1
|
El-Attar NA, El-Sawi MR, El-Shabasy EA. The synergistic effect of Ficus carica nanoparticles and Praziquantel on mice infected by Schistosoma mansoni cercariae. Sci Rep 2024; 14:18944. [PMID: 39147839 PMCID: PMC11327331 DOI: 10.1038/s41598-024-68957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Bilharzia is a parasitic flatworm that causes schistosomiasis, a neglected tropical illness worldwide. Praziquantel (PZQ) is a commercial single treatment of schistosomiasis so alternative drugs are needed to get rid of its side effects on the liver. The current study aimed to estimate the effective role of Ficus carica nanoparticles (Fc-NPCs), silver nanoparticles (Ag-NPCs) and Ficus carica nanoparticles loaded on silver nanoparticles (Fc-Ag NPCs) on C57BL/6 black female mice infected by Schistosoma mansoni and treated with PZQ treatment. It was proved that schistosomiasis causes liver damage in addition to the PZQ is ineffective as an anti-schistosomiasis; it is recorded in the infected mice group and PZQ treated group as in liver function tests, oxidative stress markers & anti-oxidants, pro-inflammatory markers, pro-apoptotic and anti-apoptotic markers also in liver cells' DNA damage. The amelioration in all tested parameters has been clarified in nanoparticle-protected mice groups. The Fc-Ag NPCs + PZQ group recorded the best preemptive effects as anti-schistosomiasis. Fc-NPCs, Ag-NPCs and Fc-Ag NPCs could antagonize PZQ effects that were observed in amelioration of all tested parameters. The study showed the phytochemicals' nanoparticles groups have an ameliorated effect on the health of infected mice.
Collapse
Affiliation(s)
- Naira A El-Attar
- Zoology Department, Faculty of Science, Mansoura University, Mansoura City, Egypt.
| | - Mamdouh R El-Sawi
- Zoology Department, Faculty of Science, Mansoura University, Mansoura City, Egypt
| | - Eman A El-Shabasy
- Zoology Department, Faculty of Science, Mansoura University, Mansoura City, Egypt
| |
Collapse
|
2
|
Araújo PS, Caixeta MB, Nunes EDS, Gonçalves BB, Rocha TL. Green synthesis of silver nanoparticles using Croton urucurana and their toxicity in freshwater snail species Biomphalaria glabrata. Acta Trop 2024; 255:107224. [PMID: 38643822 DOI: 10.1016/j.actatropica.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Green silver nanoparticles (G-Ag NPs) have contributed to the development of ecological technologies with low environmental impact and safer for human health, as well as demonstrating potential for the control of vectors and intermediate hosts. However, knowledge about its toxicity in the early stages of gastropod development remains scarce. Therefore, the current study aimed to investigate the toxicity of G-Ag NPs synthesized from Croton urucurana leaf extracts in snail species Biomphalaria glabrata, which is an intermediate host for Schistosoma mansoni parasite. G-Ag NPs were synthesized using two types of plant extracts (aqueous and hydroethanolic) and characterized using multiple techniques. Bioassays focused on investigating G-Ag NPs and plant extracts were carried out with embryos and newly hatched snails, for 144 h and 96 h, respectively; toxicity was analyzed based on mortality, hatching, development inhibition, and morphological changes. Results have shown that both G-Ag NPs were more toxic to embryos and newly hatched snails than the investigated plant extracts. G-Ag NPs deriving from aqueous extract have higher molluscicidal activity than those deriving from hydroethanolic extract. Both G-Ag NPs induced mortality, hatching delay, development inhibition, and morphological changes (i.e., hydropic embryos), indicating their molluscicidal activities. Moreover, embryos were more sensitive to G-Ag NPs than newly hatched snails. Thus, the toxicity of G-Ag NPs to freshwater snails depends on the type of extracts and the snail's developmental stages. These findings can contribute to the development of green nanobiotechnologies applicable to control snails of medical importance.
Collapse
Affiliation(s)
- Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Universitário, Goiânia, Goiás, Brazil
| | - Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Universitário, Goiânia, Goiás, Brazil
| | - Eloiza da Silva Nunes
- Laboratory of Materials and Electroanalytics, Goiano Federal Institute of Education, Science, and Technology, Rio Verde, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Universitário, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Universitário, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Ibrahim AM, Bekhit M, Sokary R, Hammam O, Atta S. Toxicological, hepato-renal, endocrine disruption, oxidative stress and immunohistopathological responses of chitosan capped gold nanocomposite on Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105559. [PMID: 37666595 DOI: 10.1016/j.pestbp.2023.105559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The present investigation aimed to synthesize chitosan‑gold nanocomposites (Ch-AuNPs) with gamma radiation, then to evaluate its toxic effect on the freshwater snails Biomphalaia alexandrina. Results showed that Ch-AuNPs is spherical shaped with average size 12 nm. It had a toxic effect against B. alexandrina snails with LC50 20.43 mg/l. Exposure of B. alexandrina snails to LC10 7.51 or LC25 13.63 mg/l of Ch-AuNPs, reduced the survival, reproductive and fecundity rates; total protein and albumin; both testosterone (T) and 17β Estradiol (E) levels; SOD and CAT activities of exposed snails while increased the activities of transaminases (AST & ALT), uric acid, creatinine, TAC and MDA levels compared to the control group. Results were supported by histopathological and immunohistopathological alterations of the digestive and hermaphrodite glands. In conclusion B. alexandrina could be used as a model to screen the negative impact of nanomaterials. Also, Ch-AuNPs could be used as a molluscicidal agent.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Mohamad Bekhit
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rehab Sokary
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Shimaa Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
4
|
Detoni MB, Bortoleti BTDS, Tomiotto-Pellissier F, Concato VM, Gonçalves MD, Silva TF, Ortiz LSF, Gomilde AC, Rodrigues ACJ, de Matos RLN, Bracarense APFRL, de Matos AMRN, Simão ANC, Endo TH, Kobayashi RKT, Nakazato G, Costa IN, Conchon-Costa I, Oliveira FJDA, Pavanelli WR, Miranda-Sapla MM. Biogenic silver nanoparticle exhibits schistosomicidal activity in vitro and reduces the parasitic burden in experimental schistosomiasis mansoni. Microbes Infect 2023; 25:105145. [PMID: 37120010 DOI: 10.1016/j.micinf.2023.105145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Schistosomiasis is a neglected tropical parasitic disease that affects millions of people, being the second most prevalent parasitic disease worldwide. The current treatment has limited effectiveness, drug-resistant strains, and is not effective in different stages of the disease. This study investigated the antischistosomal activity of biogenic silver nanoparticles (Bio-AgNp) against Schistosoma mansoni. Bio-AgNp presented direct schistosomicidal activity on newly transformed schistosomula causing plasma membrane permeabilization. In S. mansoni adult worms, reduced the viability and affected the motility, increasing oxidative stress parameters, and inducing plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid bodies accumulation, and autophagic vacuoles formation. During the experimental schistosomiasis mansoni model, Bio AgNp restored body weight, reduced hepatosplenomegaly, and decrease the number of eggs and worms in feces and liver tissue. The treatment also ameliorates liver damage and reduces macrophage and neutrophil infiltrates. A reduction in count and size was evaluated in the granulomas, as well as a change to an exudative-proliferative phase, with a local increase of IFN-γ. Together our results showed that Bio-AgNp is a promising therapeutic candidate for studies of new therapeutic strategies against schistosomiasis.
Collapse
Affiliation(s)
- Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil
| | - Virgínia Marcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, State University of Londrina, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Luryan Silvério Fidélis Ortiz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Amanda Caroliny Gomilde
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Ricardo Luís Nascimento de Matos
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | - Andréa Name Colado Simão
- Clinical Analysis and Toxicology, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Thiago Hideo Endo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, State University of Londrina, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil; Postgraduate Program in Pharmaceutical Science, University of Vale Do Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Shakib P, Zivdari M, Khalaf AK, Marzban A, Ganjalikhani-Hakemi M, Parvaneh J, Mahmoudvand H, Cheraghipour K. Nanoparticles as Potent Agents for Treatment of Schistosoma Infections: A Systematic Review. CURRENT THERAPEUTIC RESEARCH 2023; 99:100715. [PMID: 37743882 PMCID: PMC10511339 DOI: 10.1016/j.curtheres.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
Background Schistosomiasis is an acute and chronic parasitic disease caused by blood flukes of the genus Schistosoma. The current drugs for treating schistosomiasis are associated with some side effects. Objective The aim of this systematic study was an overview of the treatment of diseases caused by Schistosoma based on nanoparticles. Methods In the present systematic research with keywords "Schistosoma", "parasitism", "anti-Schistosoma activity", "nanoparticles", "metal nanoparticles", "silver nanoparticles", "gold nanoparticles", "polymer nanoparticles", "PLGA nanoparticles", "nanoemulsions", "in vitro", and "in vivo" from five English-language databases, including ScienceDirect, europePMC, PubMed, Scopus, Ovid, and Cochrane were searched from 2000 to 2022 by 2 researchers. Results In the initial search, 250 studies were selected. Based on the inclusion and exclusion criteria, 27 articles were finally selected after removing duplicate, unrelated, and articles containing full text. In present article, the most nanoparticles used against Schistosoma were gold nanoparticles (22%). Conclusions The results indicate the high potential of various nanoparticles, including metal nanoparticles, against Schistosoma. Also, the remarkable anti-schistosomal activity of nanoparticles suggests their use in different fields to eliminate this pathogenic microorganism so that it can be used as an effective candidate in the preparation of anti-schistosomal compounds because these compounds have fewer side effects than chemical drugs. Ther Res Clin Exp. 2023; XX:XXX-XXX).
Collapse
Affiliation(s)
- Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoomeh Zivdari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Yedıtepe University, Istanbul, Turkey
| | | | - Hossein Mahmoudvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Lorestan Provincial Veterinary Service, Khorramabad, Iran
| |
Collapse
|
6
|
Abstract
In 1978, the theory behind helminth parasites having the potential to regulate the abundance of their host populations was formalized based on the understanding that those helminth macroparasites that reduce survival or fecundity of the infected host population would be among the forces limiting unregulated host population growth. Now, 45 years later, a phenomenal breadth of factors that directly or indirectly affect the host-helminth interaction has emerged. Based largely on publications from the past 5 years, this review explores the host-helminth interaction from three lenses: the perspective of the helminth, the host, and the environment. What biotic and abiotic as well as social and intrinsic host factors affect helminths? What are the negative, and positive, implications for host populations and communities? What are the larger-scale implications of the host-helminth dynamic on the environment, and what evidence do we have that human-induced environmental change will modify this dynamic? The overwhelming message is that context is everything. Our understanding of second-, third-, and fourth-level interactions is extremely limited, and we are far from drawing generalizations about the myriad of microbe-helminth-host interactions.Yet the intricate, co-evolved balance and complexity of these interactions may provide a level of resilience in the face of global environmental change. Hopefully, this albeit limited compilation of recent research will spark new interdisciplinary studies, and application of the One Health approach to all helminth systems will generate new and testable conceptual frameworks that encompass our understanding of the host-helminth-environment triad.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
7
|
Hamdan BZK, Soliman MI, Taha HA, Khalil MMH, Nigm AH. Antischistosomal effects of green and chemically synthesized silver nanoparticles: in vitro and in vivo murine model. Acta Trop 2023:106952. [PMID: 37236335 DOI: 10.1016/j.actatropica.2023.106952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Schistosomiasis is one of the most important neglected tropical diseases in Africa, caused by blood fluke, Schistosoma sp. The use of nanotechnology in the treatment of this type of disease is urgently important to avoid the unwanted side effects of chemotherapy. The present study aimed to evaluate the efficacy of green silver nanoparticles (G-AgNPs), fabricated by (Calotropis procera), comparing with both chemically prepared silver ones (C-AgNPs) and Praziquantel (PZQ) treatments. The study included in vitro and in vivo evaluations. In in vitro study, 4 groups of schistosome worms were exposed to treatments as follows: the first one with a dose of PZQ (0.2 µg/ml), the 2nd and 3rd groups with different concentrations of G-AgNPs and C-AgNPs, respectively and the last one act as a negative control group. In in vivo study, six groups of mice were infected and then treated as follows: the first one with a dose of PZQ, the second with G-AgNPs, the third with C-AgNPs, the fourth with G-AgNPs plus a half dose of PZQ, the fifth with C-AgNPs accompanied by a half dose of PZQ, and the last group acted as a positive control group. The parasitological (worm burden, egg count & oogram) and histopathological parameters (hepatic granuloma profile) were used to evaluate antischistosomal activities in experimental groups. Additionally, the subsequent ultrastructural alterations were observed in adult worms using scanning electron microscopy (SEM). Transmission electron microscopy analysis showed that G-AgNPs and C-AgNPs have 8-25 and 8-11 nm in diameter, respectively, besides, fourier transform infrared analysis (FTIR) revealed the presence of organic compounds (aromatic ring groups) which act as capping agents around the surfaces of biogenic silver nanoparticles. In in vitro experiment, adult worms incubated either with G-AgNPs or C-AgNPs at concentrations higher than 100 µg/ml or 80 µg/ml, respectively, showed full mortality of parasites after 24 h. In the infected treated groups (with G-AgNPs plus PZQ & C-AgNPs plus PZQ) showed the most significant reduction in the total worm burdens (92.17% & 90.52%, respectively). Combined treatment with C-AgNPs and PZQ showed the highest value of dead eggs (93,6%), followed by G-AgNPs plus PZQ-treated one (91%). This study showed that mice treated with G-AgNPs plus PZQ significantly has the highest percentage of reduction in granuloma size and count (64.59%, 70.14%, respectively). Both G-AgNPs plus PZQ-treated & C-AgNPs plus PZQ treated groups showed the highest similar values of reduction percentage of total ova count in tissues (98.90% & 98.62%, respectively). Concerning SEM, G-AgNPs-treated worms showed more variability in ultrastructural alterations than G-AgNPs plus PZQ-treated one, besides, worms treated with C-AgNPs plus PZQ exhibited the maximum level of contractions or (shrinkage) as a major impact.
Collapse
Affiliation(s)
- By Zeyad K Hamdan
- Department of Biology, College of Pure Science Education, Tikrit University, Iraq
| | | | - Hoda A Taha
- Department of Zoology, Faculty of Science, Ain Shams University, Egypt
| | - Mostafa M H Khalil
- Department of Chemistry, Faculty of Science, Ain Shams University, Egypt
| | - Ahmed H Nigm
- Department of Zoology, Faculty of Science, Ain Shams University, Egypt.
| |
Collapse
|
8
|
Sioutas G, Tsouknidas A, Gelasakis AI, Vlachou A, Kaldeli AK, Kouki M, Symeonidou I, Papadopoulos E. In Vitro Acaricidal Activity of Silver Nanoparticles (AgNPs) against the Poultry Red Mite ( Dermanyssus gallinae). Pharmaceutics 2023; 15:pharmaceutics15020659. [PMID: 36839980 PMCID: PMC9963603 DOI: 10.3390/pharmaceutics15020659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Dermanyssus gallinae (PRM) is the most common blood-sucking ectoparasite in laying hens and is resistant against numerous acaricides. Silver nanoparticles (AgNPs) represent an innovative solution against PRM. The current study aimed to assess the in vitro acaricidal activity of AgNPs against PRM and describe their potential mechanism of action. Nanoparticles were produced using a wet chemistry approach. Mites were collected using AviVet traps from 18 poultry farms in Greece. Contact toxicity bioassays were carried out for 24 h with negative controls, 20, 40, 60, or 80 ppm AgNPs. Analysis of variance was used to compare the mortality rates of PRM between the control and treatment groups, while LC50, LC90, and LC99 values were estimated using probit regression analysis for the total farms jointly and separately. Nanoparticles displayed strong acaricidal activity, and mortality rates were significantly different between groups and increased by AgNPs concentration. Overall mean LC50, LC90, and LC99 values were 26.5, 58.8, and 112.3 ppm, respectively. Scanning electron microscopy on mites treated with 80 ppm AgNPs revealed cracks in their exoskeleton and limb detachments, presumably resulting from the interaction between AgNPs and the mites' chitin. Future studies should focus on assessing AgNPs residues in chicken tissues before moving into field trials.
Collapse
Affiliation(s)
- Georgios Sioutas
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandros Tsouknidas
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Afrodite Vlachou
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece
| | - Alexandra K. Kaldeli
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece
| | - Maria Kouki
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece
| | - Isaia Symeonidou
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-69-4488-2872
| |
Collapse
|
9
|
Abou-El-Naga I, Younis S, Radwan K. Molluscicidal effect of green synthesized silver nanoparticles using Azadirachta indica on Biomphalaria alexandrina snails and Schistosoma mansoni cercariae. Asian Pac J Trop Biomed 2023. [DOI: 10.4103/2221-1691.367688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
10
|
da Silva JV, Moreira CC, Montija EDA, Feitosa KA, Correia RDO, Domingues NLDC, Soares EG, Allegretti SM, Afonso A, Anibal FDF. Schiff bases complexed with iron and their relation with the life cycle and infection by Schistosoma mansoni. Front Immunol 2022; 13:1021768. [PMID: 36618401 PMCID: PMC9811594 DOI: 10.3389/fimmu.2022.1021768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The trematode Schistosoma mansoni causes schistosomiasis, and this parasite's life cycle depends on the mollusk Biomphalaria glabrata. The most effective treatment for infected people is administering a single dose of Praziquantel. However, there are naturally resistant to treatment. This work has developed, considering this parasite's complex life cycle. Methods The synthetics compound were evaluated: i) during the infection of B. glabrata, ii) during the infection of BALB/c mice, and iii) during the treatment of mice infected with S. mansoni. Results and Discussion For the first objective, snails infected with miracidia treated with compounds C1 and C3 at concentrations of 25% IC50 and 50% IC50, after 80 days of infection, released fewer cercariae than the infected group without treatment. For the second objective, compounds C1 and C3 did not show significant results in the infected group without treatment. For the third objective, the mice treated with C3 and C1 reduced the global and differential cell count. The results suggest that although the evaluated compounds do not present schistosomicidal properties when placed in cercariae suspension, they can stimulate an immune reaction in snails and decrease mice's inflammatory response. In general, we can conclude that compound C1 and C3 has an anti-schistosomicidal effect both in the larval phase (miracidia) and in the adult form of the parasite.
Collapse
Affiliation(s)
- Juliana Virginio da Silva
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil,*Correspondence: Juliana Virginio da Silva,
| | - Carla Cristina Moreira
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| | - Elisandra de Almeida Montija
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| | - Karina Alves Feitosa
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| | - Ricardo de Oliveira Correia
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| | - Nelson Luis de Campos Domingues
- Laboratório de catálise orgânica e biocatálise, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Edson Garcia Soares
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silmara Marques Allegretti
- Departamento De Biologia Animal, Instituto de BiologiaEstadual de Campinas, Universidade, Campinas, São Paulo, Brazil
| | - Ana Afonso
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil,Global Health and Tropical Medicine (GHTM), Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisboa, Portugal,Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP), São Paulo, Brazil,Instituto Nacional de Investigação Agrária e Veterinária, I.P., (INIAV), Laboratório de Parasitologia, Oeiras, Portugal,Laboratório de Parasitologia, Quantoom’s Bioscience, Nivelles, Bélgica, Belgium
| | - Fernanda de Freitas Anibal
- Departamento de Morfologia e Patologia (DMP), Laboratório de Inflamação e Doenças Infecciosas (LIDI), Universidade Federal de São Carlos (UFSCar), São Paulo, Brazil
| |
Collapse
|
11
|
Qadeer A, Ullah H, Sohail M, Safi SZ, Rahim A, Saleh TA, Arbab S, Slama P, Horky P. Potential application of nanotechnology in the treatment, diagnosis, and prevention of schistosomiasis. Front Bioeng Biotechnol 2022; 10:1013354. [PMID: 36568300 PMCID: PMC9780462 DOI: 10.3389/fbioe.2022.1013354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.
Collapse
Affiliation(s)
- Abdul Qadeer
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hanif Ullah
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Muhammad Sohail
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore, Pakistan,Faculty of Medicine, Bioscience and Nursing MAHSA University, Selangor, Malaysia
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan,*Correspondence: Abdur Rahim, ; Petr Slama, ; Pavel Horky,
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia,*Correspondence: Abdur Rahim, ; Petr Slama, ; Pavel Horky,
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia,*Correspondence: Abdur Rahim, ; Petr Slama, ; Pavel Horky,
| |
Collapse
|
12
|
Zayed KM, Guo YH, Lv S, Zhang Y, Zhou XN. Molluscicidal and antioxidant activities of silver nanoparticles on the multi-species of snail intermediate hosts of schistosomiasis. PLoS Negl Trop Dis 2022; 16:e0010667. [PMID: 36215300 PMCID: PMC9550036 DOI: 10.1371/journal.pntd.0010667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schistosomiasis, also known as bilharzia, is the second important parasitic disease after malaria. The present study aimed to evaluate the molluscicidal effects of silver nanoparticles on Biomphalaria alexandrina, B. glabrata, Oncomelania hupensis, snail intermediate hosts of intestinal schistosomes (i.e. Schistosoma mansoni and S. japonicum), along with the changes their antioxidant enzymes. METHODS Silver (Ag) nano powder (Ag-NPs) was selected to test the molluscicidal effects on three species of freshwater snails. Exposure to Ag-NPs induced snail mortality and the LC50 and LC90 values of Ag-NPs for each snail species were calculated by probit analysis. Control snails were maintained under the same experimental conditions in dechlorinated water. Snail hemolymph was collected to measure the levels of antioxidant enzymes, such as total antioxidants capacity (TCA), glutathione (GSH), catalase (CAT) and nitric oxide (NO). In addition, the non-target organism, Daphnia magna, was exposed to a series of Ag-NPs concentration, similar to the group of experimental snails, in order to evaluate the LC50 and LC90 and compare these values to those obtained for the targeted snails. RESULTS The results indicated that Ag-NPs had a molluscicidal effect on tested snails with the variation in lethal concentration. The LC50 values of Ag-NPs for B. alexandrina snails exposed for 24, 48, 72 hrs and 7 days were 7.91, 5.69, 3.83 and 1.91 parts per million (ppm), respectively. The LC50 values for B. glabrata snails exposed for 24, 48, 72 hrs and 7 days were 16.55, 10.44, 6.91 and 4.13 ppm, respectively, while the LC50 values for O. hupensis snails exposed for 24, 48, 72 hrs and 7 days were 46.5, 29.85, 24.49 and 9.62 ppm, respectively. Moreover, there is no mortality detected on D. magna when exposed to more than double and half concentration (50 ppm) of Ag-NPs during a continuous period of 3 hrs, whereas the LC90 value for B. alexandrina snails was 18 ppm. The molluscicidal effect of the synthesized Ag-NPs seems to be linked to a potential reduction of the antioxidant activity in the snail's hemolymph. CONCLUSIONS Synthesized Ag-NPs have a clear molluscicidal effect against various snail intermediate hosts of intestinal schistosome parasites and could potentially serve as next generation molluscicides.
Collapse
Affiliation(s)
- Khaled M. Zayed
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People’s Republic of China
| | - Yun-Hai Guo
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People’s Republic of China
| | - Shan Lv
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People’s Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People’s Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People’s Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
13
|
Ibrahim AM, Abdel-Ghaffar FA, Hassan HAM, Fol MF. Assessment of molluscicidal and larvicidal activities of CuO nanoparticles on Biomphalaria alexandrina snails. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Schistosomiasis is a major, but generally overlooked, tropical disease carried by snails of the genus Biomphalaria, which have a large distribution in Egypt. Control of the intermediate host snail is critical in limiting schistosomiasis spread. On the topic of snails’ management, nanotechnology has gained more interest.
Results
Copper oxide nanoparticles, characterised by transmission electron microscopy and X-ray diffraction, showed a single crystal structure with an average crystallite size around 40 nm by X-ray diffraction and typical transmission electron microscopy (TEM) image. Also, the UV–VIS spectrophotometer displayed a sharp absorption band of CuO NPs. Molluscicidal activity of copper oxide nanoparticles against B. alexandrina snails was observed. Following exposure to CuO NPs (LC50 and LC90 was 40 and 64.3 mg/l, respectively), there was a reduction in the growth and reproductive rates of treated B. alexandrina at the sub-lethal concentrations, as well as, a drop in egg viability. Moreover, CuO NPs exhibited a toxic effect on miracidiae and cercariae of S. mansoni. Scanning electron microscopy (SEM) investigations of the head-foot and mantle of control and treated snails to the sub-lethal concentrations of CuO NPs (LC10 15.6 mg\l–LC25 27.18 mg\l) indicated morphological alterations in the ultrastructure.
Conclusions
CuO NPs caused a significant effect against the intermediate hosts of S. mansoni and provide a considerable scope in exploiting local indigenous resources as snail molluscicidal agents.
Collapse
|
14
|
Abdel-Tawab H, Ibrahim AM, Hussein T, Mohamed F. Mechanism of action and toxicological evaluation of engineered layered double hydroxide nanomaterials in Biomphalaria alexandrina snails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11765-11779. [PMID: 34545528 DOI: 10.1007/s11356-021-16332-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Layered double hydroxide (LDH) nanomaterials have recently become immense research area as it is used widely in industries. So, it's chance of their release into natural environment and risk assessment to nontarget aquatic invertebrate increasing. So, the present study aimed to synthesize and confirm the crystalline formation of Co-Cd-Fe LDHs and Co-Cd-Fe/PbI2 (LDH) and then to investigate the toxic impact of the two LDH on the adult freshwater snails (Biomphalaia alexandrina). Results showed that Co-Cd-Fe/PbI2 LDH has more toxic effect to adult Biomphalaria than Co-Cd-Fe LDHs (LC50 was 56.4 and 147.7 mg/L, 72 h of exposure, respectively). The effect of LC25 (117.1 mg/L) of Co-Cd-Fe LDHs exposure on the embryo showed suppression of embryonic development and induced embryo malformation. Also, it showed alterations in the tegmental architectures of the mantle-foot region of B. alexandrina snails as declared in scanning electron micrograph. Also, exposure to this sublethal concentration caused abnormalities in hemocyte shapes and upregulated IL-2 level in soft tissue. In addition, it decreased levels of nonenzymatic reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), caspase-3 activity, and total protein content in significant manner. Glutathione S-transferase (GST) activity was not affected by LDH exposure. It caused histopathological damages in both glands of snails and also caused a genotoxic effect in their cells. The results from the present study indicated that LDH has risk assessment on aquatic B. alexandrina snails and that it can be used as a biological indicator of water pollution with LDH.
Collapse
Affiliation(s)
- Heba Abdel-Tawab
- Faculty of Science, Department of Zoology, Beni-Suef University, Beni-Suef, Egypt.
| | - Amina M Ibrahim
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Taghreed Hussein
- National Organization for Drug Control and Research, Cairo, Egypt
| | - Fatma Mohamed
- Nanophotonics and Applications (NPA) lab, Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
15
|
Chitosan Schiff bases/AgNPs: synthesis, characterization, antibiofilm and preliminary anti-schistosomal activity studies. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03993-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Ossai EC, Eze AA, Ogugofor MO. Plant-derived compounds for the treatment of schistosomiasis: Improving efficacy via nano-drug delivery. Niger J Clin Pract 2022; 25:747-764. [DOI: 10.4103/njcp.njcp_1322_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Wang T, Liu W. Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2237-2263. [PMID: 35923327 PMCID: PMC9282172 DOI: 10.1039/d2en00052k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
MNPs may undergo different environmental transformations in aquatic systems, consequently changing their mobility, bioavailability and toxicity to freshwater invertebrates.
Collapse
Affiliation(s)
- Ting Wang
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Oyeyemi OT. Application of nanotized formulation in the control of snail intermediate hosts of schistosomes. Acta Trop 2021; 220:105945. [PMID: 33945825 DOI: 10.1016/j.actatropica.2021.105945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023]
Abstract
Schistosomiasis continues to pose significant public health problems in many developing countries. Mass drug administration (MDA) is the most adopted control option but there is increasing evidence for the development of praziquantel-resistant Schistosoma strains. This shortcoming has necessitated the search for other effective methods for the control of schistosomiasis. The breaking of Schistosoma transmission cycles through the application of molluscicides into snail infested freshwater bodies has yielded positive outcomes when integrated with MDA in some countries. However, few of such effective molluscicides are currently available, and where available, their application is restricted due to toxicity concerns. Some nanotized particles with molluscicidal activities against the different stages of snail intermediate hosts of schistosomes have been reported. Importantly, the curcumin-nisin nanoparticle synthesized by our group was very effective and it showed no significant toxicity in a mouse model and brine shrimps. This, therefore, offers the possibility of developing a molluscicide that is not only safe for man but also is environmentally friendly. This paper reviews nanoparticles with molluscicidal potential. The methods of their formulation, activities, probable mechanisms of actions, and their toxicity profiles are discussed. More research should be made in this field as it offers great potential for the development of new molluscicides.
Collapse
Affiliation(s)
- Oyetunde T Oyeyemi
- Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| |
Collapse
|
19
|
Misirli GM, Sridharan K, Abrantes SMP. A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:440-461. [PMID: 34104622 PMCID: PMC8144915 DOI: 10.3762/bjnano.12.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/30/2021] [Indexed: 05/07/2023]
Abstract
Recent studies with silver nanoparticles (AgNPs) and the history of silver metal as a broad-spectrum bactericidal and virucidal agent, places silver as one of the future biocidal candidates in the field of nanomedicine to eliminate bacteria and viruses, especially multidrug resistant ones. In this review, we have described the various morphologies of AgNPs and correlated the enhanced bactericidal activity with their prominent {111} facets. In addition to prioritizing the characterization we have also discussed the importance of quantifying AgNPs and silver ion content (Ag+) and their different mechanisms at the chemical, biological, pharmacological, and toxicological levels. The mechanism of action of AgNPs against various bacteria and viruses including the SARS-CoV-2 was analyzed in order to understand its effectiveness as an antimicrobial agent with therapeutic efficacy and low toxicity. Further, there is the need to characterize AgNPs and quantify the content of free Ag+ for the implementation of new systematic studies of this promising agent in nanomedicine and in clinical practice.
Collapse
Affiliation(s)
- Gabriel M Misirli
- Physical Chemistry Laboratory, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Kishore Sridharan
- Department of Nanoscience and Technology, School of Chemical and Physical Sciences, University of Calicut, P.O. Thenhipalam 673635, Kerala, India
| | - Shirley M P Abrantes
- National Institute for Quality Control in Health, Oswaldo Cruz Foundation (INCQS, FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Caixeta MB, Araújo PS, Gonçalves BB, Silva LD, Grano-Maldonado MI, Rocha TL. Toxicity of engineered nanomaterials to aquatic and land snails: A scientometric and systematic review. CHEMOSPHERE 2020; 260:127654. [PMID: 32758772 DOI: 10.1016/j.chemosphere.2020.127654] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 05/25/2023]
Abstract
The emerging growth of nanotechnology has attracted great attention due to its application in the parasite and intermediate host control. However, the knowledge concerning the mechanism of action (MoA) and toxicity of nanomaterials (NMs) to snails remain unclear. In this context, the present study revised the historical use of snails as experimental models in nanotoxicological studies and summarized the MoA and toxicity of NMs in aquatic and land snails. The data concerning the bioaccumulation, reproductive and transgenerational toxicity, embryotoxicity, genotoxicity and potential molluscicidal activity of NMs were revised. Furthermore, the data about the experimental conditions, such as exposure time, concentrations, cell and tissue-specific responses, snail species and nanoparticle types are discussed. Revised data showed that the toxic effects of NMs were reported for 21 snail species with medical, veterinary and ecological importance. The NM toxicity to snails is dependent on the physical and chemical properties of NMs, as well as their environmental transformation and experimental design. The NM bioaccumulation on snails was related to several toxic effects, such as reactive oxygen species (ROS) production, oxidative stress, following by oxidative damage to DNA, lipids and proteins. The NM metabolism in snails remains unknown. Results showed the potential use of NMs in the snail control program. Also, significant research gaps and recommendations for future researches are indicated. The present study confirms that snails are suitable invertebrate model system to assess the nanotoxicity.
Collapse
Affiliation(s)
- Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luciana Damacena Silva
- Laboratory of Host-Parasite Interactions, State University of Goiás, Anápolis, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
21
|
Araújo PS, Caixeta MB, Brito RDS, Gonçalves BB, da Silva SM, Lima ECDO, Silva LD, Bezerra JCB, Rocha TL. Molluscicidal activity of polyvinylpyrrolidone (PVP)-functionalized silver nanoparticles to Biomphalaria glabrata: Implications for control of intermediate host snail of Schistosoma mansoni. Acta Trop 2020; 211:105644. [PMID: 32682748 DOI: 10.1016/j.actatropica.2020.105644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
Silver nanoparticles (Ag NPs) have been applied in several commercial products due to their antimicrobial properties, while their molluscicide properties, mode of action and toxicity to snail species remain unclear. In this study, the comparative toxicity of polyvinylpyrrolidone (PVP)-functionalized Ag NPs and their dissolved counterpart (Ag ions) was analyzed during the early developmental stages of the freshwater snail Biomphalaria glabrata, intermediate host of Schistosoma mansoni. Ag NPs were synthesized and characterized by multiple techniques, and the snail embryotoxicity was analyzed in terms of mortality, hatching, developmental stages and morphological alterations, while the acute toxicity to newly-hatched snails was analyzed by mortality and behavioral impairments. Results showed that both Ag forms induced mortality, hatching delay and morphological alterations (especially hydropic abnormalities) in snail embryos in a concentration and exposure time dependent patterns. Ag NPs showed low embryotoxic effects and similar toxicity for newly-hatched snails when compared to their dissolved counterparts, indicating that the nanotoxicity was dependent of snail developmental stages. The knowledge about the Ag NP toxicity to different early development stages of B. glabrata contributes to its potential use as molluscicide and control of neglected tropical diseases, including schistosomiasis.
Collapse
Affiliation(s)
- Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sueli Maria da Silva
- Exact Sciences Department, Federal University of Goiás - Regional Jataí, Jataí, Goiás, Brazil
| | | | - Luciana Damacena Silva
- Laboratory of Host-Parasite Interactions, State University of Goiás, Anápolis, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|