1
|
Masson E, Maestri S, Bordeau V, Cooper DN, Férec C, Chen JM. Alu insertion-mediated dsRNA structure formation with pre-existing Alu elements as a disease-causing mechanism. Am J Hum Genet 2024; 111:2176-2189. [PMID: 39265574 PMCID: PMC11480803 DOI: 10.1016/j.ajhg.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an ∼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Sandrine Maestri
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Valérie Bordeau
- Inserm U1230 BRM (Bacterial RNAs and Medicine), Université de Rennes, 35043 Rennes, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France.
| |
Collapse
|
2
|
Sabzikarian M, Mahmoudi T, Tabaeian SP, Rezamand G, Asadi A, Farahani H, Nobakht H, Dabiri R, Mansour-Ghanaei F, Derakhshan F, Zali MR. The common variant of rs6214 in insulin like growth factor 1 ( IGF1) gene: a potential protective factor for non-alcoholic fatty liver disease. Arch Physiol Biochem 2023; 129:10-15. [PMID: 32654522 DOI: 10.1080/13813455.2020.1791187] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Regarding the central role of insulin resistance in NAFLD, we explored whether insulin-like growth factor 1 (IGF1) and insulin-like growth factor-binding protein 3 (IGFBP3) gene variants were associated with NAFLD susceptibility. METHODS IGF1 (rs6214) and IGFBP3 (rs3110697) gene variants were genotyped in 154 cases with biopsy-proven NAFLD and 156 controls using PCR-RFLP method. RESULTS The IGF1 rs6214 "AA + AG" genotype compared with the "GG" genotype appeared to be a marker of decreased NAFLD susceptibility (p = .006; OR = 0.47, 95%CI = 0.28-0.80). Furthermore, the IGF1 rs6214 "A" allele was underrepresented in the cases than controls (p = .024; OR = 0.61, 95%CI = 0.40-0.94). However, we observed no significant difference in genotype or allele frequencies between the cases and controls for IGFBP3 gene. CONCLUSIONS To our knowledge, these findings suggest, for the first time, that the IGF1 rs6214 "A" allele and "AA + AG" genotype have protective effects for NAFLD susceptibility. Nonetheless, further studies are needed to validate our findings.
Collapse
Affiliation(s)
| | - Touraj Mahmoudi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gholamreza Rezamand
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamid Farahani
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hossein Nobakht
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Reza Dabiri
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Fariborz Mansour-Ghanaei
- Division of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center (GLDRC), Guilan University of Medical Sciences, Rasht, Iran
| | - Faramarz Derakhshan
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wen YJ, Yu QX, Jiang F, Li DZ. Identification of a Novel Mutation in the 3' Untranslated Region of the β-Globin Gene (HBB:c.*132C>G) in a Chinese Family. Hemoglobin 2022; 46:347-350. [PMID: 36876863 DOI: 10.1080/03630269.2023.2176320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We describe a new β-globin mutation causing silent β-thalassemia (β-thal). The proband was a 5-year-old boy who presented with the phenotype of thalassemia intermedia. Molecular diagnoses revealed a genomic alteration at position 1606 of the HBB gene (HBB:c.*132C>G) in combination with a common β0-thal mutation (HBB:c.126_129delCTTT). The 3'-untranslated region (UTR) mutation was inherited from his father who showed a normal mean corpuscular volume (MCV) and Hb A2 level. The discovery of rare mutations provides important information related to both genetic counseling for families involved.
Collapse
Affiliation(s)
- Yun-Jing Wen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qiu-Xia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Genetic variations in adiponectin levels and dietary patterns on metabolic health among children with normal weight versus obesity: the BCAMS study. Int J Obes (Lond) 2022; 46:325-332. [PMID: 34716426 PMCID: PMC9131437 DOI: 10.1038/s41366-021-01004-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Adiponectin represents an important link between adipose tissue dysfunction and cardiometabolic risk in obesity; however, there is a lack of data on the effects of adiponectin-related genetic variations and gene-diet interactions on metabolic disorders in children. We aimed to investigate possible interactions between adiponectin-related genetic variants and habitual dietary patterns on metabolic health among children with normal weight versus overweight/obesity, and whether these effects in childhood longitudinally contribute to metabolic risk at follow-up. SUBJECTS/METHODS In total, 3,317 Chinese children aged 6-18 at baseline and 339 participants at 10-year follow-up from the Beijing Child and Adolescent Metabolic Syndrome study cohort were included. Baseline lifestyle factors, plasma adiponectin levels, and six adiponectin-related genetic variants resulting from GWAS in East Asians (loci in/near ADIPOQ, CDH13, WDR11FGF, CMIP, and PEPD) were assessed for their associations with the metabolic disorders. Being metabolically unhealthy was defined by exhibiting any metabolic syndrome component. RESULTS Among the six loci, ADIPOQ rs6773957 (OR 1.26, 95% CI:1.07-1.47, P = 0.004) and adiponectin receptor CDH13 rs4783244 (0.82, 0.69-0.96, P = 0.017) were correlated with metabolic risks independent of lifestyle factors in normal-weight children, but the associations were less obvious in those with overweight/obesity. A significant interaction between rs6773957 and diet (Pinteraction = 0.004) for metabolic health was observed in normal-weight children. The adiponectin-decreasing allele of rs6773957 was associated with greater metabolic risks in individuals with unfavorable diet patterns (P < 0.001), but not in those with healthy patterns (P > 0.1). A similar interaction effect was observed using longitudinal data (Pinteraction = 0.029). CONCLUSIONS These findings highlight a novel gene-diet interaction on the susceptibility to cardiometabolic disorders, which has a long-term impact from childhood onward, particularly in those with normal weight. Personalized dietary advice in these individuals may be recommended as an early possible therapeutic measure to improve metabolic health.
Collapse
|
5
|
Cini G, Carnevali I, Sahnane N, Chiaravalli AM, Dell'Elice A, Maestro R, Pin E, Bestetti I, Radovic S, Armelao F, Viel A, Tibiletti MG. Lynch syndrome and Muir-Torre phenotype associated with a recurrent variant in the 3'UTR of the MSH6 gene. Cancer Genet 2021; 254-255:1-10. [PMID: 33516942 DOI: 10.1016/j.cancergen.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
A MSH6 3'UTR variant (c.*23_26dup) was found in 13 unrelated families consulted for Lynch/Muir-Torre Syndrome. This variant, which is very rare in the genomic databases, was absent in healthy controls and strongly segregated with the disease in the studied pedigrees. All tumors were defective for MSH2/MSH6/MSH3 proteins expression, but only MSH2 somatic pathogenic mutations were found in 5 of the 12 sequenced tumors. Moreover, we had no evidence of MSH6 transcript decrease in carriers, whereas MSH2 transcript was downregulated. Additional evaluations performed in representative carriers, including karyotype, arrayCGH and Linked-Reads whole genome sequencing, failed to evidence any MSH2 germline pathogenic variant. Posterior probability of pathogenicity for MSH6 c.*23_26dup was obtained from a multifactorial analysis incorporating segregation and phenotypic data and resulted >0.999, allowing to classify the variant as pathogenic (InSiGHT Class 5). Carriers shared a common haplotype involving MSH2/MSH6 loci, then a cryptic disease-associated variant, linked with MSH6 c.*23_26dup, cannot be completely excluded. Even if it is not clear whether the MSH6 variant is pathogenic per se or simply a marker of a disease-associated MSH2/MSH6 haplotype, all data collected on patients and pedigrees prompted us to manage the variant as pathogenic and to offer predictive testing within these families.
Collapse
Affiliation(s)
- Giulia Cini
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| | - Ileana Carnevali
- Department of Pathology, Circolo Hospital ASST Settelaghi, via O. Rossi 9, 21100, Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, via O. Rossi 9, 21100, Varese, Italy
| | - Nora Sahnane
- Department of Pathology, Circolo Hospital ASST Settelaghi, via O. Rossi 9, 21100, Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, via O. Rossi 9, 21100, Varese, Italy
| | - Anna Maria Chiaravalli
- Department of Pathology, Circolo Hospital ASST Settelaghi, via O. Rossi 9, 21100, Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, via O. Rossi 9, 21100, Varese, Italy
| | - Anastasia Dell'Elice
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, The Royal Institute of Technology KTH, Tomtebodavägen 23B, 171 65 Solna, Stockholm, Sweden
| | - Ilaria Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Zucchi, 18 - 20095 Cusano Milanino (MI); Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133 Milan, Italy
| | | | - Franco Armelao
- U.O. Gastroenterologia ed Endoscopia Digestiva, Ospedale S. Chiara, APSS, Via A. de Gasperi 79 - 38123, Trento, Italy
| | - Alessandra Viel
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy.
| | - Maria Grazia Tibiletti
- Department of Pathology, Circolo Hospital ASST Settelaghi, via O. Rossi 9, 21100, Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, via O. Rossi 9, 21100, Varese, Italy
| |
Collapse
|
6
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
7
|
Gan L, Hu C, Deng Z, Lu H, Sun J, Peng G, Jiang J, Zeng L, Deng J. Rs1982809 is a functional biomarker for the prognosis of severe post-traumatic sepsis and MODs. Exp Biol Med (Maywood) 2019; 244:1438-1445. [PMID: 31594403 DOI: 10.1177/1535370219880490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BTLA is a useful biomarker to characterize the immune states of sepsis patients. We investigated the association between genetic variations of BTLA and morbidity of sepsis and MODS in severe traumatic patient. Three tag single nucleotide polymorphisms of BTLA were genotyped in 562 severe trauma patients. To further elucidate the mechanism, mRNA stability, BTLA 3ʹ-UTR activity, and its expression on T lymphocytes were measured. Only rs1982809 which located in 3ʹ-UTR of BTLA showed a significant clinical relevance with the incidence rate of sepsis and MOD scores. The sepsis incidence and MOD score of rs1982809 CC genotype carriers were higher than TT carriers. The percentage of circulating BTLA + CD4 + CD3 + T lymphocytes was markedly lower in CC genotype carriers. Luciferase activity in plasmids containing C allele was lower than that of T allele. Thus, the differential expression of BTLA on T lymphocytes might be caused by the different 3ʹ-UTR activity induced by rs1982809 T/C. Therefore, rs1982809 is a useful clinical biomarker in the prognosis evaluating of sepsis and subsequent MODS. Moreover, it is also a functional single nucleotide polymorphism affecting the activity of BTLA 3ʹ-UTR and the expression of BTLA in peripheral blood T lymphocytes. Impact statement This work is useful in the field of genetic mechanism of severe post-traumatic complications, as it provides important evidence for the influence of BTLA gene polymorphism on sepsis and MODS susceptibility. The results are useful and of importance because rs1982809 is a useful clinical biomarker in the prognosis evaluating of sepsis and subsequent MODS. It is also a functional single nucleotide polymorphism affecting the activity of BTLA 3ʹ-UTR and the expression of BTLA in peripheral blood T lymphocytes.
Collapse
Affiliation(s)
- Lebin Gan
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China.,Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
| | - Chen Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Military Medical University, Chongqing 400042, China
| | - Zhihong Deng
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hongxiang Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Military Medical University, Chongqing 400042, China
| | - Jiali Sun
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China.,Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
| | - Guoxuan Peng
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China.,Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Military Medical University, Chongqing 400042, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Military Medical University, Chongqing 400042, China
| | - Jin Deng
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China.,Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
| |
Collapse
|
8
|
A comprehensive analysis of core polyadenylation sequences and regulation by microRNAs in a set of cancer predisposition genes. Gene 2019; 712:143943. [PMID: 31229581 DOI: 10.1016/j.gene.2019.143943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022]
Abstract
Two core polyadenylation elements (CPE) located in the 3' untranslated region of eukaryotic pre-mRNAs play an essential role in their processing: the polyadenylation signal (PAS) AAUAAA and the cleavage site (CS), preferentially a CA dinucleotide. Herein, we characterized PAS and CS sequences in a set of cancer predisposition genes (CPGs) and performed an in silico investigation of microRNAs (miRNAs) regulation to identify potential tumor-suppressive and oncogenic miRNAs. NCBI and alternative polyadenylation databases were queried to characterize CPE sequences in 117 CPGs, including 81 and 17 known tumor suppressor genes and oncogenes, respectively. miRNA-mediated regulation analysis was performed using predicted and validated data sources. Based on NCBI analyses, we did not find an established PAS in 21 CPGs, and verified that the majority of PAS already described (74.4%) had the canonical sequence AAUAAA. Interestingly, "AA" dinucleotide was the most common CS (37.5%) associated with this set of genes. Approximately 90% of CPGs exhibited evidence of alternative polyadenylation (more than one functional PAS). Finally, the mir-192 family was significantly overrepresented as regulator of tumor suppressor genes (P < 0.01), which suggests a potential oncogenic function. Overall, this study provides a landscape of CPE in CPGs, which might be useful in development of future molecular analyses covering these frequently neglected regulatory sequences.
Collapse
|
9
|
Sargazi S, Moudi M, Heidari Nia M, Saravani R, Malek Raisi H. Association of KIF26B and COL4A4 gene polymorphisms with the risk of keratoconus in a sample of Iranian population. Int Ophthalmol 2019; 39:2621-2628. [PMID: 31077021 DOI: 10.1007/s10792-019-01111-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Keratoconus (KTCN) is a congenital corneal eye disorder which correlates with abnormal distribution of the collagen fiber and causes loss of visual acuity. COLA4A gene has a substantive role in collagen synthesis, whereas KIF26B as a new candidate gene belonging to kinesin superfamily (KIFs) has been suggested to be associated with this disease. So, in this preliminary study, we simultaneously evaluated the effects of two single nucleotide polymorphisms, 222855rs7C/T and rs12407427C/T, on KTCN susceptibility in a sample of Iranian population. METHODS The present case-control study consists of 144 patients confirmed with KTCN and 153 healthy controls. The variants are genotyped by using amplification refractory mutation system-polymerase chain reaction method. RESULTS The findings disclosed that rs2228557C/T and rs12407427C/T polymorphisms significantly increased the risk of KTCN in measured (codominant1; p = 0.0001, codominant2; p = 0.0001, codominant3; p = 0.0006, dominant; p = 0.0001, over-dominant; p = 0.0005) and (codominant1; p = 0.0001, codominant3; p = 0.0005, recessive; p = 0.0001) inheritance patterns, respectively. CONCLUSION Our results did prove a statistical association of both rs2228557 and rs12407427 genotypes (TT and CT + CC) and allele (T) with KTCN susceptibility in Iranian population. Further studies in other ethnicities are required to verify our results.
Collapse
Affiliation(s)
- Saman Sargazi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Moudi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Biology, Faculty of Science, Isfahan University, Isfahan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hamid Malek Raisi
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
10
|
Zhang H, Wei Y, Zhang F, Liu Y, Wang H, Li Y, Li G. Polymorphisms of mannose-binding lectin-associated serine protease 1 (MASP1) and its relationship with milk performance traits and complement activity in Chinese Holstein cattle. Res Vet Sci 2019; 124:346-351. [PMID: 31060014 DOI: 10.1016/j.rvsc.2019.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/16/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Mannose-binding lectin (MBL)-associated serine protease1 (MASP1) is the central enzyme in the innate immune system, which has biological functions of antibacterial and anti-inflammatory activities. Moreover, MASP1 represents a candidate gene reflecting the complement activity. This study is to investigate the entire exons of MASP1 in Chinese Holstein cattle with DNA sequencing to identify novel single nucleotide polymorphisms (SNPs). METHODS Novel SNPs were identified through gene sequencing and genotyped by the PCR Restriction Fragment Length Polymorphism (PCR-RFLP) and Created Restriction Site PCR (CRS-PCR). The relationship between the milk performance traits and complement activity in Chinese Holstein cattle was analyzed using the General Linear Model (GLM) procedure with the SAS software (version 8.0). RESULTS Two novel SNPs (i.e., g.5766A > G and g.51228A > C) were detected. The SNP g.5766A > G was located in the first intron and the SNP g.51228A > C was located in the 3'-untranslated regions of MASP1. The polymorphism at g.5766A > G was correlated with protein percentage (P < 0.05). Moreover, the polymorphism at g.51228A > C had only two genotypes, and this SNP had no significant correlation with CH50, ACH50, fat percentage, protein percentage, 305-day milk yields, or SCS scores. CONCLUSION MASP1, reflecting the complement activity, may not be significantly related to mastitis. However, MASP1 could be implemented in the breeding program to improve the production performance of Chinese Holstein cattle.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Biochemistry, Heze Medical College, Heze 274000, Shandong Province, P. R. China; Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan 250131, Shandong Province, P. R. China.
| | - Yan Wei
- Department of Biochemistry, Heze Medical College, Heze 274000, Shandong Province, P. R. China
| | - Fengying Zhang
- Department of Biochemistry, Heze Medical College, Heze 274000, Shandong Province, P. R. China
| | - Yanyan Liu
- Department of Biochemistry, Heze Medical College, Heze 274000, Shandong Province, P. R. China
| | - Haifeng Wang
- Department of Biochemistry, Heze Medical College, Heze 274000, Shandong Province, P. R. China
| | - Yan Li
- Department of Biochemistry, Heze Medical College, Heze 274000, Shandong Province, P. R. China
| | - Ge Li
- Department of Biochemistry, Heze Medical College, Heze 274000, Shandong Province, P. R. China
| |
Collapse
|
11
|
Keramat F, Kazemi S, Saidijam M, Zamani A, Kohan HF, Mamani M, Eini P, Moghimbigi A, Alikhani MY. Association of interleukin-17 gene polymorphisms and susceptibility to brucellosis in Hamadan, western Iran. Microbiol Immunol 2019; 63:139-146. [PMID: 30851127 DOI: 10.1111/1348-0421.12675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/09/2023]
Abstract
IL-17is one of the most important inflammatory cytokines that stimulate immunity responses in humans infected with Brucella species, acting as a regulator that reduces release of γ-IFN, thus increasing resistance to brucellosis. Gene polymorphisms in the regulatory regions of cytokine-encoding genes affect the amountsof cytokines produced and play a fundamental role in infectious diseases. The aim of this study was to determine the association between IL-17 gene polymorphisms and susceptibility to brucellosis. In this case-control study, 86 patients with brucellosis and 86 healthy persons in Hamadan, western Iran, from September 2014 to September 2016, were included. IL-17 genetic variants at positions rs4711998 A/G, rs8193036 C/T, rs3819024 A/G, rs2275913 A/G, rs3819025 A/G, rs8193038 A/G, rs3804513 A/T, rs1974226 A/G and rs3748067 A/G were analyzed by restriction fragment length polymorphism-PCR. Serum IL-17 titers were measured by sandwich ELISA. GG genotypes at positions rs4711998 and rs3748067 were present significantly more frequently in patients with brucellosis than in controls (P < 0.05). The AA genotype at positions rs4711998, rs2275913 and rs3748067 and GG genotype at position rs19744226 were present significantly more frequently in controls than in the patient group. These results suggest that the AA genotype at positions rs3748067, rs3819025 and rs4711998 and GG genotype at position rs3819024 are likely protective factors against brucellosis, whereas the GG genotype at positions rs3748067, rs3819025 and rs4711998 and AA genotype at position rs3819024 may be risk factors against the disease. No significant relationships were found between serum IL-17 titers and genotypes of the single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Infectious Diseases, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Farhdi Kohan
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojgan Mamani
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Peyman Eini
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Moghimbigi
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Zhang H, Wei Y, Zhang F, Liu Y, Li Y, Li G, Han B, Wang H, Zhao W, Wang C. Polymorphisms of MASP2 gene and its relationship with mastitis and milk production in Chinese Holstein cattle. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1596755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Haiyan Zhang
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
- Dairy Cattle Research Center Shandong Academy of Agricultural Science, Jinan, Shandong Province, P. R. China
| | - Yan Wei
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Fengying Zhang
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Yanyan Liu
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Yan Li
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Ge Li
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Bing Han
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Haifeng Wang
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Weitao Zhao
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Changfa Wang
- Dairy Cattle Research Center Shandong Academy of Agricultural Science, Jinan, Shandong Province, P. R. China
| |
Collapse
|
13
|
Abstract
Noncoding RNAs (ncRNAs) have received much attention due to their central role in gene expression and translational regulation as well as due to their involvement in several biological processes and disease development. Small noncoding RNAs (sncRNAs), such as microRNAs and piwiRNAs, have been thoroughly investigated and functionally characterized. Long noncoding RNAs (lncRNAs), known to play an important role in chromatin-interacting transcription regulation, posttranscriptional regulation, cell-to-cell signaling, and protein regulation, are also being investigated to further elucidate their functional roles.Next-generation sequencing (NGS) technologies have greatly aided in characterizing the ncRNAome. Moreover, the coupling of NGS technology together with bioinformatics tools has been essential to the genome-wide detection of RNA modifications in ncRNAs. RNA editing, a common human co-transcriptional and posttranscriptional modification, is a dynamic biological phenomenon able to alter the sequence and the structure of primary transcripts (both coding and noncoding RNAs) during the maturation process, consequently influencing the biogenesis, as well as the function, of ncRNAs. In particular, the dysregulation of the RNA editing machineries have been associated with the onset of human diseases.In this chapter we discuss the potential functions of ncRNA editing and describe the knowledge base and bioinformatics resources available to investigate such phenomenon.
Collapse
|
14
|
Venet T, Masson E, Talbotec C, Billiemaz K, Touraine R, Gay C, Destombe S, Cooper DN, Patural H, Chen JM, Férec C. Severe infantile isolated exocrine pancreatic insufficiency caused by the complete functional loss of theSPINK1gene. Hum Mutat 2017; 38:1660-1665. [DOI: 10.1002/humu.23343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Théa Venet
- Service de Réanimation Pédiatrique; CHU-Hôpital Nord; Saint-Étienne France
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1078 Brest France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité; Centre Hospitalier Régional Universitaire (CHRU) Brest; Hôpital Morvan; Brest France
| | - Cécile Talbotec
- Service de Gastroentérologie Hépatologie et Nutrition pédiatriques; Hôpital Necker Enfants Malades; Paris France
| | - Kareen Billiemaz
- Service de Réanimation Pédiatrique; CHU-Hôpital Nord; Saint-Étienne France
| | - Renaud Touraine
- Service de Génétique; CHU-Hôpital Nord; Saint-Étienne France
| | - Claire Gay
- Service de Pédiatrie; CHU-Hôpital Nord; Saint-Étienne France
| | - Sylvie Destombe
- Service de Pédiatrie; CHU-Hôpital Nord; Saint-Étienne France
| | - David N. Cooper
- Institute of Medical Genetics; School of Medicine; Cardiff University; Cardiff UK
| | - Hugues Patural
- Service de Réanimation Pédiatrique; CHU-Hôpital Nord; Saint-Étienne France
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1078 Brest France
- Etablissement Français du Sang (EFS) - Bretagne; Brest France
- Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale (UBO); Brest France
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1078 Brest France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité; Centre Hospitalier Régional Universitaire (CHRU) Brest; Hôpital Morvan; Brest France
- Etablissement Français du Sang (EFS) - Bretagne; Brest France
- Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale (UBO); Brest France
| |
Collapse
|
15
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
16
|
Ferizi M, Aneja MK, Balmayor ER, Badieyan ZS, Mykhaylyk O, Rudolph C, Plank C. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts. Sci Rep 2016; 6:39149. [PMID: 27974853 PMCID: PMC5156912 DOI: 10.1038/srep39149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022] Open
Abstract
Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5'- and 3'-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5'-UTR and/or downstream 3'-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b-245 alpha chain (CYBA) combinations performed the best among all other UTR combinations and were characterized in detail. The presence or absence of CYBA UTRs had no impact on the mRNA stability of transfected mRNAs, but appeared to enhance the productivity of transfected transcripts based on the measurement of mRNA and protein levels in cells. When CYBA UTRs were fused to human bone morphogenetic protein 2 (hBMP2) coding sequence, the recombinant mRNA transcripts upon transfection produced higher levels of protein as compared to control transcripts. Moreover, transfection of human adipose mesenchymal stem cells with recombinant hBMP2-CYBA UTR transcripts induced bone differentiation demonstrating the osteogenic and therapeutic potential for transcript therapy based on hybrid UTR designs.
Collapse
Affiliation(s)
- Mehrije Ferizi
- Institute of Molecular Immunology- Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Ethris GmbH, Planegg, 82152, Germany
| | | | - Elizabeth R. Balmayor
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Zohreh Sadat Badieyan
- Institute of Molecular Immunology- Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Olga Mykhaylyk
- Institute of Molecular Immunology- Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Ethris GmbH, Planegg, 82152, Germany
| | | | - Christian Plank
- Institute of Molecular Immunology- Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Ethris GmbH, Planegg, 82152, Germany
| |
Collapse
|
17
|
Chen CYA, Shyu AB. Emerging Themes in Regulation of Global mRNA Turnover in cis. Trends Biochem Sci 2016; 42:16-27. [PMID: 27647213 DOI: 10.1016/j.tibs.2016.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
mRNA is the molecule that conveys genetic information from DNA to the translation apparatus. mRNAs in all organisms display a wide range of stability, and mechanisms have evolved to selectively and differentially regulate individual mRNA stability in response to intracellular and extracellular cues. In recent years, three seemingly distinct aspects of RNA biology-mRNA N6-methyladenosine (m6A) modification, alternative 3' end processing and polyadenylation (APA), and mRNA codon usage-have been linked to mRNA turnover, and all three aspects function to regulate global mRNA stability in cis. Here, we discuss the discovery and molecular dissection of these mechanisms in relation to how they impact the intrinsic decay rate of mRNA in eukaryotes, leading to transcriptome reprogramming.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Smedley D, Schubach M, Jacobsen J, Köhler S, Zemojtel T, Spielmann M, Jäger M, Hochheiser H, Washington N, McMurry J, Haendel M, Mungall C, Lewis S, Groza T, Valentini G, Robinson P. A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease. Am J Hum Genet 2016; 99:595-606. [PMID: 27569544 DOI: 10.1016/j.ajhg.2016.07.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
The interpretation of non-coding variants still constitutes a major challenge in the application of whole-genome sequencing in Mendelian disease, especially for single-nucleotide and other small non-coding variants. Here we present Genomiser, an analysis framework that is able not only to score the relevance of variation in the non-coding genome, but also to associate regulatory variants to specific Mendelian diseases. Genomiser scores variants through either existing methods such as CADD or a bespoke machine learning method and combines these with allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic relevance to discover variants associated to specific Mendelian disorders. Overall, Genomiser is able to identify causal regulatory variants as the top candidate in 77% of simulated whole genomes, allowing effective detection and discovery of regulatory variants in Mendelian disease.
Collapse
|
19
|
Xie Y, Meng Y, Li HF, Hong Y, Sun L, Zhu X, Yue YX, Gao X, Wang S, Li Y, Kusner LL, Kaminski HJ. GRgene polymorphism is associated with inter-subject variability in response to glucocorticoids in patients with myasthenia gravis. Eur J Neurol 2016; 23:1372-9. [PMID: 27185333 DOI: 10.1111/ene.13040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Y. Xie
- Department of Neurology; Beijing Friendship Hospital; Capital Medical University; Beijing China
- Department of Neurology; George Washington University; Washington DC USA
| | - Y. Meng
- Department of Pathology; Peking Union Medical College Hospital; Chinese Academy of Medical Science; Beijing China
| | - H.-F. Li
- Department of Neurology; Qilu Hospital of Shandong University; Jinan China
| | - Y. Hong
- Department of Neurology; Affiliated Hospital of Qingdao University; Qingdao China
| | - L. Sun
- Key Laboratory of Geriatrics; Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health; Beijing China
| | - X. Zhu
- Key Laboratory of Geriatrics; Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health; Beijing China
| | - Y.-X. Yue
- Department of Neurology; Qilu Hospital of Shandong University; Jinan China
| | - X. Gao
- Department of Neurology; Affiliated Hospital of Qingdao University; Qingdao China
| | - S. Wang
- Department of Neurology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Y. Li
- Department of Neurology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - L. L. Kusner
- Departments of Pharmacology and Physiology; George Washington University; Washington DC USA
| | - H. J. Kaminski
- Department of Neurology; George Washington University; Washington DC USA
| |
Collapse
|
20
|
Inflammatory and Immune Response Genes Polymorphisms are Associated with Susceptibility to Chronic Obstructive Pulmonary Disease in Tatars Population from Russia. Biochem Genet 2016; 54:388-412. [DOI: 10.1007/s10528-016-9726-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/11/2016] [Indexed: 02/08/2023]
|
21
|
Combined effect between two functional polymorphisms of SLC6A12 gene is associated with temporal lobe epilepsy. J Genet 2015; 94:637-42. [DOI: 10.1007/s12041-015-0567-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Lu YF, Mauger DM, Goldstein DB, Urban TJ, Weeks KM, Bradrick SS. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep 2015; 5:16037. [PMID: 26531896 PMCID: PMC4631997 DOI: 10.1038/srep16037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/08/2015] [Indexed: 01/14/2023] Open
Abstract
Polymorphisms near the interferon lambda 3 (IFNL3) gene strongly predict clearance of hepatitis C virus (HCV) infection. We analyzed a variant (rs4803217 G/T) located within the IFNL3 mRNA 3' untranslated region (UTR); the G allele (protective allele) is associated with elevated therapeutic HCV clearance. We show that the IFNL3 3' UTR represses mRNA translation and the rs4803217 allele modulates the extent of translational regulation. We analyzed the structures of IFNL3 variant mRNAs at nucleotide resolution by SHAPE-MaP. The rs4803217 G allele mRNA forms well-defined 3' UTR structure while the T allele mRNA is more dynamic. The observed differences between alleles are among the largest possible RNA structural alterations that can be induced by a single nucleotide change and transform the UTR from a single well-defined conformation to one with multiple dynamic interconverting structures. These data illustrate that non-coding genetic variants can have significant functional effects by impacting RNA structure.
Collapse
Affiliation(s)
- Yi-Fan Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, 27710, USA
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - David M. Mauger
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Thomas J. Urban
- Center for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7361, USA
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Shelton S. Bradrick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, 27710, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
23
|
Cyclic AMP-Responsive Element Modulator α Polymorphisms Are Potential Genetic Risks for Systemic Lupus Erythematosus. J Immunol Res 2015; 2015:906086. [PMID: 26601115 PMCID: PMC4639656 DOI: 10.1155/2015/906086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/23/2015] [Accepted: 10/05/2015] [Indexed: 12/26/2022] Open
Abstract
To investigate whether the cyclic AMP-responsive element modulator α (CREMα) polymorphisms are novel susceptibility factors for systemic lupus erythematosus (SLE), four tag SNPs, rs1057108, rs2295415, rs11592925, and rs1148247, were genotyped in 889 SLE cases and 825 healthy controls. Association analyses were performed on whole dataset or clinical/serologic subsets. Association statistics were calculated by age and sex adjusted logistic regression. The G allele frequencies of rs2295415 and rs1057108 were increased in SLE patients, compared with healthy controls (rs2295415: 21.2% versus 17.8%, OR 1.244, P = 0.019; rs1057108: 30.8% versus 27.7%, OR 1.165, P = 0.049). The haplotype constituted by the two risk alleles “G-G” from rs1057108 and rs2295415 displayed strong association with SLE susceptibility (OR 1.454, P = 0.00056). Following stratification by clinical/serologic features, a suggestive association was observed between rs2295415 and anti-Sm antibodies-positive SLE (OR 1.382, P = 0.044). Interestingly, a potential protective effect of rs2295415 was observed for SLE patients with renal disorder (OR 0.745, P = 0.032). Our data provide first evidence that CREMα SNPs rs2295415 and rs1057108 maybe novel genetic susceptibility factors for SLE. SNP rs2295415 appears to confer higher risk to develop anti-Sm antibodies-positive SLE and may play a protective role against lupus nephritis.
Collapse
|
24
|
Ye P, Li Z, Jiang H, Liu T. SNPs in microRNA-binding sites in the ITGB1 and ITGB3 3'-UTR increase colorectal cancer risk. Cell Biochem Biophys 2015; 70:601-7. [PMID: 24777809 DOI: 10.1007/s12013-014-9962-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of the study was to investigate the potential associations between single-nucleotide polymorphisms (SNPs) in microRNA (miRNA)-binding sites in the integrin beta-1 (ITGB1) gene and integrin beta-3 (ITGB3) gene 3'-untranslated regions, and colorectal cancer (CRC) susceptibility in a Chinese population. A hospital-based case-control study was performed in 200 patients with CRC and 200 matched healthy donors. Two SNPs in miRNA binding of ITGB1 and ITGB3 genes (rs17468 and rs2317676) were genotyped by polymerase chain reaction-restrict fragment length polymorphism assay. The association between genotypes and CRC risk was evaluated by computing the odds ratio (OR) and 95 % confidence interval (CI) from multivariate unconditional logistic regression analyses. The frequency of the T genotype in ITGB1 rs17468 and G genotype in ITGB3 rs2317676 occurred more frequently in CRC patients than in controls (P < 0.05). We found that CT and TT genotypes of rs17468 were associated with a significantly increased risk of CRC (OR = 1.67, 95 % CI = 1.090-2.559 for CT + TT vs. CC), also the AG and GG genotype in ITGB3 rs2317676 (OR = 1.65, 95 % CI = 1.114-2.458 for AG + GG vs. AA). In conclusion, our results showed that both the ITGB1 rs17468 SNP and ITGB3 rs2317676 SNP were associated with an increased risk of CRC, which suggests that these 2 SNPs might contribute to CRC risk in a Chinese population.
Collapse
Affiliation(s)
- Pingjiang Ye
- Department of Colorectal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, 312000, Zhejiang, China
| | | | | | | |
Collapse
|
25
|
Dusl M, Senderek J, Muller JS, Vogel JG, Pertl A, Stucka R, Lochmuller H, David R, Abicht A. A 3'-UTR mutation creates a microRNA target site in the GFPT1 gene of patients with congenital myasthenic syndrome. Hum Mol Genet 2015; 24:3418-26. [DOI: 10.1093/hmg/ddv090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/08/2015] [Indexed: 01/07/2023] Open
|
26
|
Ling Y, van Herpt TTW, van Hoek M, Dehghan A, Hofman A, Uitterlinden AG, Jiang S, Lieverse AG, Bravenboer B, Lu D, van Duijn CM, Gao X, Sijbrands EJG. A genetic variant in SLC6A20 is associated with Type 2 diabetes in white-European and Chinese populations. Diabet Med 2014; 31:1350-6. [PMID: 24958070 DOI: 10.1111/dme.12528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/01/2014] [Accepted: 06/19/2014] [Indexed: 11/29/2022]
Abstract
AIMS To investigate whether polymorphisms in SLC6A20 are associated with susceptibility to Type 2 diabetes. METHODS In the Rotterdam Study, a prospective, population-based cohort (n = 5974), 22 tagging polymorphisms with minor allele frequencies>0.05 across SLC6A20 were studied. Replication studies were performed in an independent Dutch case-control study (DiaGene-Rotterdam Study 2 n = 3133), and in a Chinese Han case-control population (n = 2279). A meta-analysis of the results was performed. RESULTS In the Rotterdam study, the minor alleles of rs13062383, rs10461016 and rs2286489 increased the risk of Type 2 diabetes (hazard ratio 1.37, 95% CI 1.15-1.63, hazard ratio 1.30 95% CI 1.09-1.54 and hazard ratio 1.20, 95% CI 1.07-1.35, respectively). In the DiaGene/Rotterdam Study 2, the A allele of rs13062383 increased the risk of Type 2 diabetes (odds ratio 1.45, 95% CI 1.19-1.76). In the Chinese Han study, the rs13062383 A allele also increased the risk of Type 2 diabetes (odds ratio 1.21, 95% CI 1.03-1.42). Meta-analysis showed a highly significant association of rs13062383 with Type 2 diabetes (odds ratio 1.35, 95% CI 1.21-1.47; P = 3.3 × 10⁻⁸). CONCLUSIONS In conclusion, rs13062383 in SLC6A20 increased the susceptibility to Type 2 diabetes in populations with different genetic backgrounds.
Collapse
Affiliation(s)
- Y Ling
- Department of Endocrinology and Metabolism, Zhongshan hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
León-Novelo LG, McIntyre LM, Fear JM, Graze RM. A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. BMC Genomics 2014; 15:920. [PMID: 25339465 PMCID: PMC4230747 DOI: 10.1186/1471-2164-15-920] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/09/2014] [Indexed: 01/01/2023] Open
Abstract
Background One method of identifying cis regulatory differences is to analyze allele-specific expression (ASE) and identify cases of allelic imbalance (AI). RNA-seq is the most common way to measure ASE and a binomial test is often applied to determine statistical significance of AI. This implicitly assumes that there is no bias in estimation of AI. However, bias has been found to result from multiple factors including: genome ambiguity, reference quality, the mapping algorithm, and biases in the sequencing process. Two alternative approaches have been developed to handle bias: adjusting for bias using a statistical model and filtering regions of the genome suspected of harboring bias. Existing statistical models which account for bias rely on information from DNA controls, which can be cost prohibitive for large intraspecific studies. In contrast, data filtering is inexpensive and straightforward, but necessarily involves sacrificing a portion of the data. Results Here we propose a flexible Bayesian model for analysis of AI, which accounts for bias and can be implemented without DNA controls. In lieu of DNA controls, this Poisson-Gamma (PG) model uses an estimate of bias from simulations. The proposed model always has a lower type I error rate compared to the binomial test. Consistent with prior studies, bias dramatically affects the type I error rate. All of the tested models are sensitive to misspecification of bias. The closer the estimate of bias is to the true underlying bias, the lower the type I error rate. Correct estimates of bias result in a level alpha test. Conclusions To improve the assessment of AI, some forms of systematic error (e.g., map bias) can be identified using simulation. The resulting estimates of bias can be used to correct for bias in the PG model, without data filtering. Other sources of bias (e.g., unidentified variant calls) can be easily captured by DNA controls, but are missed by common filtering approaches. Consequently, as variant identification improves, the need for DNA controls will be reduced. Filtering does not significantly improve performance and is not recommended, as information is sacrificed without a measurable gain. The PG model developed here performs well when bias is known, or slightly misspecified. The model is flexible and can accommodate differences in experimental design and bias estimation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-920) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Rita M Graze
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, 36849 Auburn, AL, USA.
| |
Collapse
|
28
|
Yang M, Fu Z, Zhang Q, Xin Y, Chen Y, Tian Y. Association between the polymorphisms in intercellular adhesion molecule-1 and the risk of coronary atherosclerosis: a case-controlled study. PLoS One 2014; 9:e109658. [PMID: 25310099 PMCID: PMC4195684 DOI: 10.1371/journal.pone.0109658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1), an important immune adhesion molecule, is related to the atherosclerosis. We explored the association between the polymorphisms of the ICAM-1 gene and coronary atherosclerotic stenosis to determine whether any risk factors correlate with genetic polymorphisms in Chinese patients with coronary atherosclerosis. Using the SNaPshot assay, we examined six SNPs of rs5491, rs281428, rs281432, rs5496, rs5498 and rs281437 in 604 patients diagnosed with coronary atherosclerotic stenosis by angiography and in 468 controls. We found that AG genotype of rs5498 had higher frequency in the coronary atherosclerotic stenosis patients (41.56% to 34.19%, P = 0.017, OR = 1.368,95%CI 1.057–1.770) and that the haplotype Ars5491Crs281428Grs281432 had higher frequency in patients (13.8% to 12.1%, P = 0.048). When analyzing the clinical risk factors for coronary atherosclerosis, we found that the rs5498 locus was associated with the levels of apolipoprotein A (APOA) (P = 0.0002) and triglycerides (TG) (P = 0.002). Furthermore, the levels of triglycerides (TG) were also associated with rs281432 (P = 0.040). Additionally, the TT genotype of rs281437 was associated with a higher level of apolipoprotein A (APOA) (P = 0.039) and apolipoprotein B (APOB) (P = 0.003). Finally, among those with coronary atherosclerosis, we found no differences in the haplotype analysis of polymorphisms of the ICAM-1 gene from individuals with hypertension or those who smoked. According to our results, the ICAM-1 polymorphisms were associated with risk of coronary atherosclerotic stenosis in Chinese individuals.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenkun Fu
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Qingjiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Xin
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjun Chen
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (YC); (YT)
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University & Department of Pathophysiology, Harbin, China
- * E-mail: (YC); (YT)
| |
Collapse
|
29
|
Gong W, Xiao D, Ming G, Yin J, Zhou H, Liu Z. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites. J Diabetes 2014; 6:279-89. [PMID: 24606011 DOI: 10.1111/1753-0407.12143] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/25/2014] [Accepted: 03/04/2014] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are important endogenous regulators in eukaryotic gene expression and a broad range of biological processes. MiRNA-related genetic variations have been proved to be associated with human diseases, such as type 2 diabetes mellitus (T2DM). Polymorphisms in miRNA genes (primary miRNAs, precursor miRNAs, mature miRNAs, and miRNA regulatory regions) may be involved in the development of T2DM by changing the expression and structure of miRNAs and target gene expression. Genetic polymorphisms of the 3'-untranslated region (UTR) in miRNA target genes may destroy putative miRNA binding sites or create new miRNA binding sites, which affects the binding of UTRs with miRNAs, finally resulting in susceptibility to and development of T2DM. Therefore, focusing on studies into genetic polymorphisms in miRNAs or miRNA binding sites will help our understanding of the pathophysiology of T2DM development and lead to better health management. Herein, we review the association of genetic polymorphisms in miRNA and miRNA targets genes with T2DM development.
Collapse
Affiliation(s)
- Weijing Gong
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China; Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | |
Collapse
|
30
|
Wolfe MS. Targeting mRNA for Alzheimer's and related dementias. SCIENTIFICA 2014; 2014:757549. [PMID: 24876993 PMCID: PMC4020195 DOI: 10.1155/2014/757549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Brain deposition of the amyloid beta-protein (A β ) and tau are characteristic features in Alzheimer's disease (AD). Mutations in the A β precursor protein (APP) and a protease involved in A β production from APP strongly argue for a pathogenic role of A β in AD, while mutations in tau are associated with related disorders collectively called frontotemporal lobar degeneration (FTLD). Despite intense effort, therapeutic strategies that target A β or tau have not yet yielded medications, suggesting that alternative approaches should be pursued. In recent years, our laboratory has studied the role of mRNA in AD and FTLD, specifically those encoding tau and the A β -producing protease BACE1. As many FTLD-causing tau mutations destabilize a hairpin structure that regulates RNA splicing, we have targeted this structure with small molecules, antisense oligonucleotides, and small molecule-antisense conjugates. We have also discovered that microRNA interaction with the 3'-untranslated region of tau regulates tau expression. Regarding BACE1, we found that alternative splicing leads to inactive splice isoforms and antisense oligonucleotides shift splicing toward these inactive isoforms to decrease A β production. In addition, a G-quadruplex structure in the BACE1 mRNA plays a role in splice regulation. The prospects for targeting tau and BACE1 mRNAs as therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Michael S. Wolfe
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, H.I.M. 754, Boston, MA 02115, USA
| |
Collapse
|
31
|
Characterization of NOL7 gene point mutations, promoter methylation, and protein expression in cervical cancer. Int J Gynecol Pathol 2014; 31:15-24. [PMID: 22123719 DOI: 10.1097/pgp.0b013e318220ba16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
NOL7 is a putative tumor suppressor gene localized to 6p23, a region with frequent loss of heterozygosity in a number of cancers, including cervical cancer (CC). We have previously demonstrated that reintroduction of NOL7 into CC cells altered the angiogenic phenotype and suppressed tumor growth in vivo by 95%. Therefore, to understand its mechanism of inactivation in CC, we investigated the genetic and epigenetic regulation of NOL7. NOL7 mRNA and protein levels were assessed in 13 CC cell lines and 23 consecutive CC specimens by real-time quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Methylation of the NOL7 promoter was analyzed by bisulfite sequencing and mutations were identified through direct sequencing. A CpG island with multiple CpG dinucleotides spanned the 5' untranslated region and first exon of NOL7. However, bisulfite sequencing failed to identify persistent sites of methylation. Mutational sequencing revealed that 40% of the CC specimens and 31% of the CC cell lines harbored somatic mutations that may affect the in vivo function of NOL7. Endogenous NOL7 mRNA and protein expression in CC cell lines were significantly decreased in 46% of the CC cell lines. Finally, immunohistochemistry demonstrated strong NOL7 nucleolar staining in normal tissues that decreased with histologic progression toward CC. NOL7 is inactivated in CC in accordance with the Knudson 2-hit hypothesis through loss of heterozygosity and mutation. Together with evidence of its in vivo tumor suppression, these data support the hypothesis that NOL7 is the legitimate tumor suppressor gene located on 6p23.
Collapse
|
32
|
Genome-wide search for exonic variants affecting translational efficiency. Nat Commun 2014; 4:2260. [PMID: 23900168 PMCID: PMC3749366 DOI: 10.1038/ncomms3260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 07/05/2013] [Indexed: 01/10/2023] Open
Abstract
The search for expression quantitative trait loci (eQTL) has traditionally centered entirely on the process of transcription, whereas variants with effects on mRNA translation have not been systematically studied. Here we present a high throughput approach for measuring translational cis-regulation in the human genome. Using ribosomal association as proxy for translational efficiency of polymorphic mRNAs, we test the ratio of polysomal/nonpolysomal mRNA level as a quantitative trait for association with single-nucleotide polymorphisms on the same mRNA transcript. We identify one important ribosomal-distribution effect, from rs1131017 in the 5’UTR of RPS26 , that is in high linkage disequilibrium (LD) with the 12q13 locus for susceptibility to type 1 diabetes. The effect on translation is confirmed at the protein level by quantitative Western blots, both ex vivo and after in vitro translation. Our results are a proof-of-principle that allelic effects on translation can be detected at a transcriptome-wide scale.
Collapse
|
33
|
Zeng T, Dong ZF, Liu SJ, Wan RP, Tang LJ, Liu T, Zhao QH, Shi YW, Yi YH, Liao WP, Long YS. A novel variant in the 3' UTR of human SCN1A gene from a patient with Dravet syndrome decreases mRNA stability mediated by GAPDH's binding. Hum Genet 2014; 133:801-11. [PMID: 24464349 DOI: 10.1007/s00439-014-1422-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/16/2014] [Indexed: 01/15/2023]
Abstract
Mutations in the SCN1A gene-encoding voltage-gated sodium channel α-I subunit (Nav1.1) cause various spectrum of epilepsies including Dravet syndrome (DS), a severe and intractable form. A large number of SCN1A mutations identified from the DS patients lead to the loss of function or truncation of Nav1.1 that result in a haploinsufficiency effects, indicating that the exact expression level of SCN1A should be essential to maintain normal brain function. In this study, we have identified five variants c.*1025T>C, c.*1031A>T, c.*1739C>T, c.*1794C>T and c.*1961C>T in the SCN1A 3' UTR in the patients with DS. The c.*1025T>C, c.*1031A>T and c.*1794C>T are conserved among different species. Of all the five variants, only c.*1794C>T is a novel variant and alters the predicted secondary structure of the 3' UTR. We also show that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) only binds to the 3' UTR sequence containing the mutation allele 1794U but not the wild-type allele 1794C, indicating that the mutation allele forms a new GAPDH-binding site. Functional analyses show that the variant negatively regulates the reporter gene expression by affecting the mRNA stability that is mediated by GAPDH's binding, and this phenomenon could be reversed by shRNA-induced GAPDH knockdown. These findings suggest that GAPDH and the 3'-UTR variant are involved in regulating SCN1A expression at post-transcriptional level, which may provide an important clue for further investigating on the relationship between 3'-UTR variants and SCN1A-related diseases.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shastry BS. Genetics of familial exudative vitreoretinopathy and its implications for management. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Muiya N, Al-Najai M, Tahir AI, Elhawari S, Gueco D, Andres E, Mazhar N, Altassan N, Meyer BF, Alshahid M, Dzimiri N. The 3'-UTR of the adiponectin Q gene harbours susceptibility loci for atherosclerosis and its metabolic risk traits. BMC MEDICAL GENETICS 2013; 14:127. [PMID: 24330659 PMCID: PMC3925068 DOI: 10.1186/1471-2350-14-127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/28/2013] [Indexed: 12/25/2022]
Abstract
Background Adiponectin Q is a hormone that modulates several metabolic processes and contributes to the suppression of biochemical pathways leading to metabolic syndrome. Hence, polymorphic changes in the adiponectin Q (ADIPOQ) gene are likely to contribute to metabolic disorders, and consequently lead to atherosclerosis. In the present study, we performed a population-based association study for 8 SNPs in 4646 Saudi individuals (2339 CAD cases versus angiographed 2307 controls) by real-time PCR. Methods Linkage analysis was done by the Affymetrix Gene Chip array, sequencing by the MegaBACE DNA analysis system and genotyping accomplished by TaqMan chemistry with the Applied Biosystem real-time Prism 7900HT Sequence Detection System. Results The rs2241766 (TG + GG) [Odds ratio(95% Confidence Interval = 1.35(1.01-1.72); p = 0.015] and rs9842733A > T [1.48(1.01-2.07); p = 0.042] were associated with hypertension [HTN; 3541 cases vs 1101 controls), following adjustment for the presence of other cardiovascular risk traits. The rs2241766 (TG + GG) was further implicated in harbouring of low high density lipoprotein levels (LHDL; 1353 versus 2156 controls) [1.35(1.10-1.67); p = 0.005], but lost its association with obesity after the adjustment for confounders. Besides, low high density lipoprotein was also linked with rs6444174 (TC + CC) [1.28(1.05-1.59)]. On the other hand, while initial univariate logistic regression analysis pointed to rs1063537 C > T (p = 0.010), rs2082940 C > T (p = 0.035) and rs1063539 G > C (p = 0.035) as being associated with myocardial infarction, significance levels of these relationships were diminished following adjustment for the influence of confounding covariates. Interestingly, haplotyping showed that an 8-mer haplotype GTGCCTCA and several of its derivatives constructed from the studied SNPs were commonly implicated in MI (χ2 = 4.12; p = 0.042), HTN (χ2 = 6.40; p = 0.011) and OBS (χ2 = 5.18; p = 0.023). Conclusion These results demonstrate that the ADIPOQ 3′UTR harbours common susceptibility variants for metabolic risk traits and CAD, pointing to the importance of this region in atherosclerosis disease pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Nduna Dzimiri
- Genetics Department, King Faisal Specialist Hospital and Research Centre, P,O, Box 3354, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
36
|
van Zyl T, Jerling JC, Conradie KR, Feskens EJM. Common and rare single nucleotide polymorphisms in the LDLR gene are present in a black South African population and associate with low-density lipoprotein cholesterol levels. J Hum Genet 2013; 59:88-94. [DOI: 10.1038/jhg.2013.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 11/09/2022]
|
37
|
Tokat B, Kurt O, Bugra Z, Ozturk O, Yilmaz-Aydogan H. Investigation of the monocyte diapedesis-related LFA-1 and JAM-A gene variants in Turkish coronary heart disease patients. Meta Gene 2013; 2:1-10. [PMID: 25606383 PMCID: PMC4287794 DOI: 10.1016/j.mgene.2013.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/04/2023] Open
Abstract
Background LFA-1/JAM-A interaction plays a significant role in early steps of leukocyte transendothelial migration (diapedesis) which takes part in atherosclerosis pathogenesis. In this population-based case–control study, the frequencies of JAM-A rs790056 and LFA-1 rs8058823 gene polymorphisms in patients with coronary heart disease (CHD) and healthy subjects were investigated and the correlations between the different genotypes and cardiovascular risk factors were analyzed. Methods The JAM-A and LFA-1 genotypes were determined in 153 patients with CHD and 124 controls by PCR–RFLP assay. Results In CHD patient group, the frequency of JAM-A rs790056 TT genotype and the frequency of T allele were higher when compared with the control group (p = 0.03 and p = 0.007,respectively). In patient groups, the frequency of LFA-1 rs8058823 AA genotype was higher (p = 0.000), and the frequency of AG genotype was lower when compared with the control group (p = 0.031). In the control group, LFA-1 rs8058823 G allele carriers had higher SBP than subjects with AA genotype (p = 0.038), whereas in the CHD patient group, G allele carriers had lower DBP than subjects with AA genotype (p = 0.007). The multivariate logistic regression analysis confirmed that the JAM-A rs790056 TT genotype (OR = 2.472, p = 0.045) and LFA-1 rs8058823 AA genotype (OR = 6.751, p = 0.000) were risk factors for CHD development. Conclusion These results suggest that the wild type genotypes and alleles of JAM-A rs790056 (TT genotype and T allele) and LFA-1 rs8058823 (AA genotype and A allele) were found to be risk factors for CHD, whereas rare genotypes and alleles were found to be higher in healthy controls thus being protective. JAM-A common genotype and allele were more frequent in CHD group than controls. LFA-1 common genotype was more frequent in CHD group than controls. LFA-1 rare allele had lower DBP than subjects with common genotype. JAM-A and LFA-1 common genotypes were risk factors for CHD development.
Collapse
Key Words
- 3′UTR, 3′-untranslated region
- BMI, body mass index
- CHD, coronary heart disease
- CI, confidence interval
- Coronary heart disease
- DBP, diastolic blood pressure
- Diapedesis
- HDL-C, high density lipoprotein cholesterol
- HWE, Hardy-Weinberg Equilibrium
- JAM-A
- JAM-A, junctional adhesion molecule-A
- LDL-C, low density lipoprotein cholesterol
- LFA-1
- LFA-1, leukocyte function-associated antigen-1
- LVH, left ventricular hypertrophy
- OR, odds ratio
- PCR-RFLP, polymerase chain reaction–restriction fragment length polymorphism
- Polymorphism
- SBP, systolic blood pressure
- SNP, single nucleotide polymorphism
- T2DM, type 2 diabetes mellitus
- TC, total cholesterol
- TG, triglyceride
- VLDL-C, very low density lipoprotein cholesterol
Collapse
Affiliation(s)
- Bengu Tokat
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozlem Kurt
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Zehra Bugra
- Department of Cardiology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
38
|
SNPs of MYPN and TTN genes are associated to meat and carcass traits in Italian Large White and Italian Duroc pigs. Mol Biol Rep 2013; 40:6927-33. [DOI: 10.1007/s11033-013-2812-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/16/2013] [Indexed: 01/18/2023]
|
39
|
Prasad MK, Bhalla K, Pan ZH, O’Connell JR, Weder AB, Chakravarti A, Tian B, Chang YPC. A polymorphic 3'UTR element in ATP1B1 regulates alternative polyadenylation and is associated with blood pressure. PLoS One 2013; 8:e76290. [PMID: 24098465 PMCID: PMC3788127 DOI: 10.1371/journal.pone.0076290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022] Open
Abstract
Although variants in many genes have previously been shown to be associated with blood pressure (BP) levels, the molecular mechanism underlying these associations are mostly unknown. We identified a multi-allelic T-rich sequence (TRS) in the 3’UTR of ATP1B1 that varies in length and sequence composition (T22-27 and T12GT 3GT6). The 3’UTR of ATP1B1 contains 2 functional polyadenylation signals and the TRS is downstream of the proximal polyadenylation site (A2). Therefore, we hypothesized that alleles of this TRS might influence ATP1B1 expression by regulating alternative polyadenylation. In vitro, the T12GT 3GT6 allele increases polyadenylation at the A2 polyadenylation site as compared to the T23 allele. Consistent with our hypothesis, the relative abundance of the A2-polyadenylated ATP1B1 mRNA was higher in human kidneys with at least one copy of the T12GT 3GT6 allele than in those lacking this allele. The T12GT 3GT6 allele is also associated with higher systolic BP (beta = 3.3 mmHg, p = 0.014) and diastolic BP (beta = 2.4 mmHg, p = 0.003) in a European-American population. Therefore, we have identified a novel multi-allelic TRS in the 3’UTR of ATP1B1 that is associated with higher BP and may mediate its effect by regulating the polyadenylation of the ATP1B1 mRNA.
Collapse
Affiliation(s)
- Megana K. Prasad
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kavita Bhalla
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Zhen Hua Pan
- Department of Biochemistry & Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alan B. Weder
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bin Tian
- Department of Biochemistry & Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Yen-Pei C. Chang
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS. Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 2013; 127:739-49. [PMID: 24032460 DOI: 10.1111/jnc.12437] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 11/28/2022]
Abstract
Tau pathologically aggregates in Alzheimer's disease, and evidence suggests that reducing tau expression may be safe and beneficial for the prevention or treatment of this disease. We sought to examine the role of the 3'-untranslated region (3'-UTR) of human tau mRNA in regulating tau expression. Tau expresses two 3'-UTR isoforms, long and short, as a result of alternative polyadenylation. Using luciferase reporter constructs, we found that expression from these isoforms is differentially controlled in human neuroblastoma cell lines M17D and SH-SY5Y. Several microRNAs were computationally identified as candidates that might bind the long, but not short, tau 3'-UTR isoform. A hit from a screen of candidates, miR-34a, was subsequently shown to repress the expression of endogenous tau protein in M17D cells. Conversely, inhibition of endogenously expressed miR-34 family members leads to increased endogenous tau expression. In addition, through an unbiased screen of fragments of the human tau 3'-UTR using a luciferase reporter assay, we identified several other regions in the long tau 3'-UTR isoform that contain regulatory cis-elements. Improved understanding of the regulation of tau expression by its 3'-UTR may ultimately lead to the development of novel therapeutic strategies for the treatment of Alzheimer's disease and other tauopathies. mRNA 3'-untranslated regions (3'-UTR) often regulate transcript stability or translation. Despite the centrality of the tau protein in Alzheimer's and other neurodegenerative diseases, the human tau 3'-UTR has been little studied. This report identifies regions of the tau 3'-UTR that influence expression and shows that microRNA (miR)-34a targets this 3'-UTR to lower expression, which is considered an important therapeutic goal.
Collapse
Affiliation(s)
- John R Dickson
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Cellular and viral preRNAs are extensively cotranscriptionally modified. These modifications include the processing of the 3' end. Most preRNAs are polyadenylated, which is required for nuclear export, RNA stability, and efficient translation. Integrated retroviral genomes are flanked by 3' and 5' long terminal repeats (LTRs). Both LTRs are identical on the nucleotide level, but 3' processing has to be limited to the 3'LTR. Otherwise, polyadenylation at the 5'LTR would result in prematurely terminated, noncoding viral RNAs. Retroviruses have developed a variety of different mechanisms to restrict polyadenylation to the 3'LTR, although the overall structure of the LTRs is similar among all retroviruses. In general, these mechanisms can be divided into three main groups: (1) activation of polyadenylation only at the 3' end by encoding the essential polyadenylation signal in the unique 3 region; (2) suppression of polyadenylation at the 5'LTR by downstream elements such as the major splice donor; and (3) the usage of weak polyadenylation sites, which results in some premature polyadenylated noncoding RNAs and in read-through transcripts at the 3'LTR. All these mechanisms exhibit intrinsic problems, and retroviruses have evolved additional regulatory elements to promote polyadenylation at the 3'LTR only. In this review, we describe the molecular regulation of retroviral polyadenylation and highlight the different mechanisms used for polyadenylation control.
Collapse
Affiliation(s)
- Eva-Maria Schrom
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | | | | | | |
Collapse
|
42
|
Takeuchi T, Suzuki K. CD247 variants and single-nucleotide polymorphisms observed in systemic lupus erythematosus patients. Rheumatology (Oxford) 2013; 52:1551-5. [DOI: 10.1093/rheumatology/ket119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Schweingruber C, Rufener SC, Zünd D, Yamashita A, Mühlemann O. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:612-23. [PMID: 23435113 DOI: 10.1016/j.bbagrm.2013.02.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is well known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with truncated open reading frames (ORF) due to the presence of a premature termination codon (PTC). However, a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD targets. In this review, we focus on mechanistic aspects of target mRNA identification and degradation in mammalian cells, based on the available biochemical and genetic data, and point out knowledge gaps. Translation termination in a messenger ribonucleoprotein particle (mRNP) environment lacking necessary factors for proper translation termination emerges as a key determinant for subjecting an mRNA to NMD, and we therefore review recent structural and mechanistic insight into translation termination. In addition, the central role of UPF1, its crucial phosphorylation/dephosphorylation cycle and dynamic interactions with other NMD factors are discussed. Moreover, we address the role of exon junction complexes (EJCs) in NMD and summarize the functions of SMG5, SMG6 and SMG7 in promoting mRNA decay through different routes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
44
|
|
45
|
Rehfeld A, Plass M, Krogh A, Friis-Hansen L. Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 2013; 4:53. [PMID: 23658553 PMCID: PMC3647115 DOI: 10.3389/fendo.2013.00053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. PERSPECTIVES Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SUMMARY This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.
Collapse
Affiliation(s)
- Anders Rehfeld
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Lennart Friis-Hansen
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 4113, Blegdamsvej 9, DK2100 Copenhagen, Denmark. e-mail:
| |
Collapse
|
46
|
Zarate YA, Dwivedi A, Bartel FO, Bellomo MA, Cathey SS, Champaigne NL, Clarkson LK, Dupont BR, Everman DB, Geer JS, Gordon BC, Lichty AW, Lyons MJ, Rogers RC, Saul RA, Schroer RJ, Skinner SA, Stevenson RE. Clinical utility of the X-chromosome array. Am J Med Genet A 2012. [PMID: 23208842 DOI: 10.1002/ajmg.a.35698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59 = 42%). The findings were deemed pathogenic/likely pathogenic (16/59 = 27%), benign (4/59 = 7%) or uncertain (7/59 = 12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families.
Collapse
|
47
|
Boumaiza I, Omezzine A, Rejeb J, Rebhi L, Ben Rejeb N, Nabli N, Ben Abdelaziz A, Bouslama A. Association between four resistin polymorphisms, obesity, and metabolic syndrome parameters in Tunisian volunteers. Genet Test Mol Biomarkers 2012; 16:1356-62. [PMID: 23020084 DOI: 10.1089/gtmb.2012.0156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resistin is an adipocyte-secreted cytokine recently discovered and has been proposed as a link between obesity and diabetes. Many resistin gene polymorphisms were described and their implication in obesity and metabolic syndrome (MetS) was controversial. Our aim was to study the relationship between four resistin polymorphisms (420C/G, 44G/A, 62G/A, and 394C/G), MetS parameters, and the risk of obesity in Tunisian volunteers. We recruited 169 nonobese (sex ratio=0.594; mean age=43.25±13.12 years; mean body mass index [BMI]=24.73±3.50 kg/m(2)) and 160 obese subjects (sex ratio=0.221; mean age=48.41±10.92 years; mean BMI=36.6±4.8 kg/m(2)). Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism. Anthropometric parameters, lipid levels, glycemia, and insulinemia were measured. BMI was calculated and insulin resistance was evaluated with the homeostasis model assessment insulin resistance (HOMA-IR). Statistical analyses were performed by SPSS 17.0. The 420C/G seems to contribute to obesity. In fact adjusted odds ratio (OR) of obesity associated to mutated genotypes was 2.17 and 95% confidence interval was 1.28-3.68 (p=0.004). Mutated genotypes at 420C/G were associated with higher waist circumference and BMI. In addition, 44G/A polymorphism was associated with increased total cholesterol and low-density lipoprotein-cholesterol levels. The other genotypes showed no association with MetS parameters. Concerning association between single-nucleotide polymorphisms and MetS risk, only mutated genotypes at 44G/A increase the risk of MetS after adjustment to confounding parameters (OR=1.93, p=0.023). In conclusion, resistin gene polymorphisms 420C/G and 44G/A were associated with obesity and MetS parameters in Tunisian volunteers.
Collapse
Affiliation(s)
- Imen Boumaiza
- Biochemistry Department, UR MSP 28/04, Sahloul University Hospital, Sousse, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Langemeier J, Schrom EM, Rabner A, Radtke M, Zychlinski D, Saborowski A, Bohn G, Mandel-Gutfreund Y, Bodem J, Klein C, Bohne J. A complex immunodeficiency is based on U1 snRNP-mediated poly(A) site suppression. EMBO J 2012; 31:4035-44. [PMID: 22968171 DOI: 10.1038/emboj.2012.252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/10/2012] [Indexed: 01/01/2023] Open
Abstract
Biallelic mutations in the untranslated regions (UTRs) of mRNAs are rare causes for monogenetic diseases whose mechanisms remain poorly understood. We investigated a 3'UTR mutation resulting in a complex immunodeficiency syndrome caused by decreased mRNA levels of p14/robld3 by a previously unknown mechanism. Here, we show that the mutation creates a functional 5' splice site (SS) and that its recognition by the spliceosomal component U1 snRNP causes p14 mRNA suppression in the absence of splicing. Histone processing signals are able to rescue p14 expression. Therefore, the mutation interferes only with canonical poly(A)-site 3' end processing. Our data suggest that U1 snRNP inhibits cleavage or poly(A) site recognition. This is the first description of a 3'UTR mutation that creates a functional 5'SS causative of a monogenetic disease. Moreover, our data endorse the recently described role of U1 snRNP in suppression of intronic poly(A) sites, which is here deleterious for p14 mRNA biogenesis.
Collapse
Affiliation(s)
- Jörg Langemeier
- Cell and Virus Genetics Group, Institute for Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yoon OK, Hsu TY, Im JH, Brem RB. Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet 2012; 8:e1002882. [PMID: 22916029 PMCID: PMC3420953 DOI: 10.1371/journal.pgen.1002882] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 06/20/2012] [Indexed: 11/18/2022] Open
Abstract
Gene expression varies widely between individuals of a population, and regulatory change can underlie phenotypes of evolutionary and biomedical relevance. A key question in the field is how DNA sequence variants impact gene expression, with most mechanistic studies to date focused on the effects of genetic change on regulatory regions upstream of protein-coding sequence. By contrast, the role of RNA 3'-end processing in regulatory variation remains largely unknown, owing in part to the challenge of identifying functional elements in 3' untranslated regions. In this work, we conducted a genomic survey of transcript ends in lymphoblastoid cells from genetically distinct human individuals. Our analysis mapped the cis-regulatory architecture of 3' gene ends, finding that transcript end positions did not fall randomly in untranslated regions, but rather preferentially flanked the locations of 3' regulatory elements, including miRNA sites. The usage of these transcript length forms and motifs varied across human individuals, and polymorphisms in polyadenylation signals and other 3' motifs were significant predictors of expression levels of the genes in which they lay. Independent single-gene experiments confirmed the effects of polyadenylation variants on steady-state expression of their respective genes, and validated the regulatory function of 3' cis-regulatory sequence elements that mediated expression of these distinct RNA length forms. Focusing on the immune regulator IRF5, we established the effect of natural variation in RNA 3'-end processing on regulatory response to antigen stimulation. Our results underscore the importance of two mechanisms at play in the genetics of 3'-end variation: the usage of distinct 3'-end processing signals and the effects of 3' sequence elements that determine transcript fate. Our findings suggest that the strategy of integrating observed 3'-end positions with inferred 3' regulatory motifs will prove to be a critical tool in continued efforts to interpret human genome variation.
Collapse
Affiliation(s)
- Oh Kyu Yoon
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Tiffany Y. Hsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Joo Hyun Im
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Juszczuk-Kubiak E, Starzyński RR, Sakowski T, Wicińska K, Flisikowski K. Effects of new polymorphisms in the bovine myocyte enhancer factor 2D (MEF2D) gene on the expression rates of the longissimus dorsi muscle. Mol Biol Rep 2012; 39:8387-93. [PMID: 22714905 PMCID: PMC3383949 DOI: 10.1007/s11033-012-1689-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 06/05/2012] [Indexed: 12/27/2022]
Abstract
Myocyte enhancer factor 2D (MEF2D), a product of the MEF2D gene, belongs to the myocyte enhancer factor 2 (MEF2) protein family which is involved in vertebrate skeletal muscle development and differentiation during myogenesis. The aim of the present study was to search for polymorphisms in the bovine MEF2D gene and to analyze their effect on MEF2D mRNA and on protein expression levels in the longissimus dorsi muscle of Polish Holstein–Friesian cattle. Overall, three novel variations, namely, insertion/deletion g.−818_−814AGCCG and g.−211C<A transversion in the promoter region as well as g.7C<T transition in the 5′untranslated region (5′UTR), were identified by DNA sequencing. A total, 375 unrelated bulls belonging to six different cattle breeds were genotyped, and three combined genotypes (Ins-C-C/Ins-C-C, Del-A-T/Del-A-T and Ins-C-C/Del-A-T) were determined. The frequency of the combined genotype Ins-C-C/Ins-C-C and Del-A-T/Del-A-T was varied between the breeds and the average frequency was 0.521 and 0.037, respectively. Expression analysis showed that the MEF2D variants were highly correlated with MEF2D mRNA and protein levels in the longissimus dorsi muscle of Polish Holstein–Friesian bulls carrying the three different combined genotypes. The highest MEF2D mRNA and protein levels were estimated in the muscle of bulls with the Ins-C-C/Ins-C-C homozygous genotype as compared to the Del-A-T/Del-A-T homozygotes (P < 0.01) and Ins-C-C/Del-A-T heterozygotes (P < 0.05). A preliminary association study showed no significant differences in the carcass quality traits between bulls with various MEF2D combined genotypes in the investigated population of Polish Holstein–Friesian cattle.
Collapse
Affiliation(s)
- E Juszczuk-Kubiak
- Department of Molecular Cytogenetics, Polish Academy of Sciences Institute of Genetics and Animal Breeding, Jastrzębiec, 05-552 Magdalenka, Poland.
| | | | | | | | | |
Collapse
|