molecules: LPS or polyinosinic-polycytidylic acid, which polarize a Th1 response, or soluble egg Ag from the helminth worm Schistosoma mansoni, a potent Th2-inducing Ag. Th2-polarizing DCs were functionally distinguishable from Th1-polarizing DCs, and both showed distinct morphology and dynamics from immature DCs. We then assessed the outcome of autologous NK cells interacting with these differently stimulated DCs. Confocal microscopy showed polarization of the NK cell microtubule organizing center and accumulation of LFA-1 at contacts between NK cells and immature or Th2-polarizing DCs but not Th1-polarizing DCs, indicative of the assembly of an activating immune synapse. Autologous NK cells lysed immature DCs but not DCs treated with LPS or polyinosinic-polycytidylic acid as reported previously. In this study, we demonstrated that NK cells also degranulated in the presence of Th2-polarizing DCs. Moreover, time-lapse live-cell microscopy showed that DCs that had internalized fluorescently labeled soluble egg Ag were efficiently lysed. Ab blockade of NK cell-activating receptors NKp30 or DNAM-1 abrogated NK cell lysis of Th2-polarizing DCs. Thus, these data indicate a previously unrecognized role of NK cell cytotoxicity and NK cell-activating receptors NKp30 and DNAM-1 in restricting the pool of DCs involved in Th2 immune responses.
Collapse
Affiliation(s)
- Katherine Walwyn-Brown
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Karolin Guldevall
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, SE-106 91 Stockholm, Sweden
| | - Mezida Saeed
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Daniela Pende
- Laboratorio Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, 16132 Genova, Italy; and
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, SE-106 91 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom;
| |
Collapse
|
12
|
TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res 2018; 2018:7519856. [PMID: 30246036 PMCID: PMC6136572 DOI: 10.1155/2018/7519856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are classic innate immune cells that play roles in many types of infectious diseases. NK cells possess many kinds of TLRs that allow them to sense and respond to invading pathogens. Our previous study found that NK cells could modulate the immune response induced by Schistosoma japonicum (S. japonicum) in C57BL/6 mice. In the present study, the role of TLRs in the progress of S. japonicum infection was investigated. Results showed that the expression of TLR3 on NK cells increased significantly after S. japonicum infection by using RT-PCR and FACS (P < 0.05). TLR3 agonist (Poly I:C) increased IFN-γ and IL-4 levels in the supernatant of cultured splenocytes and induced a higher percentage of IFN-γ- and IL-4-secreting NK cells from infected mouse splenocytes (P < 0.05). Not only the percentages of MHC II-, CD69-, and NKG2A/C/E-expressing cells but also the percentages of IL-4-, IL-5-, and IL-17-producing cells in TLR3+ NK cells increased significantly after infection (P < 0.05). Moreover, the expression of NKG2A/C/E, NKG2D, MHC II, and CD69 on the surface of splenic NK cells was changed in S. japonicum-infected TLR3-/- (TLR3 KO mice, P < 0.05); the abilities of NK cells in IL-4, IL-5, and IL-17 secretion were decreased too (P < 0.05). These results indicate that TLR3 is the primary molecule which modulates the activation and function of NK cells during the course of S. japonicum infection in C57BL/6 mice.
Collapse
|