1
|
Kim S, Hwang AR, Kim SH, Lim JH, Woo CH. Pentraxin 3 deficiency ameliorates streptozotocin-induced pancreatic toxicity via regulating ER stress and β-cell apoptosis. Mol Cells 2025; 48:100168. [PMID: 39657836 PMCID: PMC11742826 DOI: 10.1016/j.mocell.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
The long pentraxin 3 (PTX3), a marker of inflammation, has been associated with cardiovascular disease, obesity, and metabolic syndrome. Recently, elevated serum PTX3 levels have been linked to type 2 diabetes in obese patients with nonalcoholic fatty liver disease. Diabetes mellitus is a metabolic syndrome characterized by hyperglycemia resulting from insufficient insulin secretion or action. However, the precise role of PTX3 in hyperglycemia remains unclear. This study aimed to investigate the physiological roles of PTX3 in vivo. The deformation of pancreatic islets was mitigated in PTX3-deficient mice treated with streptozotocin (STZ) compared to control C57BL/6J mice. In addition, PTX3 deficiency prevented STZ-induced unfolded protein responses and pancreatic β-cell death. Immunoblotting data revealed significant inhibition of inositol-requiring protein1α and C/EBP homologous protein (CHOP) protein expression in PTX3 KO mice administered tunicamycin which is a chemical endoplasmic reticulum stress inducer. Similarly, tunicamycin-induced Grp78, Grp94, ATF6, and CHOP mRNA levels were reduced in PTX3 KO mice. Moreover, recombinant PTX3-induced CHOP expression and β-cell apoptosis in primary mouse islets. These findings suggest that PTX3 plays a critical role in STZ-induced deformation of pancreatic islets via regulating endoplasmic reticulum stress and β-cell apoptosis.
Collapse
Affiliation(s)
- Suji Kim
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea; Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 197 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Ae-Rang Hwang
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Sun-Hee Kim
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 07804, Republic of Korea.
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
2
|
Ghosh S, Chorghade R, Diehl RC, Dodge GJ, Bae S, Dugan AE, Halim M, Wuo MG, Bartlett H, Herndon L, Kiessling LL, Imperiali B. Glycan analysis probes inspired by human lectins for investigating host-microbe crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630132. [PMID: 39763805 PMCID: PMC11703188 DOI: 10.1101/2024.12.24.630132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and pathogen binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can be used to distinguish microbial from mammalian glycans, which is crucial for understanding the cross-target interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rajeev Chorghade
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger C Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Greg J Dodge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sunhee Bae
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie Halim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helen Bartlett
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liam Herndon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Perera J, Delrosso CA, Nerviani A, Pitzalis C. Clinical Phenotypes, Serological Biomarkers, and Synovial Features Defining Seropositive and Seronegative Rheumatoid Arthritis: A Literature Review. Cells 2024; 13:743. [PMID: 38727279 PMCID: PMC11083059 DOI: 10.3390/cells13090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder which can lead to long-term joint damage and significantly reduced quality of life if not promptly diagnosed and adequately treated. Despite significant advances in treatment, about 40% of patients with RA do not respond to individual pharmacological agents and up to 20% do not respond to any of the available medications. To address this large unmet clinical need, several recent studies have focussed on an in-depth histological and molecular characterisation of the synovial tissue to drive the application of precision medicine to RA. Currently, RA patients are clinically divided into "seropositive" or "seronegative" RA, depending on the presence of routinely checked antibodies. Recent work has suggested that over the last two decades, long-term outcomes have improved significantly in seropositive RA but not in seronegative RA. Here, we present up-to-date differences in epidemiology, clinical features, and serological biomarkers in seronegative versus seropositive RA and discuss how histological and molecular synovial signatures, revealed by recent large synovial biopsy-based clinical trials, may be exploited to refine the classification of RA patients, especially in the seronegative group.
Collapse
Affiliation(s)
- James Perera
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Chiara Aurora Delrosso
- Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Biomedical Sciences, Humanitas University & IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
4
|
Ma YJ, Parente R, Zhong H, Sun Y, Garlanda C, Doni A. Complement-pentraxins synergy: Navigating the immune battlefield and beyond. Biomed Pharmacother 2023; 169:115878. [PMID: 37952357 DOI: 10.1016/j.biopha.2023.115878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The complement is a crucial immune defense system that triggers rapid immune responses and offers efficient protection against foreign invaders and unwanted host elements, acting as a sentinel. Activation of the complement system occurs upon the recognition of pathogenic microorganisms or altered self-cells by pattern-recognition molecules (PRMs) such as C1q, collectins, ficolins, and pentraxins. Recent accumulating evidence shows that pentraxins establish a cooperative network with different classes of effector PRMs, resulting in synergistic effects in complement activation. This review describes the complex interaction of pentraxins with the complement system and the implications of this cooperative network for effective host defense during pathogen invasion.
Collapse
Affiliation(s)
- Ying Jie Ma
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| | | | - Hang Zhong
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Andrea Doni
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| |
Collapse
|
5
|
Wang Y, Chen W, Ding S, Wang W, Wang C. Pentraxins in invertebrates and vertebrates: From structure, function and evolution to clinical applications. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105064. [PMID: 37734429 DOI: 10.1016/j.dci.2023.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The immune system is divided into two broad categories, consisting of innate and adaptive immunity. As recognition and effector factors of innate immunity and regulators of adaptive immune responses, lectins are considered to be important defense chemicals against microbial pathogens, cell trafficking, immune regulation, and prevention of autoimmunity. Pentraxins, important members of animal lectins, play a significant role in protecting the body from pathogen infection and regulating inflammatory reactions. They can recognize and bind to a variety of ligands, including carbohydrates, lipids, proteins, nucleic acids and their complexes, and protect the host from pathogen invasion by activating the complement cascade and Fcγ receptor pathways. Based on the primary structure of the subunit, pentraxins are divided into short and long pentraxins. The short pentraxins are comprised of C-reactive protein (CRP) and serum amyloid P (SAP), and the most important member of the long pentraxins is pentraxin 3 (PTX3). The CRP and SAP exist in both vertebrates and invertebrates, while the PTX3 may be present only in vertebrates. The major ligands and functions of CRP, SAP and PTX3 and three activation pathways involved in the complement system are summarized in this review. Their different characteristics in various animals including humans, and their evolutionary trees are analyzed. The clinical applications of CRP, SAP and PTX3 in human are reviewed. Some questions that remain to be understood are also highlighted.
Collapse
Affiliation(s)
- Yuying Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
6
|
Qiu L, Li J, Bai H, Wang L, Zeng Q, Wu S, Li P, Mu L, Yin X, Ye J. Long-chain pentraxin 3 possesses agglutination activity and plays a role in host defense against bacterial infection in Oreochromis niloticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105053. [PMID: 37657531 DOI: 10.1016/j.dci.2023.105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition molecule in the innate immune system that has multiple functions. It is involved in resisting pathogen infection. However, the functions of PTX3 in teleost fish are not well understood. In this study, we identified and characterized PTX3 in Nile tilapia (Oreochromis niloticus) (OnPTX3). The open reading frame of OnPTX3 was found to be 1305 bp, encoding 434 aa. We conducted spatial mRNA expression analysis and found that the expression of OnPTX3 was significantly increased after infection with Streptococcus agalactiae and Aeromonas hydrophila, both in vivo and in vitro. We also observed that recombinant OnPTX3 protein could bind and agglutinate bacterial pathogen. Furthermore, OnPTX3 enhanced the phagocytosis of bacteria (S. agalactiae and A. hydrophila) by head kidney macrophages. Additionally, OnPTX3 was found to influence the expression of inflammatory cytokines, suggesting its involvement in the regulation of the inflammatory response. Moreover, OnPTX3 was shown to promote complement-mediated hemolysis and possess antibacterial activity. In conclusion, our research demonstrates that OnPTX3 has bacterial binding and agglutination activities, enhances phagocytosis, and regulates inflammation. It plays a crucial role in the defense of Nile tilapia against pathogenic bacteria, providing valuable insights for the prevention and control of aquatic diseases in the future.
Collapse
Affiliation(s)
- Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hao Bai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Lili Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Qingliang Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Siqi Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Peiyu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Xiaoxue Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 5a0642, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
7
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Li Y, Zhang S, Liu J, Zhang Y, Zhang N, Cheng Q, Zhang H, Wu X. The pentraxin family in autoimmune disease. Clin Chim Acta 2023; 551:117592. [PMID: 37832905 DOI: 10.1016/j.cca.2023.117592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The pentraxins represent a family of multifunctional proteins composed of long and short pentamers. The latter includes serum amyloid P component (SAP) and C-reactive protein (CRP) whereas the former includes neuronal PTX1 and PTX2 (NPTX1 and NPTX2, respectively), PTX3 and PTX4. These serve as a bridge between adaptive immunity and innate immunity and a link between inflammation and immunity. Similarities and differences between long and short pentamers are examined and their roles in autoimmune disease are discussed. Increased CRP and PTX3 could indicate the activity of rheumatoid arthritis, systemic lupus erythematosus or other autoimmune diseases. Mechanistically, CRP and PTX3 may predict target organ injury, regulate bone metabolic immunity and maintain homeostasis as well as participate in vascular endothelial remodeling. Interestingly, PTX3 is pleiotropic, being involved in inflammation and tissue repair. Given the therapeutic potential of PTX3 and CRP, targeting these factors to exert a beneficial effect is the focus of research efforts. Unfortunately, studies on NPTX1, NPTX2, PTX4 and SAP are scarce and more research is clearly needed to elaborate their potential roles in autoimmune disease.
Collapse
Affiliation(s)
- Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, PR China
| | - Jingqi Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, PR China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
9
|
Zhang H, Wang Y, Zhao Y, Liu T, Wang Z, Zhang N, Dai Z, Wu W, Cao H, Feng S, Zhang L, Cheng Q, Liu Z. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci Ther 2022; 28:1748-1766. [PMID: 35855654 PMCID: PMC9532932 DOI: 10.1111/cns.13913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Pentraxin 3 (PTX3) is an essential regulator of the immune system. However, the immune‐modulatory role of PTX3 in the tumor microenvironment of glioma has not been elucidated. Methods The RNA seq samples were obtained from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA) datasets. The single‐cell sequencing data of glioblastoma (GBM) samples were obtained from the Single Cell Portal platform (http://singlecell.broadinstitute.org). Immunohistochemistry was used to assess PTX3 expression, HAVCR2, PD‐1, PD‐L1, and CD276 in glioma sections from the Xiangya cohort (n = 60). Multiplex immunofluorescence staining of PTX3, CD68, and CD163 was performed in several solid cancer types, including GBM. HMC3 was cocultured with U251 and U87, and transwell assay and flow cytometry assay were performed to explore the migration and polarization activity of HMC3. Results PTX3 expression is significantly increased in GBM. PTX3 expression predicts worse survival in the Xiangya cohort. PTX3 is closely related to the expression of PD‐1, PD‐L1, CD276, and HAVCR2 in the tumor microenvironment. Additionally, PTX3 is involved in tumorigenic and immunogenic processes, especially the activity of macrophages based on various signaling pathways in cellular communications and critical transcription factors. Specifically, PTX3 actively mediates macrophages' infiltration, migration, and inflammation‐resolving‐polarization. PTX3 could also predict immunotherapy response. Conclusion PTX3 is critically involved in macrophage infiltration, migration, and inflammation‐resolving‐polarization and modulates an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Tao Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Rozovski U, Veletic I, Harris DM, Li P, Liu Z, Jain P, Manshouri T, Ferrajoli A, Burger JA, Bose P, Thompson PA, Jain N, Wierda WG, Verstovsek S, Keating MJ, Estrov Z. STAT3 Activates the Pentraxin 3 Gene in Chronic Lymphocytic Leukemia Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2847-2855. [PMID: 35595309 DOI: 10.4049/jimmunol.2101105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/03/2022] [Indexed: 01/13/2023]
Abstract
Pentraxin-related protein 3 (PTX3), commonly produced by myeloid and endothelial cells, is a humoral pattern recognition protein of the innate immune system. Because PTX3 plasma levels of patients with chronic lymphocytic leukemia (CLL) are high and most circulating cells in patients with CLL are CLL cells, we reasoned that CLL cells produce PTX3. Western immunoblotting revealed that low-density cells from seven of seven patients with CLL produce high levels of PTX3, flow cytometry analysis revealed that the PTX3-producing cells are B lymphocytes coexpressing CD19 and CD5, and confocal microscopy showed that PTX3 is present in the cytoplasm of CLL cells. Because STAT3 is constitutively activated in CLL cells, and because we identified putative STAT3 binding sites within the PTX3 gene promoter, we postulated that phosphorylated STAT3 triggers transcriptional activation of PTX3. Immunoprecipitation analysis of CLL cells' chromatin fragments showed that STAT3 Abs precipitated PTX3 DNA. STAT3 knockdown induced a marked reduction in PTX3 expression, indicating a STAT3-induced transcriptional activation of the PTX3 gene in CLL cells. Using an EMSA, we established and used a dual-reporter luciferase assay to confirm that STAT3 binds the PTX3 gene promoter. Downregulation of PTX3 enhanced apoptosis of CLL cells, suggesting that inhibition of PTX3 might benefit patients with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel; and.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Phillip A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX;
| |
Collapse
|
11
|
PTX3 Protects Intestinal Mucosal Barrier Damage in Sepsis Through Toll-Like Receptor Signaling Pathway. Inflammation 2022; 45:2339-2351. [PMID: 35687213 DOI: 10.1007/s10753-022-01696-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 01/16/2023]
Abstract
This study aims to confirm the protective effect of Pentraxin 3 (PTX3) on intestinal mucosal barrier damage in sepsis in animal and cell models and explore its mechanism. Analysis of the GSE147775 gene set revealed that the level of PTX3 was upregulated in the lipopolysaccharide (LPS)-induced rat sepsis model. The mice sepsis model was established by cecal ligation perforation (CLP), and the cell inflammation model was induced by LPS. Cell apoptosis and the expression of apoptosis-related protein were detected by flow cytometry and Western blotting. The PTX3 level was significantly upregulated in the mice sepsis model. Intestinal mucosal barrier damage was aggravated and inflammatory factor expression was upregulated after PTX3 downregulation in sepsis mice. After upregulation of PTX3, intestinal mucosal barrier damage was alleviated and inflammatory factor expression was decreased in sepsis mice. Further data mining suggested that the anti-inflammatory effect of PTX3 might be realized through inhibition of the toll-like receptor (TLR) signaling pathway. Moreover, compared with the LPS group, downregulation of PTX3 increased cell apoptosis and the levels of BCL2-associated X (Bax), myeloperoxidase (MPO), tumor necrosis factor-alfa (TNF-α), interleukin 1 beta (IL-1β), and interferon-gamma (IFN-γ), and decreased the levels of B-cell lymphoma-2 (Bcl-2), zona occludens (ZO)-1, and occludin. On the contrary, overexpression of PTX3 reduced cell apoptosis and the levels of Bax, MPO, TNF-α, IL-1β, and IFN-γ. Moreover, downregulation of PTX3 reversed the inhibitive effects on cell apoptosis and inflammation and promotive effects on the levels of Zo-1 and occludin induced by CLI-095 (a TLR signaling pathway inhibitor). In the CLP-induced mice sepsis model and LPS-induced cell inflammation model, PTX3 inhibits inflammatory response and reduces intestinal mucosal barrier damage through the TLR signaling pathway.
Collapse
|
12
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
13
|
Jonasdottir AD, Antovic A, Qureshi AR, Nordin A, Malmström V, Gunnarsson I, Bruchfeld A. Pentraxin-3 - a potential biomarker in ANCA-associated vasculitis. Scand J Rheumatol 2022; 52:293-301. [PMID: 35383519 DOI: 10.1080/03009742.2022.2045790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of this study was to investigate pentraxin-3 (PTX3) as a potential biomarker of inflammatory activity in patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) at baseline and 6 month follow-up in a longitudinal cohort. METHOD Plasma PTX3 levels were measured in 79 newly diagnosed or relapsing AAV patients at baseline and 6 month follow-up, and in 23 healthy controls. Urinary PTX3 levels were measured in 34 of the patients. C-reactive protein (CRP), creatinine, and albuminuria were measured and the cumulative glucocorticoid dose at inclusion was calculated. The Birmingham Vasculitis Activity Score (BVAS) was assessed at baseline and follow-up. RESULTS Plasma PTX3 levels were significantly higher at baseline than at 6 months (2.85 vs 1.23 ng/mL, p < 0.001). Plasma and urinary PTX3 levels correlated with BVAS at baseline (ρ = 0.45, p < 0.001, and ρ = 0.49, p = 0.008, respectively). A significant correlation between both plasma and urinary PTX3 levels and estimated glomerular filtration rate and albuminuria was found. However, there was no correlation between plasma and urinary PTX3 levels. At baseline, plasma and urinary PTX3 levels were significantly higher in patients with kidney involvement. PTX3 levels did not correlate with CRP, nor was there a correlation between CRP levels and BVAS at baseline. CONCLUSION Plasma and urinary PTX3 seem to reflect disease activity in AAV better than the commonly used CRP. PTX3 may have a potential role as a biomarker in monitoring disease activity in AAV patients, particularly in patients with kidney involvement.
Collapse
Affiliation(s)
- A D Jonasdottir
- Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - A Antovic
- Department of Medicine, Division of Rheumatology Solna, Karolinska Institutet, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - A R Qureshi
- Baxter Novum, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - A Nordin
- Department of Medicine, Division of Rheumatology Solna, Karolinska Institutet, Stockholm, Sweden
| | - V Malmström
- Department of Medicine, Division of Rheumatology Solna, Karolinska Institutet, Stockholm, Sweden
| | - I Gunnarsson
- Department of Medicine, Division of Rheumatology Solna, Karolinska Institutet, Stockholm, Sweden.,Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - A Bruchfeld
- Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Ehlting C, Wolf SD, Bode JG. Acute-phase protein synthesis: a key feature of innate immune functions of the liver. Biol Chem 2021; 402:1129-1145. [PMID: 34323429 DOI: 10.1515/hsz-2021-0209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
The expression of acute-phase proteins (APP's) maintains homeostasis and tissue repair, but also represents a central component of the organism's defense strategy, especially in the context of innate immunity. Accordingly, an inflammatory response is accompanied by significant changes in the serum protein composition, an aspect that is also used diagnostically. As the main site of APP synthesis the liver is constantly exposed to antigens or pathogens via blood flow, but also to systemic inflammatory signals originating either from the splanchnic area or from the circulation. Under both homeostatic and acute-phase response (APR) conditions the composition of APP's is determined by the pattern of regulatory mediators derived from the systemic circulation or from local cell populations, especially liver macrophages. The key regulators mentioned here most frequently are IL-1β, IL-6 and TNF-α. In addition to a variety of molecular mediators described mainly on the basis of in vitro studies, recent data emphasize the in vivo relevance of cellular key effectors as well as molecular key mediators and protein modifications for the regulation and function of APP's. These are aspects, on which the present review is primarily focused.
Collapse
Affiliation(s)
- Christian Ehlting
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Stephanie D Wolf
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Johannes G Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Chen W, Liu Y, Pan H, Jiang J, Xiang H, Peng L. Correlation between single nucleotide polymorphisms in the 3 primer untranslated region of PTX3 and the risk of essential hypertension: A case-control study. Medicine (Baltimore) 2021; 100:e25937. [PMID: 34128842 PMCID: PMC8213333 DOI: 10.1097/md.0000000000025937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/16/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to investigate the correlation between single-nucleotide polymorphisms (SNPs) in the 3 primer of untranslated region (3'UTR) of the Pentraxin 3 (PTX3) gene and the risk of essential hypertension (EHT).PTX3 genotypes, rs2614, rs111451363, and rs73158510 locus, were found in 260 patients with EHT and 260 healthy controls. Quantitative real-time polymerase chain reaction was used to detect plasma hsa-miR-4766-5p levels. Enzyme-linked immunosorbent assay was used to detect plasma PTX3 levels. The dual-luciferase reporter assay was used to identify the binding site of hsa-miR-4766-5p to the PTX3.PTX3 rs2614 locus T allele was a high risk factor for EHT (odds ratio [OR] = 2.76, 95% confidence interval [CI]: 1.86-4.09, P < .01). Sex and diabetes history affected the correlation between PTX3 gene rs2614 locus SNP and EHT risk. The CCG haplotype was a protective factor for EHT (OR = 0.40, 95% CI: 0.28-0.57, P < .01), whereas the TCG haplotype was a risk factor for EHT (OR = 2.35, 95% CI: 1.51-3.66, P < .01). The plasma PTX3 level of patients with EHT was significantly higher than that of the control group, and the difference was statistically significant (P < .01). The area under the curve for EHT diagnosis in plasma PTX3 levels was 0.62 (95% CI: 0.57-0.66, P < .01). The plasma hsa-miR-4766-5p level in patients with EHT was significantly lower than that in the control group (P < .01). The area under the curve for the diagnosis of EHT according to the plasma hsa-miR-4766-5p level was 0.88 (95% CI: 0.85-0.91, P < .01). Plasma PTX3 levels were significantly negatively correlated with hsa-miR-4766-5p levels in patients with EHT and the control group (r = -0.87, -0.85, P < .01, P < .01). The PTX3 gene rs2614 locus C allele was the target gene of hsa-miR-4766-5p.The PTX3 rs2614 locus SNP is significantly associated with EHT risk.
Collapse
Affiliation(s)
| | | | | | | | - Huaqing Xiang
- Department of Ultrasound, Pujiang Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua
| | - Linlin Peng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Koussih L, Atoui S, Tliba O, Gounni AS. New Insights on the Role of pentraxin-3 in Allergic Asthma. FRONTIERS IN ALLERGY 2021; 2:678023. [PMID: 35387000 PMCID: PMC8974764 DOI: 10.3389/falgy.2021.678023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.
Collapse
Affiliation(s)
- Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department des Sciences Experimentales, Universite de Saint-Boniface, Winnipeg, MB, Canada
| | - Samira Atoui
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Abdelilah S. Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Abdelilah S. Gounni
| |
Collapse
|
17
|
Divella C, Stasi A, Franzin R, Rossini M, Pontrelli P, Sallustio F, Netti GS, Ranieri E, Lacitignola L, Staffieri F, Crovace AM, Lucarelli G, Ditonno P, Battaglia M, Daha MR, van der Pol P, van Kooten C, Grandaliano G, Gesualdo L, Stallone G, Castellano G. Pentraxin-3-mediated complement activation in a swine model of renal ischemia/reperfusion injury. Aging (Albany NY) 2021; 13:10920-10933. [PMID: 33875620 PMCID: PMC8109140 DOI: 10.18632/aging.202992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Pentraxins are a family of evolutionarily conserved pattern recognition molecules with pivotal roles in innate immunity and inflammation, such as opsonization of pathogens during bacterial and viral infections. In particular, the long Pentraxin 3 (PTX3) has been shown to regulate several aspects of vascular and tissue inflammation during solid organ transplantation. Our study investigated the role of PTX3 as possible modulator of Complement activation in a swine model of renal ischemia/reperfusion (I/R) injury. We demonstrated that I/R injury induced early PTX3 deposits at peritubular and glomerular capillary levels. Confocal laser scanning microscopy revealed PTX3 deposits co-localizing with CD31+ endothelial cells. In addition, PTX3 was associated with infiltrating macrophages (CD163), dendritic cells (SWC3a) and myofibroblasts (FSP1). In particular, we demonstrated a significant PTX3-mediated activation of classical (C1q-mediated) and lectin (MBL-mediated) pathways of Complement. Interestingly, PTX3 deposits co-localized with activation of the terminal Complement complex (C5b-9) on endothelial cells, indicating that PTX3-mediated Complement activation occurred mainly at the renal vascular level. In conclusion, these data indicate that PTX3 might be a potential therapeutic target to prevent Complement-induced I/R injury.
Collapse
Affiliation(s)
- Chiara Divella
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Rossini
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paola Pontrelli
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari, Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elena Ranieri
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Luca Lacitignola
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Alberto Maria Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Mohamed R Daha
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | - Peter van der Pol
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | | | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| |
Collapse
|
18
|
Ibrahim D, Neamat-Allah ANF, Ibrahim SM, Eissa HM, Fawzey MM, Mostafa DIA, El-Kader SAA, Khater SI, Khater SI. Dual effect of selenium loaded chitosan nanoparticles on growth, antioxidant, immune related genes expression, transcriptomics modulation of caspase 1, cytochrome P450 and heat shock protein and Aeromonas hydrophila resistance of Nile Tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 110:91-99. [PMID: 33453383 DOI: 10.1016/j.fsi.2021.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/31/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Nowadays there is a great attention for nanotechnology in aquaculture production. It has an efficient role in nutrients and drugs delivery, ponds sterilization, water treatment and aquatic diseases reduction. Till now, there is no available data on impact of selenite-loaded chitosan nanoparticles (SeChNPs) on Nile tilapia. Hence, the current study investigated the effects of selenite-loaded chitosan nanoparticles supplementation on the growth, immune, antioxidant and apoptotic related genes as well as resistance to Aeromonas hydrophila of Nile tilapia, Oreochromis niloticus. A total of 400 fish were randomly divided into four groups, and each group retained five replicates. The control group was fed a basal diet (with inorganic se), other groups fed diets supplemented with SeChNPs 0.5, 1 and 2 g/kg diet. The loading concentration of Se to ChNPs was 0.3, 0.6 and 1.2 mg/0.5, 1 and 2 gm respectively. Fish groups fed SeChNPs (0.5 and 1 g/kg) exhibited the highest final body gain, better feed utilization. Additionally, the expression of myostatin gene was down-regulated by 0.2 and 0.3 fold in group fed 0.5 and 1 g/kg SeChNPs when compared with control group. Dietary inclusion of SeChNPs increased serum lysozyme, alternative complement and myeloperoxidase activities and immunoglobulin type M level. Supplementation of SeChNPs at the level of 2 g/kg up-regulated glutathione peroxidase, superoxide dismutase and catalase expression by 1.12, 4.9 and 2.31 folds respectively, in comparison with control group. In contrast, the levels of C- reactive protein and malondialdehyde were reduced. The expression of IL-10, IL-8, TNF-α and IL-1β genes was up-regulated after dietary inclusion of different levels of SeChNPs in a dose dependent manner. Post-challenge, the highest survival rate was detected in group fed 2 g/kg SeChNPs (93%) in contrast, the control group was displayed the lowest survival rate (45%). After challenge with A. hydrophila, the expression of caspase 1 was up-regulated in groups fed 1 and 2 g/kg of SeChNPs. Moreover, the maximum down-regulation of cytochromes P450 and heat shock protein were found in 2 g/kg SeChNPs supplemented group (reduced by 0.4 and 0.6-fold, respectively, when compared with control group). In conclusion, the ameliorative effects of SeChNPs on Nile tilapia growth resulted from immune stimulatory and free radicals scavenging effects of selenium loaded chitosan nano composite.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Ahmed N F Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Seham M Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Hemmat M Eissa
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - M M Fawzey
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Doaa I A Mostafa
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Zagazig, Branch, Agriculture Research Center (ARC), Egypt
| | - Shaimaa A Abd El-Kader
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig, Branch, Agriculture Research Center (ARC), Egypt
| | - S I Khater
- Radioactive Isotopes and Generators Department, Hot Labs Center, Atomic Energy Authority, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| |
Collapse
|
19
|
Brilland B, Vinatier E, Subra JF, Jeannin P, Augusto JF, Delneste Y. Anti-Pentraxin Antibodies in Autoimmune Diseases: Bystanders or Pathophysiological Actors? Front Immunol 2021; 11:626343. [PMID: 33664737 PMCID: PMC7921723 DOI: 10.3389/fimmu.2020.626343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Pentraxins are soluble innate immunity receptors involved in sensing danger molecules. They are classified as short (CRP, SAP) and long pentraxin subfamilies, including the prototypic long pentraxin PTX3. Pentraxins act mainly as bridging molecules favoring the clearance of microbes and dead cells. They are also involved in many other biological processes, such as regulation of complement activation, inflammation and tissue homeostasis. Autoantibodies directed against pentraxins have been reported in various autoimmune diseases, especially in systemic lupus erythematosus and ANCA-associated vasculitis. In this review, we review the main biological characteristics and functions of pentraxins and summarize data concerning autoantibodies directed against pentraxins in the context of autoimmune diseases and discuss their potential pathological role.
Collapse
Affiliation(s)
- Benoit Brilland
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France.,Université d'Angers, INSERM, CRCINA, Angers, France
| | - Emeline Vinatier
- Université d'Angers, INSERM, CRCINA, Angers, France.,CHU Angers, Service d'Immunologie et Allergologie, Angers, France
| | - Jean-François Subra
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France.,Université d'Angers, INSERM, CRCINA, Angers, France
| | - Pascale Jeannin
- Université d'Angers, INSERM, CRCINA, Angers, France.,CHU Angers, Service d'Immunologie et Allergologie, Angers, France
| | - Jean-François Augusto
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France.,Université d'Angers, INSERM, CRCINA, Angers, France
| | - Yves Delneste
- Université d'Angers, INSERM, CRCINA, Angers, France.,CHU Angers, Service d'Immunologie et Allergologie, Angers, France
| |
Collapse
|
20
|
Sabry A, Ibrahim M, Khashana A. Assessment of pentraxin 3 in a systemic inflammatory response occurring with neonatal bacterial infection. J Neonatal Perinatal Med 2021; 14:563-568. [PMID: 33523023 DOI: 10.3233/npm-200550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
INTRODUCTION In the developing countries, neonatal sepsis is the most common complication in neonatal period. It is as a systemic inflammatory response because of infection. Laboratory indicators, do not have satisfactory sensitivity. Thus, early identification of sepsis is still needed. Because PTX3 may be a faster acute-phase protein that is not liver-dependent, it is probable that it is superior to traditional biomarkers for mirroring rapid inflammatory courses. METHODS A prospective case control study design was used to determine the sensitivity of pentraxin 3 in the diagnosis of neonatal sepsis to allow early diagnostic tool. This study was carried out on neonatal ICU unit in Suez Canal University Hospital and the studied population were divided into two groups, including patients diagnosed with neonatal sepsis, based on clinical, laboratory and positive blood culture results, and control groupRESULTS:The study found that there was statistically significant differences between both groups in serum CRP values in diseased and control group (Mean = 49.3±37.4 mg/L, 26.8±17.2 mg/L, p < 0.05), and pentraxin values in diseased and control group (Mean = 5.2±3.7 mg/L, 2.3±0.78 mg/L, p < 0.0001). In addition, there were statistically significant correlations between pentraxin and serum CRP concentrations (p < 0.05) in diseased group. ROC curve showed that serum CRP demonstrated good diagnostic accuracy in predicting neonatal sepsis AUC = 0.875 with sensitivity of 100% and specificity of 92.3%. CONCLUSION Serum PTX3 may be a promising acute-phase protein for interpretation of affected newborns with symptoms and signs of sepsis.
Collapse
Affiliation(s)
- A Sabry
- Department of Pediatrics and Neonatology, Faculty of Medicine, Suez Canal University, Egypt
| | | | - A Khashana
- Department of Pediatrics and Neonatology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
21
|
Meri S, Haapasalo K. Function and Dysfunction of Complement Factor H During Formation of Lipid-Rich Deposits. Front Immunol 2020; 11:611830. [PMID: 33363547 PMCID: PMC7753009 DOI: 10.3389/fimmu.2020.611830] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023] Open
Abstract
Complement-mediated inflammation or dysregulation in lipid metabolism are associated with the pathogenesis of several diseases. These include age-related macular degeneration (AMD), C3 glomerulonephritis (C3GN), dense deposit disease (DDD), atherosclerosis, and Alzheimer's disease (AD). In all these diseases, formation of characteristic lipid-rich deposits is evident. Here, we will discuss molecular mechanisms whereby dysfunction of complement, and especially of its key regulator factor H, could be involved in lipid accumulation and related inflammation. The genetic associations to factor H polymorphisms, the role of factor H in the resolution of inflammation in lipid-rich deposits, modification of macrophage functions, and complement-mediated clearance of apoptotic and damaged cells indicate that the function of factor H is crucial in limiting inflammation in these diseases.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Behiry EG, Kamal HM, Rahman AA, Eissa HA, Hassan WA, Hassan ZG, Shafeek MM, El-Fallah AA. Association of genetic variants of interleukin-1β gene -511T/C (rs16944) and +3954C/T (rs1143634) and serum levels of pentaxin (PTX3) and interleukin -1β (IL-1β) with disease activity of systemic lupus erythematosus patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Gupta G, Mou Z, Jia P, Sharma R, Zayats R, Viana SM, Shan L, Barral A, Boaventura VS, Murooka TT, Soussi-Gounni A, de Oliveira CI, Uzonna JE. The Long Pentraxin 3 (PTX3) Suppresses Immunity to Cutaneous Leishmaniasis by Regulating CD4 + T Helper Cell Response. Cell Rep 2020; 33:108513. [PMID: 33326783 DOI: 10.1016/j.celrep.2020.108513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023] Open
Abstract
The long pentraxin 3 (PTX3) plays a critical role in inflammation, tissue repair, and wound healing. Here, we show that PTX3 regulates disease pathogenesis in cutaneous leishmaniasis (CL). PTX3 expression increases in skin lesions in patients and mice during CL, with higher expression correlating with severe disease. PTX3-deficient (PTX3-/-) mice are highly resistant to L. major and L. braziliensis infections. This enhanced resistance is associated with increases in Th17 and IL-17A responses. The neutralization of IL-17A abolishes this enhanced resistance, while rPTX3 treatment results in decrease in Th17 and IL-17A responses and increases susceptibility. PTX3-/- CD4+ T cells display increased differentiation to Th17 and expression of Th17-specific transcription factors. The addition of rPTX3 suppresses the expression of Th17 transcription factors, Th17 differentiation, and IL-17A production by CD4+ T cells from PTX3-/- mice. Collectively, our results show that PTX3 contributes to the pathogenesis of CL by negatively regulating Th17 and IL-17A responses.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; NIIT University, Rajasthan, India
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rohit Sharma
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | - Romaniya Zayats
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aldina Barral
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | | | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdel Soussi-Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
24
|
Asanuma YF, Aizaki Y, Noma H, Yokota K, Matsuda M, Kozu N, Takebayashi Y, Nakatani H, Hasunuma T, Kawai S, Mimura T. Plasma pentraxin 3 is associated with progression of radiographic joint damage, but not carotid atherosclerosis, in female rheumatoid arthritis patients: 3-year prospective study. Mod Rheumatol 2020; 30:959-966. [PMID: 31615315 DOI: 10.1080/14397595.2019.1681583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022]
Abstract
Background: Pentraxin 3 (PTX3) has an important role in inflammation, immunity, and atherosclerosis. Rheumatoid arthritis (RA) is a chronic inflammatory disease featuring both joint damage and atherosclerosis. We investigated whether the plasma PTX3 level was associated with progression of joint destruction and subclinical atherosclerosis in RA patients.Methods: Plasma PTX3 levels were measured in 72 women with RA and 80 female control subjects. In RA patients, we also evaluated clinical characteristics, medications, and at one and three years, joint damage and atherosclerosis. Then we investigated whether PTX3 was associated with progression of joint destruction or an increase of carotid intima-media thickness (IMT).Results: Plasma PTX3 levels were significantly higher in the RA patients than in healthy controls (4.05 ± 2.91 ng/mL vs. 1.61 ± 1.05 ng/mL, p < .001). By multivariate linear regression analysis, the plasma pentraxin 3 level was independently associated with radiographic progression of joint damage for 3 years in the RA patients after adjustment for age, disease duration, body mass index, rheumatoid factor, MMP-3, Disease Activity Score 28-ESR, postmenopausal status, current use of corticosteroids and biologic use. On the other hands, pentraxin 3 was not associated with an increase of carotid intima-media thickness in RA patients.Conclusion: Female RA patients had elevated plasma PTX3 levels compared with control female subjects. PTX3 was independently associated with radiographic progression of joint damage in the RA patients, but not with carotid atherosclerosis.
Collapse
Affiliation(s)
- Yu Funakubo Asanuma
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hisashi Noma
- Department of Data Science, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Kazuhiro Yokota
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Mayumi Matsuda
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Noritsune Kozu
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Kozu Orthopaedic Clinic, Chiba, Japan
| | - Yoshitake Takebayashi
- Department of Health Risk Communication, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Nakatani
- Department of Research, Clinical Trial Center, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Tomoko Hasunuma
- Department of Research, Clinical Trial Center, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Shinichi Kawai
- Department of Inflammation and Pain Control Research, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
25
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
26
|
Kárpáti É, Papp A, Schneider AE, Hajnal D, Cserhalmi M, Csincsi ÁI, Uzonyi B, Józsi M. Interaction of the Factor H Family Proteins FHR-1 and FHR-5 With DNA and Dead Cells: Implications for the Regulation of Complement Activation and Opsonization. Front Immunol 2020; 11:1297. [PMID: 32765490 PMCID: PMC7378360 DOI: 10.3389/fimmu.2020.01297] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Complement plays an essential role in the opsonophagocytic clearance of apoptotic/necrotic cells. Dysregulation of this process may lead to inflammatory and autoimmune diseases. Factor H (FH), a major soluble complement inhibitor, binds to dead cells and inhibits excessive complement activation on their surface, preventing lysis, and the release of intracellular material, including DNA. The FH-related (FHR) proteins share common ligands with FH, due to their homology with this complement regulator, but they lack the domains that mediate the complement inhibitory activity of FH. Because their roles in complement regulation is controversial and incompletely understood, we studied the interaction of FHR-1 and FHR-5 with DNA and dead cells and investigated whether they influence the regulatory role of FH and the complement activation on DNA and dead cells. FH, FHR-1, and FHR-5 bound to both plasmid DNA and human genomic DNA, where both FHR proteins inhibited FH-DNA interaction. The FH cofactor activity was inhibited by FHR-1 and FHR-5 due to the reduced binding of FH to DNA in the presence of the FHRs. Both FHRs caused increased complement activation on DNA. FHR-1 and FHR-5 bound to late apoptotic and necrotic cells and recruited monomeric C-reactive protein and pentraxin 3, and vice versa. Interactions of the FHRs with pentraxins resulted in enhanced activation of both the classical and the alternative complement pathways on dead cells when exposed to human serum. Altogether, our results demonstrate that FHR-1 and FHR-5 are competitive inhibitors of FH on DNA; moreover, FHR-pentraxin interactions promote opsonization of dead cells.
Collapse
Affiliation(s)
- Éva Kárpáti
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea E Schneider
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Hajnal
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marcell Cserhalmi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám I Csincsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
27
|
Pentraxin 3 (PTX-3) Levels in Bronchoalveolar Lavage Fluid as a Lung Cancer Biomarker. DISEASE MARKERS 2020; 2020:4652483. [PMID: 32587638 PMCID: PMC7303750 DOI: 10.1155/2020/4652483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/02/2020] [Indexed: 11/18/2022]
Abstract
In this study, we investigated the utility of pentraxin 3 (PTX-3) in bronchoalveolar lavage fluid (BALF) as lung cancer (LCa) diagnostic. A total of 89 LCa patients and 84 non-LCa patients who received bronchoscopy in the First Affiliated Hospital of Xi'an Jiaotong University from December 2014 to February 2015 were enrolled. LCa was subdivided according to pathological type (scale, gland, and small cell lung cancer). BALF samples were obtained during bronchoscopy and PTX-3 levels assayed by ELISA. t-tests, Mann-Whitney, and Kruskal-Wallis tests were performed for the comparison of PTX-3 levels between the different groups. Correlation analysis and receiver operating characteristic (ROC) analysis were used to analyze clinical data. The levels of PTX-3 increased in the LCa groups. PTX-3 levels were higher in the small cell lung cancer (SCLC) compared to non-small-cell lung cancer (NSCLC) groups. In LCa patients, obstructive pneumonia could upregulate the expression of PTX-3 in BALF. The area under the ROC curve of PTX-3 in BALF during LCa diagnosis, SCLC, and LCa with obstructive pneumonia was 0.949 (p ≤ 0.001), 0.672 (p < 0.05), and 0.838 (p < 0.01), respectively. In conclusion, PTX-3 in BALF has a potential value as an LCa biomarker, particularly in cases of SCLC and LCa with obstructive pneumonia.
Collapse
|
28
|
Farini A, Villa C, Di Silvestre D, Bella P, Tripodi L, Rossi R, Sitzia C, Gatti S, Mauri P, Torrente Y. PTX3 Predicts Myocardial Damage and Fibrosis in Duchenne Muscular Dystrophy. Front Physiol 2020; 11:403. [PMID: 32508664 PMCID: PMC7248204 DOI: 10.3389/fphys.2020.00403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Pentraxin 3 (PTX3) is a main component of the innate immune system by inducing complement pathway activation, acting as an inflammatory mediator, coordinating the functions of macrophages/dendritic cells and promoting apoptosis/necrosis. Additionally, it has been found in fibrotic regions co-localizing with collagen. In this work, we wanted to investigate the predictive role of PTX3 in myocardial damage and fibrosis of Duchenne muscular dystrophy (DMD). DMD is an X-linked recessive disease caused by mutations of the dystrophin gene that affects muscular functions and strength and accompanying dilated cardiomyopathy. Here, we expound the correlation of PTX3 cardiac expression with age and Toll-like receptors (TLRs)/interleukin-1 receptor (IL-1R)-MyD88 inflammatory markers and its modulation by the so-called alarmins IL-33, high-mobility group box 1 (HMGB1), and S100β. These findings suggest that cardiac levels of PTX3 might have prognostic value and potential in guiding therapy for DMD cardiomyopathy.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Dario Di Silvestre
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Milan, Italy
| | - Pamela Bella
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Luana Tripodi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Rossana Rossi
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Milan, Italy
| | - Clementina Sitzia
- Residency Program in Clinical Pathology and Clinical Biochemistry, Università degli Studi di Milano, Milan, Italy
| | - Stefano Gatti
- Center for Surgical Research, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierluigi Mauri
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| |
Collapse
|
29
|
Shan X, Zhang C, Wang Z, Wang K, Wang J, Qiu X, Jiang T, Yang P. Prognostic value of a nine-gene signature in glioma patients based on tumor-associated macrophages expression profiling. Clin Immunol 2020; 216:108430. [PMID: 32325251 DOI: 10.1016/j.clim.2020.108430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
Tumor-associated macrophages (TAMs) are regarded as the most abundantly infiltrating immune cells around the tumor microenvironment in gliomas, which plays an important role in tumorgenesis and immunosuppression. A total of 216 patients diagnosed with primary glioma were obtained from the Chinese Glioma Genome Atlas of which the RNA sequencing data was used as training set. RNA sequencing from the Cancer Genome Atlas was applicated for validation. We found that mesenchymal subtype showed strong positive correlation with macrophage-related genes (MRGs) expression. Survival analysis showed that high expression level of MRG predicted poor prognosis. A TAM-based nine-gene signature was constructed, which divided the samples into high- and low-risk of unfavorable outcome. The result of Cox regression analysis showed that the risk score was an independent prognostic factor in gliomas. Hence, the expression of TAMs was correlated with patient survival. The nine-TAM-related gene signature can predict patient survival efficiently.
Collapse
Affiliation(s)
- Xia Shan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, China; Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China
| | - Kuanyu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China
| | - Xiaoguang Qiu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China; Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, China; Center of Brain Tumor, Beijing Institute for Brain Disorder, China; China National Clinical Research Center for Neurological Diseases, China; Chinese Glioma Genome Atlas Network (CGGA), China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China; Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, China.
| |
Collapse
|
30
|
Silencing of PTX3 alleviates LPS-induced inflammatory pain by regulating TLR4/NF-κB signaling pathway in mice. Biosci Rep 2020; 40:221905. [PMID: 31957804 PMCID: PMC7000368 DOI: 10.1042/bsr20194208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/03/2023] Open
Abstract
Pentraxin 3 (PTX3), an inflammatory marker and a pattern recognition receptor, plays an important role in promoting the progress of tumor and inflammatory diseases. However, the role of PTX3 in the pathogenesis of inflammatory pain diseases is rarely reported. The purpose of the present study is to investigate the effect of PTX3 on the progression of inflammatory pain and the special molecular mechanism. A mouse BV2 microglia cell activation-mediated inflammatory model was developed with Lipopolysaccharide (LPS) induction, and a mouse inflammatory pain model was established with LPS injection. The effect of PTX3 on microglia inflammatory activation was verified by measuring pro-inflammatory cytokines expression. The mechanical hyperalgesia testing, the thermal preference testing and the cold allodynia testing were used to measure the response of mice to mechanical pain, heat stimulation and cold stimulation, respectively. The results revealed that the expression of PTX3 was decreased in the LPS-induced inflammatory pain mice model. Silencing of PTX3 down-regulated LPS-induced inflammatory factors, including IL-6, NO and TNF-α, and alleviated LPS-induced inflammatory pain in BV2 cells. In addition, overexpression of TLR4 reversed the inhibitory effect of si-PTX3 on LPS-induced inflammatory response in BV2 cells. What is more, silencing of PTX3 inhibited TLR4/NF-κB signaling pathway. Collectively, it suggests that silencing of PTX3 alleviates LPS-induced inflammatory response of BV2 cells potentially by regulating the TLR4/NF-κB signaling pathway.
Collapse
|
31
|
Kang Y, Yu Y, Lu L. The Role of Pentraxin 3 in Aspergillosis: Reality and Prospects. MYCOBIOLOGY 2020; 48:1-8. [PMID: 32158600 PMCID: PMC7048186 DOI: 10.1080/12298093.2020.1722576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition receptor (PRR), which is produced by several kinds of cells, such as neutrophils, dendritic cells, macrophages, and epithelial cells. PTX3 is known to play an important protective effect against Aspergillus. Genetic linkage in gene-targeted mice and human PTX3 plays a non-redundant role in the immune protection against specific pathogens, especially Aspergillus. Recent studies have shown that the polymorphism of PTX3 is associated with increased susceptibility to invasive aspergillosis (IA). In this review, we provide an overview of these studies that underline the potential of PTX3 in diagnosis and therapy of IA.
Collapse
Affiliation(s)
- Yuening Kang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuetian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1606883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Acute phase protein response to viral infection and vaccination. Arch Biochem Biophys 2019; 671:196-202. [PMID: 31323216 PMCID: PMC7094616 DOI: 10.1016/j.abb.2019.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Organisms respond in multiple ways to microbial infections. Pathogen invasion tipically triggers an inflammatory response where acute phase proteins (APP) have a key role. Pentraxins (PTX) are a family of highly conserved APP that play a part in the host defense against infection. The larger proteins of the family are simply named pentraxins, while c-reactive proteins (CRP) and serum amyloid proteins (SAA, SAP) are known as short pentraxins. Although high APP levels have been broadly associated with bacterial infections, there is a growing body of evidence revealing increased PTX, CRP and SAP expression upon viral infection. Furthermore, CRP, PTX and SAP have shown their potential as diagnostic markers and predictors of disease outcome. Likewise, the measurement of APP levels can be valuable to determine the efficacy of antiviral therapies and vaccines. From the practical point of view, the ability of APP to reduce viral infectivity has been observed in several virus-host models. This has prompted investigation efforts to assess the role of acute phase response proteins as immunoregulatory molecules and their potential as therapeutic reagents. This work aims to present an overview of the APP response to viral infections reviewing the current knowledge in the field.
Collapse
|
34
|
Wu T, Zhu B, Zhu Q, Tursun D, Liu S, Liu S, Hu J, Li N. Study on Serum Pentraxin-3 Levels in Vasculitis with Hypertension. J Interferon Cytokine Res 2019; 39:522-530. [PMID: 31264920 DOI: 10.1089/jir.2018.0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Pentraxin-3 (PTX-3) is derived from the secretion of macrophages, neutrophils, endothelial cells, epithelial cells, and vascular smooth muscle cells, which can regulate the immune activity of macrophages. The objectives of our study were to investigate the serum PTX-3 levels and analyze this correlation with vasculitis (Vas), with hypertension. A total of 155 cases consisting 51 patients with Vas [including 7 cases of takayasu arteritis (TA), 24 cases of polyarteritis nodosa (PAN), and 20 cases of antineutrophil cytoplasmic antibody-associated Vas (AAV)] were screened by angiography and/or biopsy; 46 patients with essential hypertensions (PH) and 58 healthy controls (HC) were enrolled in this study from January 2013 to December 2016. Serum PTX-3 levels were determined by enzyme-linked immunosorbent assay. Compared with the HC and PH, the serum PTX-3 levels in systemic Vas were significantly higher (both P < 0.001, 4.42 ± 0.95 vs. 2.67 ± 0.92 and 4.42 ± 0.95 vs. 2.95 ± 0.60), and there was no significant difference between HC and essential hypertension (P = 0.886, 2.67 ± 0.92 vs. 2.95 ± 0.60). There was no significant difference of PTX-3 levels among TA, PAN, and AAV, as well as active and inactive groups, and renal and nonrenal groups even if they had a significant difference from EH and HC, respectively. There was no significant correlation between PTX-3 levels and blood pressure, erythrocyte sedimentation rate, or Birmingham Vasculitis Activity Score. Receiver operating characteristic analysis has shown that the best cutoff point was at 3.618 ng/μL; the sensitivity and specificity were calculated as 84.3% and 93.5% for the diagnosis of Vas from heath control, and the best cutoff point was at 3.425 ng/μL, The sensitivity and specificity were calculated as 88.2% and 82.6% for the diagnosis of Vas from essential hypertension. Serum PTX-3 levels were significantly higher in patients with Vas than essential hypertension or health control, and elevated PTX-3 levels can help identify Vas patients from healthy or essential hypertensive populations.
Collapse
Affiliation(s)
- Ting Wu
- Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Xinjiang, China
| | - Bin Zhu
- Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Xinjiang, China
| | - Qing Zhu
- Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Xinjiang, China
| | - Dilnigar Tursun
- Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Xinjiang, China
| | - Shasha Liu
- Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Xinjiang, China
| | - Shanshan Liu
- Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Xinjiang, China
| | - Junli Hu
- Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Xinjiang, China
| | - Nanfang Li
- Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Xinjiang, China
| |
Collapse
|
35
|
Dongel I, Gokmen AA, Gonen I, Kaya S. Pentraxin-3 and inflammatory biomarkers related to posterolateral thoracotomy in Thoracic Surgery. Pak J Med Sci 2019; 35:464-469. [PMID: 31086534 PMCID: PMC6500836 DOI: 10.12669/pjms.35.2.181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: Posterolateral thoracotomy is the most frequently used operation in thoracic surgery, and may initiate an inflammatory process. We aimed to evaluate inflammatory response of the body to posterolateral thoracotomy. Methods: This study was conducted between January 2013 and June 2014. Blood samples were drawn from 36 patients who underwent posterolateral thoracotomy preoperatively, and on postoperative days one, three and seven The levels of PTX-3, CRP and WBC in the serums of the patients were identified. All the results were recorded and analyzed. Results: PTX-3 levels were found statistically significantly higher in patients with lung cancer and/or aged above 65 years. There were significant differences in WBC and CRP levels between preoperative levels and on those on postoperative days one, three and seven but not for PTX-3. The area under the curve(AUC) levels in the receiver operating characteristics(ROC) analysis, which was performed to estimate the strength of PTX-3 in the differentiation of malignant and benign patients was found statistically significant(p<0.05). Conclusions: The present study suggests that the novel inflammatory marker PTX-3 may be used in the diagnosis and follow-up of prognosis as a biomarker of inflammatory response in patients with lung cancer. However, it showed that PTX-3 levels are insignificant to identify the levels of inflamatuar response due to posterolateral thoracotomy in thoracic surgery.
Collapse
Affiliation(s)
- Isa Dongel
- Isa Dongel, Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Aysegul Aksoy Gokmen
- Aysegul Aksoy Gokmen, Department of Medical Microbiology, Faculty of Medicine, Katip Celebi University, Izmir, Turkey
| | - Ibak Gonen
- Ibak Gonen, Department of Infectious Disease, Faculty of Medicine, Medical Patk Siliviri Hospital, Istanbul, Turkey
| | - Selcuk Kaya
- Selcuk Kaya, Department of Medical Microbiology, Faculty of Medicine, Katip Celebi University, Izmir, Turkey
| |
Collapse
|
36
|
Becerir T, Yüksel S, Evrengül H, Ergin A, Enli Y. Urinary excretion of pentraxin-3 correlates with the presence of renal scar following acute pyelonephritis in children. Int Urol Nephrol 2019; 51:571-577. [PMID: 30796728 DOI: 10.1007/s11255-019-02102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/08/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Acute pyelonephritis is associated with considerable morbidity and potential for renal scarring. Pentraxin3 (PTX3) is a recently discovered mediator of inflammation. The objective of this study was to investigate the changes in serum and urine PTX3 levels in children who had a history of pyelonephritis and were diagnosed with renal parenchymal scar (RPS) and/or vesicoureteral reflux (VUR). METHODS The study included 88 children (31 males, 57 females) aged between 3 months and 18 years. The children included in the study were divided into four groups: VUR with RPS (Group 1), RPS without VUR (Group 2), VUR without RPS (Group 3), and healthy children without a history of hydronephrosis or UTI history (Group 4). After the initial evaluation, the participants were further divided into two more groups and re-evaluated: Children with RPS (Group 1 + 2), children without RPS (Group 3 + 4), children with VUR (Group 1 + 3), and children without VUR (Group 2 + 4). RESULTS We found that urine pentraxin 3 (uPTX3) and uPTX3/Creatinine levels were significantly higher in the groups with renal scar with or without VUR than the ones without RPS [mean uPTX3, 3.5 pg/ml (min-max 0.0022-12.3668) vs. 2.2 pg/ml (min-max 0.0022-18.5868) and uPTX3/creatinine, 10.5 pg/mg (min-max 0.0035-51.1) vs. 5.8 pg/mg (min-max 0.0004-78.7), p < 0.01]. uPTX3 levels were not different among the groups with and without VUR. In addition, serum PTX3 levels were not different among the groups. CONCLUSIONS We showed that urinary PTX3 increased only in patients with scarred kidneys. These results might be helpful to predict RPS due to past pyelonephritis.
Collapse
Affiliation(s)
- Tülay Becerir
- Department of Pediatric Nephrology, Namık Kemal University School of Medicine, 59030, Tekirdağ, Turkey
| | - Selcuk Yüksel
- Department of Pediatric Rheumatology and Nephrology, Pamukkale University School of Medicine, 20070, Kınıklı Yerleşkesi/Denizli, Turkey.
| | - Havva Evrengül
- Department of Pediatric Nephrology, Pamukkale University School of Medicine, 20070, Kınıklı Yerleşkesi/Denizli, Turkey
| | - Ahmet Ergin
- Department of Social Pediatrics, Pamukkale University School of Medicine, 20070, Kınıklı Yerleşkesi/Denizli, Turkey
| | - Yaşar Enli
- Department of Biochemistry, Pamukkale University School of Medicine, 20070, Kınıklı Yerleşkesi/Denizli, Turkey
| |
Collapse
|
37
|
|
38
|
Ma YJ, Garred P. Pentraxins in Complement Activation and Regulation. Front Immunol 2018; 9:3046. [PMID: 30619374 PMCID: PMC6305747 DOI: 10.3389/fimmu.2018.03046] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023] Open
Abstract
The complement is the first line of immune defense system involved in elimination of invading pathogens and dying host cells. Its activation is mainly triggered by immune complexes or pattern recognition molecules (PRMs) upon recognition against non-self or altered self-cells, such as C1q, collectins, ficolins, and properdin. Recent findings have interestingly shown that the pentraxins (C-reactive protein, CRP; serum-amyloid P component, SAP; long pentraxin 3, PTX3) are involved in complement activation and amplification via communication with complement initiation PRMs, but also complement regulation via recruitment of complement regulators, for instance C4b binding protein (C4BP) and factor H (fH). This review addresses the potential roles of the pentraxins in the complement system during infection and inflammation, and emphasizes the underlining implications of the pentraxins in the context of complement activation and regulation both under physiological and pathological conditions.
Collapse
Affiliation(s)
- Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Meiners S, Evankovich J, Mallampalli RK. The ubiquitin proteasome system as a potential therapeutic target for systemic sclerosis. Transl Res 2018; 198:17-28. [PMID: 29702079 DOI: 10.1016/j.trsl.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 01/16/2023]
Abstract
The present review aims to summarize available knowledge on the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of scleroderma and scleroderma-related disease mechanisms. This will provide the reader with a more mechanistic understanding of disease pathogenesis and help to identify putative novel targets within the UPS for potential therapeutic intervention. Because of the heterogenous manifestations of scleroderma, we will primarily focus on conserved mechanisms that are involved in the development of lung scleroderma phenotypes.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig Maximilians University, Helmholtz Zentrum München, Germany; Comprehensive Pneumology Center, Munich (CPC-M), Germany; Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - John Evankovich
- Pulmonary, Allergy, and Critical Care Medicine, Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Pulmonary, Allergy, and Critical Care Medicine, Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Rainard P, Gitton C, Chaumeil T, Fassier T, Huau C, Riou M, Tosser-Klopp G, Krupova Z, Chaize A, Gilbert FB, Rupp R, Martin P. Host factors determine the evolution of infection with Staphylococcus aureus to gangrenous mastitis in goats. Vet Res 2018; 49:72. [PMID: 30045763 PMCID: PMC6060506 DOI: 10.1186/s13567-018-0564-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/03/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is the major cause of very severe mastitis of dairy goats. The initial objective of our study was to fine-tune an experimental model of infection of the goat mammary gland with two strains of S. aureus and two lines of goats (low and high somatic cell score lines). Following the challenge, the 10 infected goats divided in two clear-cut severity groups, independently of the S. aureus strain and the goat line. Five goats developed very severe mastitis (of which four were gangrenous) characterized by uncontrolled infection (UI group), whereas the other five kept the infection under control (CI group). The outcome of the infection was determined by 18 h post-infection (hpi), as heralded by the bacterial milk concentration at 18 hpi: more than 107/mL in the UI group, about 106/mL in the CI group. Leukocyte recruitment and composition did not differ between the groups, but the phagocytic killing at 18 hpi efficiency did. Contributing factors involved milk concentrations of α-toxin and LukMF′ leukotoxin, but not early expression of the genes encoding the pentraxin PTX3, the cytokines IL-1α and IL-1β, and the chemokines IL-8 and CCL5. Concentrations of TNF-α, IFN-γ, IL-17A, and IL-22 rose sharply in the milk of UI goats when infection was out of control. The results indicate that defenses mobilized by the mammary gland at an early stage of infection were essential to prevent staphylococci from reaching critical concentrations. Staphylococcal exotoxin production appeared to be a consequent event inducing the evolution to gangrenous mastitis.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRA, UMR 1282, Université Tours, 37380, Nouzilly, France.
| | | | | | | | - Christophe Huau
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | | | - Gwenola Tosser-Klopp
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Zuzana Krupova
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France.,EXCILONE, 78990, Elancourt, France
| | - Anne Chaize
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | | | - Rachel Rupp
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Patrice Martin
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
41
|
Sánchez-Corral P, Pouw RB, López-Trascasa M, Józsi M. Self-Damage Caused by Dysregulation of the Complement Alternative Pathway: Relevance of the Factor H Protein Family. Front Immunol 2018; 9:1607. [PMID: 30050540 PMCID: PMC6052053 DOI: 10.3389/fimmu.2018.01607] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
The alternative pathway is a continuously active surveillance arm of the complement system, and it can also enhance complement activation initiated by the classical and the lectin pathways. Various membrane-bound and plasma regulatory proteins control the activation of the potentially deleterious complement system. Among the regulators, the plasma glycoprotein factor H (FH) is the main inhibitor of the alternative pathway and its powerful amplification loop. FH belongs to a protein family that also includes FH-like protein 1 and five factor H-related (FHR-1 to FHR-5) proteins. Genetic variants and abnormal rearrangements involving the FH protein family have been linked to numerous systemic and organ-specific diseases, including age-related macular degeneration, and the renal pathologies atypical hemolytic uremic syndrome, C3 glomerulopathies, and IgA nephropathy. This review covers the known and recently emerged ligands and interactions of the human FH family proteins associated with disease and discuss the very recent experimental data that suggest FH-antagonistic and complement-activating functions for the FHR proteins.
Collapse
Affiliation(s)
- Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
42
|
Gao P, Tang K, Wang M, Yang Q, Xu Y, Wang J, Zhao J, Xie J. Pentraxin levels in non-eosinophilic versus eosinophilic asthma. Clin Exp Allergy 2018; 48:981-989. [PMID: 29754456 DOI: 10.1111/cea.13168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/07/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Innate immunity has been thought to be involved in asthma pathogenesis. Pentraxins, acting as soluble pattern recognition molecules, play an important role in humoral innate immunity. Asthma is a heterogeneous inflammatory disease of airways and can be classified as eosinophilic or non-eosinophilic asthma. OBJECTIVE To investigate whether pentraxin levels differ in subjects with eosinophilic versus non-eosinophilic asthma. Furthermore, to access the predictive performance of pentraxin levels for discriminating asthma inflammatory phenotypes. METHODS A total of 80 asthmatic patients and 24 healthy control subjects underwent sputum induction at study inclusion. Differential leucocyte counts were performed on selected sputum. Plasma C-reactive protein (CRP), serum amyloid P (SAP), pentraxin 3 (PTX3), and sputum SAP, PTX3, IL-8 levels were determined by enzyme-linked immunosorbent assay. RESULTS Subjects with non-eosinophilic asthma had significantly increased pentraxin levels compared with those with eosinophilic asthma and healthy controls, with median (interquartile range) plasma CRP levels of 0.86 (0.28-2.07), 0.26 (0.14-0.85), and 0.15 (0.09-0.45)mg/L (P < .001), respectively, plasma SAP levels of 33.69 (19.79-58.39), 19.76 (16.11-30.58), and 20.06 (15.68-31.11)mg/L (P = .003), respectively, and sputum PTX3 levels of 4.9 (1.35-18.72), 0.87 (0.30-2.07), and 1.08 (0.31-4.32)ng/mL (P < .001), respectively. Conversely, sputum SAP concentrations of eosinophilic asthmatics (median, 21.49 ng/mL; IQR, 6.86-38.79 ng/mL) were significantly higher than those of non-eosinophilic patients (median, 8.15 ng/mL; IQR, 2.82-18.01 ng/mL) and healthy controls (median, 8.79 ng/mL; IQR, 2.00-16.18 ng/mL). Asthma patients with high plasma CRP (P = .004), SAP (P = .005) and sputum PTX3 levels (P < 0.001) also had significantly lower sputum eosinophil percentages. Sputum PTX3 levels had the best power (11.18-fold, P < .001) to predict non-eosinophilic airway inflammation in asthma patients. CONCLUSION AND CLINICAL RELEVANCE Pentraxin levels differed significantly between patients with non-eosinophilic asthma and those with eosinophilic asthma. Furthermore, elevated pentraxin expressions may predict non-eosinophilic airway inflammation in asthmatic patients.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Yang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianmiao Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
dell'Oglio MP, Simone S, Ciccone M, Corciulo R, Gesualdo M, Zito A, Cortese F, Castellano G, Gigante M, Gesualdo L, Grandaliano G, Pertosa GB. Neutrophil-dependent pentraxin-3 and reactive oxygen species production modulate endothelial dysfunction in haemodialysis patients. Nephrol Dial Transplant 2018; 32:1540-1549. [PMID: 27915246 DOI: 10.1093/ndt/gfw363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/08/2016] [Indexed: 01/13/2023] Open
Abstract
Background The aim of this study was to investigate neutrophil activation and its role in long pentraxin-3 (PTX3) release and oxidative stress generation during haemodialysis (HD) and to correlate neutrophil PTX3 and oxidant expression with endothelial dysfunction. Methods Forty-seven uraemic patients on stable HD, 12 healthy subjects and 15 patients with congestive heart failure (New York Heart Association classes III and IV) were enrolled. Neutrophil PTX3 protein expression was evaluated by confocal microscopy. l -selectin expression, intracellular PTX3 localization and reactive oxygen species (ROS) generation in human neutrophils were measured by flow cytometry. NADPH-dependent superoxide generation was investigated by chemiluminescence. PTX3 plasma concentrations were measured by ELISA. Endothelial dysfunction was studied by flow-mediated dilation (FMD). Results The low baseline levels of FMD significantly improved after HD, but worsened by 24 h. A significant up-regulation of PTX3 protein expression, localized within secondary granules, was detected in neutrophils isolated at 30 and 240 min of HD, along with an increase in l -selectin expression. The up-regulation in intracellular PTX3 in neutrophils was associated with a significant increase in PTX3 plasma concentrations at 240 min. HD increased ROS production and NADPH oxidase activity in neutrophils. In a univariate analysis, pre-treatment with FMD was inversely correlated with PTX3 expression and ROS generation in neutrophils. In a multivariate analysis, both circulating pre-HD PTX3 and intracellular ROS generation by neutrophils were independent predictors of abnormal FMD. Conclusions Neutrophil overexpression of PTX3 is associated with ROS overproduction and endothelial dysfunction and may represent an emerging marker of vascular damage progression in HD patients.
Collapse
Affiliation(s)
- Maria Pia dell'Oglio
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Marco Ciccone
- Department of Emergency and Organ Transplantation, Cardiology Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Roberto Corciulo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Michele Gesualdo
- Department of Emergency and Organ Transplantation, Cardiology Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Annapaola Zito
- Department of Emergency and Organ Transplantation, Cardiology Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesca Cortese
- Department of Emergency and Organ Transplantation, Cardiology Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppe Castellano
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Margherita Gigante
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppe Grandaliano
- Department of Medical and Surgical Sciences, Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Giovanni Battista Pertosa
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
44
|
Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol 2018; 175:1377-1400. [PMID: 29394499 PMCID: PMC5901181 DOI: 10.1111/bph.14155] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
In the infarcted heart, the damage-associated molecular pattern proteins released by necrotic cells trigger both myocardial and systemic inflammatory responses. Induction of chemokines and cytokines and up-regulation of endothelial adhesion molecules mediate leukocyte recruitment in the infarcted myocardium. Inflammatory cells clear the infarct of dead cells and matrix debris and activate repair by myofibroblasts and vascular cells, but may also contribute to adverse fibrotic remodelling of viable segments, accentuate cardiomyocyte apoptosis and exert arrhythmogenic actions. Excessive, prolonged and dysregulated inflammation has been implicated in the pathogenesis of complications and may be involved in the development of heart failure following infarction. Studies in animal models of myocardial infarction (MI) have suggested the effectiveness of pharmacological interventions targeting the inflammatory response. This article provides a brief overview of the cell biology of the post-infarction inflammatory response and discusses the use of pharmacological interventions targeting inflammation following infarction. Therapy with broad anti-inflammatory and immunomodulatory agents may also inhibit important repair pathways, thus exerting detrimental actions in patients with MI. Extensive experimental evidence suggests that targeting specific inflammatory signals, such as the complement cascade, chemokines, cytokines, proteases, selectins and leukocyte integrins, may hold promise. However, clinical translation has proved challenging. Targeting IL-1 may benefit patients with exaggerated post-MI inflammatory responses following infarction, not only by attenuating adverse remodelling but also by stabilizing the atherosclerotic plaque and by inhibiting arrhythmia generation. Identification of the therapeutic window for specific interventions and pathophysiological stratification of MI patients using inflammatory biomarkers and imaging strategies are critical for optimal therapeutic design.
Collapse
Affiliation(s)
- Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology)Albert Einstein College of MedicineBronxNY10461USA
- Department of Cardiology, Changzheng HospitalSecond Military Medical UniversityShanghai200003China
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology)Albert Einstein College of MedicineBronxNY10461USA
| |
Collapse
|
45
|
Chan SH, Tsai JP, Shen CJ, Liao YH, Chen BK. Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget 2018; 8:41364-41378. [PMID: 28489600 PMCID: PMC5522334 DOI: 10.18632/oncotarget.17326] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/30/2017] [Indexed: 01/08/2023] Open
Abstract
The association between metabolic diseases and the risk of developing cancer is emerging. However, the impact of long pentraxin-3 (PTX3) on dyslipidemia-associated tumor metastasis remains unknown. In this study, we found that oleate induced PTX3 expression and secretion through the activation of Akt/NF-κB pathway in head and neck squamous cell carcinomas (HNSCCs). The activation of NF-κB was essential for the oleate-induced stabilization of PTX3 mRNA. In addition, both the depletion of PTX3 and the inhibition of NF-κB significantly inhibited oleate-induced tumor cell migration and invasion. The enhancement of binding between tumor and endothelial cells was observed in oleate-treated cells but not in the depletion and neutralization of PTX3 with siPTX3 and anti-PTX3 antibodies, respectively. The levels of oleate-induced epithelial-mesenchymal transition (EMT) markers, such as vimentin and MMP-3, were significantly reduced in PTX3-depleted cells. Knocking down vimentin also repressed oleate-induced HNSCC invasion. Furthermore, the depletion of PTX3 blocked the oleate-primed metastatic seeding of tumor cells in the lungs. These results demonstrate that oleate enhances HNSCC metastasis through the PTX3/vimentin signaling axes. The inhibition of PTX3 could be a potential strategy for the treatment of dyslipidemia-mediated HNSCC metastasis.
Collapse
Affiliation(s)
- Shih-Hung Chan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Jhih-Peng Tsai
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Chih-Jie Shen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, People's Republic of China
| | - Yu-Han Liao
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Ben-Kuen Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, People's Republic of China
| |
Collapse
|
46
|
Lindberg‐Larsen V, Kehlet H, Pilely K, Bagger J, Rovsing ML, Garred P. Preoperative methylprednisolone increases plasma Pentraxin 3 early after total knee arthroplasty: a randomized, double-blind, placebo-controlled trial. Clin Exp Immunol 2018; 191:356-362. [PMID: 29119559 PMCID: PMC5801497 DOI: 10.1111/cei.13071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 11/29/2022] Open
Abstract
Preoperative glucocorticoid administration reduces the systemic inflammatory response. Pentraxin 3 (PTX3) is a novel inflammatory marker belonging to the humoral arm of innate immunity exerting a potentially protective host response. This study evaluated PTX3 and other complement marker changes after preoperative methylprednisolone (MP) early after total knee arthroplasty (TKA). Seventy patients were randomized (1 : 1) to preoperative intravenous (i.v.) MP 125 mg (group MP) or isotonic saline i.v. (group C). The outcomes included change in plasma PTX3, mannose-binding lectin (MBL), ficolins (ficolin-1, -2 and -3), complement components (C4 and C3), terminal complement complex (TCC) and C-reactive protein (CRP) concentrations. Blood samples were analysed at baseline and 2, 6, 24 and 48 h after surgery with complete sampling from 63 patients for analyses. MP resulted in an increase in circulating PTX3 compared to saline from baseline to 24 h postoperatively (P < 0·001), while MP reduced the systemic inflammatory response (CRP) 24 and 48 h postoperatively (P < 0·001). However, the small postoperative changes in MBL, ficolin-1, -2 and -3, C4, C3 and TCC concentrations did not differ between groups (P > 0·05). In conclusion, preoperative MP 125 mg increased circulating PTX3 and reduced the general inflammatory response (CRP) early after TKA, but did not affect other complement markers.
Collapse
Affiliation(s)
- V. Lindberg‐Larsen
- Section for Surgical Pathophysiology, Section 7621Copenhagen University Hospital, RigshospitaletCopenhagenDenmark
- The Lundbeck Foundation Centre for Fast‐Track Hip and Knee ArthroplastyCopenhagenDenmark
| | - H. Kehlet
- Section for Surgical Pathophysiology, Section 7621Copenhagen University Hospital, RigshospitaletCopenhagenDenmark
- The Lundbeck Foundation Centre for Fast‐Track Hip and Knee ArthroplastyCopenhagenDenmark
| | - K. Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631Copenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - J. Bagger
- Department of Orthopaedic SurgeryCopenhagen University Hospital, Bispebjerg and FrederiksbergDenmark
| | - M. L. Rovsing
- Department of Anaesthesiology and Intensive Care MedicineCopenhagen University Hospital, Bispebjerg and FrederiksbergDenmark
| | - P. Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631Copenhagen University Hospital, RigshospitaletCopenhagenDenmark
| |
Collapse
|
47
|
Tunc-Ata M, Turgut G, Mergen-Dalyanoglu M, Turgut S. Examination of levels pentraxin-3, interleukin-6, and C-reactive protein in rat model acute and chronic exercise. J Exerc Rehabil 2017; 13:279-283. [PMID: 28702438 PMCID: PMC5498083 DOI: 10.12965/jer.1734920.490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/10/2017] [Indexed: 01/21/2023] Open
Abstract
Different types of exercise occurs damage at the cellular level in the muscles. Muscle damage caused by exercise is determined creatine kinase, myoglobin, and increase in levels of acute phase protein and interleukin in blood. The purpose of this study was investigated the levels of pentraxin-3 (PTX-3), interleukin-6 (IL-6), and C-reactive protein (CRP) following acute and chronic exercising in rats. Twenty-six Wistar Albino male rats were divided in to three groups. A treadmill exercise was performed 3 days/week, 10 min/day for 1 week in acute groups. In chronic group, exercise performed 7 days/week, 60 min/day for 4 weeks. At the end of the experiment, plasma PTX-3, IL-6, and CRP levels were measured. In current study, the PTX-3, IL-6, and CRP levels not observed statistically significant difference among control, acute, and chronic groups. The levels IL-6 and CRP were not significantly different between acute and chronic exercise groups (P>0.05). However, the level of PTX-3 was found to be higher in the chronic group compared to the acute group (P<0.05). The PTX-3 level increase on chronic exercise-induced muscle damage. Accorting to our results, we think that PTX-3 may have a protect role on muscle damage during chronic exercises.
Collapse
Affiliation(s)
- Melek Tunc-Ata
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| | - Gunfer Turgut
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| | | | - Sebahat Turgut
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| |
Collapse
|
48
|
Augusto JF, Poli C, Beauvillain C, Subra JF, Jaillon S, Renier G, Chevailler A, Puéchal X, Delneste Y, Jeannin P. Anti-pentraxin antibodies in autoimmune systemic diseases: Focus on anti-pentraxin-3 autoantibodies. Int Rev Immunol 2017; 36:145-153. [DOI: 10.1080/08830185.2017.1284210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-François Augusto
- Department of Nephrology-Dialysis-Transplantation, University Hospital of Angers, Angers, France
- Angers University Hospital, University of Angers, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d'Angers, LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Caroline Poli
- Angers University Hospital, University of Angers, Angers, France
| | - Céline Beauvillain
- Angers University Hospital, University of Angers, Angers, France
- Immunology and Allergology Laboratory, University Hospital of Angers, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d'Angers, LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Jean-François Subra
- Department of Nephrology-Dialysis-Transplantation, University Hospital of Angers, Angers, France
- Angers University Hospital, University of Angers, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d'Angers, LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Sebastien Jaillon
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Gilles Renier
- Immunology and Allergology Laboratory, University Hospital of Angers, Angers, France
| | - Alain Chevailler
- Angers University Hospital, University of Angers, Angers, France
- Immunology and Allergology Laboratory, University Hospital of Angers, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d'Angers, LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Xavier Puéchal
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yves Delneste
- Angers University Hospital, University of Angers, Angers, France
- Immunology and Allergology Laboratory, University Hospital of Angers, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d'Angers, LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Pascale Jeannin
- Angers University Hospital, University of Angers, Angers, France
- Immunology and Allergology Laboratory, University Hospital of Angers, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d'Angers, LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| |
Collapse
|
49
|
Ma YJ, Lee BL, Garred P. An overview of the synergy and crosstalk between pentraxins and collectins/ficolins: their functional relevance in complement activation. Exp Mol Med 2017; 49:e320. [PMID: 28428631 PMCID: PMC6130212 DOI: 10.1038/emm.2017.51] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
The complement system is an innate immune defense machinery comprising components that deploy rapid immune responses and provide efficient protection against foreign invaders and unwanted host elements. The complement system is activated upon recognition of pathogenic microorganisms or altered self-cells by exclusive pattern recognition molecules (PRMs), such as collectins, ficolins and pentraxins. Recent accumulating evidence shows that the different classes of effector PRMs build up a co-operative network and exert synergistic effects on complement activation. In this review, we describe our updated view of the crosstalk between previously unlinked PRMs in complement activation and the potential pathogenic effects during infection and inflammation.
Collapse
Affiliation(s)
- Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan, Korea
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Zelante T, Wong AYW, Mencarelli A, Foo S, Zolezzi F, Lee B, Poidinger M, Ricciardi-Castagnoli P, Fric J. Impaired calcineurin signaling in myeloid cells results in downregulation of pentraxin-3 and increased susceptibility to aspergillosis. Mucosal Immunol 2017; 10:470-480. [PMID: 27301880 DOI: 10.1038/mi.2016.52] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/08/2016] [Indexed: 02/04/2023]
Abstract
Treatment of post-transplant patients with immunosuppressive drugs targeting the calcineurin-nuclear factor of activated T cells (NFAT) pathway, including cyclosporine A or tacrolimus, is commonly associated with a higher incidence of opportunistic infections, such as Aspergillus fumigatus, which can lead to severe life-threatening conditions. A component of the A. fumigatus cell wall, β-glucan, is recognized by dendritic cells (DCs) via the Dectin-1 receptor, triggering downstream signaling that leads to calcineurin-NFAT binding, NFAT translocation, and transcription of NFAT-regulated genes. Here, we address the question of whether calcineurin signaling in CD11c-expressing cells, such as DCs, has a specific role in the innate control of A. fumigatus. Impairment of calcineurin in CD11c-expressing cells (CD11ccrecnb1loxP) significantly increased susceptibility to systemic A. fumigatus infection and to intranasal infection in irradiated mice undergoing bone marrow transplant. Global expression profiling of bone marrow-derived DCs identified calcineurin-regulated processes in the immune response to infection, including expression of pentraxin-3, an important antifungal defense protein. These results suggest that calcineurin inhibition directly impairs important immunoprotective functions of myeloid cells, as shown by the higher susceptibility of CD11ccrecnbloxP mice in models of systemic and invasive pulmonary aspergillosis, including after allogeneic bone marrow transplantation. These findings are relevant to the clinical management of transplant patients with severe Aspergillus infections.
Collapse
Affiliation(s)
- T Zelante
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - A Y W Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - A Mencarelli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Emerging Infectious Diseases Programme, Duke-NUS, Singapore
| | - S Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - F Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - B Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - M Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - P Ricciardi-Castagnoli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - J Fric
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|