1
|
Lin Q, Liang C, Du B, Li L, Li H, Mai X, Li S, Xu W, Wu C, Zeng M. Prenatal detection and molecular cytogenetic characterization of Xp deletion and Xq duplication: a case report and literature review. BMC Med Genomics 2024; 17:57. [PMID: 38383389 PMCID: PMC10880359 DOI: 10.1186/s12920-024-01824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Copy number variation (CNV) of X chromosome can lead to a variety of neonatal abnormalities, especially for male fetuses. In recent years, due to the high sensitivity and high specificity of NIPS, its application has gradually expanded from chromosome aneuploidy to CNV. Few prenatal cases involving the detection of Xq duplication and deletion by NIPS have been reported, but it is of great significance for genetic counseling. CASE PRESENTATION A 36-year-old woman was referred for prenatal diagnosis and genetic counseling at 17 weeks of gestation because of abnormal result of noninvasive prenatal screening (NIPS). Multiple congenital malformations, hydrocephalus, and enlarged gallbladder were observed by prenatal ultrasound. Amniocentesis revealed the karyotype of the fetus as 46, XN, add(X) (p22.2) and the result of chromosomal microarray analysis was arr[hg19] Xq27.1q28(138,506,454-154896094) × 2 and arr[hg19] Xp22.33p22.32(168,551-5,616,964) × 1. CNV-seq showed that the mother shares a 16.42 Mb duplication in the Xq27.1-q28 region and a 2.97 Mb deletion in the Xp22.33-p22.32 region. After genetic counseling, the couple chose to terminate the pregnancy. CONCLUSION The combination of NIPS and CMA would be of values in detection of subchromosomal duplications and/or deletions at fetal stage. The detection of X chromosome aberration in a male fetus should give suspicion of the possibility of maternal inheritance.
Collapse
Affiliation(s)
- Qing Lin
- Center of Prenatal Diagnosis, Zhanjiang Maternity and Child Health Care Hospital, Zhanjiang, China.
| | - Chunya Liang
- Center of Prenatal Diagnosis, Zhanjiang Maternity and Child Health Care Hospital, Zhanjiang, China
| | - Bole Du
- Guangzhou Jingke Biotechnology Co., Ltd, Guangzhou, P. R. China
| | - Lijiao Li
- Center of Prenatal Diagnosis, Zhanjiang Maternity and Child Health Care Hospital, Zhanjiang, China
| | - Hong Li
- Guangzhou Jingke Biotechnology Co., Ltd, Guangzhou, P. R. China
| | - Xiaolan Mai
- Center of Prenatal Diagnosis, Zhanjiang Maternity and Child Health Care Hospital, Zhanjiang, China
| | - Sheng Li
- Guangzhou Jingke Biotechnology Co., Ltd, Guangzhou, P. R. China
| | - Wenyu Xu
- Center of Prenatal Diagnosis, Zhanjiang Maternity and Child Health Care Hospital, Zhanjiang, China
| | - Cunzhen Wu
- Center of Prenatal Diagnosis, Zhanjiang Maternity and Child Health Care Hospital, Zhanjiang, China
| | - Mi Zeng
- Guangzhou Jingke Biotechnology Co., Ltd, Guangzhou, P. R. China
| |
Collapse
|
2
|
Gottschalk I, Kölsch U, Wagner DL, Kath J, Martini S, Krüger R, Puel A, Casanova JL, Jezela-Stanek A, Rossi R, Chehadeh SE, Van Esch H, von Bernuth H. IRAK1 Duplication in MECP2 Duplication Syndrome Does Not Increase Canonical NF-κB-Induced Inflammation. J Clin Immunol 2023; 43:421-439. [PMID: 36319802 PMCID: PMC9628328 DOI: 10.1007/s10875-022-01390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Besides their developmental and neurological phenotype, most patients with MECP2/IRAK1 duplication syndrome present with recurrent and severe infections, accompanied by strong inflammation. Respiratory infections are the most common cause of death. Standardized pneumological diagnostics, targeted anti-infectious treatment, and knowledge of the underlying pathomechanism that triggers strong inflammation are unmet clinical needs. We investigated the influence of IRAK1 overexpression on the canonical NF-κB signaling as a possible cause for excessive inflammation in these patients. METHODS NF-κB signaling was examined by measuring the production of proinflammatory cytokines and evaluating the IRAK1 phosphorylation and degradation as well as the IκBα degradation upon stimulation with IL-1β and TLR agonists in SV40-immortalized fibroblasts, PBMCs, and whole blood of 9 patients with MECP2/IRAK1 duplication syndrome, respectively. RESULTS Both, MECP2/IRAK1-duplicated patients and healthy controls, showed similar production of IL-6 and IL-8 upon activation with IL-1β and TLR2/6 agonists in immortalized fibroblasts. In PBMCs and whole blood, both patients and controls had a similar response of cytokine production after stimulation with IL-1β and TLR4/2/6 agonists. Patients and controls had equivalent patterns of IRAK1 phosphorylation and degradation as well as IκBα degradation upon stimulation with IL-1β. CONCLUSION Patients with MECP2/IRAK1 duplication syndrome do not show increased canonical NF-κB signaling in immortalized fibroblasts, PBMCs, and whole blood. Therefore, we assume that these patients do not benefit from a therapeutic suppression of this pathway.
Collapse
Affiliation(s)
- Ilona Gottschalk
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Uwe Kölsch
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany
| | - Dimitrios L Wagner
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Campus Virchow-Klinikum, Berlin, Germany
| | - Jonas Kath
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefania Martini
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Rainer Rossi
- Childrens' Hospital Neukölln, Vivantes GmbH, Berlin, Germany
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany.
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Schwartz CE, Louie RJ, Toutain A, Skinner C, Friez MJ, Stevenson RE. X-Linked intellectual disability update 2022. Am J Med Genet A 2023; 191:144-159. [PMID: 36300573 DOI: 10.1002/ajmg.a.63008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Genes that are involved in the transcription process, mitochondrial function, glycoprotein metabolism, and ubiquitination dominate the list of 21 new genes associated with X-linked intellectual disability since the last update in 2017. The new genes were identified by sequencing of candidate genes (2), the entire X-chromosome (2), the whole exome (15), or the whole genome (2). With these additions, 42 (21%) of the 199 named XLID syndromes and 27 (25%) of the 108 numbered nonsyndromic XLID families remain to be resolved at the molecular level. Although the pace of discovery of new XLID genes has slowed during the past 5 years, the density of genes on the X chromosome that cause intellectual disability still appears to be twice the density of intellectual disability genes on the autosomes.
Collapse
Affiliation(s)
| | | | - Annick Toutain
- Department of Medical Genetics, Centre Hospitalier Universitaire, Tours, France
| | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | |
Collapse
|
4
|
A brief history of MECP2 duplication syndrome: 20-years of clinical understanding. Orphanet J Rare Dis 2022; 17:131. [PMID: 35313898 PMCID: PMC8939085 DOI: 10.1186/s13023-022-02278-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
MECP2 duplication syndrome (MDS) is a rare, X-linked, neurodevelopmental disorder caused by a duplication of the methyl-CpG-binding protein 2 (MECP2) gene-a gene in which loss-of-function mutations lead to Rett syndrome (RTT). MDS has an estimated live birth prevalence in males of 1/150,000. The key features of MDS include intellectual disability, developmental delay, hypotonia, seizures, recurrent respiratory infections, gastrointestinal problems, behavioural features of autism and dysmorphic features-although these comorbidities are not yet understood with sufficient granularity. This review has covered the past two decades of MDS case studies and series since the discovery of the disorder in 1999. After comprehensively reviewing the reported characteristics, this review has identified areas of limited knowledge that we recommend may be addressed by better phenotyping this disorder through an international data collection. This endeavour would also serve to delineate the clinical overlap between MDS and RTT.
Collapse
|
5
|
Sun ML, Yue FG, Zhang XY, Jiang YT, Li LL, Zhang HG, Liu RZ. Molecular cytogenetic characterization of 2q deletion and Xq duplication associated with nasal bone dysplasia in prenatal diagnosis: A case report and literature review. Taiwan J Obstet Gynecol 2022; 61:163-169. [PMID: 35181032 DOI: 10.1016/j.tjog.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We report a prenatal case of male fetus with a 2q13 deletion and an Xq27.3q28 duplication, presenting nasal bone dysplasia by ultrasound examination. And we compare the similarities of clinical features of cases consisting of similar 2q deletion and Xq duplication. CASE REPORT A 30-year-old woman was referred for prenatal diagnosis and genetic counseling at 24 weeks of gestation. Prenatal ultrasound showed nasal bone dysplasia of the fetus. Amniocentesis revealed the karyotype of the fetus as 46, XY and the results of chromosomal microarray analysis was arr[GRCh37] 2q13(110467258-111370025)x1, arr[GRCh37]Xq27.3q28(144050780-149748782)x2. The parents both have normal karyotypes. The couple chose to continue the pregnancy and finally delivered a male infant at 39 weeks of gestation. His weight was 2850 g and length was 50 cm. Physical examination of the newborn revealed no apparent anomalies. Until the boy was one year old, there was no abnormalities in his growth and development. The long-term follow-up till adulthood for the healthy infant is necessary. CONCLUSION The development of CMA plays a critical role in prenatal diagnosis and genetic counseling for unidentified chromosomal anomalies. More clinical information and further studies of patients with these anomalies will identify the pathogenicity of the involving genes and improve the understanding of the phenotype-genotype correlation.
Collapse
Affiliation(s)
- Mei-Ling Sun
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Fa-Gui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Xin-Yue Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Yu-Ting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Lei-Lei Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Hong-Guo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Rui-Zhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
6
|
Du C, Wang F, Li Z, Zhang M, Yu X, Liang Y, Luo X. Xq26.3-q27.1 duplication including SOX3 gene in a Chinese boy with hypopituitarism: case report and two years treatment follow up. BMC Med Genomics 2022; 15:19. [PMID: 35114986 PMCID: PMC8811983 DOI: 10.1186/s12920-022-01167-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SOX3 is essential for pituitary development normally at the earliest stages of development. In humans, variants of SOX3 can cause X-linked hypopituitarism with various clinical manifestations, with or without mental retardation. CASE PRESENTATION We present an 8-year-old Chinese patient with congenital hypopituitarism who had a 6.180 Mb duplication on Xq26.3q27.1 including SOX3, F9, and eight other contiguous genes. The main complains of the boy was short stature. His height was 90.1 cm (- 5.87SDS), weight 11.5 kg (- 5.25SDS). He developed growth hormone (GH) deficiency, cryptorchidism and low thyroid function. Pituitary magnetic resonance imaging revealed the pituitary dysplasia. After diagnosis, levothyroxine was given for one month first, and the thyroid function basically returned to normal, but the growth situation did not improve at all. Then recombinant human GH was given, his height, growth rate and height SDS were improved significantly in the 2 years follow-up. The level of height SDS improved from - 5.87 SDS before treatment to - 3.27 SDS after the first year of treatment and - 1.78 SDS after the second years of treatment. Gonadal function and long-term prognosis of the patient still need further observation and follow-up. CONCLUSIONS This is the first case of Chinese male patient with multiple hypophysis dysfunction caused by SOX3 duplication, which will expand the range of phenotypes observed in patients with duplication of SOX3.
Collapse
Affiliation(s)
- Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feiya Wang
- Department of Biology, Boston University, Boston, MA, USA
| | - Zhuoguang Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Mini Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Yu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
7
|
Parissone F, Pucci M, Meneghelli E, Zuffardi O, Di Paola R, Zaffagnini S, Franchi M, Santangelo E, Cantalupo G, Cavarzere P, Antoniazzi F, Piacentini G, Gaudino R. A novel de novo partial xq duplication in a girl with short stature, nonverbal learning disability and diminished ovarian reserve - effect of growth hormone treatment and fertility preservation strategies: a case report and up-to-date review. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2020; 2020:1. [PMID: 31938033 PMCID: PMC6953468 DOI: 10.1186/s13633-019-0071-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
Background Xq duplication is a rare condition with a very variable phenotype, which could mimic other genetic syndromes involving the long arm of chromosome X. Sometimes short stature and diminished ovarian reserve (DOR) may be present. Treatments with rGH (Recombinant growth Hormon) or with fertility preservation strategies have not been previously described. Case presentation We present the case of a female with a novel de novo Xq partial duplication (karyotype: 46,Xder(X)(qter→q21.31::pter→qter) confirmed by array-CGH analysis. She presented with short stature, Nonverbal Learning Disability, developmental delay during childhood, severe scoliosis, spontaneous onset of menarche and irregular menstrual cycles. AMH (Anti-Müllerian Hormone) allowed detection of a preserved but severely diminished ovarian reserve with a POI (Premature Ovarian insufficiency) onset risk. She was effectively subjected to fertility preservation strategies and rGH therapy. We also reviewed other published cases with Xq duplication, reporting the main clinics characteristics and any adopted treatment. Conclusions rGH treatment and cryopreservation in a multidisciplinary approach are good therapeutic strategies for Xq duplication syndrome with short stature and premature ovarian failure.
Collapse
Affiliation(s)
- Francesca Parissone
- 1Department of Obstetrics and Gynaecology, AOUI Verona, Verona, Italy.,4Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Obstetrics and Gynaecology, University of Verona, Verona, Italy
| | - Mairi Pucci
- 2Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry section, University of Verona, P.le L. A Scuro, 10, 37134 Verona, Italy
| | - Emanuela Meneghelli
- 2Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry section, University of Verona, P.le L. A Scuro, 10, 37134 Verona, Italy
| | - Orsetta Zuffardi
- 3Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Rossana Di Paola
- 1Department of Obstetrics and Gynaecology, AOUI Verona, Verona, Italy
| | | | - Massimo Franchi
- 4Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Obstetrics and Gynaecology, University of Verona, Verona, Italy
| | - Elisabetta Santangelo
- 5Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Child Neuropsychiatry, University of Verona, Verona, Italy
| | - Gaetano Cantalupo
- 5Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Child Neuropsychiatry, University of Verona, Verona, Italy
| | - Paolo Cavarzere
- 6Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Paediatrics, University of Verona, Verona, Italy
| | - Franco Antoniazzi
- 6Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Paediatrics, University of Verona, Verona, Italy
| | - Giorgio Piacentini
- 6Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Paediatrics, University of Verona, Verona, Italy
| | - Rossella Gaudino
- 6Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Paediatrics, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Giudice-Nairn P, Downs J, Wong K, Wilson D, Ta D, Gattas M, Amor D, Thompson E, Kirrali-Borri C, Ellaway C, Leonard H. The incidence, prevalence and clinical features of MECP2 duplication syndrome in Australian children. J Paediatr Child Health 2019; 55:1315-1322. [PMID: 30756435 DOI: 10.1111/jpc.14399] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/20/2019] [Indexed: 12/22/2022]
Abstract
AIM The aim of this study was to assess the incidence and prevalence of MECP2 duplication syndrome in Australian children and further define its phenotype. METHODS The Australian Paediatric Surveillance Unit was used to identify children with MECP2 duplication syndrome between June 2014 and November 2017. Reporting clinicians were invited to complete a questionnaire. Clinician data (n = 20) were supplemented with information from the International Rett Syndrome Phenotype Database and from caregivers (n = 7). Birth prevalence and diagnostic incidence were calculated. RESULTS The birth prevalence of MECP2 duplication syndrome in Australia was 0.65/100 000 for all live births and 1/100 000 for males. Diagnostic incidence was 0.07/100 000 person-years overall and 0.12/100 000 person-years for males. The median age at diagnosis was 23.5 months (range 0 months-13 years). A history of pneumonia was documented in three quarters of the clinical cases, half of whom had more than nine episodes. Cardiovascular abnormalities were reported in three cases. A clinical vignette is presented for one child who died due to severe idiopathic pulmonary hypertension. The majority (13/15) of males had inherited the duplication from their mothers, and two had an unbalanced translocation. CONCLUSIONS MECP2 duplication syndrome is a rare but important diagnosis in children because of the burden of respiratory illness and recurrence risk. Pulmonary hypertension is a rare life-threatening complication. Array comparative genomic hybridisation testing is recommended for children with undiagnosed intellectual disability or global developmental delay. Early cardiac assessment and ongoing monitoring is recommended for MECP2 duplication syndrome.
Collapse
Affiliation(s)
- Peter Giudice-Nairn
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jenny Downs
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.,School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Kingsley Wong
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Dylan Wilson
- Leading Steps Paediatric Clinic, Gold Coast, Queensland, Australia
| | - Daniel Ta
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - David Amor
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Thompson
- SA Clinical Genetics Service, Women's and Children's Hospital, Adelaide, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Cathy Kirrali-Borri
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
| | - Carolyn Ellaway
- Genetic Medicine, and Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Urh K, Kunej T. Genome-wide screening for smallest regions of overlaps in cryptorchidism. Reprod Biomed Online 2018; 37:85-99. [PMID: 29631949 DOI: 10.1016/j.rbmo.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023]
Abstract
Cryptorchidism is a urogenital abnormality associated with increased rates of testicular neoplasia and impaired spermatogenesis. The field is facing expansion of genomics data; however, it lacks protocols for biomarker prioritization. Identification of smallest regions of overlap (SRO) presents an approach for candidate gene identification but has not yet been systematically conducted in cryptorchidism. The aim of this study was to conduct a genome-wide screening for SRO (GW-SRO) associated with cryptorchidism development. We updated the Cryptorchidism Gene Database to version 3, remapped genomic coordinates of loci from older assemblies to the GRCh38 and performed genome-wide screening for overlapping regions associated with cryptorchidism risk. A total of 73 chromosomal loci (68 involved in chromosomal mutations and five copy number variations) described in 37 studies associated with cryptorchidism risk in humans were used for SRO identification. Analysis resulted in 18 SRO, based on deletions, duplications, inversions, derivations and copy number variations. Screening for SRO was challenging owing to heterogeneous reporting of genomic locations. To our knowledge, this is the first GW-SRO study for cryptorchidism and it presents the basis for further narrowing of critical regions for cryptorchidism and planning functional experiments. The developed protocol could also be applied to other multifactorial diseases.
Collapse
Affiliation(s)
- Kristian Urh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, Slovenia.
| |
Collapse
|
10
|
El Chehadeh S, Touraine R, Prieur F, Reardon W, Bienvenu T, Chantot-Bastaraud S, Doco-Fenzy M, Landais E, Philippe C, Marle N, Callier P, Mosca-Boidron AL, Mugneret F, Le Meur N, Goldenberg A, Guerrot AM, Chambon P, Satre V, Coutton C, Jouk PS, Devillard F, Dieterich K, Afenjar A, Burglen L, Moutard ML, Addor MC, Lebon S, Martinet D, Alessandri JL, Doray B, Miguet M, Devys D, Saugier-Veber P, Drunat S, Aral B, Kremer V, Rondeau S, Tabet AC, Thevenon J, Thauvin-Robinet C, Perreton N, Des Portes V, Faivre L. Xq28 duplication includingMECP2in six unreported affected females: what can we learn for diagnosis and genetic counselling? Clin Genet 2017; 91:576-588. [DOI: 10.1111/cge.12898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 11/27/2022]
Affiliation(s)
- S. El Chehadeh
- FHU TRANSLAD, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Centre de Génétique, CHU de Dijon; Dijon France
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre; Strasbourg France
| | - R. Touraine
- Service de Génétique Clinique Chromosomique et Moléculaire; CHU de Saint-Etienne; Saint-Étienne France
| | - F. Prieur
- Service de Génétique Clinique Chromosomique et Moléculaire; CHU de Saint-Etienne; Saint-Étienne France
| | - W. Reardon
- Clinical Genetics, Division National Centre for Medical Genetics; Our Lady's Children's Hospital; Dublin Ireland
| | - T. Bienvenu
- AP-HP, Laboratoire de Génétique et Biologie Moléculaires, HU Paris Centre, Site Cochin, France; Université Paris Descartes; Institut Cochin, INSERM U1016; Paris France
| | - S. Chantot-Bastaraud
- Service de Génétique et Embryologie Médicales; CHU Paris Est - Hôpital d'Enfants Armand-Trousseau; Paris France
| | - M. Doco-Fenzy
- Service de Génétique, EA3801; SFR-CAP Santé, CHU de Reims; Reims France
| | - E. Landais
- PRBI, Pôle de Biologie Médicale; CHU de Reims; Reims France
| | - C. Philippe
- Laboratoire de Génétique Médicale; Hôpitaux de Brabois CHRU; Vandoeuvre les Nancy France
| | - N. Marle
- Service de Cytogénétique; CHU de Dijon; Dijon France
| | - P. Callier
- Service de Cytogénétique; CHU de Dijon; Dijon France
| | | | - F. Mugneret
- Service de Cytogénétique; CHU de Dijon; Dijon France
| | - N. Le Meur
- Etablissement Français du Sang; CHU de Rouen; Rouen France
| | - A. Goldenberg
- Service de Génétique et Inserm U1079, Centre Normand de Génomique Médicale et Médecine Personnalisée, CHU de Rouen; Inserm et Université de Rouen; Rouen France
| | - A.-M. Guerrot
- Service de Génétique et Inserm U1079, Centre Normand de Génomique Médicale et Médecine Personnalisée, CHU de Rouen; Inserm et Université de Rouen; Rouen France
| | - P. Chambon
- Laboratoire D'histologie, Cytogénétique et Biologie de la Reproduction; CHU de Rouen; Rouen France
| | - V. Satre
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - C. Coutton
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - P.-S. Jouk
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - F. Devillard
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - K. Dieterich
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - A. Afenjar
- Service de Génétique; CHU Paris Est - Hôpital d'Enfants Armand-Trousseau; Paris France
| | - L. Burglen
- Service de Génétique; CHU Paris Est - Hôpital d'Enfants Armand-Trousseau; Paris France
| | - M.-L. Moutard
- Unité de neuropédiatrie et pathologie du développement; CHU Paris Est - Hôpital d'Enfants Armand-Trousseau; Paris France
| | - M.-C. Addor
- Service de Génétique Médicale; Centre Hospitalier Universitaire Vaudois CHUV; Lausanne Switzerland
| | - S. Lebon
- Unité de Neuropédiatrie; Centre Hospitalier Universitaire Vaudois CHUV; Lausanne Switzerland
| | - D. Martinet
- Laboratoire de Cytogénétique Constitutionnelle et Prénatale; Centre Hospitalier Universitaire Vaudois CHUV; Lausanne Switzerland
| | - J.-L. Alessandri
- Pôle Enfants; CHU de la Réunion - Hôpital Félix Guyon; Saint-Denis France
| | - B. Doray
- Service de Génétique; CHU de la Réunion - Hôpital Félix Guyon; Saint-Denis France
| | - M. Miguet
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre; Strasbourg France
| | - D. Devys
- Laboratoire de Diagnostic Génétique; CHU de Strasbourg - Hôpital Civil; Strasbourg France
| | - P. Saugier-Veber
- Laboratoire de Génétique Moléculaire; Faculté de Médecine et de Pharmacie; Rouen France
| | - S. Drunat
- Laboratoire de Biologie Moléculaire; Hôpital Robert Debré; Paris France
| | - B. Aral
- Service de Biologie Moléculaire; CHU de Dijon; Dijon France
| | - V. Kremer
- Laboratoire de Cytogénétique, Hôpitaux Universitaires de Strasbourg; Hôpital de Hautepierre; Strasbourg France
| | - S. Rondeau
- Service de Pédiatrie Néonatale et Réanimation; CHU de Rouen; Rouen France
| | - A.-C. Tabet
- Laboratoire de Cytogénétique; Hôpital Robert Debré; Paris France
| | - J. Thevenon
- FHU TRANSLAD, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Centre de Génétique, CHU de Dijon; Dijon France
- GAD, EA4271, Génétique et Anomalies du Développement; Université de Bourgogne; Dijon France
| | - C. Thauvin-Robinet
- FHU TRANSLAD, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Centre de Génétique, CHU de Dijon; Dijon France
- GAD, EA4271, Génétique et Anomalies du Développement; Université de Bourgogne; Dijon France
| | - N. Perreton
- EPICIME-CIC 1407 de Lyon, Inserm; Service de Pharmacologie Clinique, CHU-Lyon; Bron France
| | - V. Des Portes
- Service de Neurologie Pédiatrique; CHU de Lyon-GH Est; Bron France
| | - L. Faivre
- FHU TRANSLAD, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Centre de Génétique, CHU de Dijon; Dijon France
- GAD, EA4271, Génétique et Anomalies du Développement; Université de Bourgogne; Dijon France
| |
Collapse
|
11
|
San Antonio-Arce V, Fenollar-Cortés M, Oancea Ionescu R, DeSantos-Moreno T, Gallego-Merlo J, Illana Cámara FJ, Cotarelo Pérez MC. MECP2 Duplications in Symptomatic Females: Report on 3 Patients Showing the Broad Phenotypic Spectrum. Child Neurol Open 2016; 3:2329048X16630673. [PMID: 28503606 PMCID: PMC5417292 DOI: 10.1177/2329048x16630673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/28/2015] [Accepted: 01/11/2016] [Indexed: 12/22/2022] Open
Abstract
Xq28 microduplications including the MECP2 gene constitute a 100% penetrant X-linked syndrome in males caused by overexpression of normal MeCP2 protein. A small number of cases of affected females have been reported. This can be due to the location of the duplicated material into an autosome, but it can also be due to the location of the duplicated material into one of the X chromosomes and random or unfavorable skewed X chromosome inactivation, which is much more likely to occur but may be underdiagnosed because of the resulting broad phenotypic spectrum. In order to contribute to the phenotypic delineation of Xq28 microduplications including MECP2 in symptomatic females, the authors present clinical and molecular data on 3 patients illustrating the broad phenotypic spectrum. Our finding underlines the importance of quantitative analysis of MECP2 in females with intellectual disability and raises the question of the indication in females with borderline intellectual performances or learning difficulties.
Collapse
|
12
|
Igarashi M, Mikami H, Katsumi M, Miyado M, Izumi Y, Ogata T, Fukami M. SOX3 Overdosage Permits Normal Sex Development in Females with Random X Inactivation. Sex Dev 2015; 9:125-9. [PMID: 25791725 DOI: 10.1159/000377653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Submicroscopic duplications involving SOX3 and/or its flanking regions have been identified in 46,XX individuals both with and without disorders of sex development, raising the question whether SOX3 overdosage is sufficient to induce testicular development in genetically female individuals. Here, we report a mother-daughter pair with female phenotypes and random X inactivation. The individuals carry complex X chromosomal rearrangements leading to a copy number gain of genomic regions involving SOX3 and its upstream region. The amplified DNA fragments were detected at Xq27. These results provide evidence that SOX3 overdosage permits normal sex development in 46,XX individuals with random X inactivation.
Collapse
Affiliation(s)
- Maki Igarashi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Bauters M, Frints SG, Van Esch H, Spruijt L, Baldewijns MM, de Die-Smulders CEM, Fryns JP, Marynen P, Froyen G. Evidence for increased SOX3 dosage as a risk factor for X-linked hypopituitarism and neural tube defects. Am J Med Genet A 2014; 164A:1947-52. [PMID: 24737742 DOI: 10.1002/ajmg.a.36580] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/24/2014] [Indexed: 11/09/2022]
Abstract
Genomic duplications of varying lengths at Xq26-q27 involving SOX3 have been described in families with X-linked hypopituitarism. Using array-CGH we detected a 1.1 Mb microduplication at Xq27 in a large family with three males suffering from X-linked hypopituitarism. The duplication was mapped from 138.7 to 139.8 Mb, harboring only two annotated genes, SOX3 and ATP11C, and was shown to be a direct tandem copy number gain. Unexpectedly, the microduplication did not fully segregate with the disease in this family suggesting that SOX3 duplications have variable penetrance for X-linked hypopituitarism. In the same family, a female fetus presenting with a neural tube defect was also shown to carry the SOX3 copy number gain. Since we also demonstrated increased SOX3 mRNA levels in amnion cells derived from an unrelated t(X;22)(q27;q11) female fetus with spina bifida, we propose that increased levels of SOX3 could be a risk factor for neural tube defects.
Collapse
Affiliation(s)
- Marijke Bauters
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium; Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Neural proliferation, migration and differentiation require reorganization of the actin cytoskeleton and regulation of vesicle trafficking to provide stability in maintaining cell adhesions, allow for changes in cell shape, and establishing cell polarity. Human disorders involving the actin-binding Filamin A (FLNA) and vesicle trafficking Brefeldin-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in these various developmental processes, resulting in a malformation of cortical development called periventricular heterotopia (nodules along the ventricular lining) and microcephaly (small brain). Here we discuss several recent reports from our laboratory that demonstrate a shared role for both proteins in actin-associated vesicle trafficking, which is required to maintain the expression and stability of cell adhesion and cell cycle associated molecules during cortical development. While changes in FLNA and BIG2 have first been linked to disorders involving the central nervous system, increasing reports suggest they are associated with aberrant development of various other organ systems in the body. These studies suggest that vesicle trafficking defects in FLN-GEF dependent pathways may contribute to a much broader phenotype than previously realized.
Collapse
Affiliation(s)
- Volney L Sheen
- Department of Neurology; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA USA
| |
Collapse
|
15
|
Novara F, Simonati A, Sicca F, Battini R, Fiori S, Contaldo A, Criscuolo L, Zuffardi O, Ciccone R. MECP2 duplication phenotype in symptomatic females: report of three further cases. Mol Cytogenet 2014; 7:10. [PMID: 24472397 PMCID: PMC3922903 DOI: 10.1186/1755-8166-7-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/17/2013] [Indexed: 01/10/2023] Open
Abstract
Background Xq28 duplications, including MECP2 (methyl CpG-binding protein 2; OMIM 300005), have been identified in approximately 140 male patients presenting with hypotonia, severe developmental delay/intellectual disability, limited or absent speech and ambulation, and recurrent respiratory infections. Female patients with Xq28 duplication have been rarely reported and are usually asymptomatic. Altogether, only fifteen symptomatic females with Xq28 duplications including MECP2 have been reported so far: six of them had interstitial duplications while the remaining had a duplication due to an unbalanced X;autosome translocation. Some of these females present with unspecific mild to moderate intellectual disability whereas a more complex phenotype is reported for females with unbalanced X;autosome translocations. Findings Here we report on the clinical features of three other adolescent to adult female patients with Xq28 interstitial duplications of variable size, all including MECP2 gene. Conclusions Mild to moderate cognitive impairment together with learning difficulties and speech delay were evident in each of our patients. Moreover, early inadequate behavioral patterns followed by persistent difficulties in the social and communication domains, as well as the occurrence of mild psychiatric disturbances, are common features of these three patients.
Collapse
Affiliation(s)
- Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Scott Schwoerer J, Laffin J, Haun J, Raca G, Friez MJ, Giampietro PF. MECP2 duplication: possible cause of severe phenotype in females. Am J Med Genet A 2014; 164A:1029-34. [PMID: 24458799 DOI: 10.1002/ajmg.a.36380] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/01/2013] [Indexed: 02/05/2023]
Abstract
MECP2 duplication syndrome, originally described in 2005, is an X-linked neurodevelopmental disorder comprising infantile hypotonia, severe to profound intellectual disability, autism or autistic-like features, spasticity, along with a variety of additional features that are not always clinically apparent. The syndrome is due to a duplication (or triplication) of the gene methyl CpG binding protein 2 (MECP2). To date, the disorder has been described almost exclusively in males. Female carriers of the duplication are thought to have no or mild phenotypic features. Recently, a phenotype for females began emerging. We describe a family with ∼290 kb duplication of Xq28 region that includes the MECP2 gene where the proposita and affected family members are female. Twin sisters, presumed identical, presented early with developmental delay, and seizures. Evaluation of the proposita at 25 years of age included microarray comparative genomic hybridization (aCGH) which revealed the MECP2 gene duplication. The same duplication was found in the proposita's sister, who is more severely affected, and the proband's mother who has mild intellectual disability and depression. X-chromosome inactivation studies showed significant skewing in the mother, but was uninformative in the twin sisters. We propose that the MECP2 duplication caused for the phenotype of the proband and her sister. These findings support evidence for varied severity in some females with MECP2 duplications.
Collapse
|
17
|
Clinical manifestations of Xq28 functional disomy involvingMECP2in one female and two male patients. Am J Med Genet A 2013; 161A:1779-85. [DOI: 10.1002/ajmg.a.35975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 03/12/2013] [Indexed: 11/07/2022]
|
18
|
Sanmann JN, Bishay DL, Starr LJ, Bell CA, Pickering DL, Stevens JM, Kahler SG, Olney AH, Schaefer GB, Sanger WG. Characterization of six novel patients withMECP2duplications due to unbalanced rearrangements of the X chromosome. Am J Med Genet A 2012; 158A:1285-91. [DOI: 10.1002/ajmg.a.35347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
|
19
|
Sanmann JN, Schaefer GB, Buehler BA, Sanger WG. Algorithmic approach for methyl-CpG binding protein 2 (MECP2) gene testing in patients with neurodevelopmental disabilities. J Child Neurol 2012; 27:346-54. [PMID: 22123427 DOI: 10.1177/0883073811424796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methyl-CpG binding protein 2 gene (MECP2) testing is indicated for patients with numerous clinical presentations, including Rett syndrome (classic and atypical), unexplained neonatal encephalopathy, Angelman syndrome, nonspecific mental retardation, autism (females), and an X-linked family history of developmental delay. Because of this complexity, a gender-specific approach for comprehensive MECP2 gene testing is described. Briefly, sequencing of exons 1 to 4 of MECP2 is recommended for patients with a Rett syndrome phenotype, unexplained neonatal encephalopathy, an Angelman syndrome phenotype (with negative 15q11-13 analysis), nonspecific mental retardation, or autism (females). Additional testing for large-scale MECP2 deletions is recommended for patients with Rett syndrome or Angelman syndrome phenotypes (with negative 15q11-13 analysis) following negative sequencing. Alternatively, testing for large-scale MECP2 duplications is recommended for males presenting with mental retardation, an X-linked family history of developmental delay, and a significant proportion of previously described clinical features (particularly a history of recurrent respiratory infections).
Collapse
Affiliation(s)
- Jennifer N Sanmann
- Human Genetics Laboratories, University of Nebraska Medical Center and the Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE 68198-5440, USA.
| | | | | | | |
Collapse
|
20
|
Chen CP, Su YN, Lin HH, Chern SR, Tsai FJ, Wu PC, Lee CC, Chen YT, Wang W. De novo duplication of Xq22.1→q24 with a disruption of the NXF gene cluster in a mentally retarded woman with short stature and premature ovarian failure. Taiwan J Obstet Gynecol 2012; 50:339-44. [PMID: 22030050 DOI: 10.1016/j.tjog.2011.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2010] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To present molecular cytogenetic characterization of a de novo duplication of Xq22.1→q24 in a mentally retarded woman with short stature and premature ovarian failure. MATERIALS AND METHODS A 19-year-old woman presented with psychomotor retardation, developmental delay, mental retardation, short stature, low body weight, general muscle hypotonia, distal muscle hypotrophy of the lower extremities, elongated digits, scanty pubic and axillary hair, hypoplastic external female genitalia, and secondary amenorrhea but no clinical features of Pelizaeus-Merzbacher disease. Conventional cytogenetic analysis revealed a karyotype of 46,X,dup(X)(q22.1q24). Fluorescence in situ hybridization determined a direct duplication with a linear tandem orientation. Array comparative genomic hybridization demonstrated partial trisomy Xq [arr cgh Xq22.1q24 (101,490,234-119,070,188 bp)×3] with a 17.6-Mb duplication. RESULTS The duplicated region contained NXF2B, NXF4, NXF3, PLP1, and PGRMC1 genes. There was a disruption of the NXF gene cluster of Xcen-NXF5-NXF2-NXF2B-NXF4-NXF3-Xqter. CONCLUSION A duplication of Xq22.1→q24 with a disruption of the NXF gene cluster in female patients can be associated with clinical manifestations of mental retardation in addition to short stature and premature ovarian failure.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mayo S, Monfort S, Roselló M, Orellana C, Oltra S, Armstrong J, Català V, Martínez F. De novo Interstitial Triplication of MECP2 in a Girl with Neurodevelopmental Disorder and Random X Chromosome Inactivation. Cytogenet Genome Res 2011; 135:93-101. [DOI: 10.1159/000330917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2011] [Indexed: 01/08/2023] Open
|
22
|
Abstract
Since the initial report that clearly established a causal role between duplication of the MECP2 gene and a severe syndromic form of intellectual disability, many new patients have been identified and reported, and the etiology in already published families solved. This has led to the establishment of a clinically recognizable disorder. Here, we review the clinical data of 129 reported and nonreported male patients with MECP2 duplication syndrome.
Collapse
Affiliation(s)
- H Van Esch
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Jezela-Stanek A, Ciara E, Juszczak M, Pelc M, Materna-Kiryluk A, Krajewska-Walasek M. Cryptic x; autosome translocation in a boy--delineation of the phenotype. Pediatr Neurol 2011; 44:221-4. [PMID: 21310340 DOI: 10.1016/j.pediatrneurol.2010.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/19/2010] [Accepted: 10/01/2010] [Indexed: 11/25/2022]
Abstract
Chromosome X-to-autosome translocations [t(X;A)] are rare rearrangements with an estimated occurrence of 1 to 3 per 10,000 live births. Occurrences of Xq duplications have been observed in male and female subjects in whom the X chromosome segment escapes inactivation and results in functional disomy. We report a case of X;6 translocation in a 7-year-old boy with severe mental retardation, hypotonia, and recurrent respiratory tract infections. High-resolution chromosome analyses (fluorescence in situ hybridization, multiplex ligation probe-dependent amplification, and whole-genome array) revealed a terminal duplication of chromosome X at q28-qter (approximately 3.246 Mb in size) involving gene MECP2 and a terminal deletion (approximately 1.89 Mb) with the breakpoint at 6q27. This is the second report of a boy with a cryptic unbalanced Xq-autosome translocation. This case increases our understanding of mental disability caused by terminal Xq duplication.
Collapse
Affiliation(s)
- Aleksandra Jezela-Stanek
- Department of Medical Genetics, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
24
|
Breman AM, Ramocki MB, Kang SHL, Williams M, Freedenberg D, Patel A, Bader PI, Cheung SW. MECP2 duplications in six patients with complex sex chromosome rearrangements. Eur J Hum Genet 2010; 19:409-15. [PMID: 21119712 DOI: 10.1038/ejhg.2010.195] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1-4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1-3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements.
Collapse
Affiliation(s)
- Amy M Breman
- Medical Genetics Laboratories, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Madrigal I, Fernández-Burriel M, Rodriguez-Revenga L, Cabrera JC, Martí M, Mur A, Milà M. Xq26.2-q26.3 microduplication in two brothers with intellectual disabilities: clinical and molecular characterization. J Hum Genet 2010; 55:822-6. [PMID: 20861843 DOI: 10.1038/jhg.2010.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Partial duplications involving the long arm of the X chromosome are associated with mental retardation, short stature, microcephaly, hypopituitarism and a wide range of physical findings. We identified an inherited Xq26.2-Xq26.3 duplication in two brothers with severe mental retardation, hypotonia, growth delay, craniofacial disproportion and dental malocclusion. Chromosome analysis was normal and multiplex ligation-dependent probe amplification analysis detected duplication on Xq26. Further characterization by array comparative genomic hybridization and quantitative PCR helped to determine proximal and distal duplication breakpoints giving a size of approximately 2.8 Mb. The duplication encompasses 24 known genes, including the X-linked mental retardation genes ARHGEF6, PHF6, HPRT1 and SLC9A6. Clinical and molecular characterization of Xq duplications will shed more light into the phenotypic implication of functional disomy of X-chromosome genes.
Collapse
|
26
|
Auber B, Burfeind P, Thiels C, Alsat EA, Shoukier M, Liehr T, Nelle H, Bartels I, Salinas-Riester G, Laccone F. An unbalanced translocation resulting in a duplication of Xq28 causes a Rett syndrome-like phenotype in a female patient. Clin Genet 2010; 77:593-7. [DOI: 10.1111/j.1399-0004.2009.01363.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Rio M, Malan V, Boissel S, Toutain A, Royer G, Gobin S, Morichon-Delvallez N, Turleau C, Bonnefont JP, Munnich A, Vekemans M, Colleaux L. Familial interstitial Xq27.3q28 duplication encompassing the FMR1 gene but not the MECP2 gene causes a new syndromic mental retardation condition. Eur J Hum Genet 2010; 18:285-90. [PMID: 19844254 PMCID: PMC2987214 DOI: 10.1038/ejhg.2009.159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/22/2009] [Accepted: 07/27/2009] [Indexed: 11/09/2022] Open
Abstract
X-linked mental retardation is a common disorder that accounts for 5-10% of cases of mental retardation in males. Fragile X syndrome is the most common form resulting from a loss of expression of the FMR1 gene. On the other hand, partial duplication of the long arm of the X chromosome is uncommon. It leads to functional disomy of the corresponding genes and has been reported in several cases of mental retardation in males. In this study, we report on the clinical and genetic characterization of a new X-linked mental retardation syndrome characterized by short stature, hypogonadism and facial dysmorphism, and show that this syndrome is caused by a small Xq27.3q28 interstitial duplication encompassing the FMR1 gene. This family broadens the phenotypic spectrum of FMR1 anomalies in an unexpected manner, and we suggest that this condition may represent the fragile X syndrome "contre-type".
Collapse
Affiliation(s)
- Marlène Rio
- Département de Génétique, Université Paris Descartes, INSERM U781, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ricks CB, Masand R, Fang P, Roney EK, Cheung SW, Scott DA. Delineation of a 1.65 Mb critical region for hemihyperplasia and digital anomalies on Xq25. Am J Med Genet A 2010; 152A:453-8. [DOI: 10.1002/ajmg.a.33227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
van Kogelenberg M, Ghedia S, McGillivray G, Bruno D, Leventer R, Macdermot K, Nelson J, Nagarajan L, Veltman JA, de Brouwer AP, McKinlay Gardner RJ, van Bokhoven H, Kirk EP, Robertson SP. Periventricular heterotopia in common microdeletion syndromes. Mol Syndromol 2010; 1:35-41. [PMID: 20648244 DOI: 10.1159/000274491] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/15/2009] [Indexed: 11/19/2022] Open
Abstract
Periventricular heterotopia (PH) is a brain malformation characterised by heterotopic nodules of neurons lining the walls of the cerebral ventricles. Mutations in FLNA account for 20-24% of instances but a majority have no identifiable genetic aetiology. Often the co-occurrence of PH with a chromosomal anomaly is used to infer a new locus for a Mendelian form of PH. This study reports four PH patients with three different microdeletion syndromes, each characterised by high-resolution genomic microarray. In three patients the deletions at 1p36 and 22q11 are conventional in size, whilst a fourth child had a deletion at 7q11.23 that was larger in extent than is typically seen in Williams syndrome. Although some instances of PH associated with chromosomal deletions could be attributed to the unmasking of a recessive allele or be indicative of more prevalent subclinical migrational anomalies, the rarity of PH in these three microdeletion syndromes and the description of other non-recurrent chromosomal defects do suggest that PH may be a manifestation of multiple different forms of chromosomal imbalance. In many, but possibly not all, instances the co-occurrence of PH with a chromosomal deletion is not necessarily indicative of uncharacterised underlying monogenic loci for this particular neuronal migrational anomaly.
Collapse
Affiliation(s)
- M van Kogelenberg
- Department of Paediatrics and Child Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sanlaville D, Schluth-Bolard C, Turleau C. Distal Xq duplication and functional Xq disomy. Orphanet J Rare Dis 2009; 4:4. [PMID: 19232094 PMCID: PMC2649904 DOI: 10.1186/1750-1172-4-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 02/20/2009] [Indexed: 11/10/2022] Open
Abstract
Distal Xq duplications refer to chromosomal disorders resulting from involvement of the long arm of the X chromosome (Xq). Clinical manifestations widely vary depending on the gender of the patient and on the gene content of the duplicated segment. Prevalence of Xq duplications remains unknown. About 40 cases of Xq28 functional disomy due to cytogenetically visible rearrangements, and about 50 cases of cryptic duplications encompassing the MECP2 gene have been reported. The most frequently reported distal duplications involve the Xq28 segment and yield a recognisable phenotype including distinctive facial features (premature closure of the fontanels or ridged metopic suture, broad face with full cheeks, epicanthal folds, large ears, small and open mouth, ear anomalies, pointed nose, abnormal palate and facial hypotonia), major axial hypotonia, severe developmental delay, severe feeding difficulties, abnormal genitalia and proneness to infections. Xq duplications may be caused either by an intrachromosomal duplication or an unbalanced X/Y or X/autosome translocation. In XY males, structural X disomy always results in functional disomy. In females, failure of X chromosome dosage compensation could result from a variety of mechanisms, including an unfavourable pattern of inactivation, a breakpoint separating an X segment from the X-inactivation centre in cis, or a small ring chromosome. The MECP2 gene in Xq28 is the most important dosage-sensitive gene responsible for the abnormal phenotype in duplications of distal Xq. Diagnosis is based on clinical features and is confirmed by CGH array techniques. Differential diagnoses include Prader-Willi syndrome and Alpha thalassaemia-mental retardation, X linked (ATR-X). The recurrence risk is significant if a structural rearrangement is present in one of the parent, the most frequent situation being that of an intrachromosomal duplication inherited from the mother. Prenatal diagnosis is performed by cytogenetic testing including FISH and/or DNA quantification methods. Management is multi-specialist and only symptomatic, with special attention to prevention of malnutrition and recurrent infections. Educational and rehabilitation support should be offered to all patients.
Collapse
Affiliation(s)
- Damien Sanlaville
- Hospices Civils de Lyon, Centre de Biologie et de Pathologie Est, Service de Cytogénétique Constitutionnelle, Lyon, France.
| | | | | |
Collapse
|
31
|
Roze C, Touraine P, Leger J, de Roux N. [Congenital hypogonadotropic hypogonadism]. ANNALES D'ENDOCRINOLOGIE 2009; 70:2-13. [PMID: 19200533 DOI: 10.1016/j.ando.2008.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 02/01/2023]
Abstract
Congenital hypogonadotropic hypogonadism is defined by reduced steroid hormone synthesis and secretion due to low LH and FSH secretion. It is a rare disease with an unknown prevalence (about 1/5000). It results from a fetal defect in GnRH neuron migration, a defect of pituitary development or from a functional defect of the hypothalamopituitary axis between GnRH neurons and gonadotropic cells. The diagnosis should be considered at birth in males with micropenis, during adolescence in case of delayed puberty or absent puberty, and during adulthood in case of infertility. It may be restricted to the gonadotropic axis, combined with other endocrine system defects or be part of a complex syndrome. Several gene defects have now been described. Molecular studies should be performed to confirm the diagnosis and to help provide appropriate genetic counseling. Treatment to induce puberty should be provided at adolescence, followed by hormonal substitution treatment during adulthood. Specific infertility treatment may also be proposed but patients with the dominant form of gonadotropic deficiency should be informed of the risk of transmission.
Collapse
Affiliation(s)
- C Roze
- Inserm U690, hôpital Robert-Debré, 75019 Paris, France
| | | | | | | |
Collapse
|
32
|
Xq28 duplication presenting with intestinal and bladder dysfunction and a distinctive facial appearance. Eur J Hum Genet 2008; 17:434-43. [PMID: 18854860 DOI: 10.1038/ejhg.2008.192] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability and recurrent pneumonia. We identified an Xq28 duplication in three families where several male patients had presented with intestinal pseudo-obstruction or bladder distension. The affected boys had similar dysmorphic facial appearances. Subsequently, we ascertained seven further families where the proband presented with similar features. We demonstrated duplications of the Xq28 region in five of these additional families. In addition to MECP2, these duplications encompassed several other genes already known to be associated with diseases including SLC6A8, L1CAM and Filamin A (FLNA). The two remaining families were shown to have intragenic duplications of FLNA only. We discuss which elements of the Xq28 duplication phenotype may be associated with the various genes in the duplication. We propose that duplication of FLNA may contribute to the bowel and bladder phenotype seen in these seven families.
Collapse
|
33
|
Smyk M, Obersztyn E, Nowakowska B, Nawara M, Cheung SW, Mazurczak T, Stankiewicz P, Bocian E. Different-sized duplications of Xq28, including MECP2, in three males with mental retardation, absent or delayed speech, and recurrent infections. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:799-806. [PMID: 18165974 DOI: 10.1002/ajmg.b.30683] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In XY males, duplication of any part of the X chromosome except the pseudoautosomal region leads to functional disomy of the corresponding genes. We describe three unrelated male patients with mental retardation (MR), absent or delayed speech, and recurrent infections. Using high-resolution comparative genomic hybridization (HR-CGH), whole genome array comparative genomic hybridization (array CGH), fluorescent in situ hybridization (FISH), and multiplex ligation probe amplification (MLPA), we have identified and characterized two different unbalanced Xq27.3-qter translocations on the Y chromosome (approx. 9 and 12 Mb in size) and one submicroscopic interstitial duplication (approx. 0.3-1.3 Mb) involving the MECP2 gene. Despite the differences in size of the duplicated segments, the patients share a clinical phenotype that overlaps with the features described in patients with MECP2 duplication. Our data confirm previous observations that MECP2 is the most important dosage-sensitive gene responsible for neurologic development in patients with duplications on the distal part of chromosome Xq.
Collapse
Affiliation(s)
- M Smyk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gabbett MT, Peters GB, Carmichael JM, Darmanian AP, Collins FA. Prader-Willi syndrome phenocopy due to duplication of Xq21.1-q21.31, with array CGH of the critical region. Clin Genet 2008; 73:353-9. [PMID: 18279435 DOI: 10.1111/j.1399-0004.2007.00960.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report on a 4-year-old male with an interstitial tandem duplication of Xq21.1-q21.31 who presented with clinical features of Prader-Willi syndrome (PWS). The duplication was maternally inherited. Abnormalities of the X chromosome have previously been reported in association with a PWS phenotype, but to date, specific duplications of Xq21.1-q21.31 have not. We refined the chromosomal breakpoints seen on initial G-banded karyotyping in our case with comparative genomic hybridization by microarray (array CGH). The duplication was between 11.1 and 14.4 Mb in length and overlaps with three loci to which mental retardation with PWS-like features have been previously mapped, showing the utility of array CGH in helping to identify candidate genes. We conclude that duplication of chromosomal region Xq21.1-q21.31 potentially results in a PWS-like phenotype. Reviewing the literature on similar duplications, we further conclude that distal Xq duplications can result in features typically seen in infants with PWS, while proximal duplications can result in features typically seen in older children and adults with PWS. Duplications of chromosome Xq should be considered in the differential diagnosis of PWS, especially in males.
Collapse
Affiliation(s)
- M T Gabbett
- Genetic Health Queensland, Royal Children's Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Rett syndrome (RS) is an X-linked neurodevelopmental disorder and the second most common cause of genetic mental retardation in females. Different mutations in MECP2 are found in up to 95% of typical cases of RS. This mainly neuronal expressed gene functions as a major transcription repressor. Extensive studies on girls who have RS and mouse models are aimed at finding main gene targets for MeCP2 protein and defining neuropathologic changes caused by its defects. Studies comparing autistic features in RS with idiopathic autism and mentally retarded patients are presented. Decreased dendritic arborization is common to RS and autism, leading to further research on similarities in pathogenesis, including MeCP2 protein levels in autistic brains and MeCP2 effects on genes connected to autism, like DLX5 and genes on 15q11-13 region. This area also is involved in Angelman syndrome, which has many similarities to RS. Despite these connections, MECP2 mutations in nonspecific autistic and mentally retarded populations are rare.
Collapse
Affiliation(s)
- Bruria Ben Zeev Ghidoni
- Pediatric Neurology Unit, Safra Pediatric Hospital, Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
36
|
Abstract
In this review, we give a clinical overview of Rett syndrome (RTT), and provide a framework for clinical and molecular approaches to the diagnosis of this severe neurodevelopmental disorder. We also discuss issues that need to be considered in the management of RTT patients, and raise some of the challenges associated with genetic counselling.
Collapse
Affiliation(s)
- Sarah L Williamson
- Western Sydney Genetics Program, the Royal Alexandra Hospital for Children, Sydney, Australia
| | | |
Collapse
|
37
|
Stankiewicz P, Thiele H, Schlicker M, Cseke-Friedrich A, Bartel-Friedrich S, Yatsenko SA, Lupski JR, Hansmann I. Duplication of Xq26.2-q27.1, including SOX3, in a mother and daughter with short stature and dyslalia. Am J Med Genet A 2005; 138:11-7. [PMID: 16097007 DOI: 10.1002/ajmg.a.30910] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Duplications of the distal long arm of the X chromosome are rare and carrier females are usually phenotypically normal. We report on a 14-year-old short statured (height and weight <3rd centile) girl with dup(X)(q26.2q27.1) inherited from a short mother. The proband has minor dysmorphic features, lordosis, lack of menarche, late signs of puberty, low prepuberal levels of gonadotrophins and steroids, but borderline low IGF-1 and normal IGF-Bp3 serum levels. Both the proposita and her mother have severe speech problems with stuttering and dyslalia. The 44-year-old mother with a strikingly aged face and a prominent nose, had menarche at 15 years. Both maternal sisters and the grandmother of the proposita are also short. Karyotyping revealed an additional band at Xq26 in all metaphases from the proband, her mother, and two maternal aunts. Molecular cytogenetic investigations revealed an Xq26.2-q27.1 direct duplication of approximately 7.5 Mb that encompasses or disrupts the SOX3 gene, which maps at the distal border of the duplicated segment. A similar chromosomal duplication was reported recently in five families and in each was associated with an abnormal phenotype in males with short stature [Hol et al., 2000; Solomon et al., 2002, 2004]. Using an androgen-receptor (HUMARA) gene methylation assay and FISH, we show that despite preferential inactivation of the dup(Xq) chromosome a significant proportion of lymphocytes in both mother and daughter carry an active duplicated X chromosome. Our findings further suggest that a dosage effect of SOX3 may to be responsible for a speech disorder in addition to short stature secondary to hypopituitarism.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Van Esch H, Bauters M, Ignatius J, Jansen M, Raynaud M, Hollanders K, Lugtenberg D, Bienvenu T, Jensen LR, Gecz J, Moraine C, Marynen P, Fryns JP, Froyen G. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet 2005; 77:442-53. [PMID: 16080119 PMCID: PMC1226209 DOI: 10.1086/444549] [Citation(s) in RCA: 468] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 07/05/2005] [Indexed: 12/16/2022] Open
Abstract
Loss-of-function mutations of the MECP2 gene at Xq28 are associated with Rett syndrome in females and with syndromic and nonsyndromic forms of mental retardation (MR) in males. By array comparative genomic hybridization (array-CGH), we identified a small duplication at Xq28 in a large family with a severe form of MR associated with progressive spasticity. Screening by real-time quantitation of 17 additional patients with MR who have similar phenotypes revealed three more duplications. The duplications in the four patients vary in size from 0.4 to 0.8 Mb and harbor several genes, which, for each duplication, include the MR-related L1CAM and MECP2 genes. The proximal breakpoints are located within a 250-kb region centromeric of L1CAM, whereas the distal breakpoints are located in a 300-kb interval telomeric of MECP2. The precise size and location of each duplication is different in the four patients. The duplications segregate with the disease in the families, and asymptomatic carrier females show complete skewing of X inactivation. Comparison of the clinical features in these patients and in a previously reported patient enables refinement of the genotype-phenotype correlation and strongly suggests that increased dosage of MECP2 results in the MR phenotype. Our findings demonstrate that, in humans, not only impaired or abolished gene function but also increased MeCP2 dosage causes a distinct phenotype. Moreover, duplication of the MECP2 region occurs frequently in male patients with a severe form of MR, which justifies quantitative screening of MECP2 in this group of patients.
Collapse
Affiliation(s)
- Hilde Van Esch
- Centre for Human Genetics, University Hospital Gasthuisberg, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sanlaville D, Prieur M, de Blois MC, Genevieve D, Lapierre JM, Ozilou C, Picq M, Gosset P, Morichon-Delvallez N, Munnich A, Cormier-Daire V, Baujat G, Romana S, Vekemans M, Turleau C. Functional disomy of the Xq28 chromosome region. Eur J Hum Genet 2005; 13:579-85. [PMID: 15741994 DOI: 10.1038/sj.ejhg.5201384] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We report on two patients, a boy and a girl, with an additional Xq28 chromosome segment translocated onto the long arm of an autosome. The karyotypes were 46,XY,der(10)t(X;10)(q28;qter) and 46,XX,der(4)t(X;4)(q28;q34), respectively. In both cases, the de novo cryptic unbalanced X-autosome translocation resulted in a Xq28 chromosome functional disomy. To our knowledge, at least 17 patients with a distal Xq chromosome functional disomy have been described in the literature. This is the third report of a girl with an unbalanced translocation yielding such a disomy. When the clinical features of both patients are compared to those observed in patients reported in the literature, a distinct phenotype emerges including severe mental retardation, facial dysmorphic features with a wide face, a small mouth and a thin pointed nose, major axial hypotonia, severe feeding problems and proneness to infections. A clinically oriented FISH study using subtelomeric probes is necessary to detect such a cryptic rearrangement.
Collapse
Affiliation(s)
- Damien Sanlaville
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|