1
|
Gisina A, Yarygin K, Lupatov A. The Impact of Glycosylation on the Functional Activity of CD133 and the Accuracy of Its Immunodetection. BIOLOGY 2024; 13:449. [PMID: 38927329 PMCID: PMC11200695 DOI: 10.3390/biology13060449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
The membrane glycoprotein CD133 (prominin-1) is widely regarded as the main molecular marker of cancer stem cells, which are the most malignant cell subpopulation within the tumor, responsible for tumor growth and metastasis. For this reason, CD133 is considered a promising prognostic biomarker and molecular target for antitumor therapy. Under normal conditions, CD133 is present on the cell membrane in glycosylated form. However, in malignancies, altered glycosylation apparently leads to changes in the functional activity of CD133 and the availability of some of its epitopes for antibodies. This review focuses on CD133's glycosylation in human cells and its impact on the function of this glycoprotein. The association of CD133 with proliferation, differentiation, apoptosis, autophagy, epithelial-mesenchymal transition, the organization of plasma membrane protrusions and extracellular trafficking is discussed. In this review, particular attention is paid to the influence of CD133's glycosylation on its immunodetection. A list of commercially available and custom antibodies with their characteristics is provided. The available data indicate that the development of CD133-based biomedical technologies should include an assessment of CD133's glycosylation in each tumor type.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V. N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | |
Collapse
|
2
|
Padilla-Valverde D, Bodoque-Villar R, García-Santos E, Sanchez S, Manzanares-Campillo C, Rodriguez M, González L, Ambrós A, Cano JM, Padilla-Marcote M, Redondo-Calvo J, Martin J, Serrano-Oviedo L. Safety and Effectiveness of Perioperative Hyperthermic Intraperitoneal Chemotherapy with Gemcitabine in Patients with Resected Pancreatic Ductal Adenocarcinoma: Clinical Trial EudraCT 2016-004298-41. Cancers (Basel) 2024; 16:1718. [PMID: 38730669 PMCID: PMC11083892 DOI: 10.3390/cancers16091718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Despite the improvement in therapies, pancreatic cancer represents one of the most cancer-related deaths. In our hypothesis, we propose that Hyperthermic Intraperitoneal Chemotherapy with gemcitabine after pancreatic cytoreductive surgery could reduce tumor progression by reducing residual neoplastic volume and residual pancreatic cancer stem cells. MATERIALS AND METHODS A randomized trial involving 42 patients. All patients were diagnosed with pancreatic ductal adenocarcinoma. Group I: R0 resection. Group II. R0 resection and HIPEC with gemcitabine (120 mg/m2 for 30 min). Effectiveness was measured with analysis of overall survival, disease-free survival, distant recurrence, locoregional recurrence, and measuring of pancreatic cancer stem cells (EpCAM+CXCR4+CD133+). RESULTS From 2017 to 2023, 63 patients were recruited for our clinical trial; 21 patients were included in each group, and 21 were excluded. Locoregional recurrence, p-value: 0.022, was lower in the experimental group. There were no significant differences between the two groups in hospital mortality, perioperative complications, or hospital costs. We found a significant decrease in pancreatic cancer stem cells in patients in the experimental group after treatment, p -value of 0.018. CONCLUSIONS The use of HIPEC with gemcitabine after surgery in patients with resectable pancreatic ductal adenocarcinoma reduces locoregional recurrence and may be associated with a significant decrease in pancreatic cancer stem cells.
Collapse
Affiliation(s)
- David Padilla-Valverde
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Raquel Bodoque-Villar
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Research Institute of Castilla-La Mancha (IDISCAM), C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (R.B.-V.); (J.R.-C.)
| | - Esther García-Santos
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Susana Sanchez
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Carmen Manzanares-Campillo
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Marta Rodriguez
- Department of Pharmacy, General University Hospital, Ciudad Real, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain;
| | - Lucia González
- Department of Pathology, General University Hospital, Ciudad Real, Faculty of Medicine, UCLM C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain;
| | - Alfonso Ambrós
- Intensive Care Unit, General University Hospital, Ciudad Real, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain;
| | - Juana M. Cano
- Oncology Department, University General Hospital, Ciudad Real, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain;
| | - Maria Padilla-Marcote
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Javier Redondo-Calvo
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Research Institute of Castilla-La Mancha (IDISCAM), C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (R.B.-V.); (J.R.-C.)
| | - Jesus Martin
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Leticia Serrano-Oviedo
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Research Institute of Castilla-La Mancha (IDISCAM), C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (R.B.-V.); (J.R.-C.)
| |
Collapse
|
3
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
4
|
Wei Y, Chen Q, Chen J, Zhou C, Geng S, Shi D, Huang S, Liang Z, Chen X, Ren N, Jiang J. Loss of α-1,2-mannosidase MAN1C1 promotes tumorigenesis of intrahepatic cholangiocarcinoma through enhancing CD133-FIP200 interaction. Cell Rep 2023; 42:113588. [PMID: 38117655 DOI: 10.1016/j.celrep.2023.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023] Open
Abstract
CD133 is widely used as a marker to isolate tumor-initiating cells in many types of cancers. The structure of N-glycan on CD133 is altered during the differentiation of tumor-initiating cells. However, the relationship between CD133 N-glycosylation and stem cell characteristics remains elusive. Here, we found that the level of α-1,2-mannosylated CD133 was associated with the level of stemness genes in intrahepatic cholangiocarcinoma (iCCA) tissues. α-1,2-mannosylated CD133+ cells possessed the characteristics of tumor-initiating cells. The loss of the Golgi α-mannosidase I coding gene MAN1C1 resulted in the formation of α-1,2-mannosylated CD133 in iCCA-initiating cells. Mechanistically, α-1,2-mannosylation promoted the cytoplasmic distribution of CD133 and enhanced the interaction between CD133 and the autophagy gene FIP200, subsequently promoting the tumorigenesis of α-1,2-mannosylated CD133+ cells. Analysis of iCCA samples showed that the level of cytoplasmic CD133 was associated with poor iCCA prognosis. Collectively, α-1,2-mannosylated CD133 is a functional marker of iCCA-initiating cells.
Collapse
Affiliation(s)
- Yuanyan Wei
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.
| | - Qihang Chen
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Jiayue Chen
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai 201199, P.R. China
| | - Shuting Geng
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Danfang Shi
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Sijing Huang
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhiwei Liang
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai 201199, P.R. China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China.
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjuates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.
| |
Collapse
|
5
|
Gisina A, Kim Y, Yarygin K, Lupatov A. Can CD133 Be Regarded as a Prognostic Biomarker in Oncology: Pros and Cons. Int J Mol Sci 2023; 24:17398. [PMID: 38139228 PMCID: PMC10744290 DOI: 10.3390/ijms242417398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The CD133 cell membrane glycoprotein, also termed prominin-1, is expressed on some of the tumor cells of both solid and blood malignancies. The CD133-positive tumor cells were shown to exhibit higher proliferative activity, greater chemo- and radioresistance, and enhanced tumorigenicity compared to their CD133-negative counterparts. For this reason, CD133 is regarded as a potential prognostic biomarker in oncology. The CD133-positive cells are related to the cancer stem cell subpopulation in many types of cancer. Recent studies demonstrated the involvement of CD133 in the regulation of proliferation, autophagy, and apoptosis in cancer cells. There is also evidence of its participation in the epithelial-mesenchymal transition associated with tumor progression. For a number of malignant tumor types, high CD133 expression is associated with poor prognosis, and the prognostic significance of CD133 has been confirmed in a number of meta-analyses. However, some published papers suggest that CD133 has no prognostic significance or even demonstrate a certain correlation between high CD133 levels and a positive prognosis. This review summarizes and discusses the existing evidence for and against the prognostic significance of CD133 in cancer. We also consider possible reasons for conflicting findings from the studies of the clinical significance of CD133.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V. N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | | | |
Collapse
|
6
|
Ford MJ, Harwalkar K, Kazemdarvish H, Yamanaka N, Yamanaka Y. CD133/Prom1 marks proximal mouse oviduct epithelial progenitors and adult epithelial cells with a low generative capacity. Biol Open 2023; 12:bio059963. [PMID: 37605939 PMCID: PMC10508696 DOI: 10.1242/bio.059963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
The epithelium lining the oviduct or fallopian tube consists of multiciliated and secretory cells, which support fertilization and preimplantation development, however, its homeostasis remains poorly understood. CD133/Prom1 expression has been used as a marker to identify adult stem cell populations in various organs and often associated with cancer cells that have stem-like properties. Using an antibody targeted to CD133 and a Cre recombinase-based lineage tracing strategy, we found that CD133/Prom1 expression is not associated with a stem/progenitor population in the oviduct but marked predominantly multiciliated cells with a low generative capacity. Additionally, we have shown that CD133 is disparately localised along the oviduct during neonatal development, and that Prom1 expressing secretory cells in the ampulla rapidly transitioned to multiciliated cells and progressively migrated to the ridge of epithelial folds.
Collapse
Affiliation(s)
- Matthew J Ford
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Hengameh Kazemdarvish
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Nobuko Yamanaka
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| |
Collapse
|
7
|
Tang C, Ke M, Yu X, Sun S, Luo X, Liu X, Zhou Y, Wang Z, Cui X, Gu C, Yang Y. GART Functions as a Novel Methyltransferase in the RUVBL1/β-Catenin Signaling Pathway to Promote Tumor Stemness in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301264. [PMID: 37439412 PMCID: PMC10477903 DOI: 10.1002/advs.202301264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Tumor stemness is associated with the recurrence and incurability of colorectal cancer (CRC), which lacks effective therapeutic targets and drugs. Glycinamide ribonucleotide transformylase (GART) fulfills an important role in numerous types of malignancies. The present study aims to identify the underlying mechanism through which GART may promote CRC stemness, as to developing novel therapeutic methods. An elevated level of GART is associated with poor outcomes in CRC patients and promotes the proliferation and migration of CRC cells. CD133+ cells with increased GART expression possess higher tumorigenic and proliferative capabilities both in vitro and in vivo. GART is identified to have a novel methyltransferase function, whose enzymatic activity center is located at the E948 site. GART also enhances the stability of RuvB-like AAA ATPase 1 (RUVBL1) through methylating its K7 site, which consequently aberrantly activates the Wnt/β-catenin signaling pathway to induce tumor stemness. Pemetrexed (PEM), a compound targeting GART, combined with other chemotherapy drugs greatly suppresses tumor growth both in a PDX model and in CRC patients. The present study demonstrates a novel methyltransferase function of GART and the role of the GART/RUVBL1/β-catenin signaling axis in promoting CRC stemness. PEM may be a promising therapeutic agent for the treatment of CRC.
Collapse
Affiliation(s)
- Chao Tang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Mengying Ke
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Xichao Yu
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Shanliang Sun
- School of PharmacyNanjing University of Chinese MedicineNanjing210046China
| | - Xian Luo
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Xin Liu
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Yanyan Zhou
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Ze Wang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Xing Cui
- Department of Hematology and OncologyThe Second Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250001China
| | - Chunyan Gu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Ye Yang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210046China
| |
Collapse
|
8
|
Eptaminitaki GC, Zaravinos A, Stellas D, Panagopoulou M, Karaliota S, Baltsavia I, Iliopoulos I, Chatzaki E, Iliopoulos D, Baritaki S. Genome-Wide Analysis of lncRNA-mRNA Co-Expression Networks in CD133+/CD44+ Stem-like PDAC Cells. Cancers (Basel) 2023; 15:cancers15041053. [PMID: 36831395 PMCID: PMC9954787 DOI: 10.3390/cancers15041053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133-/CD44- cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with "hub" SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Basic and Translational Cancer Research Center (BTCRC), Genomics and Systems Biology Laboratory, Cancer Genetics, Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Sevasti Karaliota
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismini Baltsavia
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Iliopoulos
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | | | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence: ; Tel.: +30-281-039-4727
| |
Collapse
|
9
|
Bahn MS, Ko YG. PROM1-mediated cell signal transduction in cancer stem cells and hepatocytes. BMB Rep 2023; 56:65-70. [PMID: 36617467 PMCID: PMC9978360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prominin-1 (PROM1), also called CD133, is a penta-span transmembrane protein that is localized in membrane protrusions, such as microvilli and filopodia. It is known to be expressed in cancer stem cells and various progenitor cells of bone marrow, liver, kidney, and intestine. Accumulating evidence has revealed that PROM1 has multiple functions in various organs, such as eye, tooth, peripheral nerve, and liver, associating with various molecular protein partners. PROM1 regulates PKA-induced gluconeogenesis, TGFβ-induced fibrosis, and IL-6-induced regeneration in the liver, associating with Radixin, SMAD7, and GP130, respectively. In addition, PROM1 is necessary to maintain cancer stem cell properties by activating PI3K and β-Catenin. PROM1-deficienct mice also show distinct phenotypes in eyes, brain, peripheral nerves, and tooth. Here, we discuss recent findings of PROM1-mediated signal transduction. [BMB Reports 2023; 56(2): 65-70].
Collapse
Affiliation(s)
- Myeong-Suk Bahn
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
10
|
Central role of Prominin-1 in lipid rafts during liver regeneration. Nat Commun 2022; 13:6219. [PMID: 36266314 PMCID: PMC9585078 DOI: 10.1038/s41467-022-33969-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Prominin-1, a lipid raft protein, is required for maintaining cancer stem cell properties in hepatocarcinoma cell lines, but its physiological roles in the liver have not been well studied. Here, we investigate the role of Prominin-1 in lipid rafts during liver regeneration and show that expression of Prominin-1 increases after 2/3 partial hepatectomy or CCl4 injection. Hepatocyte proliferation and liver regeneration are attenuated in liver-specific Prominin-1 knockout mice compared to wild-type mice. Detailed mechanistic studies reveal that Prominin-1 interacts with the interleukin-6 signal transducer glycoprotein 130, confining it to lipid rafts so that STAT3 signaling by IL-6 is effectively activated. The overexpression of the glycosylphosphatidylinsositol-anchored first extracellular domain of Prominin-1, which is the domain that binds to GP130, rescued the proliferation of hepatocytes and liver regeneration in liver-specific Prominin-1 knockout mice. In summary, Prominin-1 is upregulated in hepatocytes during liver regeneration where it recruits GP130 into lipid rafts and activates the IL6-GP130-STAT3 axis, suggesting that Prominin-1 might be a promising target for therapeutic applications in liver transplantation.
Collapse
|
11
|
Lee H, Yu DM, Bahn MS, Kwon YJ, Um MJ, Yoon SY, Kim KT, Lee MW, Jo SJ, Lee S, Koo SH, Jung KH, Lee JS, Ko YG. Hepatocyte-specific Prominin-1 protects against liver injury-induced fibrosis by stabilizing SMAD7. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1277-1289. [PMID: 36038590 PMCID: PMC9440255 DOI: 10.1038/s12276-022-00831-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Prominin-1 (PROM1), also known as CD133, is expressed in hepatic progenitor cells (HPCs) and cholangiocytes of the fibrotic liver. In this study, we show that PROM1 is upregulated in the plasma membrane of fibrotic hepatocytes. Hepatocellular expression of PROM1 was also demonstrated in mice (Prom1CreER; R26TdTom) in which cells expressed TdTom under control of the Prom1 promoter. To understand the role of hepatocellular PROM1 in liver fibrosis, global and liver-specific Prom1-deficient mice were analyzed after bile duct ligation (BDL). BDL-induced liver fibrosis was aggravated with increased phosphorylation of SMAD2/3 and decreased levels of SMAD7 by global or liver-specific Prom1 deficiency but not by cholangiocyte-specific Prom1 deficiency. Indeed, PROM1 prevented SMURF2-induced SMAD7 ubiquitination and degradation by interfering with the molecular association of SMAD7 with SMURF2. We also demonstrated that hepatocyte-specific overexpression of SMAD7 ameliorated BDL-induced liver fibrosis in liver-specific Prom1-deficient mice. Thus, we conclude that PROM1 is necessary for the negative regulation of TGFβ signaling during liver fibrosis.
Collapse
Affiliation(s)
- Hyun Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Dong-Min Yu
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Myeong-Suk Bahn
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Young-Jae Kwon
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Min Jee Um
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seo Yeon Yoon
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ki-Tae Kim
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Myoung-Woo Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sung-Je Jo
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sungsoo Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seung-Hoi Koo
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ki Hoon Jung
- Department of Surgery, Dongguk University College of Medicine, Gyeongju, 38067, Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Young-Gyu Ko
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea. .,Division of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
12
|
Serra CF, Liu H, Qian J, Mori M, Lu J, Cardoso WV. Prominin 1 and Notch regulate ciliary length and dynamics in multiciliated cells of the airway epithelium. iScience 2022; 25:104751. [PMID: 35942101 PMCID: PMC9356082 DOI: 10.1016/j.isci.2022.104751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Differences in ciliary morphology and dynamics among multiciliated cells of the respiratory tract contribute to efficient mucociliary clearance. Nevertheless, little is known about how these phenotypic differences are established. We show that Prominin 1 (Prom1), a transmembrane protein widely used as stem cell marker, is crucial to this process. During airway differentiation, Prom1 becomes restricted to multiciliated cells, where it is expressed at distinct levels along the proximal-distal axis of the airways. Prom1 is induced by Notch in multiciliated cells, and Notch inactivation abolishes this gradient of expression. Prom1 was not required for multicilia formation, but when inactivated resulted in longer cilia that beat at a lower frequency. Disruption of Notch resulted in opposite effects and suggested that Notch fine-tunes Prom1 levels to regulate the multiciliated cell phenotype and generate diversity among these cells. This mechanism could contribute to the innate defense of the lung and help prevent pulmonary disease.
Collapse
Affiliation(s)
- Carlos F.H. Serra
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helu Liu
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jun Qian
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jining Lu
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA,Corresponding author
| |
Collapse
|
13
|
Hu K, Ma X, Xie L, Zhang Y, Hanyu M, Obata H, Zhang L, Nagatsu K, Suzuki H, Shi R, Wang W, Zhang MR. Development of a Stable Peptide-Based PET Tracer for Detecting CD133-Expressing Cancer Cells. ACS OMEGA 2022; 7:334-341. [PMID: 35036703 PMCID: PMC8756568 DOI: 10.1021/acsomega.1c04711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/09/2021] [Indexed: 05/08/2023]
Abstract
CD133 has been recognized as a prominent biomarker for cancer stem cells (CSCs), which promote tumor relapse and metastasis. Here, we developed a clinically relevant, stable, and peptide-based positron emission tomography (PET) tracer, [64Cu]CM-2, for mapping CD133 protein in several kinds of cancers. Through the incorporation of a 6-aminohexanoic acid (Ahx) into the N terminus of a CM peptide, we constructed a stable peptide tracer [64Cu]CM-2, which exhibited specific binding to CD133-positive CSCs in multiple preclinical tumor models. Both PET imaging and ex vivo biodistribution verified the superb performance of [64Cu]CM-2. Furthermore, the matched physical and biological half-life of [64Cu]CM-2 makes it a state-of-the-art PET tracer for CD133. Therefore, [64Cu]CM-2 PET may not only enable the longitudinal tracking of CD133 dynamics in the cancer stem cell niche but also provide a powerful and noninvasive imaging tool to track down CSCs in refractory cancers.
Collapse
Affiliation(s)
- Kuan Hu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Xiaohui Ma
- Department
of Vascular Surgery, General Hospital of
People’s Liberation Army, Beijing 100853, P. R.
China
| | - Lin Xie
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Hanyu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Honoka Obata
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Lulu Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Kotaro Nagatsu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Hisashi Suzuki
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Rui Shi
- Institute
of Traumatology and Orthopaedics Beijing
Jishuitan Hospital Beijing Laboratory of Biomedical Materials, Beijing 100035, P. R. China
| | - Weizhi Wang
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Beijing 100081, P. R. China
| | - Ming-Rong Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
14
|
Guo T, Zhang Z, Zhu L, Chen W, Ding Y, Li W, Huang Y, Huang J, Pan X. TRIM55 suppresses malignant biological behavior of lung adenocarcinoma cells by increasing protein degradation of Snail1. Cancer Biol Ther 2022; 23:17-26. [PMID: 34974792 PMCID: PMC8812808 DOI: 10.1080/15384047.2021.2004835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Up until now, cancer refractoriness and distal organ metastatic disease remain as major obstacles for oncologists to achieve satisfactory therapeutic effects for lung adenocarcinoma patients. Previous studies indicated that TRIM55, which participates in the natural development of muscle and cardiovascular system, plays a protective role in hepatocellular carcinoma (HCC) pathogenesis. Therefore, in this study, we aimed to unveil the detailed molecular mechanism of TRIM55 and identify the potential target for lung adenocarcinoma patients. Surgical samples and lung cancer cell lines were collected to detect the TRIM55 expression for patients with or without lymph node/distal organ metastasis. Cellular functional assays including transwell assay, wound healing assay, cellular survivability assay, etc. as well as ubiquitination assay were performed to evaluate the impact of TRIM55/Snail1 regulatory network via the UPP pathway on lung cancer tumor cell migration and chemo-resistance. Lung cancer tissues and tumor cell lines exhibited significantly lower levels of TRIM55 expression. Functional study further indicated that TRIM55 inhibited chemo-resistance, migration, and cancer stem-cell like phenotype of tumor cells. Further detailed molecular experiments indicated that TRIM55 promoted degradation of Snail1 via the UPP pathway, which played an interesting role in the regulation of cancer cell malignancy. This study provided novel theory that TRIM55 acted as a potential tumor suppressor by inhibition of tumor cell malignancy through enhancement of Snail1 degradation via the UPP pathway. Our research will inspire further exploration on TRIM55 to promote therapeutic effects for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Tianxing Guo
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| | - Zhenlong Zhang
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| | - Lihuan Zhu
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| | - Wenshu Chen
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| | - Yun Ding
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| | - Wujin Li
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| | - Yangyun Huang
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| | - Jianyuan Huang
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| | - Xiaojie Pan
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou China
| |
Collapse
|
15
|
Mohan A, Raj Rajan R, Mohan G, Kollenchery Puthenveettil P, Maliekal TT. Markers and Reporters to Reveal the Hierarchy in Heterogeneous Cancer Stem Cells. Front Cell Dev Biol 2021; 9:668851. [PMID: 34150761 PMCID: PMC8209516 DOI: 10.3389/fcell.2021.668851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
A subpopulation within cancer, known as cancer stem cells (CSCs), regulates tumor initiation, chemoresistance, and metastasis. At a closer look, CSCs show functional heterogeneity and hierarchical organization. The present review is an attempt to assign marker profiles to define the functional heterogeneity and hierarchical organization of CSCs, based on a series of single-cell analyses. The evidences show that analogous to stem cell hierarchy, self-renewing Quiescent CSCs give rise to the Progenitor CSCs with limited proliferative capacity, and later to a Progenitor-like CSCs, which differentiates to Proliferating non-CSCs. Functionally, the CSCs can be tumor-initiating cells (TICs), drug-resistant CSCs, or metastasis initiating cells (MICs). Although there are certain marker profiles used to identify CSCs of different cancers, molecules like CD44, CD133, ALDH1A1, ABCG2, and pluripotency markers [Octamer binding transcriptional factor 4 (OCT4), SOX2, and NANOG] are used to mark CSCs of a wide range of cancers, ranging from hematological malignancies to solid tumors. Our analysis of the recent reports showed that a combination of these markers can demarcate the heterogeneous CSCs in solid tumors. Reporter constructs are widely used for easy identification and quantification of marker molecules. In this review, we discuss the suitability of reporters for the widely used CSC markers that can define the heterogeneous CSCs. Since the CSC-specific functions of CD44 and CD133 are regulated at the post-translational level, we do not recommend the reporters for these molecules for the detection of CSCs. A promoter-based reporter for ABCG2 may also be not relevant in CSCs, as the expression of the molecule in cancer is mainly regulated by promoter demethylation. In this context, a dual reporter consisting of one of the pluripotency markers and ALDH1A1 will be useful in marking the heterogeneous CSCs. This system can be easily adapted to high-throughput platforms to screen drugs for eliminating CSCs.
Collapse
Affiliation(s)
- Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Reshma Raj Rajan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | |
Collapse
|
16
|
Meyfour A, Pahlavan S, Mirzaei M, Krijgsveld J, Baharvand H, Salekdeh GH. The quest of cell surface markers for stem cell therapy. Cell Mol Life Sci 2021; 78:469-495. [PMID: 32710154 PMCID: PMC11073434 DOI: 10.1007/s00018-020-03602-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.
Collapse
Affiliation(s)
- Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem St, P.O. Box: 16635-148, 1665659911, Tehran, Iran.
| |
Collapse
|
17
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
18
|
Abstract
Single-cell sequencing (SCS) is a powerful new tool that applies Next Generation Sequencing at the cellular level. SCS has revolutionized our understanding of tumor heterogeneity and the tumor microenvironment, immune infiltration, cancer stem cells (CSCs), circulating tumor cells (CTCs), and clonal evolution. The following chapter highlights the current literature on SCS in genitourinary (GU) malignancies and discusses future applications of SCS technology. The renal cell carcinoma (RCC) section highlights the use of SCS in characterizing the initial cells driving tumorigenesis, the intercellular mutational landscape of RCC, intratumoral heterogeneity (ITH) between primary and metastatic lesions, and genes driving RCC cancer stem cells (CSCs). The bladder cancer section will also illustrate molecular drivers of bladder cancer stem cells (BCSCs), SCS use in reconstructing tumor developmental history and underlying subclones, and understanding the effect of cisplatin on intratumoral heterogeneity in vitro and potential mechanisms behind platinum resistance. The final section featuring prostate cancer will discuss how SCS can be used to identify the cellular origins of benign prostatic hyperplasia and prostate cancer, the plasticity and heterogeneity of prostate cancer cells with regard to androgen dependence, and the use of SCS in CTCs to understand chemotherapy resistance and gene expression changes after androgen deprivation therapy (ADT). The studies listed in this chapter illustrate many translational applications of SCS in GU malignancies, including diagnostic, prognostic, and treatment-related approaches. The ability of SCS to resolve intratumor heterogeneity and better define the genomic landscape of tumors and CTCs will be fundamental in the new era of precision-based care.
Collapse
|
19
|
Breast cancer stem cells: A fallow research ground in Africa. Pathol Res Pract 2020; 216:153118. [PMID: 32853953 DOI: 10.1016/j.prp.2020.153118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
|
20
|
Lee J, Shin JE, Lee B, Kim H, Jeon Y, Ahn SH, Chi SW, Cho Y. The stem cell marker Prom1 promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling. Proc Natl Acad Sci U S A 2020; 117:15955-15966. [PMID: 32554499 PMCID: PMC7355016 DOI: 10.1073/pnas.1920829117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Axon regeneration is regulated by a neuron-intrinsic transcriptional program that is suppressed during development but that can be reactivated following peripheral nerve injury. Here we identify Prom1, which encodes the stem cell marker prominin-1, as a regulator of the axon regeneration program. Prom1 expression is developmentally down-regulated, and the genetic deletion of Prom1 in mice inhibits axon regeneration in dorsal root ganglion (DRG) cultures and in the sciatic nerve, revealing the neuronal role of Prom1 in injury-induced regeneration. Elevating prominin-1 levels in cultured DRG neurons or in mice via adeno-associated virus-mediated gene delivery enhances axon regeneration in vitro and in vivo, allowing outgrowth on an inhibitory substrate. Prom1 overexpression induces the consistent down-regulation of cholesterol metabolism-associated genes and a reduction in cellular cholesterol levels in a Smad pathway-dependent manner, which promotes axonal regrowth. We find that prominin-1 interacts with the type I TGF-β receptor ALK4, and that they synergistically induce phosphorylation of Smad2. These results suggest that Prom1 and cholesterol metabolism pathways are possible therapeutic targets for the promotion of neural recovery after injury.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Jung Eun Shin
- Department of Molecular Neuroscience, Dong-A University College of Medicine, 49201 Busan, Republic of Korea
| | - Bohm Lee
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Hyemin Kim
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Yewon Jeon
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Yongcheol Cho
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea;
| |
Collapse
|
21
|
Ghoneum A, Gonzalez D, Abdulfattah AY, Said N. Metabolic Plasticity in Ovarian Cancer Stem Cells. Cancers (Basel) 2020; 12:E1267. [PMID: 32429566 PMCID: PMC7281273 DOI: 10.3390/cancers12051267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian Cancer is the fifth most common cancer in females and remains the most lethal gynecological malignancy as most patients are diagnosed at late stages of the disease. Despite initial responses to therapy, recurrence of chemo-resistant disease is common. The presence of residual cancer stem cells (CSCs) with the unique ability to adapt to several metabolic and signaling pathways represents a major challenge in developing novel targeted therapies. The objective of this study is to investigate the transcripts of putative ovarian cancer stem cell (OCSC) markers in correlation with transcripts of receptors, transporters, and enzymes of the energy generating metabolic pathways involved in high grade serous ovarian cancer (HGSOC). We conducted correlative analysis in data downloaded from The Cancer Genome Atlas (TCGA), studies of experimental OCSCs and their parental lines from Gene Expression Omnibus (GEO), and Cancer Cell Line Encyclopedia (CCLE). We found positive correlations between the transcripts of OCSC markers, specifically CD44, and glycolytic markers. TCGA datasets revealed that NOTCH1, CD133, CD44, CD24, and ALDH1A1, positively and significantly correlated with tricarboxylic acid cycle (TCA) enzymes. OVCAR3-OCSCs (cancer stem cells derived from a well-established epithelial ovarian cancer cell line) exhibited enrichment of the electron transport chain (ETC) mainly in complexes I, III, IV, and V, further supporting reliance on the oxidative phosphorylation (OXPHOS) phenotype. OVCAR3-OCSCs also exhibited significant increase in CD36, ACACA, SCD, and CPT1A, with CD44, CD133, and ALDH1A1 exhibiting positive correlations with lipid metabolic enzymes. TCGA data show positive correlations between OCSC markers and glutamine metabolism enzymes, whereas in OCSC experimental models of GSE64999, GSE28799, and CCLE, the number of positive and negative correlations observed was significantly lower and was different between model systems. Appropriate integration and validation of data model systems with those in patients' specimens is needed not only to bridge our knowledge gap of metabolic programing of OCSCs, but also in designing novel strategies to target the metabolic plasticity of dormant, resistant, and CSCs.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
- Faculty of Medicine, University of Alexandria, Alexandria 21131, Egypt
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
- Departments of Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| |
Collapse
|
22
|
Saha SK, Islam SMR, Kwak KS, Rahman MS, Cho SG. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis. Cancer Gene Ther 2020; 27:147-167. [PMID: 31164716 PMCID: PMC7170805 DOI: 10.1038/s41417-019-0109-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Prominin 1 (PROM1) is considered a biomarker for cancer stem cells, although its biological role is unclear. Prominin 2 (PROM2) has also been associated with certain cancers. However, the prognostic value of PROM1 and PROM2 in cancer is controversial. Here, we performed a systematic data analysis to examine whether prominins can function as prognostic markers in human cancers. The expression of prominins was assessed and their prognostic value in human cancers was determined using univariate and multivariate survival analyses, via various online platforms. We selected a group of prominent functional protein partners of prominins by protein-protein interaction analysis. Subsequently, we investigated the relationship between mutations and copy number alterations in prominin genes and various types of cancers. Furthermore, we identified genes that correlated with PROM1 and PROM2 in certain cancers, based on their levels of expression. Gene ontology and pathway analyses were performed to assess the effect of these correlated genes on various cancers. We observed that PROM1 was frequently overexpressed in esophageal, liver, and ovarian cancers and its expression was negatively associated with prognosis, whereas PROM2 overexpression was associated with poor overall survival in lung and ovarian cancers. Based on the varying characteristics of prominins, we conclude that PROM1 and PROM2 expression differentially modulates the clinical outcomes of cancers.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Kyung-Sup Kwak
- School of Information and Communication Engineering, Inha University, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
23
|
Tsunedomi R, Yoshimura K, Suzuki N, Hazama S, Nagano H. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surg Today 2020; 50:1560-1577. [PMID: 32025858 DOI: 10.1007/s00595-020-01968-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Digestive system cancers are the most frequent cancers worldwide and often associated with poor prognosis because of their invasive and metastatic characteristics. Recent studies have found that the plasticity of cancer cells can impart cancer stem-like properties via the epithelial-mesenchymal transition (EMT). Cancer stem-like properties such as tumor initiation are integral to the formation of metastasis, which is the main cause of poor prognosis. Numerous markers of cancer stem cells (CSCs) have been identified in many types of cancer. Therefore, CSCs, via their stem cell-like functions, may play an important role in prognosis after surgery. While several reports have described prognostic analysis using CSC markers, few reviews have summarized CSCs and their association with prognosis. Herein, we review the prognostic potential of eight CSC markers, CD133, CD44, CD90, ALDH1A1, EPCAM, SOX2, SOX9, and LGR5, in digestive cancers including those of the pancreas, colon, liver, gastric, and esophagus.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kiyoshi Yoshimura
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Faculty of Medicine, Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
24
|
Li Z, Hu J, Qin Z, Tao Y, Lai Z, Wang Q, Li T. High-dimensional single-cell proteomics analysis reveals the landscape of immune cells and stem-like cells in renal tumors. J Clin Lab Anal 2019; 34:e23155. [PMID: 31855296 PMCID: PMC7246380 DOI: 10.1002/jcla.23155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Renal tumors are highly heterogeneous, and identification of tumor heterogeneity is an urgent clinical need for effective treatment. Mass cytometry (MC) can be used to perform high‐dimensional single‐cell proteomics analysis of heterogeneous samples via cytometry by time‐of‐flight (CyTOF), in order to achieve more accurate observation and classification of phenotypes within a cell population. This study aimed to develop a high‐dimensional MC method for the detection and analysis of heterogeneity in renal tumors. Materials and Methods We collected tissue samples from 8 patients with different types of renal tumors. Single‐cell suspensions were prepared and stained using a panel of 28 immune cell‐centric antibodies and a panel of 21 stem‐like cell‐centric antibodies. The stained cells were detected using CyTOF. Result Renal tumors were divided into 25 immune cell subsets (4 CD4+ T cells, 7 CD8+ T cells, 1 B cells, 8 macrophages, 1 dendritic cells, 2 natural killer (NK) cells, 1 granulocyte, and 1 other subset) and 7 stem‐like cells subsets (based on positivity of vimentin, CD326, CD34, CD90, CD13, CD44, and CD47). Different types of renal tumors have different cell subsets with significantly different characteristics. Conclusion High‐dimensional single‐cell proteomics analysis using MC aids in the discovery and analysis of renal tumors heterogeneity. Additionally, it can be used to accurately classify the immune cell population and analyze the expression of stem cell‐related markers in renal tumors. Our findings provide a valuable resource for deciphering tumor heterogeneity and might improve the clinical management of patients with renal tumors.
Collapse
Affiliation(s)
- Zhijian Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jiaxin Hu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zhao Qin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zhiyong Lai
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi key laboratory for genomic and personalized medicine, Guangxi collaborative innovation center for genomic and personalized medicine, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi key laboratory for genomic and personalized medicine, Guangxi collaborative innovation center for genomic and personalized medicine, Nanning, China
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi key laboratory for genomic and personalized medicine, Guangxi collaborative innovation center for genomic and personalized medicine, Nanning, China.,Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019; 10:787-807. [PMID: 31140150 PMCID: PMC6834755 DOI: 10.1007/s13238-019-0639-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and over-expressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptide-based therapeutics in the clinics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
26
|
Del Pozo-Valero M, Martin-Merida I, Jimenez-Rolando B, Arteche A, Avila-Fernandez A, Blanco-Kelly F, Riveiro-Alvarez R, Van Cauwenbergh C, De Baere E, Rivolta C, Garcia-Sandoval B, Corton M, Ayuso C. Expanded Phenotypic Spectrum of Retinopathies Associated with Autosomal Recessive and Dominant Mutations in PROM1. Am J Ophthalmol 2019; 207:204-214. [PMID: 31129250 DOI: 10.1016/j.ajo.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To describe the genetic and phenotypic characteristics of a cohort of patients with PROM1 variants. DESIGN Case-case study. METHODS We screened a cohort of 2216 families with inherited retinal dystrophies using classical molecular techniques and next-generation sequencing approaches. The clinical histories of 25 patients were reviewed to determine age of onset of symptoms and the results of ophthalmoscopy, best-corrected visual acuity, full-field electroretinography, and visual field studies. Fundus autofluorescence and spectral-domain optical coherence tomography were further assessed in 7 patients. RESULTS PROM1 variants were identified in 32 families. Disease-causing variants were found in 18 autosomal recessive and 4 autosomal dominant families. Monoallelic pathogenic variants or variants of unknown significance were identified in the remaining 10 families. Comprehensive phenotyping of 25 patients from 22 families carrying likely disease-causing variants revealed clinical heterogeneity associated with the PROM1 gene. Most of these patients presented cone-rod dystrophy and some exhibited macular dystrophy or retinitis pigmentosa, while all presented with macular damage. Phenotypic association of a dominant splicing variant with late-onset mild maculopathy was established. This variant is one of the 3 likely founder variants identified in our Spanish cohort. CONCLUSIONS We report the largest cohort of patients with PROM1 variants, describing in detail the phenotype in 25 of them. Interestingly, within the variability of phenotypes related to this gene, macular involvement is a common feature in all patients.
Collapse
Affiliation(s)
- Marta Del Pozo-Valero
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inmaculada Martin-Merida
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Belen Jimenez-Rolando
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Arteche
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Blanca Garcia-Sandoval
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Corton
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
Karbanová J, Corbeil D, Fargeas CA. Prominin-1/CD133, saliva and salivary glands - Integrating existing data to new clinical approaches. Exp Cell Res 2019; 383:111566. [PMID: 31470017 DOI: 10.1016/j.yexcr.2019.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/19/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
| |
Collapse
|
28
|
CD133 in Breast Cancer Cells: More than a Stem Cell Marker. JOURNAL OF ONCOLOGY 2019; 2019:7512632. [PMID: 31636668 PMCID: PMC6766124 DOI: 10.1155/2019/7512632] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
Initially correlated with hematopoietic precursors, the surface expression of CD133 was also found in epithelial and nonepithelial cells from adult tissues in which it has been associated with a number of biological events. CD133 is expressed in solid tumors as well, including breast cancer, in which most of the studies have been focused on its use as a surface marker for the detection of cells with stem-like properties (i.e., cancer stem cells (CSCs)). Differently with other solid tumors, very limited and in part controversial are the information about the significance of CD133 in breast cancer, the most common malignancy among women in industrialized countries. In this review, we summarize the latest findings about the implication of CD133 in breast tumors, highlighting its role in tumor cells with a triple negative phenotype in which it directly regulates the expression of proteins involved in metastasis and drug resistance. We provide updates about the prognostic role of CD133, underlining its value as an indicator of increased malignancy of both noninvasive and invasive breast tumor cells. The molecular mechanisms at the basis of the regulation of CD133 levels in breast tumors have also been reviewed, highlighting experimental strategies capable to restrain its level that could be taken into account to reduce malignancy and/or to prevent the progression of breast tumors.
Collapse
|
29
|
Bruschi M, Granata S, Santucci L, Candiano G, Fabris A, Antonucci N, Petretto A, Bartolucci M, Del Zotto G, Antonini F, Ghiggeri GM, Lupo A, Gambaro G, Zaza G. Proteomic Analysis of Urinary Microvesicles and Exosomes in Medullary Sponge Kidney Disease and Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 2019; 14:834-843. [PMID: 31018934 PMCID: PMC6556712 DOI: 10.2215/cjn.12191018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Microvesicles and exosomes are involved in the pathogenesis of autosomal dominant polycystic kidney disease. However, it is unclear whether they also contribute to medullary sponge kidney, a sporadic kidney malformation featuring cysts, nephrocalcinosis, and recurrent kidney stones. We addressed this knowledge gap by comparative proteomic analysis. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The protein content of microvesicles and exosomes isolated from the urine of 15 patients with medullary sponge kidney and 15 patients with autosomal dominant polycystic kidney disease was determined by mass spectrometry followed by weighted gene coexpression network analysis, support vector machine learning, and partial least squares discriminant analysis to compare the profiles and select the most discriminative proteins. The proteomic data were verified by ELISA. RESULTS A total of 2950 proteins were isolated from microvesicles and exosomes, including 1579 (54%) identified in all samples but only 178 (6%) and 88 (3%) specific for medullary sponge kidney microvesicles and exosomes, and 183 (6%) and 98 (3%) specific for autosomal dominant polycystic kidney disease microvesicles and exosomes, respectively. The weighted gene coexpression network analysis revealed ten modules comprising proteins with similar expression profiles. Support vector machine learning and partial least squares discriminant analysis identified 34 proteins that were highly discriminative between the diseases. Among these, CD133 was upregulated in exosomes from autosomal dominant polycystic kidney disease and validated by ELISA. CONCLUSIONS Our data indicate a different proteomic profile of urinary microvesicles and exosomes in patients with medullary sponge kidney compared with patients with autosomal dominant polycystic kidney disease. The urine proteomic profile of patients with autosomal dominant polycystic kidney disease was enriched of proteins involved in cell proliferation and matrix remodeling. Instead, proteins identified in patients with medullary sponge kidney were associated with parenchymal calcium deposition/nephrolithiasis and systemic metabolic derangements associated with stones formation and bone mineralization defects. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2019_04_24_CJASNPodcast_19_06_.mp3.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Division of Nephrology, Dialysis, and Transplantation, Laboratory of Molecular Nephrology
| | - Simona Granata
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy; and
| | - Laura Santucci
- Division of Nephrology, Dialysis, and Transplantation, Laboratory of Molecular Nephrology
| | - Giovanni Candiano
- Division of Nephrology, Dialysis, and Transplantation, Laboratory of Molecular Nephrology
| | - Antonia Fabris
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy; and
| | - Nadia Antonucci
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy; and
| | | | | | | | | | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy; and
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, School of Medicine, Columbus-Gemelli University Hospital Catholic University, Rome, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy; and
| |
Collapse
|
30
|
Assessment of CD133-positive extracellular membrane vesicles in pancreatic cancer ascites and beyond. Med Mol Morphol 2019; 53:60-62. [PMID: 30953194 DOI: 10.1007/s00795-019-00221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
|
31
|
Li X, Wan Q, Min J, Duan L, Liu J. Premobilization of CD133+ cells by granulocyte colony- stimulating factor attenuates ischemic acute kidney injury induced by cardiopulmonary bypass. Sci Rep 2019; 9:2470. [PMID: 30792422 PMCID: PMC6385363 DOI: 10.1038/s41598-019-38953-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/11/2019] [Indexed: 02/05/2023] Open
Abstract
Ischemic acute kidney injury (IAKI) is a common but severe complication after a cardiopulmonary bypass (CPB). Multiple studies have demonstrated that peripheral CD133+ or differentiated cells are able to home and repair the damaged tissues, but the number of available CD133+ cells is limited, and no efficient method published previously to mobilize them immediately. We analyzed the relationship between CD133+ cells and renal function in CPB patients, in addition, the efficacy of granulocyte colony-stimulating factor (G-CSF) pre-mobilized CD133+ cells in treating of mouse IAKI model have been investigated. In the clinical study, the prospective cohort study analyzed the correlation between BUN/Crea level and the peripheral CD133+ cell numbers. CPB was associated with postoperative renal dysfunction. The significant negative correlation was observed between patients' Crea and CD133+ cells (P < 0.05). The proposed mechanism studies were performed on the mouse IAKI model. The experimental mice were treated by G-CSF to mobilize CD133+ cells before implementing CPB. Data on cell count, inflammatory index, renal function/injury, and CD133+ cell mobilization were analyzed. The result demonstrated that pretreatment by G-CSF resulted in tremendous increase in the number of mouse peripheral blood and renal CD133+ cells, significantly reduces renal tissue inflammation and dramatically improves the renal function after CPB. In summary, we concluded that premobilization of CD133+ cells abated CPB induced IAKI, by promoting both repairing damaged epithelium and by its anti-inflammatory activity. Our findings stress the remarkable applications of CD133+ or differentiated cells-based therapies for potential preventing ischemic acute kidney injury.
Collapse
Affiliation(s)
- Xiaoqiang Li
- Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Qin Wan
- Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Jie Min
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Linjia Duan
- Department of Cardiology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
32
|
Shekari F, Han CL, Lee J, Mirzaei M, Gupta V, Haynes PA, Lee B, Baharvand H, Chen YJ, Hosseini Salekdeh G. Surface markers of human embryonic stem cells: a meta analysis of membrane proteomics reports. Expert Rev Proteomics 2018; 15:911-922. [PMID: 30358457 DOI: 10.1080/14789450.2018.1539669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human embryonic stem cells (hESCs) have unique biological features and attributes that make them attractive in various areas of biomedical research. With heightened applications, there is an ever increasing need for advancement of proteome analysis. Membrane proteins are one of the most important subset of hESC proteins as they can be used as surface markers. Areas covered: This review discusses commonly used surface markers of hESCs, and provides in-depth analysis of available hESC membrane proteome reports and the existence of these markers in many other cell types, especially cancer cells. Appreciating, existing ambiguity in the definition of a membrane protein, we have attempted a meta analysis of the published membrane protein reports of hESCs by using a combination of protein databases and prediction tools to find the most confident plasma membrane proteins in hESCs. Furthermore, responsiveness of plasma membrane proteins to differentiation has been discussed based on available transcriptome profiling data bank. Expert commentary: Combined transcriptome and membrane proteome analysis highlighted additional proteins that may eventually find utility as new cell surface markers.
Collapse
Affiliation(s)
- Faezeh Shekari
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran
| | - Chia-Li Han
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Jaesuk Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Mehdi Mirzaei
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia.,f Australian Proteome Analysis Facility , Macquarie University , Sydney , NSW , Australia.,g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Vivek Gupta
- g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Paul A Haynes
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
| | - Bonghee Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Hossein Baharvand
- b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran.,h Department of Stem Cells and Developmental Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Yu-Ju Chen
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Ghasem Hosseini Salekdeh
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia.,i Department of Systems and Synthetic biology , Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization , Karaj , Iran
| |
Collapse
|
33
|
Abbasian M, Mousavi E, Arab-Bafrani Z, Sahebkar A. The most reliable surface marker for the identification of colorectal cancer stem-like cells: A systematic review and meta-analysis. J Cell Physiol 2018; 234:8192-8202. [PMID: 30317669 DOI: 10.1002/jcp.27619] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Several surface markers have been proposed for the identification and characterization of colorectal cancer stem-like cells (CR-CSLCs). However, their reliability in CR-CSLCs identification remains controversial. This study evaluated the correlation between all candidate surface marker's expression and CSLCs properties (tumorigenicity) through monitoring in vivo tumor incidence and final tumor volume. PubMed, Web of Science, and Scopus databases were systematically searched until November 2017. A total of 27 studies were found that met the inclusion criteria for cluster of differentiation 133 (CD133) and CD44 markers. Results indicated that either CD133 or CD44 positive cells caused about twofold increase in tumor volume compared with the negative cells (p < 0.05). In two groups of cells derived from primary tumors and cell lines, CD133 + cells had 25 and 1.45 times higher tumor incidence potential than CD133 - cells, respectively ( p < 0.05). Also, cohort evaluation showed that CD133 overexpression at protein level is a marker of poor overall survival in colorectal cancer (CRC) patients. While CD44 + cells displayed twofold tumorigenicity compared with the negative cells ( p < 0.05), combination of CD44 and CD133 showed about sevenfold tumorigenicity potential ( p < 0.05). In conclusion, the present meta-analysis suggests that CD133 is a robust biomarker to identify primary tumor CSLCs and can be proposed as a prognostic marker of CRC patient whereas it should be used with caution in cell lines. It seems to be more reliable to use CD133 in combination with CD44 as target biomarkers for the isolation of CR-CSLCs in both cell line and primary tumor cells populations.
Collapse
Affiliation(s)
- Mahdi Abbasian
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Elham Mousavi
- Department of Medical Microbiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Arab-Bafrani
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Song L, Ye W, Cui Y, Lu J, Zhang Y, Ding N, Hu W, Pei H, Yue Z, Zhou G. Ecto-5'-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells. Oncotarget 2018; 8:31977-31992. [PMID: 28404888 PMCID: PMC5458263 DOI: 10.18632/oncotarget.16667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Identification of a specific biomarker for cancer stem cells (CSCs) is of potential applications in the development of effective therapeutic strategies for renal cell carcinoma (RCC). In this study, both the RCC cell line 786-O and surgically removed clear cell RCC (ccRCC) tissues were implemented to grew as spheroids in serum-free medium supplemented with mitogens. This subpopulation possessed key characteristics defining CSCs. We also identified that surgically removed ccRCC tissues were heterogenic and there was a subpopulation of cells that was highly stained with rhodamine-123. Based on membrane-proteomic analyses, CD73 was identified as a candidate biomarker. We further found that CD73high cells were highly tumorigenic. As few as 100 CD73high cells were capable of forming xenograft tumors in non obese diabetic/severe combined immunodeficiency disease mice, whereas 1 × 105 CD73low cells did not initiate tumor formation. During successive culture, the CD73high population regenerated both CD73high and CD73low cells, whereas the CD73low population remained low expression level of CD73. Furthermore, the CD73high cells were more resistant to radiation and DNA-damaging agents than the CD73low cells, and expressed a panel of 'stemness' genes at a higher level than the CD73low cells. These findings suggest that a high level of CD73 expression is a bona fide biomarker of ccRCC stem-like cells. Future research will aim at the elucidation of the underlying mechanisms of CD73 in RCC development and the distinct aspects of ccRCC stem-like cells from other tumor types.
Collapse
Affiliation(s)
- Lei Song
- Medical College, Northwest Minzu University, Lanzhou 730030, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenling Ye
- Medical College, Henan University, Kaifeng 475001, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Cui
- Department of Urology Surgery, Shuyang Hospital of Traditional Chinese Medicine, Suqian 223600, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianzhong Lu
- Institute of Urology, Department of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanan Zhang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nan Ding
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhongjin Yue
- Institute of Urology, Department of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
35
|
Yu J, Wang S, Zhao W, Duan J, Wang Z, Chen H, Tian Y, Wang D, Zhao J, An T, Bai H, Wu M, Wang J. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel α2δ1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer. Clin Cancer Res 2018; 24:2148-2158. [PMID: 29437792 DOI: 10.1158/1078-0432.ccr-17-1932] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/24/2017] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Chemoresistance in small-cell lung cancer (SCLC) is reportedly attributed to the existence of resistant cancer stem cells (CSC). Studies involving CSC-specific markers and related mechanisms in SCLC remain limited. This study explored the role of the voltage-dependent calcium channel α2δ1 subunit as a CSC marker in chemoresistance of SCLC, and explored the potential mechanisms of α2δ1-mediated chemoresistance and strategies of overcoming the resistance.Experimental Design: α2δ1-positive cells were identified and isolated from SCLC cell lines and patient-derived xenograft (PDX) models, and CSC-like properties were subsequently verified. Transcriptome sequencing and Western blotting were carried out to identify pathways involved in α2δ1-mediated chemoresistance in SCLC. In addition, possible interventions to overcome α2δ1-mediated chemoresistance were examined.Results: Different proportions of α2δ1+ cells were identified in SCLC cell lines and PDX models. α2δ1+ cells exhibited CSC-like properties (self-renewal, tumorigenic, differentiation potential, and high expression of genes related to CSCs and drug resistance). Chemotherapy induced the enrichment of α2δ1+ cells instead of CD133+ cells in PDXs, and an increased proportion of α2δ1+ cells corresponded to increased chemoresistance. Activation and overexpression of ERK in the α2δ1-positive H1048 cell line was identified at the protein level. mAb 1B50-1 was observed to improve the efficacy of chemotherapy and delay relapse as maintenance therapy in PDX models.Conclusions: SCLC cells expressing α2δ1 demonstrated CSC-like properties, and may contribute to chemoresistance. ERK may play a key role in α2δ1-mediated chemoresistance. mAb 1B50-1 may serve as a potential anti-SCLC drug. Clin Cancer Res; 24(9); 2148-58. ©2018 AACR.
Collapse
Affiliation(s)
- Jiangyong Yu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuhang Wang
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanxiao Chen
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanhua Tian
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Di Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tongtong An
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meina Wu
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. .,Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
36
|
Zhao Q, Zhou H, Liu Q, Cao Y, Wang G, Hu A, Ruan L, Wang S, Bo Q, Chen W, Hu C, Xu D, Tao F, Cao J, Ge Y, Yu Z, Li L, Wang H. Prognostic value of the expression of cancer stem cell-related markers CD133 and CD44 in hepatocellular carcinoma: From patients to patient-derived tumor xenograft models. Oncotarget 2018; 7:47431-47443. [PMID: 27329727 PMCID: PMC5216952 DOI: 10.18632/oncotarget.10164] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
High expression of cancer stem cell (CSC) markers is related to poor prognosis of patients with hepatocellular carcinoma (HCC). However, the expression of these markers in patient-derived xenograft (PDX) models and the relationship of the expression levels of these markers between HCC patients and their PDX models at subsequent low passages are unclear. To investigate the prognostic impact of putative CSC markers in patients with HCC and in related PDX models, the expression of CD133, CD90, CD44, ALDH1, CK7, CK19, OCT4, SOX2, vimentin, nestin, CD13 and EpCam were assessed by quantitative reverse transcription-PCR (qRT-PCR) and then were validated using immunohistochemistry in tumor or peritumoral tissues from patients and tumor tissues from PDX models. Cumulative survival analysis of the patients and animals was conducted using the Kaplan-Meier method and the log-rank test. Only the expression levels of CD133 and CD44 were higher in tumor tissues than in the peritumoral tissues of HCC patients by qRT-PCR. High consistency of the prognostic value of the expression of CD133/CD44 was observed in HCC patients and the PDX models. High expression levels of CD133 and CD44 were positively related to the poor prognosis of HCC patients and to that in the PDX models. PDX HCC models in the present study have been suggested to be predictive of disease outcome, which could shed light on personalized medicine and the mechanisms of CSC marker expression on prognosis.
Collapse
Affiliation(s)
- Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Heng Zhou
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qifei Liu
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Ye Cao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Gang Wang
- Department of Oncology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Liang Ruan
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Sufang Wang
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Qingli Bo
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wenjun Chen
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Chuanlai Hu
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Dexiang Xu
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Jiyu Cao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yongsheng Ge
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Zongfan Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Li
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute for Liver Disease, Anhui Medical University, Hefei, China
| |
Collapse
|
37
|
Al-Lamki RS, Wang J, Yang J, Burrows N, Maxwell PH, Eisen T, Warren AY, Vanharanta S, Pacey S, Vandenabeele P, Pober JS, Bradley JR. Tumor necrosis factor receptor 2-signaling in CD133-expressing cells in renal clear cell carcinoma. Oncotarget 2018; 7:24111-24. [PMID: 26992212 PMCID: PMC5029688 DOI: 10.18632/oncotarget.8125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/02/2016] [Indexed: 01/29/2023] Open
Abstract
Compared to normal kidney, renal clear cell carcinomas (ccRCC) contain increased numbers of interstitial, non-hematopoietic CD133+cells that express stem cell markers and exhibit low rates of proliferation. These cells fail to form tumors upon transplantation but support tumor formation by differentiated malignant cells. We hypothesized that killing of ccRCC CD133+ (RCCCD133+) cells by cytotoxic agents might be enhanced by inducing them to divide. Since tumor necrosis factor-alpha (TNF), signalling through TNFR2, induces proliferation of malignant renal tubular epithelial cells, we investigated whether TNFR2 might similarly affect RCCCD133+cells. We compared treating organ cultures of ccRCC vs adjacent nontumour kidney (NK) and RCCCD133+vs NK CD133+ (NKCD133+) cell cultures with wild-type TNF (wtTNF) or TNF muteins selective for TNFR1 (R1TNF) or TNFR2 (R2TNF). In organ cultures, R2TNF increased expression of TNFR2 and promoted cell cycle entry of both RCCCD133+ and NKCD133+ but effects were greater in RCCCD133+. In contrast, R1TNF increased TNFR1 expression and promoted cell death. Importantly, cyclophosphamide triggered much more cell death in RCCCD133+ and NKCD133+cells pre-treated with R2TNF as compared to untreated controls. We conclude that selective engagement of TNFR2 by TNF can drives RCCCD133+ proliferation and thereby increase sensitivity to cell cycle-dependent cytotoxicity.
Collapse
Affiliation(s)
- Rafia S Al-Lamki
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jun Wang
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jun Yang
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Natalie Burrows
- School of Clinical Medicine, Cambridge Institute of Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Patrick H Maxwell
- School of Clinical Medicine, Cambridge Institute of Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Timothy Eisen
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anne Y Warren
- Department of Pathology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Simon Pacey
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter Vandenabeele
- VIB Inflammation Research Center, Ghent University, UGhent-VIB Research Building FSVM, 9052 Ghent, Belgium
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8089, USA
| | - John R Bradley
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
38
|
Karbanová J, Lorico A, Bornhäuser M, Corbeil D, Fargeas CA. Prominin-1/CD133: Lipid Raft Association, Detergent Resistance, and Immunodetection. Stem Cells Transl Med 2017; 7:155-160. [PMID: 29271118 PMCID: PMC5788878 DOI: 10.1002/sctm.17-0223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/17/2017] [Indexed: 01/17/2023] Open
Abstract
The cell surface antigen prominin‐1 (alias CD133) has gained enormous interest in the past 2 decades and given rise to debates as to its utility as a biological stem and cancer stem cell marker. Important and yet often overlooked knowledge that is pertinent to its physiological function has been generated in other systems given its more general expression beyond primitive cells. This article briefly discusses the importance of particular biochemical features of CD133 with relation to its association with membrane microdomains (lipid rafts) and proper immunodetection. It also draws attention toward the adequate use of detergents and caveats that may apply to the interpretation of the results generated. Stem Cells Translational Medicine2018;7:155–160
Collapse
Affiliation(s)
- Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany.,DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Aurelio Lorico
- Department of Pathology, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, USA
| | - Martin Bornhäuser
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany.,DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany
| |
Collapse
|
39
|
Chen HP, Lee YK, Huang SY, Shi PC, Hsu PC, Chang CF. Phthalate exposure promotes chemotherapeutic drug resistance in colon cancer cells. Oncotarget 2017; 9:13167-13180. [PMID: 29568348 PMCID: PMC5862569 DOI: 10.18632/oncotarget.23481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/08/2017] [Indexed: 12/30/2022] Open
Abstract
Phthalates are widely used as plasticizers. Humans can be exposed to phthalates through ingestion, inhalation, or treatments that release di(2-ethylhexyl) phthalate (DEHP) and its metabolite, mono(2-ehylhexyl) phthalate (MEHP), into the body from polyvinyl chloride-based medical devices. Phthalate exposure may induce reproductive toxicity, liver damage, and carcinogenesis in humans. This study found that colon cancer cells exposed to DEHP or MEHP exhibited increased cell viability and increased levels of P-glycoprotein, CD133, Bcl-2, Akt, ERK, GSK3β, and β-catenin when treated with oxaliplatin or irinotecan, as compared to control. The P-glycoprotein inhibitor, tariquidar, which blocks drug efflux, reduced the viability of DEHP- or MEHP-treated, anti-cancer drug-challenged cells. DEHP or MEHP treatment also induced colon cancer cell migration and epithelial-mesenchymal transformation. Elevated stemness-related protein levels (β-catenin, Oct4, Sox2, and Nanog) and increased cell sphere sizes indicated that DEHP- or MEHP-treated cells were capable of self-renewal. We also found that serum DEHP concentrations were positively correlated with cancer recurrence. These results suggest phthalate exposure enhances colon cancer cell metastasis and chemotherapeutic drug resistance by increasing cancer cell stemness, and that P-glycoprotein inhibitors might improve outcomes for advanced or drug-resistant colon cancer patients.
Collapse
Affiliation(s)
- Hsin-Pao Chen
- Department of Surgery, E-DA Hospital, I-Shou University, Kaohsiung 824, Taiwan.,Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 811, Taiwan
| | - Yung-Kuo Lee
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shih Yin Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Chun Shi
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chuan-Fa Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
40
|
Huling J, Yoo JJ. Comparing adult renal stem cell identification, characterization and applications. J Biomed Sci 2017; 24:32. [PMID: 28511675 PMCID: PMC5434527 DOI: 10.1186/s12929-017-0339-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
Despite growing interest and effort, a consensus has yet to be reached in regards to the identification of adult renal stem cells. Organ complexity and low turnover of renal cells has made stem cell identification difficult and lead to the investigation of multiple possible populations. In this review, we summarize the work that has been done toward finding and characterizing an adult renal stem cell population. In addition to giving a general overview of what has been done, we aim to highlight the variation in methods and outcomes. The methods used to locate potential stem cell populations can vary widely, but even within the relatively standard practice of BrdU labeling of slowly dividing cells, there are significant differences in protocols and results. Additional diversity exists in cell marker profiles and apparent differentiation potential seen in potential stem cell sources. Cataloging the variety of methods and outcomes seen so far may help to streamline future investigation and stear the field toward consensus. But even without firmly defined populations, the application of renal stem cells holds tantalizing potential. Populations of highly proliferative, multipotent cells of renal origin show the ability to engraft in injured kidneys, mitigate functional loss and occasionally show the ability to generate nephrons de novo. The progress toward regenerative medicine applications is also summarized.
Collapse
Affiliation(s)
- Jennifer Huling
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, USA.
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, USA
| |
Collapse
|
41
|
Li C, Wu S, Yang Z, Zhang X, Zheng Q, Lin L, Niu Z, Li R, Cai Z, Li L. Single-cell exome sequencing identifies mutations in KCP, LOC440040, and LOC440563 as drivers in renal cell carcinoma stem cells. Cell Res 2017; 27:590-593. [PMID: 27981968 PMCID: PMC5385607 DOI: 10.1038/cr.2016.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chong Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
- Chinese Academy of Sciences Protein Science core facility center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Jianlan Institute of Medicine, Beijing 100190, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, Guangdong 518000, China
| | - Zhao Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolong Zhang
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, Guangdong 518000, China
| | - Qi Zheng
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ling Lin
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Zexiong Niu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Zhiming Cai
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, Guangdong 518000, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| |
Collapse
|
42
|
Abstract
Glioblastoma multiforme (GBM) are extremely lethal and still poorly treated primary brain tumors, characterized by the presence of highly tumorigenic cancer stem cell (CSC) subpopulations, considered responsible for tumor relapse. In order to successfully eradicate GBM growth and recurrence, new anti-cancer strategies selectively targeting CSCs should be designed. CSCs might be eradicated by targeting some of their cell surface markers and transporters, inducing their differentiation, impacting their hyper-glycolytic metabolism, inhibiting CSC-related signaling pathways and/or by targeting their microenvironmental niche. In this regard, phytocompounds such as curcumin, isothiocyanates, resveratrol and epigallocatechin-3-gallate have been shown to prevent or reverse cancer-related epigenetic dysfunctions, reducing tumorigenesis, preventing metastasis and/or increasing chemotherapy and radiotherapy efficacy. However, the actual bioavailability and metabolic processing of phytocompounds is generally unknown, and the presence of the blood brain barrier often represents a limitation to glioma treatments. Nowadays, nanoparticles (NPs) can be loaded with therapeutic compounds such as phytochemicals, improving their bioavailability and their targeted delivery within the GBM tumor bulk. Moreover, NPs can be designed to increase their tropism and specificity toward CSCs by conjugating their surface with antibodies specific for CSC antigens, with ligands or with glucose analogues. Here we discuss the use of phytochemicals as anti-glioma agents and the applicability of phytochemical-loaded NPs as drug delivery systems to target GBM. Additionally, we provide some examples on how NPs can be specifically formulated to improve CSC targeting.
Collapse
|
43
|
Thamm K, Graupner S, Werner C, Huttner WB, Corbeil D. Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133). PLoS One 2016; 11:e0164079. [PMID: 27701459 PMCID: PMC5049760 DOI: 10.1371/journal.pone.0164079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023] Open
Abstract
The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
Collapse
Affiliation(s)
- Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Sylvi Graupner
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Carsten Werner
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
44
|
CD133 overexpression correlates with clinicopathological features of gastric cancer patients and its impact on survival: a systematic review and meta-analysis. Oncotarget 2016; 6:42019-27. [PMID: 26503471 PMCID: PMC4747206 DOI: 10.18632/oncotarget.5714] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Background CD133 is one of the most commonly used markers of cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CD133 in gastric cancer remains controversial. To clarify a precise determinant of the clinical significance of CD133, we conducted a systematic review and meta-analysis to elucidate the correlation of CD133 overexpression with prognosis and clinicopathological features of GC patients. Methods A search in the Cochrane Library, Pubmed, Medline, Web of Knowledge and Chinese CNKI, CBM (up to Jun 30, 2015) was performed using the following keywords gastric cancer, CD133, AC133, prominin-1, etc. Electronic searches were supplemented by hand searching reference lists, abstracts and proceedings from meetings. Outcomes included overall survival and various clinicopathological features. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted the data, and assessed the methodological quality of the included studies, and then RevMan 5.2.0 software was used for meta-analysis. Results A total of 603 gastric cancer patients from 8 studies were included. The results of the meta-analyses showed that, there were significant differences of CD133 expression in the following comparisons: gastric cancer tissues vs. normal esophageal tissue (OR = 3.49, 95% CI [2.48, 490], P < 0.00001), lymph node metastasis vs. non-lymph node metastasis (OR = 2.75, 95% CI [1.99, 3.81], P < 0.00001), distant metastasis vs. non-distant metastasis (OR = 2.38, 95%CI [1.47, 3.85], P < 0.0004), clinical stages III~IV vs. clinical stages I~II (OR = 2.83, 95% CI [2.13, 3.76], P < 0.00001), as well as the accumulative 5-year overall survival rates of CD133-positive vs. CD133-negative patients (OR = 0.23, 95% CI [0.16, 0.33], P < 0.00001). Conclusion Overexpression of CD133 is associated with lymph node metastasis, distant metastasis, poor TNM stage. Additionally, CD133-positive gastric cancer patients had worse prognosis. Our results indicate that CD133 may be involved in the carcinogenesis of gastric cancer. Evaluation of cytoplasmic CD133 overexpression in gastric cancer tissue sections may be useful in the future as a novel prognostic factor. Nevertheless, due to the poor quality and small sample size of included trials, more well-designed multi-center randomized controlled trials should be performed.
Collapse
|
45
|
Sousa AM, Rei M, Freitas R, Ricardo S, Caffrey T, David L, Almeida R, Hollingsworth MA, Santos-Silva F. Effect of MUC1/β-catenin interaction on the tumorigenic capacity of pancreatic CD133 + cells. Oncol Lett 2016; 12:1811-1817. [PMID: 27602113 PMCID: PMC4998183 DOI: 10.3892/ol.2016.4888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Despite the fact that the biological function of cluster of differentiation (CD)133 remains unclear, this glycoprotein is currently used in the identification and isolation of tumor-initiating cells from certain malignant tumors, including pancreatic cancer. In the present study, the involvement of mucin 1 (MUC1) in the signaling pathways of a highly tumorigenic CD133+ cellular subpopulation sorted from the pancreatic cancer cell line HPAF-II was evaluated. The expression of MUC1-cytoplasmic domain (MUC1-CD) and oncogenic signaling transducers (epidermal growth factor receptor, protein kinase C delta, glycogen synthase kinase 3 beta and growth factor receptor-bound protein 2), as well as the association between MUC1 and β-catenin, were characterized in HPAF-II CD133+ and CD133low cell subpopulations and in tumor xenografts generated from these cells. Compared with HPAF CD133low cells, HPAF-II CD133+ cancer cells exhibited increased tumorigenic potential in immunocompromised mice, which was associated with overexpression of MUC1 and with the accordingly altered expression profile of MUC1-associated signaling partners. Additionally, MUC1-CD/β-catenin interactions were increased both in the HPAF-II CD133+ cell subpopulation and derived tumor xenografts compared with HPAF CD133low cells. These results suggest that, in comparison with HPAF CD133low cells, CD133+ cells exhibit higher expression of MUC1, which contributes to their tumorigenic phenotype through increased interaction between MUC1-CD and β-catenin, which in turn modulates oncogenic signaling cascades.
Collapse
Affiliation(s)
- Andreia Mota Sousa
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal
| | - Margarida Rei
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal
| | - Rita Freitas
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal
| | - Sara Ricardo
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| | - Thomas Caffrey
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Leonor David
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| | - Raquel Almeida
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal; Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Michael Anthony Hollingsworth
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Filipe Santos-Silva
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| |
Collapse
|
46
|
Nomura A, Banerjee S, Chugh R, Dudeja V, Yamamoto M, Vickers SM, Saluja AK. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget 2016; 6:8313-22. [PMID: 25829252 PMCID: PMC4480754 DOI: 10.18632/oncotarget.3228] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
CD133 has been implicated as a cancer stem cell (CSC) surface marker in several malignancies including pancreatic cancer. However, the functional role of this surface glycoprotein in the cancer stem cell remains elusive. In this study, we determined that CD133 overexpression induced “stemness” properties in MIA-PaCa2 cells along with increased tumorigenicity, tumor progression, and metastasis in vivo. Additionally, CD133 expression induced epithelial-mesenchymal transition (EMT) and increased in vitro invasion. EMT induction and increased invasiveness were mediated by NF-κB activation, as inhibition of NF-κB mitigated these effects. This study showed that CD133 expression contributes to pancreatic cancer “stemness,” tumorigenicity, EMT induction, invasion, and metastasis.
Collapse
Affiliation(s)
- Alice Nomura
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Sulagna Banerjee
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Rohit Chugh
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Vikas Dudeja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Selwyn M Vickers
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Ashok K Saluja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
47
|
Gurudev N, Florek M, Corbeil D, Knust E. Prominent role of prominin in the retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 777:55-71. [PMID: 23161075 DOI: 10.1007/978-1-4614-5894-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Prominin molecules represent a new family of pentaspan membrane glycoproteins expressed throughout the animal kingdom. The name originates from its localization on membrane protrusion, such as microvilli, filopodia, lamellipodia, and microspikes. Following the original description in mouse and human, representative prominin members were found in fish (e.g., Danio rerio), amphibian (Ambystoma mexicanum, Xenopus laevis), worm (Caenorhabditis elegans), and flies (Drosophila melanogaster). Mammalian prominin-1 was identified as a marker of somatic and cancer stem cells and plays an essential role in the visual system, which contributed to increased interest of the medical field in this molecule. Here we summarize recent data from various fields, including Drosophila, which will aid to our understanding of its still elusive function.
Collapse
Affiliation(s)
- Nagananda Gurudev
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | | | | | | |
Collapse
|
48
|
Wei X, Orjalo AV, Xin L. CD133 does not enrich for the stem cell activity in vivo in adult mouse prostates. Stem Cell Res 2016; 16:597-606. [PMID: 27010655 DOI: 10.1016/j.scr.2016.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/12/2016] [Accepted: 03/10/2016] [Indexed: 11/30/2022] Open
Abstract
CD133 is widely used as a marker for stem/progenitor cells in many organ systems. Previous studies using in vitro stem cell assays have suggested that the CD133-expressing prostate basal cells may serve as the putative prostate stem cells. However, the precise localization of the CD133-expressing cells and their contributions to adult murine prostate homeostasis in vivo remain undetermined. We show that loss of function of CD133 does not impair murine prostate morphogenesis, homeostasis and regeneration, implying a dispensable role for CD133 in prostate stem cell function. Using a CD133-CreER(T2) model in conjunction with a fluorescent report line, we show that CD133 is not only expressed in a fraction of prostate basal cells, but also in some luminal cells and stromal cells. CD133(+) basal cells possess higher in vitro sphere-forming activities than CD133(-) basal cells. However, the in vivo lineage tracing study reveals that the two cell populations possess the same regenerative capacity and contribute equally to the maintenance of the basal cell lineage. Similarly, CD133(+) and CD133(-) luminal cells are functionally equivalent in maintaining the luminal cell lineage. Collectively, our study demonstrates that CD133 does not enrich for the stem cell activity in vivo in adult murine prostate. This study does not contradict previous reports showing CD133(+) cells as prostate stem cells in vitro. Instead, it highlights a substantial impact of biological contexts on cellular behaviors.
Collapse
Affiliation(s)
- Xing Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, United States; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, United States
| | - Arturo V Orjalo
- Biological Technologies, Analytical Development & Quality Control, Genentech Inc., United States
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, United States; Department of Pathology and Immunology, United States; Dan L. Duncan Cancer Center, Baylor College of Medicine, United States.
| |
Collapse
|
49
|
Abstract
Based on an analysis of a large number of sources of literature, the paper gives general information on the markers for cancer stem cells (CSCs), which allow the detection of this rare cell subpopulation, on the possibilities of estimating their immunohistochemical or immunofluorescent expression in tumors, and on the prognostic and predictive values of these molecules. For their detection, investigators generally use definite molecules, the so-called markers of CSCs, among which there are CD44, CD133, CD24, aldehyde dehydrogenase, and others. The expression of these molecules in the tumor tissue obtained from patients affects survival rates and permits the prediction of a response to therapy. A better insight into the immunophenotype of CSCs, the role of CSC markers in retaining the special properties of this call population, and the clinical significance of the expression of CSC markers will be able to elaborate new approaches to therapy for malignancies.
Collapse
Affiliation(s)
- M V Puchinskaya
- Belarusian State Medical University, Minsk, Republic of Belarus
| |
Collapse
|
50
|
Fargeas CA, Corbeil D. Comments on the "Prognostic Impact and Clinicopathological Correlation of CD133 and ALDH1 Expression in Invasive Breast Cancer" and the "Commentary by Antonio Ieni and Giovanni Tuccari". J Breast Cancer 2016; 19:336-338. [PMID: 27721886 PMCID: PMC5053321 DOI: 10.4048/jbc.2016.19.3.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022] Open
Affiliation(s)
- Christine A. Fargeas
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|