1
|
Alsharhan H, Haider MZ, Qadoura B, Ayed M, Dhaunsi GS, Alkandari H. Enzymatic testing for mucopolysaccharidosis type I in Kuwaiti newborns: a preliminary study toward newborn screening. Front Pediatr 2024; 12:1376053. [PMID: 39077064 PMCID: PMC11284113 DOI: 10.3389/fped.2024.1376053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disorder characterized by deficient or absent α-L-iduronidase (IDUA) enzyme activity due to pathogenic variants in the IDUA gene. Early treatment with hematopoietic stem cell transplantation and/or enzyme replacement therapy is associated with improved outcomes in this progressive multisystem disease. The diagnosis is usually delayed due to late presentation and non-specific symptoms, which result in high morbidity and mortality. The incidence of MPS I is unknown in Kuwait. This pilot study was undertaken to screen MPS I in all Kuwaiti neonates born at Farwaniya Hospital (FH), a major center in Kuwait, over 12 months. This study examined the incidence of MPS I for inclusion in the national newborn screening (NBS) to enable its early detection and adequate treatment. All Kuwaiti neonates born at FH between December 2021 and December 2022 were screened for MPS I. The screening consisted of determining IDUA enzyme activity in dried blood spot-derived samples using tandem mass spectrometry. A follow-up genetic analysis of the IDUA gene has been planned to screen the cases with diminished IDUA enzyme activity as second-tier testing. A total of 618 newborns, including 331 (54%) boys and 287 (46%) girls, were screened. Of them, 20 had deficient IDUA enzyme activity but showed negative genetic testing. However, we have diagnosed one additional female infant with MPS I who belonged to FH, but the parents chose to deliver in a private hospital. The molecular genetic study revealed the presence of a previously reported pathogenic nonsense variant in the IDUA c.1882C>T, which is associated with severe phenotype. That being included, MPS I is estimated to be approximately 0.2% of all screened cases in Kuwait. Our study is the first to evaluate the incidence of MPS I in Kuwait. Given the single center, small number of screened infants, and the short study duration thus far, it is premature to calculate the incidence. It is anticipated that as the study continues, we would be able to estimate the incidence in our population correctly. Screening newborns in all maternity hospitals in Kuwait is necessary to calculate the actual incidence of this severe disorder. Still, our preliminary data support the inclusion of MPS I in national NBS program to allow early initiation of treatment and thus improve disease outcome.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
- Department of Pediatrics, Health Sciences Centre, College of Medicine, Kuwait University, Safat, Kuwait
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Mohammad Z. Haider
- Department of Pediatrics, Health Sciences Centre, College of Medicine, Kuwait University, Safat, Kuwait
| | - Bann Qadoura
- Department of Pediatrics, Amiri Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Mariam Ayed
- Department of Neonatology, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Gursev S. Dhaunsi
- Department of Pediatrics, Health Sciences Centre, College of Medicine, Kuwait University, Safat, Kuwait
| | - Hessa Alkandari
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| |
Collapse
|
2
|
Saad MN, Hamed M. Transcriptome-Wide Association Study Reveals New Molecular Interactions Associated with Melanoma Pathogenesis. Cancers (Basel) 2024; 16:2517. [PMID: 39061157 PMCID: PMC11274789 DOI: 10.3390/cancers16142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A transcriptome-wide association study (TWAS) was conducted on genome-wide association study (GWAS) summary statistics of malignant melanoma of skin (UK Biobank dataset) and The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-SKCM) gene expression weights to identify melanoma susceptibility genes. The GWAS included 2465 cases and 449,799 controls, while the gene expression testing was conducted on 103 cases. Afterward, a gene enrichment analysis was applied to identify significant TWAS associations. The melanoma's gene-microRNA (miRNA) regulatory network was constructed from the TWAS genes and their corresponding miRNAs. At last, a disease enrichment analysis was conducted on the corresponding miRNAs. The TWAS detected 27 genes associated with melanoma with p-values less than 0.05 (the top three genes are LOC389458 (RBAK), C16orf73 (MEIOB), and EIF3CL). After the joint/conditional test, one gene (AMIGO1) was dropped, resulting in 26 significant genes. The Gene Ontology (GO) biological process associated the extended gene set (76 genes) with protein K11-linked ubiquitination and regulation of cell cycle phase transition. K11-linked ubiquitin chains regulate cell division. Interestingly, the extended gene set was related to different skin cancer subtypes. Moreover, the enriched pathways were nsp1 from SARS-CoV-2 that inhibit translation initiation in the host cell, cell cycle, translation factors, and DNA repair pathways full network. The gene-miRNA regulatory network identified 10 hotspot genes with the top three: TP53, BRCA1, and MDM2; and four hotspot miRNAs: mir-16, mir-15a, mir-125b, and mir-146a. Melanoma was among the top ten diseases associated with the corresponding (106) miRNAs. Our results shed light on melanoma pathogenesis and biologically significant molecular interactions.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
3
|
Cantú-Reyna C, Vazquez-Cantu DL, Cruz-Camino H, Narváez-Díaz YA, Flores-Caloca Ó, González-Llano Ó, Araiza-Lozano C, Gómez-Gutiérrez R. Mucopolysaccharidosis Type I in Mexico: Case-Based Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040642. [PMID: 37189891 DOI: 10.3390/children10040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease present in 1:100,000 newborns. Variants in the IDUA (alpha-L-iduronidase) gene decrease the enzyme activity for glycosaminoglycans metabolism. MPS I patients exhibit clinical manifestations that fall on the Hurler, Hurler-Scheie, and Scheie syndrome spectrum. CASE PRESENTATION We present a male Mexican patient with respiratory exacerbations requiring recurrent hospitalizations. He showed macrocephaly, coarse facies, hepatomegaly, umbilical hernia, and dorsal kyphosis. The sequencing of the IDUA gene revealed the following genotype: c.46_57del12/c.1205G>A. He received combined therapy with hematopoietic stem cell transplantation and enzyme replacement. Mexican case reports were analyzed to estimate the prevalence of the associated genetic variants. CONCLUSION Despite the challenges of managing this rare disease in Mexico, our patient benefited from the combined therapy. The discrete clinical manifestations and prompt evaluation by a geneticist were crucial in establishing a diagnosis, enabling an early intervention by a multidisciplinary team. The combination of ERT before and after HSCT provided health benefits to our patient.
Collapse
Affiliation(s)
- Consuelo Cantú-Reyna
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey 64710, Mexico
- Medical Department, Genomi-k, Monterrey 64060, Mexico
- Centro Médico, ISSSTELEON, Monterrey 64000, Mexico
| | | | - Héctor Cruz-Camino
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey 64710, Mexico
- Medical Department, Genomi-k, Monterrey 64060, Mexico
| | | | | | - Óscar González-Llano
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey 64710, Mexico
- Centro Médico, ISSSTELEON, Monterrey 64000, Mexico
| | | | - René Gómez-Gutiérrez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey 64710, Mexico
- Medical Department, Genomi-k, Monterrey 64060, Mexico
| |
Collapse
|
4
|
Retinitis pigmentosa and nanophthalmos in a patient with attenuated Hunter's syndrome. Doc Ophthalmol 2023:10.1007/s10633-023-09924-z. [PMID: 36807032 DOI: 10.1007/s10633-023-09924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE To describe a case of retinitis pigmentosa and nanophthalmos in a patient with attenuated Hunter's syndrome. METHODS Fundus photography, total field electroretinogram, ultrasound, computerized visual field examination, biochemical examination and genetic testing were obtained. RESULTS The fundus exam showed diffuse arteriolar attenuation, optic disc with regular contours, and pigment agglomerates like "bone spicules" in the middle periphery. Ultrasound examination revealed scleral thickening and short axial diameter in both eyes. The total field electroretinogram exam showed a subnormal result with greater impairment of the scotopic phase of the exam. Computerized visual field examination demonstrated a diffuse reduction in retinal sensitivity in the periphery. Biochemical examination showed increased urine glycosaminoglycan excretion and iduronate-2-sulphatase activity (IDS) deficiency in leukocytes, confirming the type II mucopolysaccharidosis. Molecular analysis revealed a novel missense mutation (p.A77D) in the IDS gene. CONCLUSION The case report is about a patient presented an attenuated form of the syndrome, with no cognitive impairment. Ophthalmologic follow-up is still an important part of multidisciplinary treatment for Hunter's syndrome.
Collapse
|
5
|
Ngiwsara L, Sawangareetrakul P, Wattanasirichaigoon D, Tim-Aroon T, Dejkhamron P, Champattanachai V, Ketudat-Cairns JR, Svasti J. Effects of gentamicin inducing readthrough premature stop Codons: A study of alpha-L-iduronidase nonsense variants in COS-7 Cells. Biochem Biophys Res Commun 2022; 636:147-154. [DOI: 10.1016/j.bbrc.2022.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
6
|
Baidakova GV, Baranov AA, Vakhlova IV, Vashakmadze ND, Voskoboeva EY, Zakharova EY, Kuzenkova LM, Kutsev SI, Larionova VI, Lobzhanidze TV, Mikhailova LK, Mikhailova SV, Moiseev SV, Namazova-Baranova LS, Nikitin SS, Pechatnikova NL, Polyakova OA, Semyachkina AN, Udalova OV. Modern Approaches to the Management of Children with Mucopolysaccharidosis Type I. PEDIATRIC PHARMACOLOGY 2022. [DOI: 10.15690/pf.v19i4.2443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article presents modern data on epidemiology, etiology, and clinical manifestations of mucopolysaccharidosis (MPS) type I in children. MPS develops due to deficiency of particular lysosomal enzyme which determines the disease type. The article considers in details disease's pathogenesis and classification. Evidence-based approaches to diagnosis (differential diagnosis included) are covered, moreover, special attention is paid to pathogenetic, symptomatic, and surgical treatment of MPS.
Collapse
Affiliation(s)
| | - Alexander A. Baranov
- Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery; Sechenov First Moscow State Medical University
| | | | - Nato D. Vashakmadze
- Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | | | | | - Ludmila M. Kuzenkova
- Sechenov First Moscow State Medical University; National Medical Research Center for Children's Health
| | | | | | | | - Ludmila K. Mikhailova
- National Medical Research Center for Traumatology and Orthopedics named after N.N. Priorov
| | | | | | - Leyla S. Namazova-Baranova
- Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Belgorod National Research University
| | | | | | - Olga A. Polyakova
- National Medical Research Center for Traumatology and Orthopedics named after N.N. Priorov
| | - Alla N. Semyachkina
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery
| | | |
Collapse
|
7
|
Voskoboeva EY, Bookina TM, Semyachkina AN, Mikhaylova SV, Vashakmadze ND, Baydakova GV, Zakharova EY, Kutsev SI. Mucopolysaccharidosis Type I in the Russian Federation and Other Republics of the Former Soviet Union: Molecular Genetic Analysis and Epidemiology. Front Mol Biosci 2022; 8:783644. [PMID: 35141277 PMCID: PMC8819008 DOI: 10.3389/fmolb.2021.783644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the IDUA gene cause deficiency of the lysosomal enzyme alpha-l-iduronidase (IDUA), which leads to a rare disease known as mucopolysaccharidosis type I. More than 300 pathogenic variants of the IDUA gene have been reported to date, but not much is known about the distribution of mutations in different populations and ethnic groups due to the low prevalence of the disease. This article presents the results of a molecular genetic study of 206 patients with mucopolysaccharidosis type I (MPS I) from the Russian Federation (RF) and other republics of the former Soviet Union. Among them, there were 173 Russian (Slavic) patients, 9 Tatars, and 24 patients of different nationalities from other republics of the former Soviet Union. Seventy-three different pathogenic variants in the IDUA gene were identified. The common variant NM_000203.5:c.208C>T was the most prevalent mutant allele among Russian and Tatar patients. The common variant NM_000203.5:c.1205G>A accounted for only 5.8% mutant alleles in Russian patients. Both mutations were very rare or absent in patients from other populations. The pathogenic variant NM_000203.5:c.187C>T was the major allele in patients of Turkic origin (Altaian, Uzbeks, and Kyrgyz). Specific own pathogenic alleles in the IDUA gene were identified in each of these ethnic groups. The identified features are important for understanding the molecular origin of the disease, predicting the risk of its development and creating optimal diagnostic and treatment tools for specific regions and ethnic groups.
Collapse
Affiliation(s)
- E. Yu Voskoboeva
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - T. M. Bookina
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - A. N. Semyachkina
- Research and Clinical Institute of Pediatrics named after Yuri Veltischev, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - S. V. Mikhaylova
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- Detached Structural Unit Russian Children’s Clinical Hospital, Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation Research, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - N. D. Vashakmadze
- Pediatrics Department, Central Clinical Hospital of the Russian Academy of Sciences, Pirogov Russian National Research Medical University, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - G. V. Baydakova
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - E. Yu Zakharova
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| | - S. I. Kutsev
- Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia
- *Correspondence: E. Yu Voskoboeva, ; T. M. Bookina, ; A. N. Semyachkina, ; S. V. Mikhaylova, ; N. D. Vashakmadze, ; G. V. Baydakova, ; E. Yu Zakharova, ; S. I. Kutsev,
| |
Collapse
|
8
|
Kingma SDK, Jonckheere AI. MPS I: Early diagnosis, bone disease and treatment, where are we now? J Inherit Metab Dis 2021; 44:1289-1310. [PMID: 34480380 DOI: 10.1002/jimd.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by α-L-iduronidase deficiency. Patients present with a broad spectrum of disease severity ranging from the most severe phenotype (Hurler) with devastating neurocognitive decline, bone disease and early death to intermediate (Hurler-Scheie) and more attenuated (Scheie) phenotypes, with a normal life expectancy. The most severely affected patients are preferably treated with hematopoietic stem cell transplantation, which halts the neurocognitive decline. Patients with more attenuated phenotypes are treated with enzyme replacement therapy. There are several challenges to be met in the treatment of MPS I patients. First, to optimize outcome, early recognition of the disease and clinical phenotype is needed to guide decisions on therapeutic strategies. Second, there is thus far no effective treatment available for MPS I bone disease. The pathophysiological mechanisms behind bone disease are largely unknown, limiting the development of effective therapeutic strategies. This article is a state of the art that comprehensively discusses three of the most urgent open issues in MPS I: early diagnosis of MPS I patients, pathophysiology of MPS I bone disease, and emerging therapeutic strategies for MPS I bone disease.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| | - An I Jonckheere
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| |
Collapse
|
9
|
Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment. Hum Genet 2021; 141:785-803. [PMID: 34148116 PMCID: PMC9035000 DOI: 10.1007/s00439-021-02303-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf–blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf–blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.
Collapse
|
10
|
Macular Changes in a Mucopolysaccharidosis Type I Patient with Earlier Systemic Therapies. Case Rep Ophthalmol Med 2021; 2021:8866837. [PMID: 34306784 PMCID: PMC8267582 DOI: 10.1155/2021/8866837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To describe retinal findings in a patient with mucopolysaccharidosis type I (MPS I) that underwent an early treatment with hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). Case Report. We describe a case of a 12-year-old female with a biochemical and genetic diagnosis of MPS I. She underwent HSCT and ERT on the first year of life. The visual acuity was 5/10 in both eyes and she had bilateral grade 2 corneal haze. Spectral domain optical coherence tomography (SD-OCT) revealed thickening of the external limiting membrane (ELM) at the fovea. In the parafoveal and perifoveal regions, SD-OCT displayed a loss of the interdigitation, ellipsoid, and myoid zones and of the ELM accompanied by progressive thinning of the outer nuclear layer. Fundus infrared imaging revealed a hyperreflective ring centred on the fovea and hyporeflective areas in temporal parafoveal regions in both eyes. En face OCT imaging revealed two hyperreflective rings on the outer retinal level. Conclusion This patient developed macular changes with foveal deposition of hyperreflective material and parafoveal thinning, despite early systemic treatment. Systemic therapies can provide an increase in life expectancy and stabilize visual acuity and corneal clouding, although their effect on retinal degeneration is unknown.
Collapse
|
11
|
Peña-Gomar I, Jiménez-Mariscal JL, Cerón M, Rosas-Trigueros J, Reyes-López CA. c.1898C>G/p.Ser633Trp Mutation in Alpha-L-Iduronidase: Clinical and Structural Implications. Protein J 2021; 40:68-77. [PMID: 33389473 DOI: 10.1007/s10930-020-09950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 11/27/2022]
Abstract
Mucopolysaccharidosis type I is a rare autosomal recessive genetic disease caused by deficient activity of α-L-iduronidase. As a consequence of low or absent activity of this enzyme, glycosaminoglycans accumulate in the lysosomal compartments of multiple cell types throughout the body. Mucopolysaccharidosis type I has been classified into 3 clinical subtypes, ranging from a severe Hurler form to the more attenuated Hurler-Scheie and Scheie phenotypes. Over 200 gene variants causing the various forms of mucopolysaccharidosis type I have been reported. DNA isolated from dried blood spot was used to sequencing of all exons of the IDUA gene from a patient with a clinical phenotype of severe mucopolysaccharidosis type I syndrome. Enzyme activity of α-L-iduronidase was quantified by fluorimetric assay. Additionally, a molecular dynamics simulation approach was used to determine the effect of the Ser633Trp mutation on the structure and dynamics of the α-L-iduronidase. The DNA sequencing analysis and enzymatic activity shows a c.1898C>G mutation associated a patient with a homozygous state and α-L-iduronidase activity of 0.24 μmol/L/h, respectively. The molecular dynamics simulation analysis shows that the p.Ser633Trp mutation on the α-L-iduronidase affect significant the temporal and spatial properties of the different structural loops, the N-glycan attached to Asn372 and amino acid residues around the catalytic site of this enzyme. Low enzymatic activity observed for p.Ser633Trp variant of the α-L-iduronidase seems to lead to severe mucopolysaccharidosis type I phenotype, possibly associated with a perturbation of the structural dynamics in regions of the enzyme close to the active site.
Collapse
Affiliation(s)
- Iliana Peña-Gomar
- Hospital Pediátrico Tacubaya, Secretaría de Salud, Ciudad de México, Mexico
| | | | - Magdalena Cerón
- Clínica de Enfermedades Lisosomales, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Jorge Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, ESCOM, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Cesar A Reyes-López
- Laboratorio de Bioquímica Estructural, Sección de Estudios de Posgrado E Investigación, ENMyH, SEPI-ENMyH, Instituto Politécnico Nacional., Guillermo Massieu Helguera, No. 239, Fracc. "La Escalera", Ticomán, C.P. 07320, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Mucopolysaccharidoses I and II: Brief Review of Therapeutic Options and Supportive/Palliative Therapies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2408402. [PMID: 33344633 PMCID: PMC7732385 DOI: 10.1155/2020/2408402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022]
Abstract
Purpose. Mucopolysaccharidoses (MPS) are group of inherited lysosomal storage diseases caused by mutations of enzymes involved in catalyzing different glycosaminoglycans (GAGs). MPS I and MPS II exhibit both somatic and neurological symptoms with a relatively high disease incidence. Hematopoietic stem cell therapy (HSCT) and intravenous enzyme replacement therapy (ERT) have had a significant impact on the treatment and comprehension of disease. This review is aimed at providing a comprehensive evaluation of the pros and cons of HSCT and ERT, as well as an up-to-date knowledge of new drugs under development. In addition, multiple disease management strategies for the uncontrollable manifestations of MPS I and MPS II to improve patients' quality of life are presented. Findings. Natural history of MPS I and MPS II shows that somatic and neurological symptoms occur earlier in severe forms of MPS I than in MPS II. ERT increases life expectancy and alleviates some of the somatic symptoms, but musculoskeletal, ophthalmological, and central nervous system (CNS) manifestations are not controlled. Additionally, life-long treatment burdens and immunogenicity restriction are unintended consequences of ERT application. HSCT, another treatment method, is effective in controlling the CNS symptoms and hence has been adopted as the standard treatment for severe types of MPS I. However, it is ineffective in MPS II, which can be explained by the relatively late diagnosis. In addition, several factors such as transplant age limits or graft-versus-host disease in HSCT have limited its application for patients. Novel therapies, including BBB-penetrable-ERT, gene therapy, and substrate reduction therapy, are under development to control currently unmanageable manifestations. BBB-penetrable-ERT is being studied comprehensively in the hopes of being used in the near future as a method to effectively control CNS symptoms. Gene therapy has the potential to “cure” the disease with a one-time treatment rather than just alleviate symptoms, which makes it an attractive treatment strategy. Several clinical studies on gene therapy reveal that delivering genes directly into the brain achieves better results than intravenous administration in patients with neurological symptoms. Considering new drugs are still in clinical stage, disease management with close monitoring and supportive/palliative therapy is of great importance for the time being. Proper rehabilitation therapy, including physical and occupational therapy, surgical intervention, or medications, can benefit patients with uncontrolled musculoskeletal, respiratory, ophthalmological, and neurological manifestations.
Collapse
|
13
|
Yu SH, Pollard L, Wood T, Flanagan-Steet H, Steet R. A Biochemical Platform to Define the Relative Specific Activity of IDUA Variants Identified by Newborn Screening. Int J Neonatal Screen 2020; 6:ijns6040088. [PMID: 33198351 PMCID: PMC7711455 DOI: 10.3390/ijns6040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 11/27/2022] Open
Abstract
The lysosomal storage disorder, mucopolysaccharidosis I (MPSI), results from mutations in IDUA, the gene that encodes the glycosaminoglycan-degrading enzyme α-L-iduronidase. Newborn screening efforts for MPSI have greatly increased the number of novel IDUA variants identified, but with insufficient experimental evidence regarding their pathogenicity, many of these variants remain classified as variants of uncertain significance (VUS). Defining pathogenicity for novel IDUA variants is critical for decisions regarding medical management and early intervention. Here, we describe a biochemical platform for the characterization of IDUA variants that relies on viral delivery of IDUA DNA into IDUA-deficient HAP1 cells and isolation of single cell expression clones. The relative specific activity of wild-type and variant α-iduronidase was determined using a combination of Western blot analysis and α-iduronidase activity assays. The specific activity of each variant enzyme was consistent across different single cell clones despite variable IDUA expression and could be accurately determined down to 0.05-0.01% of WT α-iduronidase activity. With this strategy we compared the specific activities of known pseudodeficiency variants (p.His82Gln, p.Ala79Thr, p.Val322Glu, p.Asp223Asn) or pathogenic variants (p.Ser633Leu, p.His240Arg) with variants of uncertain significance (p.Ser586Phe, p.Ile272Leu). The p.Ser633Leu and p.His240Arg variants both show very low activities consistent with their association with Scheie syndrome. In our experiments, however, p.His240Arg exhibited a specific activity five times higher than p.Ser633Leu in contrast to other reports showing equivalent activity. Cell clones expressing the p.Ser586Phe and p.Ile272Leu variants had specific activities in the range of other pseudodeficiency variants tested. Our findings show that pseudodeficiency and pathogenic variants can be distinguished from each other with regard to specific activity, and confirms that all the pseudodeficiency variants variably reduce α-iduronidase activity. We envision this platform will be a valuable resource for the rigorous assessment of the novel IDUA variants emerging from the expansion of newborn screening efforts.
Collapse
|
14
|
Mucopolysaccharidosis type I - Clinical and genetic characteristics of Romanian patients. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disorder caused by a deficiency of α-L-iduronidase (IDUA), which leads to the accumulation of partially digested glycosaminoglycans (dermatan sulfate and heparan sulfate) in the lysosomes and induces multisystemic alteration. Hurler (severe), Scheie (mild), and Hurler/Scheie (intermediate) syndromes are clinical subtypes of MPS-I. To date, more than 290 IDUA mutations have been reported. The purpose of this study was to present the clinical and genetic characteristics of Romanian MPS I syndrome patients and their genotype-phenotype correlation.
Patients and methods: Seven patients (5 girls and 2 boys) with MPS type I, belonging to 4 unrelated families, aged 0,75-17.9 years, were enrolled. The study methods consisted in: clinical and standard auxological assessment, bone radiographs, joint ultrasonography, goniometry, neurological and psychological evaluation, hepatic and splenic ultrasonography, cardiological evaluation, otorhinolaryngology examination, ophthalmological examination, spirometry, α-L-iduronidase enzyme activity assay and molecular analysis.
Results: The seven patients originated from 4 unrelated families, three patients with severe, two patients with intermediate and two with attenuated clinical phenotype. Each patient presented the classical picture of MPS type I picture, represented by: variable coarse facial features, arthropathy, hepatosplenomegaly, cardiac involvement, respiratory dysfunction and neurological impairment. Five patological variants, three point mutations (p.Q70 *, p.I238Q and p.K324R), two deletion c.1045_1047delGAC, c.46_57delTCGCTCCTG) and an insertion (c.1389 insC) were identified in both alleles of the ADUA gene in homozygous or heterozygous form. Two novel mutations (p.K324R and c.1389 insC) were reported. The p.Q70*(c.208C>T) variant was identified in 2 families with severe form of disease (Hurler syndrome) in homozygous status in one family and in compound heterozygous status in the other family.
Conclusion: The p.Q70* missense variant was the most frequent, correlated in all the cases who presented it with severe form, Hurler syndrome, the other mutations being usually isolated and particular for each patient, associated in our patients with less severe MPS I phenotype, as Hurler-Scheie or Scheie syndrome. The results of this study indicated the mutational heterogeneity of the IDUA gene and the difficulty to indicate some correlation between the genotype and phenotype in MPS I patients.
Collapse
|
15
|
Zhou YA, Li P, Zhang Y, Xiong Q, Li C, Zhao Z, Wang Y, Xiao H. Identification of a novel compound heterozygous IDUA mutation underlies Mucopolysaccharidoses type I in a Chinese pedigree. Mol Genet Genomic Med 2019; 8:e1058. [PMID: 31758674 PMCID: PMC6978265 DOI: 10.1002/mgg3.1058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type I (MPS I) is a rare autosomal storage disorder resulting from the defective alpha-L-iduronidase (encoded by IDUA) enzyme activity and accumulation of glycosaminoglycans (GAGs) in lysosomes. So far, more than 100 IDUA causative mutations have been identified leading to three MPS I phenotypic subtypes: Hurler syndrome (severe form), Hurler/Scheie syndrome (intermediate form), and Scheie syndrome (mild form). METHODS Whole-exome sequencing (WES) was performed to identify the underlying genetic mutations. To verify the identified variations, Sanger sequencing was performed for all available family members following PCR amplification. The impact on IDUA protein was analyzed by sequential analysis and homology modeling. RESULTS A novel IDUA heterozygous single base insertion (c.1815dupT, p.V606Cfs51* ) and a known missence mutation (c.T1037G, p.L346R) were detected in our patient diagnosed as congenital heart disease with heart valve abnormalities. The novel frameshift mutation results in a complete loss of 48 amino acids in the Ig-like domain and causes the formation of a putative protein product which might affect the IDUA enzyme activity. CONCLUSIONS A novel compound heterozygous IDUA mutation (c.1815dupT, p.V606Cfs51* ) was found in a Chinese MPS I family. The identification of the mutation facilitated accurate genetic counseling and precise medical intervention for MPS I in China.
Collapse
Affiliation(s)
- Yong-An Zhou
- Bluttransfusion The Second Hospital, Shanxi Medical University, Shanxi Taiyuan, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yanping Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Chao Li
- Bluttransfusion The Second Hospital, Shanxi Medical University, Shanxi Taiyuan, China
| | - Zhonghua Zhao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yuxian Wang
- Department of Obstetrics and Gynecology, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Han Xiao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
16
|
Ophthalmological Findings in Mucopolysaccharidoses. J Clin Med 2019; 8:jcm8091467. [PMID: 31540112 PMCID: PMC6780167 DOI: 10.3390/jcm8091467] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a heterogenous group of lysosomal storage disorders caused by the accumulation of glycosaminoglycans (GAGs). The accrual of these compounds results in phenotypically varied syndromes that produce multi-organ impairment with widespread systemic effects. The low incidence of MPS (approximately 1/25,000 live births) in conjunction with the high childhood mortality rate had limited the availability of research into certain clinical features, especially ocular manifestations. As the recent successes of hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) have greatly increased life expectancy in these patients, they have served as a focal point for the transition of research towards improvement of quality of life. Ophthalmological findings in MPS include corneal clouding, glaucoma, optic neuropathies, and retinopathies. While corneal clouding is the most common ocular feature of MPS (especially type I, IVA, and VI), its response to HSCT and ERT is minimal. This review discusses known eye issues in the MPS subtypes, diagnosis of these ocular diseases, current clinical and surgical management, noteworthy research progress, and ultimately presents a direction for future studies.
Collapse
|
17
|
Jahic A, Günther S, Muschol N, Fossøy Stadheim B, Braaten Ø, Kjensli Hyldebrandt H, Kuiper GA, Tylee K, Wijburg FA, Beetz C. "Missing mutations" in MPS I: Identification of two novel copy number variations by an IDUA-specific in house MLPA assay. Mol Genet Genomic Med 2019; 7:e00615. [PMID: 31319022 PMCID: PMC6732313 DOI: 10.1002/mgg3.615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mucopolysaccharidosis type I (MPS I) is a rare, recessively inherited lysosomal storage disorder, characterized by progressive multi‐systemic disease. It is caused by a reduced or absent alpha‐l iduronidase (IDUA) enzyme activity secondary to biallelic loss‐of‐function variants in the IDUA. Over 200 causative variants in IDUA have been identified. Nevertheless, there is a fraction of MPS I patients with only a single mutated IDUA allele detectable. Methods As genetic testing of MPS I is usually based on sequencing methods, copy number variations (CNVs) in IDUA can be missed and therefore presumably remain underdiagnosed. The aim of this study was the detection of CNVs using an IDUA‐specific in house multiplex ligation‐dependent probe amplification (MLPA) assay. Results A total of five unrelated MPS I patient samples were re‐analyzed after only a single heterozygous IDUA mutation c.979G>C (p.A327P), c.1469T>C (p.L490P), c.1598C>G (p.P533R), c.1205G>A (p.W402X), c.973‐7C>G (p.?) could be identified. We detected a novel splice site variant c.973‐7C>G (p.?), as well as two novel CNVs, a large deletion of IDUA exon 14 and 3’UTR c.(1828 + 1_1829‐1)_(*1963_?)del, and a large duplication extending from IDUA exon 2 to intron 12 c.(157 + 1_158‐1)_(1727 + 1_1728‐1)dup. Conclusion Together with the CNVs we previously identified, a total of four pathogenic IDUACNVs have now been reported.
Collapse
Affiliation(s)
- Amir Jahic
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Günther
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Øivind Braaten
- Department of Clinical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Gé-Ann Kuiper
- Pediatric Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Academic Medical Center (AMC), Amsterdam, Netherlands
| | - Karen Tylee
- Manchester Center for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Frits A Wijburg
- Pediatric Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Academic Medical Center (AMC), Amsterdam, Netherlands
| | - Christian Beetz
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany.,Centogene AG, Rostock, Germany
| |
Collapse
|
18
|
Kamranjam M, Alaei M. Mutation Analysis of the IDUA Gene in Iranian Patients with Mucopolysaccharidosis Type 1: Identification of Four Novel Mutations. Genet Test Mol Biomarkers 2019; 23:515-522. [PMID: 31298590 DOI: 10.1089/gtmb.2019.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background and Purpose: Mucopolysaccharidosis 1 (MPS1) is an autosomal recessive disorder of a lysosomal enzyme called alpha-l-iduronidase caused by mutations in the IDUA gene. This enzyme is responsible for the degradation of the mucopolysaccharides, heparan sulfate, and dermatan sulfate. Based on clinical features and enzyme deficiency, MPS1 is divided into three subtypes, including a severe subtype (Hurler syndrome), an intermediate subtype (Hurler-Scheie syndrome), and an attenuated subtype (Scheie syndrome). The objective of this study was to characterize the mutation profiles of 17 Iranian patients with MPS1 and characterize the clinical features associated with their genotypes. Materials and Methods: Polymerase chain reaction-based sequencing of the IDUA gene was carried out for 10 patients with clinical diagnoses of MPS1 and 50 healthy controls. To estimate the impact of newly identified variants on the structure and function of the encoded alpha-l-iduronidase, in silico analyses was performed. Results: Eight genetic variations were detected, including five missense mutations (p.M1L, p.G51D, p.G134V, p.S157P, p.D301E), two nonsense mutations (p.W402* and p.Y343*), and one deletion (p.GFLNYY197-202), among which p.G134V, p.S157P, p.D301E, and p.GFLNYY197-202 were novel variations that had not been previously reported. Conclusion: After combining the results of the two previous IDUA gene studies performed on Iranian MPS1 patients and the results obtained from the current study, it is inferred that despite the presence of a number of previously known mutations, about half of the detected variations were unique in Iranian patients.
Collapse
Affiliation(s)
- Mana Kamranjam
- 1Department of Medical Genetics, Special Medical Center, Tehran, Iran
| | - Mohammadreza Alaei
- 2Department of Pediatric Endocrinology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Clarke LA, Giugliani R, Guffon N, Jones SA, Keenan HA, Munoz-Rojas MV, Okuyama T, Viskochil D, Whitley CB, Wijburg FA, Muenzer J. Genotype-phenotype relationships in mucopolysaccharidosis type I (MPS I): Insights from the International MPS I Registry. Clin Genet 2019; 96:281-289. [PMID: 31194252 PMCID: PMC6852151 DOI: 10.1111/cge.13583] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 01/22/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disorder resulting from pathogenic variants in the α-L-iduronidase (IDUA) gene. Clinical phenotypes range from severe (Hurler syndrome) to attenuated (Hurler-Scheie and Scheie syndromes) and vary in age of onset, severity, and rate of progression. Defining the phenotype at diagnosis is essential for disease management. To date, no systematic analysis of genotype-phenotype correlation in large MPS I cohorts have been performed. Understanding genotype-phenotype is critical now that newborn screening for MPS I is being implemented. Data from 538 patients from the MPS I Registry (380 severe, 158 attenuated) who had 2 IDUA alleles identified were examined. In the 1076 alleles identified, 148 pathogenic variants were reported; of those, 75 were unique. Of the 538 genotypes, 147 (27%) were unique; 40% of patients with attenuated and 22% of patients with severe MPS I had unique genotypes. About 67.6% of severe patients had genotypes where both variants identified are predicted to severely disrupt protein/gene function and 96.1% of attenuated patients had at least one missense or intronic variant. This dataset illustrates a close genotype/phenotype correlation in MPS I but the presence of unique IDUA missense variants remains a challenge for disease prediction.
Collapse
Affiliation(s)
- Lorne A Clarke
- Department of Medical Genetics, B.C. Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roberto Giugliani
- Department of Genetics, Federal University of Rio Grande do Sul and Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Nathalie Guffon
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Femme Mère Enfant, Bron Cedex, France
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, Manchester University NHS Trust, Manchester, UK
| | | | | | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | | | - Chester B Whitley
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Frits A Wijburg
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands
| | - Joseph Muenzer
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
20
|
A longitudinal study of neurocognition and behavior in patients with Hurler-Scheie syndrome heterozygous for the L238Q mutation. Mol Genet Metab Rep 2019; 20:100484. [PMID: 31304092 PMCID: PMC6603334 DOI: 10.1016/j.ymgmr.2019.100484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/10/2019] [Indexed: 12/23/2022] Open
Abstract
Previous research has demonstrated the mutation, c.712T>A (p.L238Q) of the gene for α-L- iduronidase (IDUA) in patients with Hurler-Scheie syndrome is relatively severe when paired with a nonsense or deletion or splice-site mutation. This mutation was also found to be associated with psychiatric symptoms. This research presents longitudinal data and protein analysis to further investigate the severity and natural history of these unique patients. Methods Six patients heterozygous for L238Q were compared to six patients with Hurler-Scheie without the L238Q mutations. Somatic burden of disease, IQ, memory, attention, adaptive functioning and behavioral measures were given yearly over 2 to 4 years from 2009 to 2014. The impact of L238Q on the IDUA enzyme was examined using 7 bioinformatics tools and a 3D structural analysis. Results Similar to the cross sectional study, the L238Q patients had more severe abnormalities in IQ, attention, adaptive functioning, and behavioral functioning than the comparison group. There were no major differences between the two groups in change over time; IQ for both groups was stable with some behavioral areas showing improvement. Over time, both groups declined in visual spatial memory and, attention/visual processing. They also showed increased anxiety. Structural and bioinformatics analysis of the L238Q suggest that this mutation causes a significant reduction in the IDUA enzyme's potential catalytic activity, and this mutation may be more severe than other mutations contributing to the Hurler-Scheie syndrome phenotype, presumably causing the psychiatric disease. Conclusion L238Q patients demonstrate severe neurocognitive and neurobehavioral deficits but are relatively stable. Like the comparison group, decreasing visual spatial memory and attention and increasing anxiety suggest more intervention in life skills and emotional social supports are needed.
Collapse
|
21
|
Christensen CL, Ashmead RE, Choy FYM. Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Diseases 2019; 7:E47. [PMID: 31248000 PMCID: PMC6787741 DOI: 10.3390/diseases7030047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Although individually uncommon, rare diseases collectively account for a considerable proportion of disease impact worldwide. A group of rare genetic diseases called the mucopolysaccharidoses (MPSs) are characterized by accumulation of partially degraded glycosaminoglycans cellularly. MPS results in varied systemic symptoms and in some forms of the disease, neurodegeneration. Lack of treatment options for MPS with neurological involvement necessitates new avenues of therapeutic investigation. Cell and gene therapies provide putative alternatives and when coupled with genome editing technologies may provide long term or curative treatment. Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technology and, more recently, advances in genome editing research, have allowed for the addition of base editors to the repertoire of CRISPR-based editing tools. The latest versions of base editors are highly efficient on-targeting deoxyribonucleic acid (DNA) editors. Here, we describe a number of putative guide ribonucleic acid (RNA) designs for precision correction of known causative mutations for 10 of the MPSs. In this review, we discuss advances in base editing technologies and current techniques for delivery of cell and gene therapies to the site of global degeneration in patients with severe neurological forms of MPS, the central nervous system, including ultrasound-mediated blood-brain barrier disruption.
Collapse
Affiliation(s)
- Chloe L Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Rhea E Ashmead
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Francis Y M Choy
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
22
|
Zanetti A, D’Avanzo F, Rigon L, Rampazzo A, Concolino D, Barone R, Volpi N, Santoro L, Lualdi S, Bertola F, Scarpa M, Tomanin R. Molecular diagnosis of patients affected by mucopolysaccharidosis: a multicenter study. Eur J Pediatr 2019; 178:739-753. [PMID: 30809705 PMCID: PMC6459791 DOI: 10.1007/s00431-019-03341-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/25/2022]
Abstract
Mucopolysaccharidoses (MPS) are a subgroup of 11 monogenic lysosomal storage disorders due to the deficit of activity of the lysosomal hydrolases deputed to the degradation of mucopolysaccharides. Although individually rare, all together they account for at least 1:25,000 live births. In this study, we present the genetic analysis of a population of 71 MPS patients enrolled in a multicenter Italian study. We re-annotated all variants, according to the latest recommendations, and re-classified them as suggested by the American College of Medical Genetics and Genomics. Variant distribution per type was mainly represented by missense mutations. Overall, 10 patients had received no molecular diagnosis, although 6 of them had undergone either HSCT or ERT, based on clinical and enzymatic evaluations. Moreover, nine novel variants are reported.Conclusions: Our analysis underlines the need to complete the molecular diagnosis in patients previously diagnosed only on a biochemical basis, suggests a periodical re-annotation of the variants and solicits their deposition in public databases freely available to clinicians and researchers. We strongly recommend a molecular diagnosis based on the analysis of the "trio" instead of the sole proband. These recommendations will help to obtain a complete and correct diagnosis of mucopolysaccharidosis, rendering also possible genetic counseling. What is known • MPS are a group of 11 metabolic genetic disorders due to deficits of enzymes involved in the mucopolysaccharides degradation. • Molecular analysis is commonly performed to confirm enzymatic assays. What is new • Eighty-six percent of the 71 patients we collected received a molecular diagnosis; among them, 9 novel variants were reported. • We stress the importance of molecular diagnosis in biochemically diagnosed patients, encourage a periodical re-annotation of variants according to the recent nomenclature and their publication in open databases.
Collapse
Affiliation(s)
- Alessandra Zanetti
- Laboratorio di Diagnosi e Terapia delle Malattie Lisosomiali, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Francesca D’Avanzo
- Laboratorio di Diagnosi e Terapia delle Malattie Lisosomiali, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Laura Rigon
- Laboratorio di Diagnosi e Terapia delle Malattie Lisosomiali, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Angelica Rampazzo
- Laboratorio di Diagnosi e Terapia delle Malattie Lisosomiali, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | | | - Rita Barone
- Department of Clinical and Experimental Medicine, Child Neurology and Psychiatry, University of Catania, Catania, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Santoro
- Department of Clinical Sciences, Division of Pediatrics, Polytechnic University of Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - Susanna Lualdi
- Laboratorio di Genetica Medica e Biobanche, Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Bertola
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Maurizio Scarpa
- Laboratorio di Diagnosi e Terapia delle Malattie Lisosomiali, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Rosella Tomanin
- Laboratorio di Diagnosi e Terapia delle Malattie Lisosomiali, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
23
|
Ou L, DeKelver RC, Rohde M, Tom S, Radeke R, St Martin SJ, Santiago Y, Sproul S, Przybilla MJ, Koniar BL, Podetz-Pedersen KM, Laoharawee K, Cooksley RD, Meyer KE, Holmes MC, McIvor RS, Wechsler T, Whitley CB. ZFN-Mediated In Vivo Genome Editing Corrects Murine Hurler Syndrome. Mol Ther 2018; 27:178-187. [PMID: 30528089 PMCID: PMC6319315 DOI: 10.1016/j.ymthe.2018.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a severe disease due to deficiency of the lysosomal hydrolase α-L-iduronidase (IDUA) and the subsequent accumulation of the glycosaminoglycans (GAG), leading to progressive, systemic disease and a shortened lifespan. Current treatment options consist of hematopoietic stem cell transplantation, which carries significant mortality and morbidity risk, and enzyme replacement therapy, which requires lifelong infusions of replacement enzyme; neither provides adequate therapy, even in combination. A novel in vivo genome-editing approach is described in the murine model of Hurler syndrome. A corrective copy of the IDUA gene is inserted at the albumin locus in hepatocytes, leading to sustained enzyme expression, secretion from the liver into circulation, and subsequent uptake systemically at levels sufficient for correction of metabolic disease (GAG substrate accumulation) and prevention of neurobehavioral deficits in MPS I mice. This study serves as a proof-of-concept for this platform-based approach that should be broadly applicable to the treatment of a wide array of monogenic diseases.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Michelle Rohde
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Susan Tom
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Robert Radeke
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | | | - Yolanda Santiago
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Scott Sproul
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Michelle J Przybilla
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Brenda L Koniar
- Research Animal Resources, University of Minnesota, Minneapolis, MN, USA
| | - Kelly M Podetz-Pedersen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kanut Laoharawee
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Renee D Cooksley
- Gene Therapy Center, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen E Meyer
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Michael C Holmes
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - R Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Wechsler
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | | |
Collapse
|
24
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Worldwide distribution of common IDUA
pathogenic variants. Clin Genet 2018; 94:95-102. [DOI: 10.1111/cge.13224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
- E. Poletto
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - G. Pasqualim
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - R. Giugliani
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Medical Genetics Service; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Department of Genetics; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- INAGEMP; National Institute of Population Medical Genetics; Porto Alegre Brazil
| | - U. Matte
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Department of Genetics; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - G. Baldo
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Department of Physiology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
25
|
Mack HG, Symons RCA, de Jong G. Bull's eye maculopathy and subfoveal deposition in two mucopolysaccharidosis type I patients on long-term enzyme replacement therapy. Am J Ophthalmol Case Rep 2017; 9:1-6. [PMID: 29468207 PMCID: PMC5786832 DOI: 10.1016/j.ajoc.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/01/2017] [Accepted: 10/02/2017] [Indexed: 11/28/2022] Open
Abstract
Purpose To report retinal findings in two patients with mucopolysaccharidosis type I (MPS I) receiving human recombinant alpha-l-iduronidase (Laronidase) as enzyme replacement therapy. Observations Patient 1 had visual acuity 20/20 right eye, 20/25 left eye and unremarkable anterior segment and retinal examination. Optical coherence tomography (OCT) scanning demonstrated parafoveal thinning and subfoveal hyperreflectant material. Patient 2 had visual acuity 20/20 both eyes, with dense nuclear cataract both eyes. Retinal examination demonstrated bull's eye maculopathy both eyes. OCT scanning confirmed parafoveal atrophy and demonstrated similar appearing subfoveal hyperreflectant material, more prominent than in case 1. Conclusions and importance These two patients with MPS I receiving Laronidase treatment have developed bull's eye maculopathy changes and subfoveal deposition of hyperreflectant material despite excellent compliance and good tolerance of the standard dose of enzyme therapy for this disorder. Further studies are required to determine the nature of the material, the incidence and the effect of enzyme replacement therapy on these findings in patients with MPS I.
Collapse
Affiliation(s)
- Heather G Mack
- Department of Surgery (Ophthalmology), University of Melbourne, Grattan St, Parkville, Victoria 3052, Australia.,Melbourne Health, 300 Grattan St, Parkville, Victoria 3052, Australia.,Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - R C Andrew Symons
- Department of Surgery (Ophthalmology), University of Melbourne, Grattan St, Parkville, Victoria 3052, Australia.,Melbourne Health, 300 Grattan St, Parkville, Victoria 3052, Australia
| | - Gerard de Jong
- Melbourne Health, 300 Grattan St, Parkville, Victoria 3052, Australia.,Department of Medicine, University of Melbourne, Grattan St, Parkville, Victoria 3052, Australia
| |
Collapse
|
26
|
Ghosh A, Mercer J, Mackinnon S, Yue WW, Church H, Beesley CE, Broomfield A, Jones SA, Tylee K. IDUA mutational profile and genotype-phenotype relationships in UK patients with Mucopolysaccharidosis Type I. Hum Mutat 2017; 38:1555-1568. [PMID: 28752568 DOI: 10.1002/humu.23301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis Type I (MPS I) is a lysosomal storage disorder with varying degrees of phenotypic severity caused by mutations in IDUA. Over 200 disease-causing variants in IDUA have been reported. We describe the profile of disease-causing variants in 291 individuals with MPS I for whom IDUA sequencing was performed, focusing on the UK subset of the cohort. A total of 63 variants were identified, of which 20 were novel, and the functional significance of the novel variants is explored. The severe form of MPS I is treated with hematopoietic stem cell transplantation, known to have improved outcomes with earlier age at treatment. Developing genotype-phenotype relationships would therefore have considerable clinical utility, especially in the light of the development of newborn screening programs for MPS I. Associations between genotype and phenotype are examined in this cohort, particularly in the context of the profile of variants identified in UK individuals. Relevant associations can be made for the majority of UK individuals based on the presence of nonsense or truncating variants as well as other associations described in this report.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK.,School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean Mercer
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Sabrina Mackinnon
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, London, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, London, UK
| | - Heather Church
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Clare E Beesley
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alex Broomfield
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Karen Tylee
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|
27
|
Tanwar H, George Priya Doss C. An Integrated Computational Framework to Assess the Mutational Landscape of α-L-Iduronidase IDUA Gene. J Cell Biochem 2017; 119:555-565. [PMID: 28608934 DOI: 10.1002/jcb.26214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/12/2017] [Indexed: 01/12/2023]
Abstract
Mucopolysaccharidosis type I is a lysosomal genetic disorder caused due to the deficiency of the α-L-iduronidase enzyme (IDUA). Mutations associated with IDUA lead to mild to severe forms of diseases characterized by different clinical features. In the present study, we first performed a comprehensive analysis using various in silico prediction tools to screen and prioritize the missense mutations or nonsynonymous SNPs (nsSNPs) associated with IDUA. Subsequently, statistical analysis was empowered to examine the predictive ability and accuracy of the in silico prediction tool results supporting the disease phenotype ranging from mild to severe. Till date, no study has been carried out in IDUA in analyzing the impact of the nsSNPs at the structural level. In this context with the aid of pathogenic and stability prediction in silico tools, we identified nsSNPs R89Q, R89W, and P533R to be most deleterious and disease-causing having impact on the function of the protein. Extensive molecular dynamics analysis was performed using Gromacs to understand the deleterious nature of the mutants. Variations observed between the trajectory files of native and mutants R89Q, R89W, and P533R using Gromacs utilities enabled us to measure the adverse effects on the protein and could be the underlying reasons for the disease pathogenesis. These findings may be helpful in understanding the genotype-phenotype relationship and molecular basis of the disease to design drugs for better treatment. J. Cell. Biochem. 119: 555-565, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Himani Tanwar
- Department of Integrative Biology, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
28
|
Phenotype prediction for mucopolysaccharidosis type I by in silico analysis. Orphanet J Rare Dis 2017; 12:125. [PMID: 28676128 PMCID: PMC5496269 DOI: 10.1186/s13023-017-0678-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease due to deficiency of α-L-iduronidase (IDUA), a lysosomal enzyme that degrades glycosaminoglycans (GAG) heparan and dermatan sulfate. To achieve optimal clinical outcomes, early and proper treatment is essential, which requires early diagnosis and phenotype severity prediction. RESULTS To establish a genotype/phenotype correlation of MPS I disease, a combination of bioinformatics tools including SIFT, PolyPhen, I-Mutant, PROVEAN, PANTHER, SNPs&GO and PHD-SNP are utilized. Through analyzing single nucleotide polymorphisms (SNPs) by these in silico approaches, 28 out of 285 missense SNPs were predicted to be damaging. By integrating outcomes from these in silico approaches, a prediction algorithm (sensitivity 94%, specificity 80%) was thereby developed. Three dimensional structural analysis of 5 candidate SNPs (P533R, P496R, L346R, D349G, T374P) were performed by SWISS PDB viewer, which revealed specific structural changes responsible for the functional impacts of these SNPs. Additionally, SNPs in the untranslated region were analyzed by UTRscan and PolymiRTS. Moreover, by investigating known pathogenic mutations and relevant patient phenotypes in previous publications, phenotype severity (severe, intermediate or mild) of each mutation was deduced. CONCLUSIONS Collectively, these results identified potential candidate SNPs with functional significance for studying MPS I disease. This study also demonstrates the effectiveness, reliability and simplicity of these in silico approaches in addressing complexity of underlying genetic basis of MPS I disease. Further, a step-by-step guideline for phenotype prediction of MPS I disease is established, which can be broadly applied in other lysosomal diseases or genetic disorders.
Collapse
|
29
|
Parini R, Deodato F, Di Rocco M, Lanino E, Locatelli F, Messina C, Rovelli A, Scarpa M. Open issues in Mucopolysaccharidosis type I-Hurler. Orphanet J Rare Dis 2017; 12:112. [PMID: 28619065 PMCID: PMC5472858 DOI: 10.1186/s13023-017-0662-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidosis I-Hurler (MPS I-H) is the most severe form of a metabolic genetic disease caused by mutations of IDUA gene encoding the lysosomal α-L-iduronidase enzyme. MPS I-H is a rare, life-threatening disease, evolving in multisystem morbidity including progressive neurological disease, upper airway obstruction, skeletal deformity and cardiomyopathy. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the gold standard for the treatment of MPS I-H in patients diagnosed and treated before 2–2.5 years of age, having a high rate of success. Beyond the child’s age, other factors influence the probability of treatment success, including the selection of patients, of graft source and the donor type employed. Enzyme replacement therapy (ERT) with human recombinant laronidase has also been demonstrated to be effective in ameliorating the clinical conditions of pre-transplant MPS I-H patients and in improving HSCT outcome, by peri-transplant co-administration. Nevertheless the long-term clinical outcome even after successful HSCT varies considerably, with a persisting residual disease burden. Other strategies must then be considered to improve the outcome of these patients: one is to pursue early pre-symptomatic diagnosis through newborn screening and another one is the identification of novel treatments. In this perspective, even though newborn screening can be envisaged as a future attractive perspective, presently the best path to be pursued embraces an improved awareness of signs and symptoms of the disorder by primary care providers and pediatricians, in order for the patients’ timely referral to a qualified reference center. Furthermore, sensitive new biochemical markers must be identified to better define the clinical severity of the disease at birth, to support clinical judgement during the follow-up and to compare the effects of the different therapies. A prolonged neuropsychological follow-up of post-transplant cognitive development of children and residual disease burden is needed. In this perspective, the reference center must guarantee a multidisciplinary follow-up with an expert team. Diagnostic and interventional protocols of reference centers should be standardized whenever possible to allow comparison of clinical data and evaluation of results. This review will focus on all these critical issues related to the management of MPS I-H.
Collapse
Affiliation(s)
- Rossella Parini
- UOS Malattie Metaboliche Rare, Clinica Pediatrica dell'Università Milano Bicocca, Fondazione MBBM, ASST Monza e Brianza, Monza, Italy.
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maja Di Rocco
- Unit of Rare Diseases, Department of Pediatrics, IRCCS "Giannina Gaslini" Children's Hospital, Genoa, Italy
| | - Edoardo Lanino
- UOSD Centro Trapianto di Midollo Osseo, Dipartimento Ematologia-Oncologia Pediatrica, IRCCS "Giannina Gaslini" Children's Hospital, Genoa, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,University of Pavia, Pavia, Italy
| | - Chiara Messina
- Dipartimento di Pediatria, DAI di Salute della Donna e del Bambino, Azienda Ospedaliera-Università di Padova, Padova, Italy
| | - Attilio Rovelli
- Centro Trapianto di Midollo Osseo, Clinica Pediatrica dell'Università di Milano-Bicocca, Fondazione MBBM, ASST Monza e Brianza, Monza, Italy
| | - Maurizio Scarpa
- Department for the Woman and Child Health, University of Padova, Padova, Italy
| |
Collapse
|
30
|
Azab B, Dardas Z, Hamarsheh M, Alsalem M, Kilani Z, Kilani F, Awidi A, Jafar H, Amr S. Novel frameshift variant in the IDUA gene underlies Mucopolysaccharidoses type I in a consanguineous Yemeni pedigree. Mol Genet Metab Rep 2017. [PMID: 28649516 PMCID: PMC5470527 DOI: 10.1016/j.ymgmr.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive storage disorder that result as a consequence of a deficiency in the lysosomal hydrolase, a-L-iduronidase enzyme encoded by IDUA gene. Over a hundred causative variants in IDUA have been identified, which result in a progressive multi-systemic disease with a broad range of severity and disease progression reported across affected individuals. The aim of this study was the detection and interpretation of IDUA mutation in a family with two children affected with lethal MPS I. The IDUA gene was sequenced in the parents of two deceased children who had a clinical diagnosis of MPS I, to assess their carrier status and to help inform on risk in future children. The sequencing analysis was performed by PCR and bidirectional Sanger sequencing of the coding region and exon-intron splice junctions at Labor MVZ Westmecklenburg molecular diagnostics laboratory. A heterozygous c.657delA variant in exon 6 was identified in each parent, which is the most likely explanation for disease in their children. This report represents the first Yemeni family to have a molecular diagnosis for MPS I.
Collapse
Affiliation(s)
- Belal Azab
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan.,Department of Medical Laboratory Sciences, School of Science, The University of Jordan, Amman 11942, Jordan.,Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Zain Dardas
- Department of Medical Laboratory Sciences, School of Science, The University of Jordan, Amman 11942, Jordan.,Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.,Department of Medical Laboratory Sciences, Faculty of Applied Medical sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | - Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | | | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.,Department of Internal Medicine Hematology and Oncology Unit, The University of Jordan, Amman 11942, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Sami Amr
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, USA
| |
Collapse
|
31
|
Clarke LA, Atherton AM, Burton BK, Day-Salvatore DL, Kaplan P, Leslie ND, Scott CR, Stockton DW, Thomas JA, Muenzer J. Mucopolysaccharidosis Type I Newborn Screening: Best Practices for Diagnosis and Management. J Pediatr 2017; 182:363-370. [PMID: 27939258 DOI: 10.1016/j.jpeds.2016.11.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Lorne A Clarke
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital and Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Paige Kaplan
- The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - David W Stockton
- Children's Hospital of Michigan and Wayne State University, Detroit, MI
| | | | - Joseph Muenzer
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
32
|
Maternal mosaicism for IDUA deletion clarifies recurrence risk in MPS I. Hum Genome Var 2016; 3:16031. [PMID: 27766162 PMCID: PMC5052355 DOI: 10.1038/hgv.2016.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 11/08/2022] Open
Abstract
Mucopolysaccharidosis I (MPS I) is a rare autosomal recessive multisystem lysosomal storage disorder. It is caused by biallelic loss-of-function variants in IDUA, encoding alpha-l iduronidase. Here, we describe an individual affected by MPS I due to a paternally inherited deletion of IDUA exons 1 and 2, c.(?_-88)_(299+1_300-1)del and a whole-gene deletion of IDUA (?_-88?)_(*136?)del secondary to maternal somatic mosaicism. We define a previously unreported mutational mechanism for this disorder.
Collapse
|
33
|
Report of 5 novel mutations of the α-L-iduronidase gene and comparison of Korean mutations in relation with those of Japan or China in patients with mucopolysaccharidosis I. BMC MEDICAL GENETICS 2016; 17:58. [PMID: 27520059 PMCID: PMC4983032 DOI: 10.1186/s12881-016-0319-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 07/29/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mucopolysaccharidosis I (MPS I) is an autosomal recessive lysosomal storage disorder caused by a lack of the lysosomal enzyme α-L-iduronidase (IDUA). To date, more than 200 IDUA mutations have been reported. However, only a few types of mutations are recurrent and the frequencies of mutations differ from country to country. METHODS We performed the IDUA mutation analysis in seven patients who were biochemically diagnosed with MPS I in the Department of Pediatrics, Samsung Medical Center, from 2009 to 2014. Here, we describe the results of the IDUA mutation analysis in seven patients with MPS I and the IDUA mutational spectrum in Korean patients with MPS I, including previous data. RESULTS The IDUA mutations were found in all 14 alleles of 7 patients, and 11 kinds of IDUA mutations were identified. The detected mutations were five missense mutations (p.A79V, p.L346R, p.T388K, p.P496R, and p.C577Y), two nonsense mutations (p.Y618* and p.R628*), two deletions (c.683delC and c.1591delC), one splice site mutation (c.972+1G>A), and one duplication (c.613_617dup). Among these, p.T388K, p.C577Y, c.683delC, c.1591delC, and c.972+1G>A were novel mutations that have not previously been reported. After taking everything into consideration, including IDUA mutation analysis of the previously reported 10 unrelated Korean patients with MPS I, p.L346R and c.704ins5 were most commonly found in Korean patients with MPS I. However, p.W402* and p.Q70*, which have mainly been found in Caucasian patients, were not found. CONCLUSION As a result, p.L346R and c.704ins5, which were the most common in Korea, which is geographically situated midway between China and Japan, were some of the most common mutations in China and Japan, respectively. These results are especially worthy of notice.
Collapse
|
34
|
Tebani A, Zanoutene-Cheriet L, Adjtoutah Z, Abily-Donval L, Brasse-Lagnel C, Laquerrière A, Marret S, Chalabi Benabdellah A, Bekri S. Clinical and Molecular Characterization of Patients with Mucopolysaccharidosis Type I in an Algerian Series. Int J Mol Sci 2016; 17:ijms17050743. [PMID: 27196898 PMCID: PMC4881565 DOI: 10.3390/ijms17050743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022] Open
Abstract
Mucopolysaccharidoses (MPS’s) represent a subgroup of lysosomal storage diseases related to a deficiency of enzymes that catalyze glycosaminoglycans degradation. Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disorder caused by a deficiency of α-l-iduronidase encoded by the IDUA gene. Partially degraded heparan sulfate and dermatan sulfate accumulate progressively and lead to multiorgan dysfunction and damage. The aim of this study is to describe the clinical, biochemical, and molecular characteristics of 13 Algerian patients from 11 distinct families. MPS I diagnosis was confirmed by molecular study of the patients’ IDUA gene. Clinical features at the diagnosis and during the follow-up are reported. Eighty-four percent of the studied patients presented with a mild clinical phenotype. Molecular study of the IDUA gene allowed the characterization of four pathological variations at the homozygous or compound heterozygote status: IDUA NM_00203.4:c.1598C>G-p.(Pro533Arg) in 21/26 alleles, IDUA NM_00203.4:c.532G>A-p.(Glu178Lys) in 2/26 alleles, IDUA NM_00203.4:c.501C>G-p.(Tyr167*) in 2/26 alleles, and IDUA NM_00203. 4: c.1743C>G-p.(Tyr581*) in 1/26 alleles. This molecular study unveils the predominance of p.(Pro533Arg) variation in our MPS I patients. In this series, the occurrence of some clinical features linked to the Scheie syndrome is consistent with the literature, such as systematic valvulopathies, corneal opacity, and umbilical hernia; however, storage signs, facial dysmorphic features, and hepatomegaly were more frequent in our series. Screening measures for these debilitating diseases in highly consanguineous at-risk populations must be considered a priority health problem.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen 76031, France.
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonatal Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen 76031, France.
| | | | - Zoubir Adjtoutah
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen 76031, France.
| | - Lenaig Abily-Donval
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonatal Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen 76031, France.
- Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen 76031, France.
| | - Carole Brasse-Lagnel
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen 76031, France.
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonatal Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen 76031, France.
| | - Annie Laquerrière
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonatal Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen 76031, France.
- Pathology Laboratory, Rouen University Hospital, Rouen 76031, France.
| | - Stephane Marret
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonatal Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen 76031, France.
- Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen 76031, France.
| | | | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen 76031, France.
- Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonatal Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen 76031, France.
| |
Collapse
|
35
|
Viana GM, Buri MV, Paredes-Gamero EJ, Martins AM, D'Almeida V. Impaired Hematopoiesis and Disrupted Monocyte/Macrophage Homeostasis in Mucopolysaccharidosis Type I Mice. J Cell Physiol 2016; 231:698-707. [PMID: 26235607 DOI: 10.1002/jcp.25120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/30/2015] [Indexed: 12/23/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disease caused by alpha-L-iduronidase deficiency in which heparan and dermatan sulfate degradation is compromised. Besides primary lysosomal glycosaminoglycan accumulation, further changes in cellular functions have also been described in several murine MPS models. Herein, we evaluated alterations in hematopoiesis and its implications on the production of mature progeny in a MPS I murine model. Despite the significant increase in hematopoietic stem cells, a reduction in common myeloid progenitors and granulocyte-macrophage progenitor cells was observed in Idua -/- mice bone marrow. Furthermore, no alterations in number, viability nor activation of cell death mechanisms were observed in Idua -/- mice mature macrophages but they presented higher sensitivity to apoptotic induction after staurosporine treatment. In addition, changes in Ca(2+) signaling and a reduction in phagocytosis ability were also found. In summary, our results revealed significant intracellular changes in mature Idua -/- macrophages related to alterations in Idua -/- mice hematopoiesis, revealing a disruption in cell homeostasis. These results provide new insights into physiopathology of MPS I.
Collapse
Affiliation(s)
- Gustavo Monteiro Viana
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcus Vinícius Buri
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Edgar Julian Paredes-Gamero
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Ana Maria Martins
- Centro de Referência de Erros Inatos do Metabolismo (CREIM), Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Vânia D'Almeida
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Ahmed A, Rudser K, Kunin-Batson A, Delaney K, Whitley C, Shapiro E. Mucopolysaccharidosis (MPS) Physical Symptom Score: Development, Reliability, and Validity. JIMD Rep 2015; 26:61-8. [PMID: 26303610 DOI: 10.1007/8904_2015_485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/18/2015] [Accepted: 07/15/2015] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES We quantified medical signs and symptoms to construct the Physical Symptom Score (PSS) for use in research to assess somatic disease burden in mucopolysaccharidoses (MPS) to track disease and monitor treatments. We examined scoring reliability, its concurrent validity with other measures, and relationship to age in MPS type I. METHODS Fifty-four patients with MPS I (36 with Hurler syndrome treated with hematopoietic cell transplant and 18 with attenuated MPS I treated with enzyme replacement therapy), ages 5 to 18 years, were seen longitudinally over 5 years. The summation of frequency and severity of signs of specific organ involvement, surgeries, and hydrocephalus drawn from medical histories comprise the PSS. We examined relationship to age and to daily living skills (DLS) from the Vineland Adaptive Behavior Scale and physical quality of life from the Child Health Questionnaire (CHQ) for each group. RESULTS The PSS was associated with age in both groups, indicating increase in disease burden over time. The PSS was significantly negatively associated with DLS (r = -0.48) and CHQ (r = -0.55) in the attenuated MPS I but not in the Hurler group. CONCLUSIONS The association of somatic disease burden with physical quality of life and ability to carry out daily living skills suggests that the PSS will be useful in the measurement of disease and treatment effects in the attenuated MPS I group. Earlier treatment with transplant and differing parental expectations are possible explanations for its lack of association with other outcomes necessitating an adaptation for Hurler syndrome in the future.
Collapse
Affiliation(s)
- A Ahmed
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA.
| | - K Rudser
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - A Kunin-Batson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - K Delaney
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - C Whitley
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - E Shapiro
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
37
|
Abstract
Mucopolysaccharidoses (MPS) are inherited metabolic diseases caused by mutations in the genes coding for one of the eleven enzymes involved in lysosomal catabolism of different glycosaminoglycans (or mucopolysaccharides). The different enzyme deficiencies result in a total of seven distinct mucopolysaccharidoses (I to IV, VI, VII and IX). This review considers the genetic and molecular aspects of the seven types of MPS.
Collapse
Affiliation(s)
- D Lacombe
- Service de génétique médicale, CHU de Bordeaux, Laboratoire Maladies rares : Génétique et métabolisme, EA4576, Université de Bordeaux, 146 rue Léo-Saignât, 33076 Bordeaux, France.
| | - D P Germain
- Service de génétique médicale, CHU Raymond-Poincaré, 104 boulevard Raymond-Poincaré, 92380 Garches, France; UFR des sciences de la santé, université de Versailles St Quentin en Yvelines, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
38
|
Langereis EJ, van Vlies N, Wijburg FA. Diagnosis, classification and treatment of mucopolysaccharidosis type I. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1016908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Coletti HY, Aldenhoven M, Yelin K, Poe MD, Kurtzberg J, Escolar ML. Long-term functional outcomes of children with hurler syndrome treated with unrelated umbilical cord blood transplantation. JIMD Rep 2015; 20:77-86. [PMID: 25614311 DOI: 10.1007/8904_2014_395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Hurler syndrome is characterized by progressive multisystem deterioration leading to early death in childhood. This prospective study evaluated the long-term outcomes of patients with Hurler syndrome who underwent umbilical cord blood transplantation from unrelated donors. STUDY DESIGN Only patients with Hurler syndrome who underwent umbilical cord blood transplantation between December 1995 and March 2006 (n = 25) and who were followed for at least 5 years (n = 19) were included in the analysis. The patients were longitudinally evaluated by a multidisciplinary team of specialists following a standardized protocol. RESULTS Median age at transplantation was 15.9 months (range 2.1-35), and patients were followed up until a median age of 10.1 years (range 7.2-14.9). Overall survival was 80%. All successfully transplanted patients achieved full donor chimerism and normal enzyme levels, and all children continue to make gains in development. Gross motor function was the most affected area. Vision and hearing were compromised in a minority of the patients, with some requiring corneal transplant or hearing aids. Cardiopulmonary function improved. Some children required orthopedic surgery, but severe complications were prevented in most patients. Although longitudinal growth was lower than that of unaffected children, it was considerably higher than expected from the natural course of the disease. Head circumference normalized. Hydrocephalus was not observed at longer follow-up, and cerebral atrophy decreased over time. CONCLUSIONS In this descriptive study of children with Hurler syndrome, unrelated umbilical cord blood transplantation was associated with improved somatic disease and neurodevelopment.
Collapse
Affiliation(s)
- Hannah Y Coletti
- Departments of Pediatrics and Internal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
40
|
Genotypic and bioinformatic evaluation of the alpha-l-iduronidase gene and protein in patients with mucopolysaccharidosis type I from Colombia, Ecuador and Peru. Mol Genet Metab Rep 2014; 1:468-473. [PMID: 27896125 PMCID: PMC5121354 DOI: 10.1016/j.ymgmr.2014.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 01/10/2023] Open
Abstract
Mucopolysaccharidosis type I (MPSI) is a rare autosomal recessive disorder caused by mutations in the gene encoding the lysosomal enzyme α-l-iduronidase (IDUA), which is instrumental in the hydrolysis of the glycosaminoglycans, dermatan and heparan sulfate. The accumulation of unhydrolyzed glycosaminoglycans leads to pathogenesis in multiple tissue types, especially those of skeletal, nervous, respiratory, cardiovascular, and gastrointestinal origin. Although molecular diagnostic tools for MPSI have been available since the identification and characterization of the IDUA gene in 1992, Colombia, Ecuador, and Peru have lacked such methodologies. Therefore, the mutational profile of the IDUA gene in these countries has largely been unknown. The goal of this study was to characterize genotypes in 14 patients with MPSI from Colombia, Ecuador, and Peru. The most common mutation found at a frequency of 42.8% was W402X. Six patients presented with seven novel mutations, a high novel mutational rate in this population (32%). These novel mutations were validated using bioinformatic techniques. A model of the IDUA protein resulting from three of the novel missense mutations (Y625C, P385L, R621L) revealed that these mutations alter accessible surface area values, thereby reducing the accessibility of the enzyme to its substrates. This is the first characterization of the mutational profile of the IDUA gene in patients with MPSI in Colombia, Ecuador, and Peru. The findings contribute to our understanding of IDUA gene expression and IDUA enzyme function, and may help facilitate early and improved diagnosis and management for patients with MPSI.
Collapse
|
41
|
Pasqualim G, Ribeiro MG, da Fonseca GGG, Szlago M, Schenone A, Lemes A, Rojas MVM, Matte U, Giugliani R. p.L18P: a novel IDUA mutation that causes a distinct attenuated phenotype in mucopolysaccharidosis type I patients. Clin Genet 2014; 88:376-80. [PMID: 25256405 DOI: 10.1111/cge.12507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Mucopolysaccharidosis type I is a rare autosomal recessive disorder caused by deficiency of α-l-iduronidase (IDUA) which leads to a wide spectrum of clinical severity. Here, we describe the case of four male patients who present the previously undescribed p.L18P mutation. Patient 1 (p.L18P/p.L18P) presents, despite multiple joint contractures, an attenuated phenotype. Patient 2 (p.L18P/p.W402X) was diagnosed at 4 years of age with bone dysplasia, coarse facies, limited mobility, claw hands and underwent bilateral carpal tunnel surgery at 6 years of age. Patients 3 and 4 (both p.L18P/p.L18P) are brothers. Patient 3 was diagnosed at 4 years of age, when presented claw hands, lower limb and shoulder pain, restricted articular movement and bilateral carpal tunnel syndrome. Patient 4 was diagnosed at 17 months of age when presented lower limb pain at night, respiratory allergy and repeated upper airways infections. Bioinformatics analysis indicates that p.L18P mutation reduces the signal peptide to 25 amino acids and alters its secondary structure. In conclusion, we report a new IDUA variant that alters the structure of the signal peptide, which likely impairs transport to lysosomes. Moreover, it leads to a distinct attenuated phenotype with mainly bone and cartilage symptoms, without visceromegalies, heart disease, or cognitive impairment.
Collapse
Affiliation(s)
- G Pasqualim
- Post-Graduate Program on Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil.,Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - M G Ribeiro
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - G G G da Fonseca
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - M Szlago
- Fundación para el Estudio de las Enfermedades metabólicas (FESEN), Buenos Aires, Argentina
| | - A Schenone
- Fundación para el Estudio de las Enfermedades metabólicas (FESEN), Buenos Aires, Argentina
| | - A Lemes
- Instituto de Genética Médica, Hospital Italiano, Montevideo, Uruguay
| | - M V M Rojas
- Genzyme, Genzyme Latin America - A Sanofi Company, Rio de Janeiro, Brazil
| | - U Matte
- Post-Graduate Program on Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil.,Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, UFRGS, Porto Alegre, Brazil.,INAGEMP, Porto Alegre, Brazil
| | - R Giugliani
- Post-Graduate Program on Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil.,Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, UFRGS, Porto Alegre, Brazil.,INAGEMP, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
42
|
Morrone A, Tylee KL, Al-Sayed M, Brusius-Facchin AC, Caciotti A, Church HJ, Coll MJ, Davidson K, Fietz MJ, Gort L, Hegde M, Kubaski F, Lacerda L, Laranjeira F, Leistner-Segal S, Mooney S, Pajares S, Pollard L, Ribeiro I, Wang RY, Miller N. Molecular testing of 163 patients with Morquio A (Mucopolysaccharidosis IVA) identifies 39 novel GALNS mutations. Mol Genet Metab 2014; 112:160-70. [PMID: 24726177 PMCID: PMC4203673 DOI: 10.1016/j.ymgme.2014.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/09/2023]
Abstract
Morquio A (Mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by partial or total deficiency of the enzyme galactosamine-6-sulfate sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate sulfatase) encoded by the GALNS gene. Patients who inherit two mutated GALNS gene alleles have a decreased ability to degrade the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate, thereby causing GAG accumulation within lysosomes and consequently pleiotropic disease. GALNS mutations occur throughout the gene and many mutations are identified only in single patients or families, causing difficulties both in mutation detection and interpretation. In this study, molecular analysis of 163 patients with Morquio A identified 99 unique mutations in the GALNS gene believed to negatively impact GALNS protein function, of which 39 are previously unpublished, together with 26 single-nucleotide polymorphisms. Recommendations for the molecular testing of patients, clear reporting of sequence findings, and interpretation of sequencing data are provided.
Collapse
Affiliation(s)
- A Morrone
- Molecular and Cell Biology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Florence, Italy; Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Florence Italy
| | - K L Tylee
- Willink Biochemical Genetics, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital Oxford Road, Manchester, UK
| | - M Al-Sayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A C Brusius-Facchin
- Laboratório de Genética Molecular, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - A Caciotti
- Molecular and Cell Biology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Florence, Italy
| | - H J Church
- Willink Biochemical Genetics, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital Oxford Road, Manchester, UK
| | - M J Coll
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - K Davidson
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - M J Fietz
- SA Pathology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - L Gort
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - M Hegde
- Emory Genetics Laboratory, Emory University School of Medicine, Atlanta, GA, USA
| | - F Kubaski
- Laboratório de Genética Molecular, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - L Lacerda
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães (CGMJM) do Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - F Laranjeira
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães (CGMJM) do Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - S Leistner-Segal
- Laboratório de Genética Molecular, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - S Mooney
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - S Pajares
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - L Pollard
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - I Ribeiro
- Unidade de Bioquímica Genética, Centro de Genética Médica Jacinto Magalhães (CGMJM) do Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - R Y Wang
- Children's Hospital of Orange County, Orange, CA, USA
| | - N Miller
- BioMarin Pharmaceutical Inc., Novato, CA, USA.
| |
Collapse
|
43
|
Chistiakov DA, Savost'anov KV, Kuzenkova LM, Gevorkyan AK, Pushkov AA, Nikitin AG, Pakhomov AV, Vashakmadze ND, Zhurkova NV, Podkletnova TV, Mayansky NA, Namazova-Baranova LS, Baranov AA. Molecular characteristics of patients with glycosaminoglycan storage disorders in Russia. Clin Chim Acta 2014; 436:112-20. [PMID: 24875751 DOI: 10.1016/j.cca.2014.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 02/09/2023]
Abstract
BACKGROUND The mucopolysaccharidoses (MPSs) are rare genetic disorders caused by mutations in lysosomal enzymes involved in the degradation of glycosaminoglycans (GAGs). In this study, we analyzed a total of 48 patients including MPSI (n=6), MPSII (n=18), MPSIIIA (n=11), MPSIVA (n=3), and MPSVI (n=10). METHODS In MPS patients, urinary GAGs were colorimetrically assayed. Enzyme activity was quantified by colorimetric and fluorimetric assays. To find mutations, all IDUA, IDS, SGSH, GALNS, and ARSB exons and intronic flanks were sequenced. New mutations were functionally assessed by reconstructing mutant alleles with site-directed mutagenesis followed with expression of wild-type and mutant genetic variants in CHO cells, measuring enzymatic activity, and Western blot analysis of protein expression of normal and mutated enzymes in cell lysates. RESULTS A total of five novel mutations were found including p.Asn348Lys (IDUA) in MPSI, p.Tyr240Cys (GALNS) in MPSIVA, and three ARSB mutations (p.Gln110*, p.Asn262Lysfs*14, and pArg315*) in MPSVI patients. In case of mutations p.Asn348Lys, p.Asn262Lysfs*14, and p.Gln110*, no mutant protein was detected while activity of the mutant protein was <1% of that of the normal enzyme. For p.Tyr240Cys, a trace of mutant protein was observed with a remnant activity of 3.6% of the wild-type GALNS activity. For pArg315*, a truncated 30-kDa protein that had 7.9% of activity of the normal ARSB was detected. CONCLUSIONS These data further enrich our knowledge of the genetic background of MPSs.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, 117997 Moscow, Russia; Department of Molecular Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia.
| | - Kirill V Savost'anov
- Department of Molecular Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Lyudmila M Kuzenkova
- Department of Psychoneurology and Psychosomatic Pathology, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Anait K Gevorkyan
- Institute of Preventive Pediatrics and Rehabilitation, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander A Pushkov
- Department of Molecular Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexey G Nikitin
- Department of Molecular Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander V Pakhomov
- Department of Molecular Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Nato D Vashakmadze
- Department of Psychoneurology and Psychosomatic Pathology, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Natalia V Zhurkova
- Department of Molecular Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Tatiana V Podkletnova
- Department of Psychoneurology and Psychosomatic Pathology, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Nikolai A Mayansky
- Department of Experimental Immunology and Virology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Leila S Namazova-Baranova
- Institute of Preventive Pediatrics and Rehabilitation, Research Center for Children's Health, 119991 Moscow, Russia
| | | |
Collapse
|
44
|
Abstract
BACKGROUND As patients with different types of mucopolysaccharidosis (MPS) and mucolipidosis (ML) may present with overlapping clinical features - including coarse face, hepatosplenomegaly, bone dysplasia and claw-hand deformities, collectively also called 'MPS-like phenotype', enzymatic and/or molecular genetic analyses are indispensable for accurate diagnosis and applying specific therapy. In this prospective study, we screened patients with symptoms compatible with MPS for MPS I, II (males) and VI. METHODS Dried blood spots/specimens (DBS) were collected from 200 patients with an MPS-like phenotype and analysed for activities of α-iduronidase (IDUA), iduronate-2-sulphatase (IDS), and arylsulphatase B (ARSB), the enzymes deficient in mucopolysaccharidosis (MPS) type I, II and VI, respectively. For the samples with pathologic enzyme activity, mutational analysis was carried out using the same DBS. RESULTS Based on enzymatic analysis of 200 DBS samples, a total of 45 (22.5%) showed low activity; 17 for MPS I (8.5%), 11 for MPS II (5.5%) and 9 for MPS VI (4.5%). Enzyme activities were suggestive for ML II/III in 8 (4.0%) cases. For 41 (91.1%) samples, DNA could be extracted from the filter paper. Mutations were identified in 11 (64.7%), 11 (100%), 9 (100%) and 5 (62.5%) patients putatively diagnosed biochemically with MPS I, II, VI, and ML II/III, respectively. CONCLUSIONS DBS enzymatic analysis can be used to diagnose MPS/ML. Initial results should be confirmed by a second enzyme assay and/or by molecular genetic testing. Given the advantages of DBS over other sample types in terms of ease of collection, storage and transportation, DBS are particularly useful for screening patients with an MPS-like phenotype in regions lacking specialised laboratories. In order to ascertain the diagnosis in a large number of cases, patients should be assessed in parallel for at least MPS I, II and VI.
Collapse
|
45
|
Ahmed A, Whitley CB, Cooksley R, Rudser K, Cagle S, Ali N, Delaney K, Yund B, Shapiro E. Neurocognitive and neuropsychiatric phenotypes associated with the mutation L238Q of the α-L-iduronidase gene in Hurler-Scheie syndrome. Mol Genet Metab 2014; 111:123-7. [PMID: 24368159 PMCID: PMC3939822 DOI: 10.1016/j.ymgme.2013.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/30/2013] [Accepted: 11/30/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED The lysosomal enzyme α-L-iduronidase hydrolyzes terminal iduronic acid from heparan sulfate and dermatan sulfate, and is an essential step in GAG degradation. Mutations of its gene, IDUA, yield a spectrum of mucopolysaccharidosis (MPS) type I clinical disorders. The IDUA mutation, c.712T>A (p.L238Q) was previously noted as a mild mutation. In a longitudinal study of MPS brain structure and function (Lysosomal Disease Network), we found this mutation in 6 of 14 Hurler-Scheie syndrome patients in the age range of 15 to 25 years. We hypothesized that L238Q, when paired with a nonsense mutation, is significantly more severe than other missense-nonsense combinations. METHODS Of 6 patients with a L238Q mutation, the L238Q allele was paired with a nonsense mutation in 4 patients, paired with a deletion in 1, and with a splice site mutation in another. This group was compared to 6 Hurler-Scheie patients closely matched in age and mutation type. IQ and other neuropsychological tests were administered as part of the protocol. Medical history was compiled into a Physical Symptom Score (PSS). Assessment of IQ, attention, memory, spatial ability, adaptive function and psychological status were measured. RESULTS No group differences were found in mean age at evaluation (17.8 and 19.0 years), duration of ERT, or PSS. By history, all were reported to be average in IQ (4/6 with documentation) in early childhood. All (100%) of the L238Q group had a psychiatric history and sleep problems compared to none (0%) of the comparison group. Significant differences were found in depression and withdrawal on parent report measures. IQ was lower in the L238Q group (mean IQ 74) than the comparison group (mean IQ 95; p<0.016). Attention, memory, and visual-spatial ability scores were also significantly lower. Three occurrences of shunted hydrocephalus, and 4 of cervical cord compression were found in the L238Q group; the comparison group had one occurrence of unshunted hydrocephalus and two of cord compression. DISCUSSION The missense mutation L238Q, when paired with a nonsense mutation, is associated with significant, late-onset brain disease: psychiatric disorder, cognitive deficit, and general decline starting at a later age than in Hurler syndrome with a mutation-related rate of GAG accumulation and its pathologic sequelae. This particular genotype-phenotype may provide insight into the genesis of psychiatric illnesses more broadly. Consideration of methods for early, brain-targeted treatment in these patients might be considered.
Collapse
Affiliation(s)
- Alia Ahmed
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chester B Whitley
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Renee Cooksley
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kyle Rudser
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie Cagle
- Department of Human Genetics, Emory University, Decatur, GA 30033, USA
| | - Nadia Ali
- Department of Human Genetics, Emory University, Decatur, GA 30033, USA
| | - Kathleen Delaney
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brianna Yund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elsa Shapiro
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Saito S, Ohno K, Maita N, Sakuraba H. Structural and clinical implications of amino acid substitutions in α-L-iduronidase: insight into the basis of mucopolysaccharidosis type I. Mol Genet Metab 2014; 111:107-12. [PMID: 24480078 DOI: 10.1016/j.ymgme.2013.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
Allelic mutations, predominantly missense ones, of the α-l-iduronidase (IDUA) gene cause mucopolysaccharidosis type I (MPS I), which exhibits heterogeneous phenotypes. These phenotypes are basically classified into severe, intermediate, and attenuated types. We previously examined the structural changes in IDUA due to MPS I by homology modeling, but the reliability was limited because of the low sequence identity. In this study, we built new structural models of mutant IDUAs due to 57 amino acid substitutions that had been identified in 27 severe, 1 severe-intermediate, 13 intermediate, 1 attenuated-intermediate and 15 attenuated type MPS I patients based on the crystal structure of human IDUA, which was recently determined by us. The structural changes were examined by calculating the root-mean-square distances (RMSD) and the number of atoms influenced by the amino acid replacements. The results revealed that the structural changes of the enzyme protein tended to be correlated with the severity of the disease. Then we focused on the structural changes resulting from amino acid replacements in the immunoglobulin-like domain and adjacent region, of which the structure had been missing in the IDUA model previously built. Coloring of atoms influenced by an amino acid substitution was performed in each case and the results revealed that the structural changes occurred in a region far from the active site of IDUA, suggesting that they affected protein folding. Structural analysis is thus useful for elucidation of the basis of MPS I.
Collapse
Affiliation(s)
- Seiji Saito
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Kazuki Ohno
- NPO for the Promotion of Research on Intellectual Property Tokyo, Tokyo, Japan
| | - Nobuo Maita
- Laboratory of X-ray Crystallography, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
47
|
Kingma SDK, Langereis EJ, de Klerk CM, Zoetekouw L, Wagemans T, IJlst L, Wanders RJA, Wijburg FA, van Vlies N. An algorithm to predict phenotypic severity in mucopolysaccharidosis type I in the first month of life. Orphanet J Rare Dis 2013; 8:99. [PMID: 23837464 PMCID: PMC3710214 DOI: 10.1186/1750-1172-8-99] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/03/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Mucopolysaccharidosis type I (MPS I) is a progressive multisystem lysosomal storage disease caused by deficiency of the enzyme α-L-iduronidase (IDUA). Patients present with a continuous spectrum of disease severity, and the most severely affected patients (Hurler phenotype; MPS I-H) develop progressive cognitive impairment. The treatment of choice for MPS I-H patients is haematopoietic stem cell transplantation, while patients with the more attenuated phenotypes benefit from enzyme replacement therapy. The potential of newborn screening (NBS) for MPS I is currently studied in many countries. NBS for MPS I, however, necessitates early assessment of the phenotype, in order to decide on the appropriate treatment. In this study, we developed an algorithm to predict phenotypic severity in newborn MPS I patients. Methods Thirty patients were included in this study. Genotypes were collected from all patients and all patients were phenotypically categorized at an age of > 18 months based on the clinical course of the disease. In 18 patients, IDUA activity in fibroblast cultures was measured using an optimized IDUA assay. Clinical characteristics from the first month of life were collected from 23 patients. Results Homozygosity or compound heterozygosity for specific mutations which are associated with MPS I-H, discriminated a subset of patients with MPS I-H from patients with more attenuated phenotypes (specificity 100%, sensitivity 82%). Next, we found that enzymatic analysis of IDUA activity in fibroblasts allowed identification of patients affected by MPS I-H. Therefore, residual IDUA activity in fibroblasts was introduced as second step in the algorithm. Patients with an IDUA activity of < 0.32 nmol x mg-1 × hr-1 invariably were MPS I-H patients, while an IDUA activity of > 0.66 nmol × mg-1 × hr-1 was only observed in more attenuated patients. Patients with an intermediate IDUA activity could be further classified by the presence of differentiating clinical characteristics, resulting in a model with 100% sensitivity and specificity for this cohort of patients. Conclusion Using genetic, biochemical and clinical characteristics, all potentially available in the newborn period, an algorithm was developed to predict the MPS I phenotype, allowing timely initiation of the optimal treatment strategy after introduction of NBS.
Collapse
|
48
|
Pollard LM, Jones JR, Wood TC. Molecular characterization of 355 mucopolysaccharidosis patients reveals 104 novel mutations. J Inherit Metab Dis 2013; 36:179-87. [PMID: 22976768 DOI: 10.1007/s10545-012-9533-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
Mucopolysaccharidosis (MPS) disorders are heterogeneous and caused by deficient lysosomal degradation of glycosaminoglycans, resulting in distinct but sometimes overlapping phenotypes. Molecular analysis was performed for a total of 355 MPS patients with MPSI (n = 15), MPSII (n = 218), MPSIIIA (n = 86), MPSIIIB (n = 20), MPSIVA (n = 6) or MPSVI (n = 10). This analysis revealed 104 previously unreported mutations: seven in IDUA (MPSI), 61 in IDS (MPSII), 19 in SGSH (MPSIIIA), 11 in NAGLU (MPSIIIB), two in GALNS (MPSIVA) and four in ARSB (MPSVI). The intergenic comparison of the mutation data for these disorders has revealed interesting differences. Whereas IDUA, IDS, NAGLU and ARSB demonstrate similar levels of mutation heterogeneity (0.6-0.675 different mutations per total alleles), SGSH and GALNS have lower levels of mutation heterogeneity (0.282 and 0.455, respectively), due to more recurrent mutations. The type of mutation also varies significantly by gene. SGSH, GALNS and ARSB mutations are usually missense (76.5 %, 81.8 % and 85 %), while IDUA has many more nonsense mutations (56 %) than the other genes (≤20%). The mutation spectrum is most diverse for IDS, including intergenic inversions and multi-exon deletions. By testing 102 mothers of MPSII patients, we determined that 22.5 % of IDS mutations are de novo. We report the allele frequency of common mutations for each gene in our patient cohort and the exonic distribution of coding sequence alterations in the IDS, SGSH and NAGLU genes, which reveals several potential "hot-spots". This further molecular characterization of these MPS disorders is expected to assist in the diagnosis and counseling of future patients.
Collapse
Affiliation(s)
- Laura M Pollard
- Biochemical Diagnostic Laboratory, Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | | | | |
Collapse
|
49
|
Abstract
A decade has passed since the initial report that parenteral use of recombinant human α-L-iduronidase results in amelioration of symptoms in patients with mucopolysaccharidosis type I (MPS I). As a result, MPS I became the first mucopolysaccharide storage disorder to benefit from enzyme replacement therapy (ERT); subsequent ERTs have been approved for MPS II and VI. The ability of lysosomal storage disorders to respond to ERT is unique among genetic disorders and relates to the capability of cells to take up recombinant lysosomal enzymes through cell surface receptors and deliver them to the lysosome, a processed coined as 'cross-correction'. Although the concept of ERT is straightforward, the evaluation of its efficacy in disorders like MPS I is challenging. This article reviews the use of laronidase in the management of MPS I, with a particular emphasis on the unique issues inherent in the evaluation of therapeutics for such a rare, complex and progressive disorder.
Collapse
Affiliation(s)
- Lorne A Clarke
- a Department of Medical Genetics, University of British Columbia, Child and Family Research Institute, 4500 Oak Street, RM C234, Vancouver, British Columbia, V6H-3N1, Canada.
| |
Collapse
|
50
|
Chkioua L, Khedhiri S, Turkia HB, Tcheng R, Froissart R, Chahed H, Ferchichi S, Ben Dridi MF, Vianey-Saban C, Laradi S, Miled A. Mucopolysaccharidosis type I: molecular characteristics of two novel alpha-L-iduronidase mutations in Tunisian patients. Diagn Pathol 2011; 6:47. [PMID: 21639919 PMCID: PMC3135498 DOI: 10.1186/1746-1596-6-47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type I (MPS I) is an autosomal storage disease resulting from defective activity of the enzyme α-L-iduronidase (IDUA). This glycosidase is involved in the degradation of heparan sulfate and dermatan sulfate. MPS I has severe and milder phenotypic subtypes. AIM OF STUDY This study was carried out on six newly collected MPS I patients recruited from many regions of Tunisia. PATIENTS AND METHODS Mutational analysis of the IDUA gene in unrelated MPS I families was performed by sequencing the exons and intron-exon junctions of IDUA gene. RESULTS Two novel IDUA mutations, p.L530fs (1587_1588 insGC) in exon 11 and p.F177S in exon 5 and two previously reported mutations p.P533R and p.Y581X were detected. The patient in family 1 who has the Hurler phenotype was homozygous for the previously described nonsense mutation p.Y581X.The patient in family 2 who also has the Hurler phenotype was homozygous for the novel missense mutation p.F177S. The three patients in families 3, 5 and 6 were homozygous for the p.P533R mutation. The patient in family 4 was homozygous for the novel small insertion 1587_1588 insGC. In addition, eighteen known and one unknown IDUA polymorphisms were identified. CONCLUSION The identification of these mutations should facilitate prenatal diagnosis and counseling for MPS I in Tunisia.
Collapse
Affiliation(s)
- Latifa Chkioua
- Laboratory of Biochemistry, Farhat Hached Hospital, 4000 Sousse - Tunisia
- Laboratory of Molecular Biology, University of Pharmacy, 5000 Monastir - Tunisia
| | - Souhir Khedhiri
- Laboratory of Biochemistry, Farhat Hached Hospital, 4000 Sousse - Tunisia
- Laboratory of Molecular Biology, University of Pharmacy, 5000 Monastir - Tunisia
| | | | - Rémy Tcheng
- Hereditary Metabolic Diseases Service, Center for Biology and Pathology, Est Hospices Civils Lyon, 69677 BRON CEDEX France
| | - Roseline Froissart
- Hereditary Metabolic Diseases Service, Center for Biology and Pathology, Est Hospices Civils Lyon, 69677 BRON CEDEX France
| | - Henda Chahed
- Laboratory of Biochemistry, Farhat Hached Hospital, 4000 Sousse - Tunisia
- Laboratory of Molecular Biology, University of Pharmacy, 5000 Monastir - Tunisia
| | - Salima Ferchichi
- Laboratory of Biochemistry, Farhat Hached Hospital, 4000 Sousse - Tunisia
- Laboratory of Molecular Biology, University of Pharmacy, 5000 Monastir - Tunisia
| | | | - Christine Vianey-Saban
- Hereditary Metabolic Diseases Service, Center for Biology and Pathology, Est Hospices Civils Lyon, 69677 BRON CEDEX France
| | - Sandrine Laradi
- Laboratory of Biochemistry, Farhat Hached Hospital, 4000 Sousse - Tunisia
- Laboratory of Molecular Biology, University of Pharmacy, 5000 Monastir - Tunisia
| | - Abdelhedi Miled
- Laboratory of Biochemistry, Farhat Hached Hospital, 4000 Sousse - Tunisia
- Laboratory of Molecular Biology, University of Pharmacy, 5000 Monastir - Tunisia
| |
Collapse
|