1
|
Carvalho E, Dias A, Coelho T, Sousa A, Alves-Ferreira M, Santos M, Lemos C. Hereditary transthyretin amyloidosis: a myriad of factors that influence phenotypic variability. J Neurol 2024; 271:5746-5761. [PMID: 38907862 PMCID: PMC11377651 DOI: 10.1007/s00415-024-12509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
Hereditary transthyretin-related amyloidosis (ATTRv amyloidosis) is a rare and progressively debilitating disease characterized by the deposition of transthyretin (TTR) amyloid fibrils in various organs and tissues, most commonly in the heart and peripheral nerves. This pathological deposition can lead to significant organ dysfunction and, ultimately, organ failure. ATTRv amyloidosis exhibits a broad range of clinical presentations, from purely neurological symptoms to purely cardiac manifestations, as well as mixed phenotypes which result from both neurological and cardiac implications. This wide phenotypical spectrum realistically challenges disease diagnosis and prognosis, especially in individuals without or with an unknown family history. Multiple factors are thought to contribute to this variability, including genetic, epigenetic, and even environmental influences. Understanding these factors is crucial, as they can significantly affect disease expression and progression. This review aims to summarize each of these contributing factors, to help elucidate the current knowledge on the phenotypical variability of ATTRv amyloidosis.
Collapse
Affiliation(s)
- Estefânia Carvalho
- Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Dias
- Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Teresa Coelho
- Unidade Corino de Andrade (UCA), Centro Hospitalar Universitário de Santo António (CHUdSA), Porto, Portugal
| | - Alda Sousa
- Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Miguel Alves-Ferreira
- Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Center for Preditive and Preventive Genetics (CGPP), Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
| | - Mariana Santos
- Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
| | - Carolina Lemos
- Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
De Lillo A, Pathak GA, Low A, De Angelis F, Abou Alaiwi S, Miller EJ, Fuciarelli M, Polimanti R. Clinical spectrum of Transthyretin amyloidogenic mutations among diverse population origins. Hum Genomics 2024; 18:31. [PMID: 38523305 PMCID: PMC10962184 DOI: 10.1186/s40246-024-00596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
PURPOSE Coding mutations in the Transthyretin (TTR) gene cause a hereditary form of amyloidosis characterized by a complex genotype-phenotype correlation with limited information regarding differences among worldwide populations. METHODS We compared 676 diverse individuals carrying TTR amyloidogenic mutations (rs138065384, Phe44Leu; rs730881165, Ala81Thr; rs121918074, His90Asn; rs76992529, Val122Ile) to 12,430 non-carriers matched by age, sex, and genetically-inferred ancestry to assess their clinical presentations across 1,693 outcomes derived from electronic health records in UK biobank. RESULTS In individuals of African descent (AFR), Val122Ile mutation was linked to multiple outcomes related to the circulatory system (fold-enrichment = 2.96, p = 0.002) with the strongest associations being cardiac congenital anomalies (phecode 747.1, p = 0.003), endocarditis (phecode 420.3, p = 0.006), and cardiomyopathy (phecode 425, p = 0.007). In individuals of Central-South Asian descent (CSA), His90Asn mutation was associated with dermatologic outcomes (fold-enrichment = 28, p = 0.001). The same TTR mutation was linked to neoplasms in European-descent individuals (EUR, fold-enrichment = 3.09, p = 0.003). In EUR, Ala81Thr showed multiple associations with respiratory outcomes related (fold-enrichment = 3.61, p = 0.002), but the strongest association was with atrioventricular block (phecode 426.2, p = 2.81 × 10- 4). Additionally, the same mutation in East Asians (EAS) showed associations with endocrine-metabolic traits (fold-enrichment = 4.47, p = 0.003). In the cross-ancestry meta-analysis, Val122Ile mutation was associated with peripheral nerve disorders (phecode 351, p = 0.004) in addition to cardiac congenital anomalies (fold-enrichment = 6.94, p = 0.003). CONCLUSIONS Overall, these findings highlight that TTR amyloidogenic mutations present ancestry-specific and ancestry-convergent associations related to a range of health domains. This supports the need to increase awareness regarding the range of outcomes associated with TTR mutations across worldwide populations to reduce misdiagnosis and delayed diagnosis of TTR-related amyloidosis.
Collapse
Affiliation(s)
- Antonella De Lillo
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Aislinn Low
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA
- Department of Physical and Mental Health, and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sarah Abou Alaiwi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Fuciarelli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Chen CC, Tseng PH, Hsueh HW, Chiang MC, Tzeng SR, Chiang TH, Wu MS, Hsieh ST, Chao CC. Altered gut microbiota in Taiwanese A97S predominant transthyretin amyloidosis with polyneuropathy. Sci Rep 2024; 14:6195. [PMID: 38486098 PMCID: PMC10940600 DOI: 10.1038/s41598-024-56984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Increasing evidence suggests that gut microbiota alterations are related to development and phenotypes of many neuropsychiatric diseases. Here, we evaluated the fecal microbiota and its clinical correlates in patients with hereditary transthyretin amyloidosis (ATTRv) and polyneuropathy. Fecal microbiota from 38 ATTRv patients and 39 age-matched controls was analyzed by sequencing 16S V3-V4 ribosomal RNA, and its relationships with clinical characteristics of polyneuropathy and cardiomyopathy were explored. The familial amyloidotic polyneuropathy stage was stage I, II, and III in 13, 18, and 7 patients. 99mTc-PYP SPECT showed a visual score of 2 in 15 and 3 in 21 patients. The gut microbiota of ATTRv patients showed higher alpha diversity (ASV richness and Shannon effective numbers) and dissimilar beta diversity compared to controls. Relative abundance of microbiota was dominated by Firmicutes and decreased in Bacteroidetes in ATTRv patients than in controls. Patients with more myocardial amyloid deposition were associated with increased alpha diversity, and the abundance of Clostridia was significantly correlated with pathophysiology of polyneuropathy in ATTRv patients. These findings demonstrated alterations in the gut microbiota, especially Firmicutes, in ATTRv. The association between altered microbiota and phenotypes of cardiomyopathy and polyneuropathy might suggest potential contributions of gut microbiota to ATTRv pathogenesis.
Collapse
Affiliation(s)
- Chieh-Chang Chen
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Huei Tseng
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung Hsien Chiang
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chi-Chao Chao
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Pathak GA, De Lillo A, Wendt FR, De Angelis F, Koller D, Mendoza BC, Jacoby D, Miller EJ, Buxbaum JN, Polimanti R. The integration of genetically-regulated transcriptomics and electronic health records highlights a pattern of medical outcomes related to increased hepatic transthyretin expression. Amyloid 2022; 29:110-119. [PMID: 34935565 PMCID: PMC9213571 DOI: 10.1080/13506129.2021.2018678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Transthyretin (TTR) is the precursor of the fibrils that compromise organ function in hereditary and sporadic systemic amyloidoses (ATTR). RNA-interference and anti-sense therapeutics targeting TTR hepatic transcription have been shown to reduce TTR amyloid formation. In the present study, we leveraged genetic and phenotypic information from the UK Biobank and transcriptomic profiles from the Genotype-Tissue Expression project to test the association of genetically regulated TTR gene expression with 7149 traits assessed in 420,531 individuals. We conducted a multi-tissue analysis of TTR transcription and identified an association with a operational procedure related to bone fracture (p = 5.46×10-6). Using tissue-specific TTR expression information, we demonstrated that the association is driven by the genetic regulation of TTR hepatic expression (odds ratio [OR] = 3.46, p = 9.51×10-5). Using the UK Biobank electronic health records (EHRs), we investigated the comorbidities affecting individuals undergoing this surgical procedure. Excluding bone fracture EHRs, we identified a pattern of health outcomes previously associated with ATTR manifestations. These included osteoarthritis (OR = 3.18, p = 9.18×10-8), carpal tunnel syndrome (OR = 2.15, p = .002), and a history of gastrointestinal diseases (OR = 2.01, p = 8.07×10-4). In conclusion, our study supports that TTR hepatic expression can affect health outcomes linked to physiological and pathological processes presumably related to the encoded protein.
Collapse
Affiliation(s)
- Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Antonella De Lillo
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Brenda Cabrera Mendoza
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Daniel Jacoby
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Edward J. Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
- Corresponding author: Renato Polimanti, Ph.D., Yale University School of Medicine, Department of Psychiatry. VA CT 116A2, 950 Campbell Avenue, West Haven, CT 06516, USA. Phone: +1 (203) 932-5711 x5745. Fax: +1 (203) 937-3897.
| |
Collapse
|
5
|
Tereshchenko SN, Zhirov IV, Moiseeva OM, Adasheva TV, Ansheles AA, Barbarash OL, Galyavich AS, Gudkova AI, Zateyshchikov DA, Kostareva AA, Nasonova SN, Nedogoda SV, Pecherina TB, Ryzhkova DV, Sergienko VB. Practical guidelines for the diagnosis and treatment of transthyretin amyloid cardiomyopathy (ATTR-CM or transthyretin cardiac amyloidosis). TERAPEVT ARKH 2022; 94:584-595. [DOI: 10.26442/00403660.2022.04.201465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
This paper summarizes the data from updated international protocols and guidelines for diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM). The invasive and non-invasive diagnosis techniques and their combinations are briefly reviewed; the evidentiary foundations for each diagnostic option and tool are analyzed. The paper describes a customized algorithm for sequential diagnosis and differential diagnosis of patients with suspected ATTR-CM with allowance for the combination of clinical signs and diagnostic findings. Along with the awareness of primary care providers about the red flags of the disease and visualization criteria, as well as providing information to the patients about the possibility of performing therapy of ATTR amyloidosis and the risks of delayed diagnosis, the proposed algorithm enables timely patient routing and prescribing specific treatment.
Collapse
|
6
|
Correlation between Changes in Serum RBP4, hs-CRP, and IL-27 Levels and Rosuvastatin in the Treatment of Coronary Heart Disease. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:8476592. [PMID: 34956579 PMCID: PMC8695037 DOI: 10.1155/2021/8476592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022]
Abstract
Objective To investigate the correlation between changes in serum RBP4, hs-CRP, and IL-27 levels and rosuvastatin in the treatment of coronary heart disease (CHD). Methods One hundred and twenty patients with CHD admitted in our hospital were selected as the research object, including 60 patients with acute coronary syndrome as the ACS group, and 60 patients with stable angina as the SA group. Another 60 patients without CHD who were examined in our hospital at the same time were included in the non-CHD group. The patients with CHD were further divided into the control group (CG) (n = 42, with routine treatment) and the study group (SG) (n = 78, with routine treatment and rosuvastatin) to measure serum RBP4, hs-CRP, and IL-27 levels and analyze the correlation between each index and rosuvastatin in the treatment of CHD. Results After retrospective analysis, no significant difference was found among the ACS group, the SA group, and the non-CHD group (P > 0.05). As for serum RBP4, hs-CRP, and IL-27 levels, ACS group > SA group > non-CHD group, with obvious differences among groups (P < 0.05). After Spearman correlation analysis, a positive correlation was observed between Gensini score and serum RBP4, hs-CRP, and IL-27 levels in patients with CHD (P < 0.05). After treatment, serum RBP4, hs-CRP, and IL-27 levels were gradually reduced. At 4 weeks after treatment, serum RBP4, hs-CRP, and IL-27 levels of the CG and the SG were decreased conspicuously, and compared with the control, each index of the SG was obviously lower (P < 0.05). Conclusion Serum RBP4, hs-CRP, and IL-27 play an important role in the occurrence and development of CHD, with a positive correlation to the Gensini score, which can indicate the severity of cardiovascular disease to a certain extent. Meanwhile, rosuvastatin can remarkably reduce serum RBP4, hs-CRP, and IL-27 levels, which is of significance for prognosis.
Collapse
|
7
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
8
|
Pathak GA, Wendt FR, De Lillo A, Nunez YZ, Goswami A, De Angelis F, Fuciarelli M, Kranzler HR, Gelernter J, Polimanti R. Epigenomic Profiles of African-American Transthyretin Val122Ile Carriers Reveals Putatively Dysregulated Amyloid Mechanisms. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003011. [PMID: 33428857 PMCID: PMC7887108 DOI: 10.1161/circgen.120.003011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Val122Ile mutation in Transthyretin (TTR) gene causes a rare, difficult to diagnose hereditary form of cardiac amyloidosis. This mutation is most common in the United States and mainly present in people of African descent. The carriers have an increased risk of congestive heart failure, peripheral edema, and several other noncardiac phenotypes such as carpal tunnel syndrome, and arthroplasty which are top reasons for ambulatory/outpatient surgeries (OSs) in the country. METHODS We conducted first-ever epigenome-wide association study using the Illumina's EPIC array, in Val122Ile carriers of African descent for heart disease and multiple OSs-an early disease indicator. Differential methylation across genome wide cytosine-phosphate guanine (CpG) sites was tested between carriers with and without heart disease and OS. Significant CpG sites were investigated for cis-mQTLs loci, followed by gene ontology and protein-protein interaction network. We also investigated the significant CpG sites in a secondary cohort of carriers for replication. RESULTS Five differentially methylated sites (P≤2.1×10-8) in genes-FAM129B, SKI, WDR27, GLS, and an intergenic site near RP11-550A5.2, and one differentially methylated region containing KCNA6 and GALNT3 (P=1.1×10-12) were associated with heart disease. For OS, we observe 4 sites-2 sites in UBE2E3 and SEC14L5, and other 2 in intergenic regions (P≤1.8×10-7) and 3 regions overlapping SH3D21, EVA1B, LTB4R2, and CIDEB (P≤3.9×10-7). Functional protein-interaction module analysis identified ABCA1 (P=0.001) for heart disease. Six cis-mQTLs were associated with one of the significant CpG sites (FAM129B; P=4.1×10-24). We replicated 2 CpG sites (cg18546846 and cg06641417; P<0.05) in an external cohort of biopsy-confirmed cases of TTR (transthyretin) amyloidosis. The genes identified are involved in transport and clearance of amyloid deposits (GLS, ABCA1, FAM129B); cardiac fibrosis (SKI); and muscle tissue regulation (SKI, FAM129B). CONCLUSIONS These findings highlight the link between a complex amyloid circuit and diverse symptoms of Val122Ile.
Collapse
Affiliation(s)
- Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | - Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | | | - Yaira Z. Nunez
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine & VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
9
|
Dohrn MF, Ihne S, Hegenbart U, Medina J, Züchner SL, Coelho T, Hahn K. Targeting transthyretin - Mechanism-based treatment approaches and future perspectives in hereditary amyloidosis. J Neurochem 2020; 156:802-818. [PMID: 33155274 DOI: 10.1111/jnc.15233] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
The liver-derived, circulating transport protein transthyretin (TTR) is the cause of systemic hereditary (ATTRv) and wild-type (ATTRwt) amyloidosis. TTR stabilization and knockdown are approved therapies to mitigate the otherwise lethal disease course. To date, the variety in phenotypic penetrance is not fully understood. This systematic review summarizes the current literature on TTR pathophysiology with its therapeutic implications. Tetramer dissociation is the rate-limiting step of amyloidogenesis. Besides destabilizing TTR mutations, other genetic (RBP4, APCS, AR, ATX2, C1q, C3) and external (extracellular matrix, Schwann cell interaction) factors influence the type of onset and organ tropism. The approved small molecule tafamidis stabilizes the tetramer and significantly decelerates the clinical course. By sequence-specific mRNA knockdown, the approved small interfering RNA (siRNA) patisiran and antisense oligonucleotide (ASO) inotersen both significantly reduce plasma TTR levels and improve neuropathy and quality of life compared to placebo. With enhanced hepatic targeting capabilities, GalNac-conjugated siRNA and ASOs have recently entered phase III clinical trials. Bivalent TTR stabilizers occupy both binding groves in vitro, but have not been tested in trials so far. Tolcapone is another stabilizer with the potential to cross the blood-brain barrier, but its half-life is short and liver failure a potential side effect. Amyloid-directed antibodies and substances like doxycycline aim at reducing the amyloid load, however, none of the yet developed antibodies has successfully passed clinical trials. ATTR-amyloidosis has become a model disease for pathophysiology-based treatment. Further understanding of disease mechanisms will help to overcome the remaining limitations, including application burden, side effects, and blood-brain barrier permeability.
Collapse
Affiliation(s)
- Maike F Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Ihne
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany.,Department of Internal Medicine II, Hematology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University and University Hospital Würzburg, Würzburg, Germany
| | - Ute Hegenbart
- Amyloidosis Center Heidelberg, Department of Internal Medicine V, Division of Hematology/Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Medina
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Stephan L Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Teresa Coelho
- Andrade's Center for Familial Amyloidosis, University of Porto, Porto, Portugal.,Department of Neurosciences, Hospital de Santo António, Centro Hospitalar Do Porto, University of Porto, Porto, Portugal
| | - Katrin Hahn
- Department of Neurology, Charité University Medicine, Berlin, Germany.,Amyloidosis Center Charité Berlin (ACCB), Charité University Medicine, Berlin, Germany
| |
Collapse
|
10
|
De Lillo A, Pathak GA, De Angelis F, Di Girolamo M, Luigetti M, Sabatelli M, Perfetto F, Frusconi S, Manfellotto D, Fuciarelli M, Polimanti R. Epigenetic profiling of Italian patients identified methylation sites associated with hereditary transthyretin amyloidosis. Clin Epigenetics 2020; 12:176. [PMID: 33203445 PMCID: PMC7672937 DOI: 10.1186/s13148-020-00967-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Hereditary transthyretin (TTR) amyloidosis (hATTR) is a rare life-threatening disorder caused by amyloidogenic coding mutations located in TTR gene. To understand the high phenotypic variability observed among carriers of TTR disease-causing mutations, we conducted an epigenome-wide association study (EWAS) assessing more than 700,000 methylation sites and testing epigenetic difference of TTR coding mutation carriers vs. non-carriers. We observed a significant methylation change at cg09097335 site located in Beta-secretase 2 (BACE2) gene (standardized regression coefficient = -0.60, p = 6.26 × 10-8). This gene is involved in a protein interaction network enriched for biological processes and molecular pathways related to amyloid-beta metabolism (Gene Ontology: 0050435, q = 0.007), amyloid fiber formation (Reactome HSA-977225, q = 0.008), and Alzheimer's disease (KEGG hsa05010, q = 2.2 × 10-4). Additionally, TTR and BACE2 share APP (amyloid-beta precursor protein) as a validated protein interactor. Within TTR gene region, we observed that Val30Met disrupts a methylation site, cg13139646, causing a drastic hypomethylation in carriers of this amyloidogenic mutation (standardized regression coefficient = -2.18, p = 3.34 × 10-11). Cg13139646 showed co-methylation with cg19203115 (Pearson's r2 = 0.32), which showed significant epigenetic differences between symptomatic and asymptomatic carriers of amyloidogenic mutations (standardized regression coefficient = -0.56, p = 8.6 × 10-4). In conclusion, we provide novel insights related to the molecular mechanisms involved in the complex heterogeneity of hATTR, highlighting the role of epigenetic regulation in this rare disorder.
Collapse
Affiliation(s)
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Flavio De Angelis
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Marco Di Girolamo
- Clinical Pathophysiology Center, Fatebenefratelli Foundation -'San Giovanni Calibita' Fatebenefratelli Hospital, Rome, Italy
| | - Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Sabatelli
- Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico NEMO Adulti, Rome, Italy
| | - Federico Perfetto
- Regional Amyloid Centre, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Sabrina Frusconi
- Genetic Diagnostics Unit, Laboratory Department, Careggi University Hospital, Florence, Italy
| | - Dario Manfellotto
- Clinical Pathophysiology Center, Fatebenefratelli Foundation -'San Giovanni Calibita' Fatebenefratelli Hospital, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
11
|
Gentile L, Di Bella G, Minutoli F, Cucinotta F, Obici L, Mussinelli R, Arimatea I, Russo M, Toscano A, Vita G, Mazzeo A. Description of a large cohort of Caucasian patients with V122I ATTRv amyloidosis: Neurological and cardiological features. J Peripher Nerv Syst 2020; 25:273-278. [PMID: 32395865 DOI: 10.1111/jns.12385] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 01/19/2023]
Abstract
V122I is one of more than 130 mutations in transthyretin gene associated with hereditary TTR (ATTRv) amyloidosis. Main clinical expression is an infiltrative pseudohypertrophic cardiomyopathy with mild or no neurological symptoms. It is particularly common among African-Americans (prevalence: 3%-4%). We report 12 subjects from seven unrelated Caucasian families hailing from Sicily and carrying the V122I mutation. One patient was homozygous for V122I and in another family two subjects also carried the E89Q variant in compound heterozygosity. All the subjects underwent neurologic/neurophysiologic evaluation and cardiologic baseline tests; in five of them, cardiac magnetic resonance and/or (99 m) Tc-DPD scintigraphy were performed. Three of 12 subjects were asymptomatic carriers. Of the remaining nine subjects, in four of nine patients, the nerve conduction studies revealed a polyneuropathy; in one of them, this represents the only sign of disease after 5 years of follow-up. In eight of nine subjects, we found a hypertrophic restrictive cardiomyopathy and cardiac failure, associated with a carpal tunnel syndrome. Although in non-Afro-American individuals V122I prevalence is low, subjects carrying this mutation have been identified in the United Kingdom, Italy, and France. Our report describes a large cohort of V122I Caucasian patients from a non-endemic area, confirming the possible underestimation of this mutation in the non-African population. Moreover, it highlights the heterogeneity in the genotype-phenotype correlation of ATTRv mutations, suggesting that the presence of a polyneuropathy has to be identified as soon as possible, since available treatments are, in Europe, so far authorized only for ATTRv amyloid peripheral neuropathy.
Collapse
Affiliation(s)
- Luca Gentile
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Fabio Minutoli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Francescopaolo Cucinotta
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberta Mussinelli
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilenia Arimatea
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Massimo Russo
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Toscano
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Anna Mazzeo
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|