1
|
Liu Y, Liu B, Luo K, Yu B, Li X, Zeng J, Chen J, Xia R, Xu J, Liu Y. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo. BMC PLANT BIOLOGY 2024; 24:396. [PMID: 38745125 PMCID: PMC11092110 DOI: 10.1186/s12870-024-05102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.
Collapse
Affiliation(s)
- Yujia Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Boting Liu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Kefa Luo
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Baiyin Yu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Xiang Li
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jian Zeng
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanlong Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zhu X, Chen A, Butler NM, Zeng Z, Xin H, Wang L, Lv Z, Eshel D, Douches DS, Jiang J. Molecular dissection of an intronic enhancer governing cold-induced expression of the vacuolar invertase gene in potato. THE PLANT CELL 2024; 36:1985-1999. [PMID: 38374801 PMCID: PMC11062429 DOI: 10.1093/plcell/koae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to minimize sprouting and losses due to disease. However, cold temperatures strongly induce the expression of the potato vacuolar invertase gene (VInv) and cause reducing sugar accumulation. This process, referred to as "cold-induced sweetening," is a major postharvest problem for the potato industry. We discovered that the cold-induced expression of VInv is controlled by a 200 bp enhancer, VInvIn2En, located in its second intron. We identified several DNA motifs in VInvIn2En that bind transcription factors involved in the plant cold stress response. Mutation of these DNA motifs abolished VInvIn2En function as a transcriptional enhancer. We developed VInvIn2En deletion lines in both diploid and tetraploid potato using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. VInv transcription in cold-stored tubers was significantly reduced in the deletion lines. Interestingly, the VInvIn2En sequence is highly conserved among distantly related Solanum species, including tomato (Solanum lycopersicum) and other non-tuber-bearing species. We conclude that the VInv gene and the VInvIn2En enhancer have adopted distinct roles in the cold stress response in tubers of tuber-bearing Solanum species.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Airu Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Nathaniel M Butler
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Vegetable Crops Research Unit, United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, USA
| | - Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan Province, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101, Sichuan Province, China
| | - Haoyang Xin
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lixia Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Zhaoyan Lv
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Institute, ARO, Rishon LeZion 50250, Israel
| | - David S Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Song C, Zhang Y, Zhang W, Manzoor MA, Deng H, Han B. The potential roles of acid invertase family in Dendrobium huoshanense: Identification, evolution, and expression analyses under abiotic stress. Int J Biol Macromol 2023; 253:127599. [PMID: 37871722 DOI: 10.1016/j.ijbiomac.2023.127599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Dendrobium huoshanense, a traditional Chinese medicine prized for its horticultural and medicinal properties, thrives in an unfavorable climate and is exposed to several adverse environmental conditions. Acid invertase (AINV), a widely distributed enzyme that has been demonstrated to play a significant role in response to environmental stresses. However, the identification of the AINV gene family in D. huoshanense, the collinearity between relative species, and the expression pattern under external stress have yet to be resolved. We systematically retrieved the D. huoshanense genome and screened out four DhAINV genes, which were further classified into two subfamilies by the phylogenetic analysis. The evolutionary history of AINV genes in D. huoshanense was uncovered by comparative genomics investigations. The subcellular localization predicted that the DhVINV genes may be located in the vacuole, while the DhCWINV genes may be located in the cell wall. The exon/intron structures and conserved motifs of DhAINV genes were found to be highly conserved in two subclades. The conserved amino acids and catalytic motifs in DhAINV proteins were determined to be critical to their function. Notably, the cis-acting elements in all DhAINV genes were mainly relevant to abiotic stresses and light response. In addition, the expression profile coupled with qRT-PCR revealed the typical expression patterns of DhAINV in response to diverse abiotic stresses. Our findings could be beneficial to the characterization and further investigation of AINV functions in Dendrobium plants.
Collapse
Affiliation(s)
- Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China.
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wenwu Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Hui Deng
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China.
| |
Collapse
|
4
|
Liu T, Kawochar MA, Begum S, Wang E, Zhou T, Jing S, Liu T, Yu L, Nie B, Song B. Potato tonoplast sugar transporter 1 controls tuber sugar accumulation during postharvest cold storage. HORTICULTURE RESEARCH 2023; 10:uhad035. [PMID: 37799627 PMCID: PMC10548405 DOI: 10.1093/hr/uhad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/23/2023] [Indexed: 10/07/2023]
Abstract
Cold-induced sweetening (CIS), the undesirable sugar accumulation in cold-stored potato (Solanum tuberosum L.) tubers, is a severe postharvest issue in the potato processing industry. Although the process of sucrose hydrolysis by vacuolar invertase during potato CIS is well understood, there is limited knowledge about the transportation of sucrose from the cytosol to the vacuole during postharvest cold storage. Here, we report that among the three potato tonoplast sugar transporters (TSTs), StTST1 exhibits the highest expression in tubers during postharvest cold storage. Subcellular localization analysis demonstrates that StTST1 is a tonoplast-localized protein. StTST1 knockdown decreases reducing sugar accumulation in tubers during low-temperature storage. Compared to wild-type, potato chips produced from StTST1-silenced tubers displayed significantly lower acrylamide levels and lighter color after cold storage. Transcriptome analysis manifests that suppression of StTST1 promotes starch synthesis and inhibits starch degradation in cold-stored tubers. We further establish that the increased sucrose content in the StTST1-silenced tubers might cause a decrease in the ABA content, thereby inhibiting the ABA-signaling pathway. We demonstrate that the down-regulation of β-amylase StBAM1 in StTST1-silenced tubers might be directly controlled by ABA-responsive element-binding proteins (AREBs). Altogether, we have shown that StTST1 plays a critical role in sugar accumulation and starch metabolism regulation during postharvest cold storage. Thus, our findings provide a new strategy to improve the frying quality of cold-stored tubers and reduce the acrylamide content in potato chips.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
| | - Md Abu Kawochar
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur 1701, Bangladesh
| | - Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur 1701, Bangladesh
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
| | - Tingting Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
| | - Shenglin Jing
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
| | - Liu Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
| | - Bihua Nie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070 China
| |
Collapse
|
5
|
Guo H, Zhou M, Zhang G, He L, Yan C, Wan M, Hu J, He W, Zeng D, Zhu B, Zeng Z. Development of homozygous tetraploid potato and whole genome doubling-induced the enrichment of H3K27ac and potentially enhanced resistance to cold-induced sweetening in tubers. HORTICULTURE RESEARCH 2023; 10:uhad017. [PMID: 36968186 PMCID: PMC10031744 DOI: 10.1093/hr/uhad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polyploid plants typically display advantages on some agronomically important traits over their diploid counterparts. Extensive studies have shown genetic, transcriptomic, and epigenetic dynamics upon polyploidization in multiple plant species. However, few studies have unveiled those alternations imposed only by ploidy level, without any interference from heterozygosity. Cultivated potato is highly heterozygous. Thus, in this study, we developed two homozygous autotetraploid lines and one homozygous diploid line in parallel from a homozygous diploid potato. We confirmed their ploidy levels using chloroplast counting and karyotyping. Oligo-FISH and genome re-sequencing validated that these potato lines are nearly homozygous. We investigated variations in phenotypes, transcription, and histone modifications between two ploidies. Both autotetraploid lines produced larger but fewer tubers than the diploid line. Interestingly, each autotetraploid line displayed ploidy-related differential expression for various genes. We also discovered a genome-wide enrichment of H3K27ac in genic regions upon whole-genome doubling (WGD). However, such enrichment was not associated with the differential gene expression between two ploidies. The tetraploid lines may exhibit better resistance to cold-induced sweetening (CIS) than the diploid line in tubers, potentially regulated through the expression of CIS-related key genes, which seems to be associated with the levels of H3K4me3 in cold-stored tubers. These findings will help to understand the impacts of autotetraploidization on dynamics of phenotypes, transcription, and histone modifications, as well as on CIS-related genes in response to cold storage.
Collapse
Affiliation(s)
| | | | | | | | - Caihong Yan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Jianjun Hu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Wei He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Deying Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Bo Zhu
- Corresponding authors. E-mails: ;
| | | |
Collapse
|
6
|
Liu C, Hu S, Liu S, Shi W, Xie D, Chen Q, Sun H, Song L, Li Z, Jiang R, Lv D, Wang J, Liu X. Functional characterization of a cell wall invertase inhibitor StInvInh1 revealed its involvement in potato microtuber size in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:1015815. [PMID: 36262645 PMCID: PMC9574400 DOI: 10.3389/fpls.2022.1015815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Cell wall invertase (CWI) is as an essential coordinator in carbohydrate partitioning and sink strength determination, thereby playing key roles in plant development. Emerging evidence revealed that the subtle regulation of CWI activity considerably depends on the post-translational mechanism by their inhibitors (INHs). In our previous research, two putative INHs (StInvInh1 and StInvInh3) were expected as targets of CWI in potato (Solanum tubersum), a model species of tuberous plants. Here, transcript analysis revealed that StInvInh1 showed an overall higher expression than StInhInh3 in all tested organs. Then, StInvInh1 was further selected to study. In accordance with this, the activity of StInvInh1 promoter increased with the development of leaves in plantlets but decreased with the development of microtubers in vitro and mainly appeared in vascular bundle. The recombinant protein StInvInh1 displayed inhibitory activities on the extracted CWI in vitro and StInvInh1 interacted with a CWI StcwINV2 in vivo by bimolecular fluorescence complementation. Furthermore, silencing StInvInh1 in potato dramatically increased the CWI activity without changing activities of vacuolar and cytoplasmic invertase, indicating that StInvInh1 functions as a typical INH of CWI. Releasing CWI activity in StInvInh1 RNA interference transgenic potato led to improvements in potato microtuber size in coordination with higher accumulations of dry matter in vitro. Taken together, these findings demonstrate that StInvInh1 encodes an INH of CWI and regulates the microtuber development process through fine-tuning apoplastic sucrose metabolism, which may provide new insights into tuber development.
Collapse
|
7
|
Dahro B, Wang Y, Khan M, Zhang Y, Fang T, Ming R, Li C, Liu JH. Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata. THE NEW PHYTOLOGIST 2022; 235:2331-2349. [PMID: 35695205 DOI: 10.1111/nph.18304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Invertase (INV)-mediated sucrose (Suc) hydrolysis, leading to the irreversible production of glucose (Glc) and fructose (Frc), plays an essential role in abiotic stress tolerance of plants. However, the regulatory network associated with the Suc catabolism in response to cold environment remains largely elusive. Herein, the cold-induced alkaline/neutral INV gene PtrA/NINV7 of trifoliate orange (Poncirus trifoliata (L.) Raf.) was shown to function in cold tolerance via mediating the Suc hydrolysis. Meanwhile, a nuclear matrix-associated region containing A/T-rich sequences within its promoter was indispensable for the cold induction of PtrA/NINV7. Two AT-Hook Motif Containing Nuclear Localized (AHL) proteins, PtrAHL14 and PtrAHL17, were identified as upstream transcriptional activators of PtrA/NINV7 by interacting with the A/T-rich motifs. PtrAHL14 and PtrAHL17 function positively in the cold tolerance by modulating PtrA/NINV7-mediated Suc catabolism. Furthermore, both PtrAHL14 and PtrAHL17 could form homo- and heterodimers between each other, and interacted with two histone acetyltransferases (HATs), GCN5 and TAF1, leading to elevated histone3 acetylation level under the cold stress. Taken together, our findings unraveled a new cold-responsive signaling module (AHL14/17-HATs-A/NINV7) for orchestration of Suc catabolism and cold tolerance, which shed light on the molecular mechanisms underlying Suc catabolism catalyzed by A/NINVs under cold stress.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Shi W, Ma Q, Yin W, Liu T, Song Y, Chen Y, Song L, Sun H, Hu S, Liu T, Jiang R, Lv D, Song B, Wang J, Liu X. The transcription factor StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4968-4980. [PMID: 35511088 DOI: 10.1093/jxb/erac171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of reducing sugars in cold-stored tubers, known as cold-induced sweetening (CIS), negatively affects potato processing quality. The starch to sugar interconversion pathways that are altered in cold-stored CIS tubers have been elucidated, but the mechanism that regulates them remains largely unknown. This study identified a CBF/DREB transcription factor (StTINY3) that enhances CIS resistance by both activating starch biosynthesis and repressing the hydrolysis of sucrose to reducing sugars in detached cold-stored tubers. Silencing StTINY3 in a CIS-resistant genotype decreased CIS resistance, while overexpressing StTINY3 in a CIS-sensitive genotype increased CIS resistance, and altering StTINY3 expression was associated with expression changes in starch resynthesis-related genes. We showed first that overexpressing StTINY3 inhibited sucrose hydrolysis by enhancing expression of the invertase inhibitor gene StInvInh2, and second that StTINY3 promoted starch resynthesis by up-regulating a large subunit of the ADP-glucose pyrophosphorylase gene StAGPaseL3, and the glucose-6-phosphate transporter gene StG6PT2. Using electrophoretic mobility shift assays, we revealed that StTINY3 is a nuclear-localized transcriptional activator that directly binds to the dehydration-responsive element/CRT cis-element in the promoters of StInvInh2 and StAGPaseL3. Taken together, these findings established that StTINY3 influences CIS resistance in cold-stored tubers by coordinately modulating the starch to sugar interconversion pathways and is a good target for improving potato processing quality.
Collapse
Affiliation(s)
- Weiling Shi
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Qiuqin Ma
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Wang Yin
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Yuhao Song
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Yuanya Chen
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Linjin Song
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Hui Sun
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Shuting Hu
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Rui Jiang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Dianqiu Lv
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Jichun Wang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Xun Liu
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| |
Collapse
|
9
|
Zhang G, Tang R, Niu S, Si H, Yang Q, Rajora OP, Li XQ. Heat-stress-induced sprouting and differential gene expression in growing potato tubers: Comparative transcriptomics with that induced by postharvest sprouting. HORTICULTURE RESEARCH 2021; 8:226. [PMID: 34654802 PMCID: PMC8519922 DOI: 10.1038/s41438-021-00680-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Crops face increased risk from heat stress due to climate change. Potato (Solanum tuberosum L.) tubers grown in hot summers often have defects including pre-harvest sprouting ("heat sprouts"). We have used 18 potato cultivars to investigate whether heat stress (HS) conditions alone could cause heat sprouting and dormancy changes in tubers. We also examined transcriptomic responses of potato to HS and whether these responses are like those induced by postharvest sprouting. We demonstrated that HS alone caused heat sprouts and shortened postharvest dormancy period, heat-sprouted tubers became dormant after harvest, and cultivars varied substantially for producing heat spouts but there was no clear association with cultivar maturity earliness. Cultivar Innovator did not show any heat sprouts and still had long dormancy. Dormancy-associated genes (DOG1 and SLP) were downregulated in HS tubers like in postharvest sprouting tubers. We have identified 1201 differentially expressed genes, 14 enriched GO terms and 12 enriched KEGG pathways in response to HS in growing tubers of 'Russet Burbank'. Transcriptomic response of 'Russet Burbank' to HS showed significant similarities to that of postharvest non-HS sprouted tubers. Gibberellin biosynthesis pathway was enriched in heat-stressed tubers and was likely involved in heat sprouting and dormancy release. Heat sprouting and postharvest sprouting shared common candidate genes and had significant similarity in gene expression. Our study has significance for selecting potato cultivars for farming, planning storage and utilization of heat-stressed tubers, identifying sprouting-related genes, understanding heat-stress biology, and breeding heat-tolerant potato cultivars, especially for sustainable potato production under climate change.
Collapse
Affiliation(s)
- Guodong Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, Fredericton, New Brunswick, Canada
| | - Ruimin Tang
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, Fredericton, New Brunswick, Canada
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Suyan Niu
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, Fredericton, New Brunswick, Canada
- Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou, China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China.
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Om P Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, Canada.
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, Fredericton, New Brunswick, Canada.
| |
Collapse
|
10
|
Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spíchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Carmeli-Weissberg M, Gal-On A, Jiang J, Ori N, Beveridge C, Eshel D. Sucrose promotes stem branching through cytokinin. PLANT PHYSIOLOGY 2021; 185:1708-1721. [PMID: 33793932 PMCID: PMC8133652 DOI: 10.1093/plphys/kiab003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 05/23/2023]
Abstract
Shoot branching is an important aspect of plant architecture because it substantially affects plant biology and agricultural performance. Sugars play an important role in the induction of shoot branching in several species, including potato (Solanum tuberosum L.). However, the mechanism by which sugars affect shoot branching remains mostly unknown. In the present study, we addressed this question using sugar-mediated induction of bud outgrowth in potato stems under etiolated conditions. Our results indicate that sucrose feeding to detached stems promotes the accumulation of cytokinin (CK), as well as the expression of vacuolar invertase (VInv), an enzyme that contributes to sugar sink strength. These effects of sucrose were suppressed by CK synthesis and perception inhibitors, while CK supplied to detached stems induced bud outgrowth and VInv activity in the absence of sucrose. CK-induced bud outgrowth was suppressed in vinv mutants, which we generated by genome editing. Altogether, our results identify a branching-promoting module, and suggest that sugar-induced lateral bud outgrowth is in part promoted by the induction of CK-mediated VInv activity.
Collapse
Affiliation(s)
- Bolaji Babajide Salam
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Francois Barbier
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Raz Danieli
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Carmit Ziv
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University in Olomouc, Czech Republic (L.S.)
| | - Kalaivani Aruchamy
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Yula Shnaider
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Felix Shaya
- Department of Fruit Tree Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Amit Gal-On
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Jiming Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Christine Beveridge
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
11
|
Shi W, Song Y, Liu T, Ma Q, Yin W, Shen Y, Liu T, Jiang C, Zhang K, Lv D, Song B, Wang J, Liu X. StRAP2.3, an ERF-VII transcription factor, directly activates StInvInh2 to enhance cold-induced sweetening resistance in potato. HORTICULTURE RESEARCH 2021; 8:82. [PMID: 33790269 PMCID: PMC8012585 DOI: 10.1038/s41438-021-00522-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 05/03/2023]
Abstract
Potato invertase inhibitor (StInvInh2) positively regulates cold-induced sweetening (CIS) resistance by inhibiting the activity of vacuolar invertase. The distinct expression patterns of StInvInh2 have been thoroughly characterized in different potato genotypes, but the related CIS ability has not been characterized. The understanding of the regulatory mechanisms that control StInvInh2 transcription is unclear. In this study, we identified an ERF-VII transcription factor, StRAP2.3, that directly regulates StInvInh2 to positively modulate CIS resistance. Acting as a nuclear-localized transcriptional activator, StRAP2.3 directly binds the ACCGAC cis-element in the promoter region of StInvInh2, enabling promoter activity. Overexpression of StRAP2.3 in CIS-sensitive potato tubers induced StInvInh2 mRNA abundance and increased CIS resistance. In contrast, silencing StRAP2.3 in CIS-resistant potato tubers repressed the expression of StInvInh2 and decreased CIS resistance. We conclude that cold-responsive StInvInh2 is due to the binding of StRAP2.3 to the ACCGAC cis-element in the promoter region of StInvInh2. Overall, these findings indicate that StRAP2.3 directly regulates StInvInh2 to positively modulate CIS resistance, which may provide a strategy to improve the processing quality of potatoes.
Collapse
Affiliation(s)
- Weiling Shi
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Yuhao Song
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Qiuqin Ma
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China
| | - Wang Yin
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China
| | - Yuchen Shen
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Chunyan Jiang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China
| | - Kai Zhang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China
| | - Dianqiu Lv
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.
| | - Jichun Wang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China.
| | - Xun Liu
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops; College of Agronomy and Biotechnology, Southwest University, 400715, Chongqing, People's Republic of China.
| |
Collapse
|
12
|
Guo X, Chen H, Liu Y, Chen W, Ying Y, Han J, Gui R, Zhang H. The acid invertase gene family is involved in internode elongation in Phyllostachys heterocycla cv. pubescens. TREE PHYSIOLOGY 2020; 40:1217-1231. [PMID: 32333784 DOI: 10.1093/treephys/tpaa053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Acid invertases (INVs) play a pivotal role in both vegetative and reproductive growth of plants. However, their possible functions in fast-growing plants such as bamboo are largely unknown. Here, we report the molecular characterization of acid INVs in Phyllostachys heterocycla cv. pubescens, a fast-growing bamboo species commercially grown worldwide. Nine acid INVs (PhINVs), including seven cell wall INVs (PhCWINV1, PhCWINV2, PhCWINV3, PhCWINV4, PhCWINV5, PhCWINV6 and PhCWINV7) and two vacuolar INVs (PhVINV11 and PhVINV12) were isolated. Bioinformatic analyses demonstrated that they all share high amino acid identity with other INVs from different plant species and contain the motifs typically conserved in acid INV. Enzyme activity assays revealed a significantly higher INV activity in the fast-growing tissues, such as the elongating internodes of stems. Detailed quantitative reverse-transcription PCR analyses showed various expression patterns of PhINVs at different developmental stages of the elongating stems. With the exception of PhCWINV6, all PhINVs were ubiquitously expressed in a developmental-specific manner. Further studies in Arabidopsis exhibited that constitutive expression of PhCWINV1, PhCWINV4 or PhCWINV7 increased the biomass production of transgenic plants, as indicated by augmented plant heights and shoot dry weights than the wild-type plants. All these results suggest that acid INVs play a crucial role in the internode elongation of P. heterocycla cv. pubescens and would provide valuable information for the dissection of their exact biological functions in the fast growth of bamboo.
Collapse
Affiliation(s)
- Xiaoqin Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, China
| | - Hongjun Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, China
| | - Yue Liu
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Wei Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, China
| | - Yeqing Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, China
| | - Junjie Han
- Yantai Academy of Agricultural Sciences, 26 West Gangcheng Street, Yantai 265500, China
| | - Renyi Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, China
| | - Hongxia Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), 186 Hongqizhong Road, Yantai 264025, China
| |
Collapse
|
13
|
Liu X, Chen L, Shi W, Xu X, Li Z, Liu T, He Q, Xie C, Nie B, Song B. Comparative transcriptome reveals distinct starch-sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food Chem 2020; 334:127550. [PMID: 32693335 DOI: 10.1016/j.foodchem.2020.127550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
Potato accumulates large amounts of soluble sugar during cold storage periods. However, a system based understanding of this process is still largely unknown. Here, we compared the dynamic cold-responded transcriptome of genotypes between cold-induced sweetening resistant (CIS-R) and cold-induced sweetening sensitive (CIS-S) in tubers. Comparative transcriptome revealed that activating the pathways of starch degradation, sucrose synthesis and hydrolysis could be common strategies in response to cold in both genotypes. Moreover, the variation in sugar accumulation between genotypes may be due to genetic differences in cold response, which could be mainly explained: CIS-R genotype was active in starch synthesis and attenuated in sucrose hydrolysis by promoting the coordinate expression of aseries ofgenes involved in starch-sugar interconversion. Additionally, transcription factors, the candidate master regulators of starch-sugar interconversion, were discussed. Taken together, this work has provided an avenue for studying the mechanism involved in the regulation of the CIS resistance.
Collapse
Affiliation(s)
- Xun Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; College of Agronomy and Biotechnology, Southwest University, Key Laboratory of Biology and Genetic Improvement for Tuber and Root Crops in Chongqing, Chongqing 400715, PR China.
| | - Lin Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Weiling Shi
- College of Agronomy and Biotechnology, Southwest University, Key Laboratory of Biology and Genetic Improvement for Tuber and Root Crops in Chongqing, Chongqing 400715, PR China
| | - Xuan Xu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhijing Li
- College of Agronomy and Biotechnology, Southwest University, Key Laboratory of Biology and Genetic Improvement for Tuber and Root Crops in Chongqing, Chongqing 400715, PR China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qin He
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Bihua Nie
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
14
|
de Araújo NO, Véras MLM, Santos MNDS, de Araújo FF, Tello JPDJ, Finger FL. Sucrose degradation pathways in cold-induced sweetening and its impact on the non-enzymatic darkening in sweet potato root. Food Chem 2020; 312:125904. [DOI: 10.1016/j.foodchem.2019.125904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/27/2022]
|
15
|
Zhang P, Shao X, Wei Y, Xu F, Wang H. At-harvest fruit maturity affects sucrose metabolism during cold storage and is related to chilling injury in peach. Journal of Food Science and Technology 2020; 57:2000-2009. [PMID: 32431326 DOI: 10.1007/s13197-019-04232-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/12/2019] [Accepted: 12/26/2019] [Indexed: 11/27/2022]
Abstract
We investigated the effects of at-harvest maturity of 'YuLu' peach fruit on soluble sugar metabolism and their relationship with chilling injury susceptibility. Peaches were sorted into four maturity groups at harvest by I AD (index of the absorbance difference between 670 and 720 nm) then stored at 5 °C for 28 days. Fruit quality parameters, flesh browning index, malondialdehyde (MDA) content, soluble sugar content, gene expression, and enzyme activities associated with sucrose metabolism were measured. The more mature fruit groups had significantly (p < 0.05) lower firmness, higher soluble solid content, a* values of background color, sorbitol and sucrose content at harvest. During the cold storage, the higher flesh browning index in the mature groups (M3 and M4) maybe due to the double stress of senescence and chilling injury because there was concomitant sharp increase in MDA content. However, the most immature at-harvest group (M1) had the significantly (p < 0.05) higher MDA content after 14 days of cold storage, and a flesh browning index significantly (p < 0.05) higher than the M2 group (the next more mature group), late in the storage period. Moreover, the M1 group had lower sucrose content at postharvest and higher activities and transcript levels of sucrose degrading enzymes and lower levels of sucrose synthesis enzymes, which was responsible for the lower sucrose levels than M2 group during storage. It was concluded that the more immature peach fruit with lower sucrose content, have a higher chilling susceptibility than more mature fruit.
Collapse
Affiliation(s)
- Peng Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800 China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800 China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800 China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800 China
| | - Hongfei Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800 China
| |
Collapse
|
16
|
Tai HH, Lagüe M, Thomson S, Aurousseau F, Neilson J, Murphy A, Bizimungu B, Davidson C, Deveaux V, Bègue Y, Wang HY, Xiong X, Jacobs JME. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:163-176. [PMID: 31756603 DOI: 10.1016/j.plaphy.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 05/19/2023]
Abstract
Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada.
| | - Martin Lagüe
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Frédérique Aurousseau
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Jonathan Neilson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Agnes Murphy
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Benoit Bizimungu
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Charlotte Davidson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Virginie Deveaux
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Yves Bègue
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Hui Ying Wang
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| |
Collapse
|
17
|
Identification and impact of stable prognostic biochemical markers for cold-induced sweetening resistance on selection efficiency in potato (Solanum tuberosum L.) breeding programs. PLoS One 2019; 14:e0225411. [PMID: 31891570 PMCID: PMC6938367 DOI: 10.1371/journal.pone.0225411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/02/2019] [Indexed: 01/09/2023] Open
Abstract
Biochemical markers for cold-induced sweetening (CIS) resistance were tested for their stability over years and their use in selection of parents for crossing to achieve high selection efficiency in potato breeding programs. Two regulatory enzymes directly associated with reducing sugar (RS) accumulation during potato tubers cold storage were tested as a predictor for CIS resistance. These enzymes were studied in 33 potato clones from various breeding programs over four years. Clones with the presence of A-II isozymes of UDP-glucose pyrophosphorylase (UGPase) and low activity of vacuolar acid invertase (VAcInv) enzyme had increased resistance to cold-induced sweetening (CIS). Depending on the levels of these enzymes, clones were divided into class A, class B and class C. Clones categorized as class A had average RS of 0.73 mg per g FW after six months at 5.5°C storage. Class B and C had average RS of 1.15 and 3.80 mg per g FW respectively. The enzyme activity was closely associated with RS accumulation over long-term cold storage. The biochemical markers were found to be stable over the years. Repeated-measure analysis showed 75% chance of maintaining class from one year to the next and a 25% chance of switching, No clone switched between class A and class C, even across all four years. Application of these biochemical markers can identify clones with CIS resistance early in the selection process. Biochemical markers were used to select parents for crossing and six families were established. Results showed that with both parents from class A, 95% of their offspring had desirable glucose levels and chip color, which dropped to 52% when one parent was from class A and other from class B. These results suggest that two regulatory enzymes, i.e., UGPase and VAcInv, can be used as stable prognostic biochemical markers for CIS resistance for precise parent selection resulting in progenies with significantly higher percentage of clones with acceptable processing quality.
Collapse
|
18
|
Hou J, Liu T, Reid S, Zhang H, Peng X, Sun K, Du J, Sonnewald U, Song B. Silencing of α-amylase StAmy23 in potato tuber leads to delayed sprouting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:411-418. [PMID: 30981157 DOI: 10.1016/j.plaphy.2019.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Potato tuber dormancy is critical for the postharvest quality. The supply of carbohydrates is considered as one of the important factors controlling the rate of potato tuber sprouting. Starch is the major carbohydrate reserve in potato tuber, but very little is known about the specific starch degrading enzymes responsible for controlling tuber dormancy and sprouting. In this study, we demonstrate that an α-amylase gene StAmy23 is involved in starch breakdown and regulation of tuber dormancy. Silencing of StAmy23 delayed tuber sprouting by one to two weeks compared with the control. This phenotype is accompanied by reduced levels of reducing sugars and elevated levels of malto-oligosaccharides in tuber cortex and pith tissue below the bud eye of StAmy23-deficient potato tubers. Changes in soluble sugars is accompanied by a slight variation of phytoglycogen structure and starch granule size. Our results suggest that StAmy23 may stimulate sprouting by hydrolyzing soluble phytoglycogen to ensure supply of sugars during tuber dormancy.
Collapse
Affiliation(s)
- Juan Hou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058, Erlangen, Germany
| | - Huiling Zhang
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; College of Forestry, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Xiaojun Peng
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kaile Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Juan Du
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Uwe Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058, Erlangen, Germany.
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
19
|
Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y, Wang X. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2018; 18:228. [PMID: 30309330 PMCID: PMC6182829 DOI: 10.1186/s12870-018-1456-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove β-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.
Collapse
Affiliation(s)
- Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong China
| | - Bin Xiao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Chuan Yue
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Hongli Cao
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Yuchun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Youben Yu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
20
|
Zhang J, He L, Wu Y, Ma W, Chen H, Ye Z. Comparative proteomic analysis of Pogostemon cablin leaves after continuous cropping. Protein Expr Purif 2018; 152:13-22. [PMID: 30017744 DOI: 10.1016/j.pep.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/19/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
A proteomic approach was used to understand the molecular mechanisms underlying obstacles to the continuous cropping of Pogostemon cablin. We examined differences in protein abundance between control (CK) and continuously cropped (TR) P. cablin leaves at different time points (90, 150, and 210 days after culture). Comparative analysis by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) revealed 183 differentially expressed protein spots, of which 87 proteins or isoforms were identified using mass spectrometry. Among these differentially expressed proteins (DEPs), 50 proteins or isoforms showed increased abundance and 37 proteins or isoforms showed decreased abundance in the TR sample compared with the abundance in the CK sample. Bioinformatic tools were used to analyze the DEPs. These proteins were classified into 12 categories according to clusters of orthologous groups (COG) analysis, with the majority being involved in post-translational modification, protein turnover, and chaperones, followed by carbohydrate transport and metabolism, and finally, energy production and conversion. Protein-protein interactions revealed that 18 DEPs were involved in energy metabolism, 6 DEPs were involved in stress response, and 4 DEPs were involved in amino acid biosynthesis. Continuous cropping altered the expression of proteins related to energy metabolism, carbohydrate metabolism, and amino acid metabolism in P. cablin leaves. Among these processes, the most affected was energy metabolism, which may be pivotal for resistance to continuous cropping.
Collapse
Affiliation(s)
- Junfeng Zhang
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| | - Liping He
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| | - Yougen Wu
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China.
| | - Wentin Ma
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| | - He Chen
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| | - Zhouchen Ye
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| |
Collapse
|
21
|
Xiao G, Huang W, Cao H, Tu W, Wang H, Zheng X, Liu J, Song B, Xie C. Genetic Loci Conferring Reducing Sugar Accumulation and Conversion of Cold-Stored Potato Tubers Revealed by QTL Analysis in a Diploid Population. FRONTIERS IN PLANT SCIENCE 2018; 9:315. [PMID: 29593769 PMCID: PMC5854652 DOI: 10.3389/fpls.2018.00315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/23/2018] [Indexed: 05/29/2023]
Abstract
Cold-induced sweetening (CIS) caused by reducing sugar (RS) accumulation during storage in low temperature in potato tubers is a critical factor influencing the quality of fried potato products. The reconditioning (REC) by arising storage temperature is a common measure to lower down RS. However, both CIS and REC are genotype-dependent and the genetic basis remains uncertain. In the present study, with a diploid potato population with broad genetic background, four reproducible QTL of CIS and two of REC were resolved on chromosomes 5, 6, and 7 of the CIS-sensitive parent and chromosomes 5 and 11 of the CIS-resistant parent, respectively, implying that these two traits may be genetically independent. This hypothesis was also supported by the colocalization of two functional genes, a starch synthesis gene AGPS2 mapped in QTL CIS_E_07-1 and a starch hydrolysis gene GWD colocated with QTL REC_B_05-1. The cumulative effects of identified QTL were proved to contribute largely and stably to CIS and REC and confirmed with a natural population composed of a range of cultivars and breeding lines. The present research identified reproducible QTL for CIS and REC of potato in diverse conditions and elucidated for the first time their cumulative genetic effects, which provides theoretical bases and applicable means for tuber quality improvement.
Collapse
Affiliation(s)
- Guilin Xiao
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wei Huang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hongju Cao
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
| | - Wei Tu
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
| | - Haibo Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Liu T, Fang H, Liu J, Reid S, Hou J, Zhou T, Tian Z, Song B, Xie C. Cytosolic glyceraldehyde-3-phosphate dehydrogenases play crucial roles in controlling cold-induced sweetening and apical dominance of potato (Solanum tuberosum L.) tubers. PLANT, CELL & ENVIRONMENT 2017; 40:3043-3054. [PMID: 28940493 DOI: 10.1111/pce.13073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs-silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB-meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy-related protein 3 (ATG3), implying that the occurrence of cell death in TAB-meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hui Fang
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058, Erlangen, Germany
| | - Juan Hou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| | - Tingting Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| |
Collapse
|
23
|
Landry EJ, Fuchs SJ, Bradley VL, Johnson R. The effect of cold acclimation on the low molecular weight carbohydrate composition of safflower. Heliyon 2017; 3:e00402. [PMID: 29022010 PMCID: PMC5629351 DOI: 10.1016/j.heliyon.2017.e00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 11/17/2022] Open
Abstract
Understanding cold acclimation and identifying the low molecular weight carbohydrates that support the development of freezing tolerant safflower seedlings will aid in breeding winter-hardy cultivars for temperate cropping systems. Three field selected lines of winter safflower (WSRC01: PI 651878; WSRC02: PI 651879; WSRC03: PI 651880) were cold acclimated for four weeks at 4 °C and compared to seedlings grown for two weeks at 20 °C. The commercial spring-type cultivar, Olé, served as a non-hardy check. Leaf, stem, and root fructose, glucose, sucrose, raffinose, and stachyose concentrations all increased to variable extents across the PI accessions after cold acclimation. In comparison with Olé, winter safflower accessions tended to be more responsive to cold acclimation by increasing metabolite concentration. Verbascose was only recovered within leaf tissue and PI 651880 was the only entry to show a substantial alteration in verbascose concentration due to cold acclimation. Based on these data, no specific low molecular carbohydrate was responsive or responsible for the accumulation of freezing tolerance, but a concert of metabolites and their responsiveness may help explain the observed differences in development, freezing tolerance, and ultimately winterhardiness among safflower germplasm.
Collapse
|
24
|
Slugina MA, Shchennikova AV, Kochieva EZ. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon). Mol Genet Genomics 2017. [PMID: 28634826 DOI: 10.1007/s00438-017-1336-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.
Collapse
Affiliation(s)
- M A Slugina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia. .,Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia.
| | - A V Shchennikova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia.,Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
25
|
Hou J, Zhang H, Liu J, Reid S, Liu T, Xu S, Tian Z, Sonnewald U, Song B, Xie C. Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2317-2331. [PMID: 28369567 PMCID: PMC5447890 DOI: 10.1093/jxb/erx076] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cold-induced sweetening (CIS) in potato is detrimental to the quality of processed products. Conversion of starch to reducing sugars (RS) by amylases is considered one of the main pathways in CIS but is not well studied. The amylase genes StAmy23, StBAM1, and StBAM9 were studied for their functions in potato CIS. StAmy23 is localized in the cytoplasm, whereas StBAM1 and StBAM9 are targeted to the plastid stroma and starch granules, respectively. Genetic transformation of these amylases in potatoes by RNA interference showed that β-amylase activity could be decreased in cold-stored tubers by silencing of StBAM1 and collective silencing of StBAM1 and StBAM9. However, StBAM9 silencing did not decrease β-amylase activity. Silencing StBAM1 and StBAM9 caused starch accumulation and lower RS, which was more evident in simultaneously silenced lines, suggesting functional redundancy. Soluble starch content increased in RNAi-StBAM1 lines but decreased in RNAi-StBAM9 lines, suggesting that StBAM1 may regulate CIS by hydrolysing soluble starch and StBAM9 by directly acting on starch granules. Moreover, StBAM9 interacted with StBAM1 on the starch granules. StAmy23 silencing resulted in higher phytoglycogen and lower RS accumulation in cold-stored tubers, implying that StAmy23 regulates CIS by degrading cytosolic phytoglycogen. Our findings suggest that StAmy23, StBAM1, and StBAM9 function in potato CIS with varying levels of impact.
Collapse
Affiliation(s)
- Juan Hou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Huiling Zhang
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
- College of Forestry, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058 Erlangen, Germany
| | - Tengfei Liu
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Shijing Xu
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Zhendong Tian
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Uwe Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058 Erlangen, Germany
| | - Botao Song
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
26
|
Liu X, Shi W, Yin W, Wang J. Distinct cold responsiveness of a StInvInh2 gene promoter in transgenic potato tubers with contrasting resistance to cold-induced sweetening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:77-84. [PMID: 27915175 DOI: 10.1016/j.plaphy.2016.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/18/2016] [Accepted: 11/26/2016] [Indexed: 05/19/2023]
Abstract
Potato (Solanum tuberosum L.) vacuolar invertase (β-fructofuranosidase; EC 3.2.1.26) inhibitor 2 (StInvInh2) plays an important role in cold-induced sweetening (CIS) of potato tubers. The transcript levels of StInvInh2 were increased by prolonged cold in potato tubers with CIS-resistance but decreased in potato tubers with CIS-sensitivity. However, the transcript regulation mechanisms of StInvInh2 responding to prolonged cold are largely unclear in CIS-resistant and CIS-sensitive genotypes. In the present study, the 5'-flanking sequence of the StInvInh2 was cloned, and cis-acting elements were predicted. No informative differences in StInvInh2 promoter structure between resistant and sensitive-CIS potato genotypes were observed. Histochemical assay showed that the promoter of StInvInh2 mainly governed β-glucuronidase (GUS) expression in potato microtubers. Quantitative analysis of GUS expression suggested that StInvInh2 promoter activity was enhanced by prolonged cold in CIS-resistant genotype tubers but suppressed in CIS-sensitive tubers. These findings provide essential information regarding transcriptional regulatory mechanisms of StInvInh2 in cold-stored tubers contrasting CIS capacity.
Collapse
Affiliation(s)
- Xun Liu
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China.
| | - Weiling Shi
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China
| | - Wang Yin
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China
| | - Jichun Wang
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China.
| |
Collapse
|
27
|
Lin Q, Xie Y, Liu W, Zhang J, Cheng S, Xie X, Guan W, Wang Z. UV-C treatment on physiological response of potato ( Solanum tuberosum L.) during low temperature storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:55-61. [PMID: 28242903 PMCID: PMC5305701 DOI: 10.1007/s13197-016-2433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
The storage of potato tuber (Solanum tuberosum L.) at low temperatures minimizes sprouting and disease but can cause cold-induced sweetening (CIS), which leads to the production of the cancerogenic substance acrylamide during the frying processing. The aim of this research was to investigate the effects of UV-C treatment on CIS in cold stored potato tuber. 'Atlantic' potatoes were treated with UV-C for an hour and then stored at 4 °C up to 28 days. The UV-C treatment significantly prevented the increase of malondialdehyde content (an indicator of the prevention of oxidative injury) in potato cells during storage. The accumulation of reducing sugars, particularly fructose and glucose, was significantly reduced by UV-C treatment possibly due to the regulation of the gene cascade, sucrose phosphate synthase, invertase inhibitor 1/3, and invertase 1 in potato tuber, which were observed to be differently expressed between treated and untreated potatoes during low temperature storage. In summary, UV-C treatment prevented the existence of oxidative injury in potato cells, thus, lowered the amount of reducing sugar accumulation during low temperature storage of potato tubers.
Collapse
Affiliation(s)
- Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing, 100193 China
| | - Yajing Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing, 100193 China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing, 100193 China
| | - Jie Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing, 100193 China
| | - Shuzhen Cheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing, 100193 China
| | - Xinfang Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing, 100193 China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134 China
| | - Zhidong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing, 100193 China
| |
Collapse
|
28
|
Zhang H, Hou J, Liu J, Zhang J, Song B, Xie C. The roles of starch metabolic pathways in the cold-induced sweetening process in potatoes. STARCH-STARKE 2016. [DOI: 10.1002/star.201600194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Huiling Zhang
- College of Forestry; Henan University of Science and Technology; Luoyang P.R. China
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| | - Juan Hou
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| | - Jun Liu
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| | - Juping Zhang
- College of Forestry; Henan University of Science and Technology; Luoyang P.R. China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| |
Collapse
|
29
|
Qian W, Yue C, Wang Y, Cao H, Li N, Wang L, Hao X, Wang X, Xiao B, Yang Y. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress. PLANT CELL REPORTS 2016; 35:2269-2283. [PMID: 27538912 DOI: 10.1007/s00299-016-2033-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 05/02/2023]
Abstract
Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses. In this study, 14 INV genes were identified from the transcriptome data of the tea plant (Camellia sinensis (L.) O. Kuntze), and named CsINV1-5 and CsINV7-15. Based on the results of a Blastx search and phylogenetic analysis, the CsINV genes could be clustered into 6 acid invertase (AI) genes and 8 alkaline/neutral invertase (A/N-Inv) genes. The results of tissue-specific expression analysis showed that the transcripts of all the identified CsINV genes are detectable in various tissues. Under various abiotic stress conditions, the expression patterns of the 14 CsINV genes were diverse in both the leaves and roots, and some of them were shown to be significantly expressed. Overall, we hypothesize that the identified CsINV genes all participate in regulating growth and development in the tea plant, and most likely through different signaling pathways that regulate the carbohydrate allocation and the ratio of hexose and sucrose for improving the resistance of the leaves and the roots of the tea plant to various abiotic stresses.
Collapse
Affiliation(s)
- Wenjun Qian
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Chuan Yue
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
- Department of Tea Science, College of Horticulture, Fujian A&F University, Fuzhou, 350002, China
| | - Yuchun Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Hongli Cao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
- Department of Tea Science, College of Horticulture, Fujian A&F University, Fuzhou, 350002, China
| | - Nana Li
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Lu Wang
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinyuan Hao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinchao Wang
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yajun Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|
30
|
Liu B, Zhang G, Murphy A, De Koeyer D, Tai H, Bizimungu B, Si H, Li XQ. Differences between the Bud End and Stem End of Potatoes in Dry Matter Content, Starch Granule Size, and Carbohydrate Metabolic Gene Expression at the Growing and Sprouting Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1176-84. [PMID: 26760673 DOI: 10.1021/acs.jafc.5b05238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Potatoes usually have the tuber bud end dominance in growth during tuber bulking and in tuber sprouting, likely using carbohydrates from the tuber stem end. We hypothesized that the tuber bud end and tuber stem end coordination in carbohydrate metabolism gene expression is different between the bulking dominance and sprouting dominance of the tuber bud end. After comparing the growing tubers at harvest from a green vine and the stage that sprouts just started to emerge after storage of tubers at room temperature, we found the following: (1) Dry matter content was higher in the tuber stem end than the tuber bud end at both stages. (2) The starch granule size was larger in the tuber bud end than in the tuber stem end. (3) The tuber bud end had higher gene expression for starch synthesis but a lower gene expression of sucrose transporters than the tuber stem end during tuber growing. (4) The tuber stem end at the sprouting stage showed more active gene expression in both starch degradation and resynthesis, suggesting more active export of carbohydrates, than the tuber bud end. The results indicate that the starch accumulation mechanism in the tuber bud end was different between field growing and post-harvest sprouting tubers and that tubers already increased dry matter and average starch granule sizes in the tuber bud end prior to the rapid growth of sprouts.
Collapse
Affiliation(s)
- Bailin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
- Potato Research Centre, Agriculture and Agri-Food Canada , 850 Lincoln Road, Post Office Box 20280, Fredericton, New Brunswick E3B 4Z7, Canada
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University , Lanzhou, Gansu 730070, People's Republic of China
| | - Guodong Zhang
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University , Lanzhou, Gansu 730070, People's Republic of China
| | - Agnes Murphy
- Potato Research Centre, Agriculture and Agri-Food Canada , 850 Lincoln Road, Post Office Box 20280, Fredericton, New Brunswick E3B 4Z7, Canada
| | - David De Koeyer
- Potato Research Centre, Agriculture and Agri-Food Canada , 850 Lincoln Road, Post Office Box 20280, Fredericton, New Brunswick E3B 4Z7, Canada
| | - Helen Tai
- Potato Research Centre, Agriculture and Agri-Food Canada , 850 Lincoln Road, Post Office Box 20280, Fredericton, New Brunswick E3B 4Z7, Canada
| | - Benoit Bizimungu
- Potato Research Centre, Agriculture and Agri-Food Canada , 850 Lincoln Road, Post Office Box 20280, Fredericton, New Brunswick E3B 4Z7, Canada
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University , Lanzhou, Gansu 730070, People's Republic of China
| | - Xiu-Qing Li
- Potato Research Centre, Agriculture and Agri-Food Canada , 850 Lincoln Road, Post Office Box 20280, Fredericton, New Brunswick E3B 4Z7, Canada
| |
Collapse
|
31
|
Galani Yamdeu JH, Gupta PH, Patel NJ, Shah AK, Talati JG. Effect of Storage Temperature on Carbohydrate Metabolism and Development of Cold-Induced Sweetening in Indian Potato (S
olanum Tuberosum
L.) Varieties. J Food Biochem 2015. [DOI: 10.1111/jfbc.12190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph Hubert Galani Yamdeu
- Department of Agriculture and Veterinary Medicine; Université des Montagnes; PO Box 208 Bangangté Cameroon
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| | - Pooja H. Gupta
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| | - Nilesh J. Patel
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| | - Avadh K. Shah
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| | - Jayant G. Talati
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| |
Collapse
|
32
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 235:14-24. [PMID: 26157450 DOI: 10.1016/j.plantsci.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 05/13/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| |
Collapse
|
33
|
Zhang H, Liu J, Hou J, Yao Y, Lin Y, Ou Y, Song B, Xie C. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:984-93. [PMID: 24985879 DOI: 10.1111/pbi.12221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 05/17/2023]
Abstract
Potato cold-induced sweetening (CIS) is critical for the postharvest quality of potato tubers. Starch degradation is considered to be one of the key pathways in the CIS process. However, the functions of the genes that encode enzymes related to starch degradation in CIS and the activity regulation of these enzymes have received less attention. A potato amylase inhibitor gene known as SbAI was cloned from the wild potato species Solanum berthaultii. This genetic transformation confirmed that in contrast to the SbAI suppression in CIS-resistant potatoes, overexpressing SbAI in CIS-sensitive potatoes resulted in less amylase activity and a lower rate of starch degradation accompanied by a lower reducing sugar (RS) content in cold-stored tubers. This finding suggested that the SbAI gene may play crucial roles in potato CIS by modulating the amylase activity. Further investigations indicated that pairwise protein-protein interactions occurred between SbAI and α-amylase StAmy23, β-amylases StBAM1 and StBAM9. SbAI could inhibit the activities of both α-amylase and β-amylase in potato tubers primarily by repressing StAmy23 and StBAM1, respectively. These findings provide the first evidence that SbAI is a key regulator of the amylases that confer starch degradation and RS accumulation in cold-stored potato tubers.
Collapse
Affiliation(s)
- Huiling Zhang
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, China; College of Forestry, Henan University of Science and Technology, Luoyang, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhu X, Richael C, Chamberlain P, Busse JS, Bussan AJ, Jiang J, Bethke PC. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PLoS One 2014; 9:e93381. [PMID: 24695527 PMCID: PMC3973568 DOI: 10.1371/journal.pone.0093381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv) expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Craig Richael
- Simplot Plant Sciences, J. R. Simplot Company, Boise, Idaho, United States of America
- * E-mail: (CR); (JJ); (PCB)
| | - Patrick Chamberlain
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - James S. Busse
- Vegetable Crops Research Unit, United States Department of Agriculture, Madison, Wisconsin, United States of America
| | - Alvin J. Bussan
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (CR); (JJ); (PCB)
| | - Paul C. Bethke
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Vegetable Crops Research Unit, United States Department of Agriculture, Madison, Wisconsin, United States of America
- * E-mail: (CR); (JJ); (PCB)
| |
Collapse
|
35
|
Lin Y, Liu J, Liu X, Ou Y, Li M, Zhang H, Song B, Xie C. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:237-44. [PMID: 24161651 DOI: 10.1016/j.plaphy.2013.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/18/2013] [Indexed: 05/19/2023]
Abstract
The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated.
Collapse
Affiliation(s)
- Yuan Lin
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China; Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, People's Republic of China; Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ou Y, Song B, Liu X, Xie C, Li M, Lin Y, Zhang H, Liu J. Promoter regions of potato vacuolar invertase gene in response to sugars and hormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 69:9-16. [PMID: 23688776 DOI: 10.1016/j.plaphy.2013.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/22/2013] [Indexed: 05/23/2023]
Abstract
Potato vacuolar acid invertase (StvacINV1) (β-fructofuranosidase; EC 3.2.1.26) has been confirmed to play an important role in cold-induced sweetening of potato tubers. However, the transcriptional regulation mechanisms of StvacINV1 are largely unknown. In this study, the 5'-flanking sequence of StvacINV1 was cloned and the cis-acting elements were predicted. Histochemical assay showed that the StvacINV1 promoter governed β-glucuronidase (GUS) expression in potato leaves, stems, roots and tubers. Quantitative analysis of GUS expression suggested that the activity of StvacINV1 promoter was suppressed by sucrose, glucose, fructose, and cold, while enhanced by indole-3-acetic acid (IAA), and gibberellic acid (GA3). Further deletion analysis clarified that the promoter regions from -118 to -551, -551 to -1021, and -1021 to -1521 were required for responding to sucrose/glucose, GA3, and IAA, respectively. These findings provide essential information regarding transcriptional regulation mechanisms of StvacINV1.
Collapse
Affiliation(s)
- Yongbin Ou
- National Centre for Vegetable Improvement Central China, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li M, Song B, Zhang Q, Liu X, Lin Y, Ou Y, Zhang H, Liu J. A synthetic tuber-specific and cold-induced promoter is applicable in controlling potato cold-induced sweetening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:41-7. [PMID: 23542182 DOI: 10.1016/j.plaphy.2013.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/19/2013] [Indexed: 05/03/2023]
Abstract
Cold-induced sweetening (CIS) in potato seriously hinders the potato processing industry. It could be of great value for genetic improvement of potato CIS to have a target gene specifically expressed in cold stored tubers. In this study, we used a synthetic promoter, pCL, in potato transformation to drive an antisense expression of StvacINV1, the acid vacuolar invertase gene from Solanum tuberosum. The measurements of expression and enzyme activity of target gene showed that pCL promoter could efficiently govern target gene to express specifically and remarkably regulate the activity of acid vacuolar invertase in potato tubers at low temperature, furthermore, it had almost no effect in other tissues or the tubers under room temperature. The transgenic tubers showed decrease in reducing sugar content during storage at low temperature and acceptable chip color without significant changes observed in plant morphology and tuberization between the nontransgenic and transgenic lines. This tuber-specific and cold-induced feature could maximally reduce the background expression of the target gene which might bring about potential negative or detrimental effects to plant development. The synthetic promoter confirmed here would be optimal for gene function research in potato tubers in response to low temperature.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| | - Botao Song
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| | - Qiong Zhang
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Xun Liu
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Yuan Lin
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Yongbin Ou
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Huiling Zhang
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Jun Liu
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| |
Collapse
|
38
|
Liu X, Lin Y, Liu J, Song B, Ou Y, Zhang H, Li M, Xie C. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:640-7. [PMID: 23421503 DOI: 10.1111/pbi.12054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/03/2013] [Accepted: 01/15/2013] [Indexed: 05/19/2023]
Abstract
Reducing sugar (RS) accumulation in cold-stored potato tubers, known as cold-induced sweetening (CIS), is a crucial factor causing unacceptable colour changes and acrylamide formation of fried products. The activity of vacuolar invertase (StvacINV1) is proved important for the CIS process, and invertase inhibitors are speculated to play roles in the post-translational regulation of StvacINV1 activity. In our previous research, two putative inhibitors (StInvInh2A and StInvInh2B) of StvacINV1 were implied to be involved in potato CIS. Here, we further reported that StInvInh2A and StInvInh2B had similar function that specifically inhibited StvacINV1 activity in potatoes. The genetic transformation of these inhibitor genes in potatoes by overexpression in CIS-sensitive and RNAi-silenced in CIS-resistant genotypes showed that StvacINV1 activity was strongly regulated by alteration of the transcripts of the inhibitors without impacting on the expression of StvacINV1. A negative power relationship was found between the transcripts of the inhibitors and StvacINV1 activity, suggesting 1) a transcriptional determination of the inhibitory capacity of StInvInh2A and StInvInh2B and 2) a significant inhibitory role of these inhibitors in post-translational modulation of StvacINV1. The results also demonstrated that depression of StvacINV1 activity through overexpression of StInvInh2A and StInvInh2B weakened accumulation of RS and acrylamide in cold-stored tubers and consequently improved the chip quality. The present research strongly suggest that both StInvInh2A and StInvInh2B function as inhibitors of StvacINV1 and play similar roles in regulating potato CIS by capping StvacINV1 activity. These inhibitors could be novel genetic resources applicable for improving quality of potato processing products.
Collapse
Affiliation(s)
- Xun Liu
- Key Laboratory of Horticultural Plant Biology-HAU, Ministry of Education, National Centre for Vegetable Improvement, Central China, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang H, Liu X, Liu J, Ou Y, Lin Y, Li M, Song B, Xie C. A novel RING finger gene,SbRFP1, increases resistance to cold-induced sweetening of potato tubers. FEBS Lett 2013; 587:749-55. [DOI: 10.1016/j.febslet.2013.01.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 11/15/2022]
|
40
|
McKenzie MJ, Chen RKY, Harris JC, Ashworth MJ, Brummell DA. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. PLANT, CELL & ENVIRONMENT 2013; 36:176-85. [PMID: 22734927 DOI: 10.1111/j.1365-3040.2012.02565.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cold-induced sweetening (CIS) is a serious post-harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark-coloured and bitter-tasting product and generating the probable carcinogen acrylamide as a by-product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS-susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS-resistant line increased susceptibility to CIS. The results show that post-translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS.
Collapse
Affiliation(s)
- Marian J McKenzie
- New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North 4442, New Zealand.
| | | | | | | | | |
Collapse
|
41
|
Modulation of gene expression in cold-induced sweetening resistant potato species Solanum berthaultii exposed to low temperature. Mol Genet Genomics 2012; 287:411-21. [DOI: 10.1007/s00438-012-0688-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/31/2012] [Indexed: 12/15/2022]
|