1
|
Pandey GS, Manandhar P, Shrestha BK, Sadaula A, Hayashi N, Abdelbaset AE, Silwal P, Tsubota T, Kwak ML, Nonaka N, Nakao R. Detection and characterization of vector-borne parasites and Wolbachia endosymbionts in greater one-horned rhinoceros (Rhinoceros unicornis) in Nepal. Acta Trop 2024; 258:107344. [PMID: 39097253 DOI: 10.1016/j.actatropica.2024.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Vector-borne parasite infections affect both domestic and wild animals. They are often asymptomatic but can result in fatal outcomes under natural and human-induced stressors. Given the limited availability of molecular data on vector-borne parasites in Rhinoceros unicornis (greater one-horned rhinoceros), this study employed molecular tools to detect and characterize the vector-borne parasites in rescued rhinoceros in Chitwan National Park, Nepal. Whole blood samples were collected from thirty-six R. unicornis during rescue and treatment operations. Piroplasmida infections were first screened using nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA gene. Wolbachia was detected by amplifying 16S rRNA gene, while filarial nematodes were detected through amplification of 28S rRNA, COI, myoHC and hsp70 genes. Our results confirmed the presence of Theileria bicornis with a prevalence of 75% (27/36) having two previously unreported haplotypes (H8 and H9). Wolbachia endosymbionts were detected in 25% (9/36) of tested samples and belonged to either supergroup C or F. Filarial nematodes of the genera Mansonella and Onchocerca were also detected. There were no significant association between T. bicornis infections and the age, sex, or location from which the animals were rescued. The high prevalence of Theileria with novel haplotypes along with filarial parasites has important ecological and conservational implications and highlights the need to implement parasite surveillance programs for wildlife in Nepal. Further studies monitoring vector-borne pathogens and interspecies transmission among wild animals, livestock and human are required.
Collapse
Affiliation(s)
- Gita Sadaula Pandey
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; National Cattle Research Program, Nepal Agricultural Research Council, Rampur, Chitwan, Nepal
| | | | | | - Amir Sadaula
- National Trust for Nature Conservation - Biodiversity Conservation Center, Sauraha, Chitwan, Nepal
| | - Naoki Hayashi
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Abdelbaset Eweda Abdelbaset
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Pradeepa Silwal
- National Trust for Nature Conservation - Biodiversity Conservation Center, Sauraha, Chitwan, Nepal
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Mackenzie L Kwak
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan.
| |
Collapse
|
2
|
Djiman TA, Biguezoton AS, Saegerman C. Tick-Borne Diseases in Sub-Saharan Africa: A Systematic Review of Pathogens, Research Focus, and Implications for Public Health. Pathogens 2024; 13:697. [PMID: 39204297 PMCID: PMC11356977 DOI: 10.3390/pathogens13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Sub-Saharan Africa, with its hot and humid climate, is a conducive zone for tick proliferation. These vectors pose a major challenge to both animal and human health in the region. However, despite the relevance of emerging diseases and evidence of tick-borne disease emergence, very few studies have been dedicated to investigating zoonotic pathogens transmitted by ticks in this area. To raise awareness of the risks of tick-borne zoonotic diseases in sub-Saharan Africa, and to define a direction for future research, this systematic review considers the trends of research on tick-borne bacteria, parasites, and viruses from 2012 to 2023, aiming to highlight the circulation of these pathogens in ticks, cattle, sheep, goats, and humans. For this purpose, three international databases were screened to select 159 papers fitting designed inclusion criteria and used for qualitative analyses. Analysis of these studies revealed a high diversity of tick-borne pathogens in sub-Saharan Africa, with a total of 37 bacterial species, 27 parasite species, and 14 viruses identified. Among these, 27% were zoonotic pathogens, yet only 11 studies investigated their presence in humans. Furthermore, there is growing interest in the investigation of bacteria and parasites in both ticks and ruminants. However, research into viruses is limited and has only received notable interest from 2021 onwards. While studies on the detection of bacteria, including those of medical interest, have focused on ticks, little consideration has been given to these vectors in studies of parasites circulation. Regarding the limited focus on zoonotic pathogens transmitted by ticks, particularly in humans, despite documented cases of emerging zoonoses and the notable 27% proportion reported, further efforts should be made to fill these gaps. Future studies should prioritize the investigation of zoonotic pathogens, especially viruses, which represent the primary emerging threats, by adopting a One Health approach. This will enhance the understanding of their circulation and impact on both human and animal health. In addition, more attention should be given to the risk factors/drivers associated to their emergence as well as the perception of the population at risk of infection from these zoonotic pathogens.
Collapse
Affiliation(s)
- Tidjani A. Djiman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animals and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium;
- Vector-Borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Centre on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso 454, Burkina Faso;
| | - Abel S. Biguezoton
- Vector-Borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Centre on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso 454, Burkina Faso;
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animals and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium;
| |
Collapse
|
3
|
CHIKUFENJI B, CHATANGA E, GALON EM, MOHANTA UK, MDZUKULU G, MA Y, NKHATA M, UMEMIYA-SHIRAFUJI R, XUAN X. First report of dog ticks and tick-borne pathogens they are carrying in Malawi. J Vet Med Sci 2024; 86:150-159. [PMID: 38171881 PMCID: PMC10898992 DOI: 10.1292/jvms.23-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Ticks are vectors for transmitting tick-borne pathogens (TBPs) in animals and humans. Therefore, tick identification is necessary to understand the distribution of tick species and the pathogens they carry. Unfortunately, data on dog ticks and the TBPs they harbor in Malawi are incomplete. This study aimed to identify dog ticks and the TBPs they transmit in Malawi. One hundred thirty-two ticks were collected from 87 apparently healthy but infested domestic dogs in four districts of Malawi, which were pooled into 128 tick samples. The ticks were morphologically identified under a stereomicroscope using identification keys, and species identification was authenticated by polymerase chain reaction (PCR) through the amplification and sequencing of 12S rRNA and cytochrome c oxidase subunit I (CO1) genes. The tick species identified were Rhipicephalus sanguineus sensu lato (58.3%), Haemaphysalis elliptica (32.6%), and Hyalomma truncatum (9.1%). Screening for TBPs using species-specific PCR assays revealed that 48.4% of the ticks were infected with at least one TBP. The TBP detection rates were 13.3% for Anaplasma platys, 10.2% for Babesia rossi, 8.6% for B. vogeli, 6.3% for Ehrlichia canis, 3.9% for A. phagocytophilum, 3.1% for B. gibsoni, 2.3% for B. canis and 0.8% for Hepatozoon canis. Co-infections of up to three pathogens were observed in 48.4% of the positive samples. This is the first study to identify dog ticks and the TBPs they harbor in Malawi. These findings provide the basis for understanding dog tick distribution and pathogens they carry in Malawi. This study necessitates the examination of ticks from more study locations to have a better picture of tick challenge, and the development of ticks and tick-borne disease control methods in Malawi.
Collapse
Affiliation(s)
- Boniface CHIKUFENJI
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- Ministry of Agriculture, Irrigation and Water Development,
Department of Animal Health and Livestock Development, Lilongwe, Malawi
- Vets of Purpose Organization, Lilongwe, Malawi
| | - Elisha CHATANGA
- Department of Veterinary Pathobiology, Faculty of Veterinary
Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Eloiza May GALON
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- College of Veterinary Medicine and Biomedical Sciences,
Cavite State University, Cavite, Philippines
| | - Uday Kumar MOHANTA
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- Department of Microbiology and Parasitology, Sher-e-Bangla
Agricultural University, Dhaka, Bangladesh
| | - Gift MDZUKULU
- Ministry of Agriculture, Irrigation and Water Development,
Department of Animal Health and Livestock Development, Lilongwe, Malawi
| | - Yihong MA
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | - Rika UMEMIYA-SHIRAFUJI
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Xuenan XUAN
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
4
|
Zygner W, Gójska-Zygner O, Bartosik J, Górski P, Karabowicz J, Kotomski G, Norbury LJ. Canine Babesiosis Caused by Large Babesia Species: Global Prevalence and Risk Factors-A Review. Animals (Basel) 2023; 13:2612. [PMID: 37627403 PMCID: PMC10451873 DOI: 10.3390/ani13162612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Canine babesiosis is a disease caused by protozoan pathogens belonging to the genus Babesia. Four species of large Babesia cause canine babesiosis (B. canis, B. rossi, B. vogeli, and the informally named B. coco). Although canine babesiosis has a worldwide distribution, different species occur in specific regions: B. rossi in sub-Saharan Africa, B. canis in Europe and Asia, and B. coco in the Eastern Atlantic United States, while B. vogeli occurs in Africa, southern parts of Europe and Asia, northern Australia, southern regions of North America, and in South America. B. vogeli is the most prevalent large Babesia species globally. This results from its wide range of monotropic vector species, the mild or subclinical nature of infections, and likely the longest evolutionary association with dogs. The most important risk factors for infection by large Babesia spp. include living in rural areas, kennels or animal shelters, or regions endemic for the infection, the season of the year (which is associated with increased tick activity), infestation with ticks, and lack of treatment with acaricides.
Collapse
Affiliation(s)
- Wojciech Zygner
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.B.); (P.G.); (J.K.)
| | - Olga Gójska-Zygner
- Labros Veterinary Clinic, Św. Bonifacego 92, 02-940 Warsaw, Poland; (O.G.-Z.); (G.K.)
| | - Justyna Bartosik
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.B.); (P.G.); (J.K.)
| | - Paweł Górski
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.B.); (P.G.); (J.K.)
| | - Justyna Karabowicz
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.B.); (P.G.); (J.K.)
| | - Grzegorz Kotomski
- Labros Veterinary Clinic, Św. Bonifacego 92, 02-940 Warsaw, Poland; (O.G.-Z.); (G.K.)
| | - Luke J. Norbury
- Department of Biosciences and Food Technology, School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
5
|
Lin Y, Zhou S, Upadhyay A, Zhao J, Liao C, Guan Q, Wang J, Han Q. Molecular Detection and Phylogenetic Characterization of Anaplasma spp. in Dogs from Hainan Province/Island, China. Vet Sci 2023; 10:vetsci10050339. [PMID: 37235422 DOI: 10.3390/vetsci10050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasmosis is a serious infection which is transmitted by ticks and mosquitos. There are very few reports and studies that have been carried out to understand the prevalence, distribution, and epidemiological profile of Anaplasma spp. infection in dogs in Hainan province/island. In the present study, we have tried to understand the prevalence, distribution, and occurrence of Anaplasma spp. infections in dogs (n = 1051) in Hainan Island/Province to establish a surveillance-based study. The confirmed positive samples by Polymerase chain reaction (PCR) were subjected to capillary sequencing for further strain-specific confirmation, followed by the construction of phylogenetic trees to determine their genetic relations. Various statistical tools were used to analyze related risk factors. There were three species of Anaplasma detected from the Hainan region; namely, A. phagocytophilum, A. bovis, and A. platys. The overall prevalence of Anaplasma is 9.7% (102/1051). A. phagocytopihum was prevalent in 1.0% of dogs (11/1051), A. bovis was found in 2.7% of dogs (28/1051), and A. platys in 6.0% of dogs (63/1051). Our surveillance-based study conducted to understand the occurrence and distribution pattern of Anaplasma spp. in Hainan will help in designing effective control measures along with management strategies so as to treat and control the infection in the area.
Collapse
Affiliation(s)
- Yang Lin
- One Health Institute, Hainan University, Haikou 570228, China
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Sa Zhou
- One Health Institute, Hainan University, Haikou 570228, China
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Archana Upadhyay
- One Health Institute, Hainan University, Haikou 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Jianguo Zhao
- One Health Institute, Hainan University, Haikou 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Chenghong Liao
- One Health Institute, Hainan University, Haikou 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Qingfeng Guan
- One Health Institute, Hainan University, Haikou 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Jinhua Wang
- One Health Institute, Hainan University, Haikou 570228, China
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Qian Han
- One Health Institute, Hainan University, Haikou 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Chatanga E, Maganga E, Mohamed WMA, Ogata S, Pandey GS, Abdelbaset AE, Hayashida K, Sugimoto C, Katakura K, Nonaka N, Nakao R. High infection rate of tick-borne protozoan and rickettsial pathogens of cattle in Malawi and the development of a multiplex PCR for Babesia and Theileria species identification. Acta Trop 2022; 231:106413. [PMID: 35307457 DOI: 10.1016/j.actatropica.2022.106413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/01/2022]
Abstract
Malawi has an estimated cattle population of 1,884,803 heads, the indigenous Malawi zebu breed accounts for 91.2%, while the exotic and crossbred accounts for the remaining 8.8%. Although ticks and tick-borne diseases are widespread in Malawi, no molecular study has been conducted to investigate the tick-borne Anaplasmataceae and piroplasms infecting cattle. To provide an insight into the current status of tick-borne pathogens (TBPs) of cattle, a molecular survey was conducted in the central and southern regions of Malawi. A total of 191 cattle of which 132 were Malawi zebu, 44 were Holstein Friesian and 15 were Holstein-Friesian/ Malawi zebu crosses were screened for Anaplasmataceae and piroplasms using the heat shock protein groEL gene and 18S rDNA, respectively. A new 18S rDNA multiplex PCR assay was designed for Babesia and Theileria species identification without sequencing. Overall, 92.3% (n = 177) of the examined animals were infected with at least one TBP. Anaplasmataceae-positive rate was 57.6% (n = 110) while for piroplasms it was 80.1% (n = 153). The detected Anaplasmataceae were Anaplasma bovis 2.6% (n = 5), Anaplasma marginale 24.6% (n = 47), Anaplasma platys-like 13.6% (n = 26), uncharacterized Anaplasma sp. 14.1% (n = 27), and uncharacterized Ehrlichia sp. 16.2% (n = 31). The detected piroplasms were Babesia bigemina 2.6% (n = 5), Theileria mutans 73.8% (n = 141), Theileria parva 33.0% (n = 63), Theileria taurotragi 12.6% (n = 24), and Theileria velifera 53.4% (n = 102). Mixed infection rate was found in 79.6% (n = 152) of the samples analyzed. This study has shown a high burden of TBPs among cattle in Malawi which highlights the need to conceive new methods to control ticks and TBPs in order to improve animal health and productivity. The newly developed multiplex PCR assay would be a useful tool especially in resource limited settings where sequencing is not available and when mixed infections are expected.
Collapse
|
7
|
Atif FA, Mehnaz S, Qamar MF, Roheen T, Sajid MS, Ehtisham-ul-Haque S, Kashif M, Ben Said M. Epidemiology, Diagnosis, and Control of Canine Infectious Cyclic Thrombocytopenia and Granulocytic Anaplasmosis: Emerging Diseases of Veterinary and Public Health Significance. Vet Sci 2021; 8:vetsci8120312. [PMID: 34941839 PMCID: PMC8705095 DOI: 10.3390/vetsci8120312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
This review highlights the diagnostic methods used, the control strategies adopted, and the global epidemiological status of canine cyclic thrombocytopenia and granulocytic anaplasmosis at the animal–human interface. Canine anaplasmosis is an important worldwide disease, mainly caused by Anaplasma platys and A. phagocytophilum with zoonotic implications. A. platys chiefly infects platelets in canids, while A. phagocytophilum is the most common zoonotic pathogen infecting neutrophils of various vertebrate hosts. Diagnosis is based on the identification of clinical signs, the recognition of intracellular inclusions observed by microscopic observation of stained blood smear, and/or methods detecting antibodies or nucleic acids, although DNA sequencing is usually required to confirm the pathogenic strain. Serological cross-reactivity is the main problem in serodiagnosis. Prevalence varies from area to area depending on tick exposure. Tetracyclines are significant drugs for human and animal anaplasmosis. No universal vaccine is yet available that protects against diverse geographic strains. The control of canine anaplasmosis therefore relies on the detection of vectors/reservoirs, control of tick vectors, and prevention of iatrogenic/mechanical transmission. The control strategies for human anaplasmosis include reducing high-risk tick contact activities (such as gardening and hiking), careful blood transfusion, by passing immunosuppression, recognizing, and control of reservoirs/vectors.
Collapse
Affiliation(s)
- Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
- Correspondence: or (F.A.A.); or (M.B.S.); Tel.: +92-47-7671270 (F.A.A.); +216-58-964147 (M.B.S.)
| | - Saba Mehnaz
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Muhammad Fiaz Qamar
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (M.F.Q.); (S.E.-u.-H.)
| | - Taleeha Roheen
- Department of Chemistry (Biochemistry), University of Sargodha, Sargodha 40100, Pakistan;
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Syed Ehtisham-ul-Haque
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (M.F.Q.); (S.E.-u.-H.)
| | - Muhammad Kashif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
| | - Mourad Ben Said
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Correspondence: or (F.A.A.); or (M.B.S.); Tel.: +92-47-7671270 (F.A.A.); +216-58-964147 (M.B.S.)
| |
Collapse
|